00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 70-year-old man comes to the Parkinson clinic for a levodopa review. In...

    Correct

    • A 70-year-old man comes to the Parkinson clinic for a levodopa review. In Parkinson's disease, which region of the basal ganglia is most affected?

      Your Answer: Substantia nigra pars compacta

      Explanation:

      Parkinson’s disease primarily affects the basal ganglia, which is responsible for movement. Within the basal ganglia, the substantia nigra is a crucial component that plays a significant role in movement and reward. The dopaminergic neurons in the substantia nigra, which contain high levels of neuromelanin, function through the indirect pathway to facilitate movement. However, these neurons are the ones most impacted by Parkinson’s disease. The substantia nigra gets its name from its dark appearance, which is due to the abundance of neuromelanin in its neurons.

      Parkinson’s disease is a progressive neurodegenerative disorder that occurs due to the degeneration of dopaminergic neurons in the substantia nigra. This leads to a classic triad of symptoms, including bradykinesia, tremor, and rigidity, which are typically asymmetrical. The disease is more common in men and is usually diagnosed around the age of 65. Bradykinesia is characterized by a poverty of movement, shuffling steps, and difficulty initiating movement. Tremors are most noticeable at rest and typically occur in the thumb and index finger. Rigidity can be either lead pipe or cogwheel, and other features include mask-like facies, flexed posture, and drooling of saliva. Psychiatric features such as depression, dementia, and sleep disturbances may also occur. Diagnosis is usually clinical, but if there is difficulty differentiating between essential tremor and Parkinson’s disease, 123I‑FP‑CIT single photon emission computed tomography (SPECT) may be considered.

    • This question is part of the following fields:

      • Neurological System
      24.5
      Seconds
  • Question 2 - A 55-year-old male with a history of cirrhosis presents to the neurology clinic...

    Incorrect

    • A 55-year-old male with a history of cirrhosis presents to the neurology clinic with his spouse. The spouse reports observing rapid, involuntary jerky movements in the patient's body, which you suspect to be chorea. What is the most probable cause of this?

      Your Answer: Alcohol

      Correct Answer: Wilson's disease

      Explanation:

      Wilson’s disease can cause chorea, which is characterised by involuntary, rapid, jerky movements that move from one area of the body to the next. Parkinson’s disease, hypothyroidism, and cerebellar syndrome have different symptoms and are not associated with chorea.

      Chorea: Involuntary Jerky Movements

      Chorea is a medical condition characterized by involuntary, rapid, and jerky movements that can occur in any part of the body. Athetosis, on the other hand, refers to slower and sinuous movements of the limbs. Both conditions are caused by damage to the basal ganglia, particularly the caudate nucleus.

      There are various underlying causes of chorea, including genetic disorders such as Huntington’s disease and Wilson’s disease, autoimmune diseases like systemic lupus erythematosus (SLE) and anti-phospholipid syndrome, and rheumatic fever, which can lead to Sydenham’s chorea. Certain medications like oral contraceptive pills, L-dopa, and antipsychotics can also trigger chorea. Other possible causes include neuroacanthocytosis, pregnancy-related chorea gravidarum, thyrotoxicosis, polycythemia rubra vera, and carbon monoxide poisoning.

      In summary, chorea is a medical condition that causes involuntary, jerky movements in the body. It can be caused by various factors, including genetic disorders, autoimmune diseases, medications, and other medical conditions.

    • This question is part of the following fields:

      • Neurological System
      20
      Seconds
  • Question 3 - A 67-year-old man visits his GP complaining of alterations in his vision. In...

    Incorrect

    • A 67-year-old man visits his GP complaining of alterations in his vision. In addition to decreased sharpness, he describes object distortion, difficulty discerning colors, and occasional flashes of light. He has a history of smoking (40-pack-year) and a high BMI. Based on these symptoms, what is the most probable diagnosis?

      Your Answer: Diabetic retinopathy

      Correct Answer: Age-related macular degeneration

      Explanation:

      Age-related macular degeneration (AMD) is characterized by a decrease in visual acuity, altered perception of colors and shades, and photopsia (flashing lights). The risk of developing AMD is higher in individuals who are older and have a history of smoking.

      As a natural part of the aging process, presbyopia can cause difficulty with near vision. Smoking increases the likelihood of developing cataracts, which can result in poor visual acuity and reduced contrast sensitivity. However, symptoms such as distortion and flashing lights are not typically associated with cataracts. Similarly, retinal detachment is unlikely given the patient’s risk factors and lack of distortion and perception issues. Since there is no mention of diabetes mellitus in the patient’s history, diabetic retinopathy is not a plausible explanation.

      Age-related macular degeneration (ARMD) is a common cause of blindness in the UK, characterized by degeneration of the central retina (macula) and the formation of drusen. The risk of ARMD increases with age, smoking, family history, and conditions associated with an increased risk of ischaemic cardiovascular disease. ARMD is classified into dry and wet forms, with the latter carrying the worst prognosis. Clinical features include subacute onset of visual loss, difficulties in dark adaptation, and visual hallucinations. Signs include distortion of line perception, the presence of drusen, and well-demarcated red patches in wet ARMD. Investigations include slit-lamp microscopy, colour fundus photography, fluorescein angiography, indocyanine green angiography, and ocular coherence tomography. Treatment options include a combination of zinc with anti-oxidant vitamins for dry ARMD and anti-VEGF agents for wet ARMD. Laser photocoagulation is also an option, but anti-VEGF therapies are usually preferred.

    • This question is part of the following fields:

      • Neurological System
      26.8
      Seconds
  • Question 4 - A 75-year-old-male comes to your neurology clinic accompanied by his wife. She reports...

    Incorrect

    • A 75-year-old-male comes to your neurology clinic accompanied by his wife. She reports that she has observed alterations in his speech over the last six months, with frequent pauses between syllables of words. During the clinical examination, you observe that his speech is jerky and loud, and he has decreased tone in his upper and lower limbs. Considering the most probable diagnosis, what other symptom is he likely to exhibit?

      Your Answer: Torsional diplopia

      Correct Answer: Horizontal nystagmus

      Explanation:

      When a person has a cerebellar lesion, they may experience horizontal nystagmus, which is characterized by involuntary eye movements in a horizontal direction. This can be accompanied by other symptoms of cerebellar syndrome, such as scanning dysarthria and hypotonia, as well as ataxia, intention tremor, and dysdiadochokinesia.

      In contrast, vertical diplopia is a symptom of fourth nerve palsy, where a person sees one object as two images, one above the other. This condition may also cause a head tilt and the affected eye to deviate up and out. Torsional diplopia, on the other hand, is another symptom of fourth nerve palsy, where a person sees one object as two images that are slightly tilted away from each other. This condition may also cause vertical diplopia and the affected eye to deviate up and rotate outward.

      Cerebellar syndrome is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. When there is damage or injury to one side of the cerebellum, it can cause symptoms on the same side of the body. These symptoms can be remembered using the mnemonic DANISH, which stands for Dysdiadochokinesia, Dysmetria, Ataxia, Nystagmus, Intention tremour, Slurred staccato speech, and Hypotonia.

      There are several possible causes of cerebellar syndrome, including genetic conditions like Friedreich’s ataxia and ataxic telangiectasia, neoplastic growths like cerebellar haemangioma, strokes, alcohol use, multiple sclerosis, hypothyroidism, and certain medications or toxins like phenytoin or lead poisoning. In some cases, cerebellar syndrome may be a paraneoplastic condition, meaning it is a secondary effect of an underlying cancer like lung cancer. It is important to identify the underlying cause of cerebellar syndrome in order to provide appropriate treatment and management.

    • This question is part of the following fields:

      • Neurological System
      30.4
      Seconds
  • Question 5 - A 67-year-old man arrives at the emergency department with a sudden onset of...

    Incorrect

    • A 67-year-old man arrives at the emergency department with a sudden onset of visual disturbance. He has a medical history of hypertension and takes amlodipine. He smokes 10 cigarettes daily.

      During the eye examination, a field defect is observed in the right lower quadrant of both eyes. Apart from this, the examination is unremarkable.

      What is the anatomical location of the lesion causing the vision problem?

      Your Answer: Left inferior optic radiation

      Correct Answer: Left superior optic radiation

      Explanation:

      Lesions in the parietal lobe affecting the superior optic radiations result in inferior homonymous quadrantanopias.

      Understanding Visual Field Defects

      Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.

      When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.

      Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.

      Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.

    • This question is part of the following fields:

      • Neurological System
      14.1
      Seconds
  • Question 6 - A young man comes to the clinic with difficulty forming meaningful sentences following...

    Incorrect

    • A young man comes to the clinic with difficulty forming meaningful sentences following treatment for a right middle cerebral artery infarction. He struggles to complete his sentences and frequently pauses while speaking. However, his comprehension of spoken language remains intact. The physician suspects a neurological origin. Which area of his brain is likely affected?

      Your Answer: Frontal and occipital lobes of left hemisphere

      Correct Answer: Broca's area

      Explanation:

      The individual in question is experiencing Broca’s aphasia, which results in impaired language production but preserved comprehension. Wernicke’s aphasia, on the other hand, would result in impaired comprehension but preserved language production. Both Broca’s and Wernicke’s aphasia are typically caused by a stroke and affect areas in the left hemisphere, not involving the occipital lobe. Therefore, the options that suggest specific anatomical landmarks are incorrect.

      Types of Aphasia: Understanding the Different Forms of Language Impairment

      Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.

      Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.

      Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.

      Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.

    • This question is part of the following fields:

      • Neurological System
      22.3
      Seconds
  • Question 7 - A 42-year-old woman visits her doctor complaining of increased fatigue, especially towards the...

    Correct

    • A 42-year-old woman visits her doctor complaining of increased fatigue, especially towards the end of the day. Her husband notices visible signs of tiredness, with her eyes almost closed.

      During the examination, the doctor observes a mass on the front of the neck and mild ptosis on both sides. To further investigate, the doctor instructs the patient to look down for a brief period and then return to primary gaze. Bilateral eyelid twitching is present upon returning to primary gaze.

      What is the most commonly associated antibody with the probable diagnosis?

      Your Answer: Antibodies against acetylcholine receptors

      Explanation:

      The patient’s symptoms and physical exam findings suggest a diagnosis of myasthenia gravis (MG). This autoimmune disorder affects the neuromuscular junction and can cause weakness and fatigue in the muscles. The presence of ptosis and diplopia, particularly worsening with prolonged use, is a common presentation in MG. Additionally, the presence of Cogan’s sign, twitching of the eyelids after a period of down-gazing, is a useful bedside test to assess for MG.

      It is important to note that anti-smooth muscle antibodies, antibodies against voltage-gated calcium channels, and antimitochondrial antibodies are not associated with MG. These antibodies are instead associated with autoimmune hepatitis, Lambert Eaton myasthenic syndrome, and primary biliary cholangitis, respectively.

      Myasthenia gravis is an autoimmune disorder that results in muscle weakness and fatigue, particularly in the eyes, face, neck, and limbs. It is more common in women and is associated with thymomas and other autoimmune disorders. Diagnosis is made through electromyography and testing for antibodies to acetylcholine receptors. Treatment includes acetylcholinesterase inhibitors and immunosuppression, and in severe cases, plasmapheresis or intravenous immunoglobulins may be necessary.

    • This question is part of the following fields:

      • Neurological System
      20.9
      Seconds
  • Question 8 - A 50-year-old woman comes to the Emergency Department with facial drooping and slurred...

    Incorrect

    • A 50-year-old woman comes to the Emergency Department with facial drooping and slurred speech. You perform a cranial nerves examination and find that her oculomotor nerve has been affected. What sign would you anticipate observing in this patient?

      Your Answer: Arcuate scotoma

      Correct Answer: Ptosis

      Explanation:

      The correct answer is ptosis. Issues with the oculomotor nerve can cause ptosis, a drooping of the eyelid, as well as a dilated, fixed pupil and a down and out eye. The oculomotor nerve is responsible for various functions, including eye movements (such as those controlled by the MR, IO, SR, and IR muscles), pupil constriction, accommodation, and eyelid opening. Arcuate scotoma is an incorrect answer. This condition is caused by damage to the optic nerve, resulting in a blind spot that appears as an arc shape in the visual field. It does not affect extraocular movements. Bitemporal hemianopia is also an incorrect answer. This visual field defect affects the outer halves of both eyes and is caused by lesions of the optic chiasm, such as those resulting from a pituitary adenoma. Horizontal diplopia is another incorrect answer. This condition is caused by problems with the abducens nerve, which controls the lateral rectus muscle responsible for eye abduction. Defective abduction leads to horizontal diplopia, or double vision.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      10.2
      Seconds
  • Question 9 - A 78-year-old woman visits her doctor complaining of frequent forgetfulness. She expresses concern...

    Correct

    • A 78-year-old woman visits her doctor complaining of frequent forgetfulness. She expresses concern about her ability to care for her husband at home. After undergoing a cognitive evaluation and ruling out reversible causes, the doctor refers her to a memory clinic where she is diagnosed with early-stage Alzheimer's disease.

      What is the pathophysiological explanation for this diagnosis?

      Your Answer: Amyloid plaques are extra-neuronal while neurofibrillary tangles are intra-neuronal

      Explanation:

      The correct statement is that amyloid plaques are extraneuronal while neurofibrillary tangles are intraneuronal in Alzheimer’s disease pathology. The formation of neurofibrillary tangles is due to hyperphosphorylation of Tau, not amyloid aggregation. Deposition of amyloid plaques and neurofibrillary tangles occurs diffusely throughout the brain, particularly affecting the hippocampus, and not primarily in the frontal lobe. Neurofibrillary tangles do not enhance acetylcholine signalling within the brain, as Alzheimer’s disease is characterized by reduced acetylcholine signalling and impaired cognitive function. Amyloid protein aggregation leads to the formation of plaques, while Tau causes a build-up of neurofibrillary tangles.

      Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.

      The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.

      Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.

    • This question is part of the following fields:

      • Neurological System
      28.5
      Seconds
  • Question 10 - As a doctor on a 4-month placement in intensive care, you admit a...

    Incorrect

    • As a doctor on a 4-month placement in intensive care, you admit a 32-year-old man following a closed head injury sustained in a road traffic accident. The patient has no past medical history and initially presents with a Glasgow coma score of 14/15 and no focal neurological deficit. Invasive monitoring is undertaken, and his heart rate, blood pressure, and intracranial pressure are normal. He is started on maintenance intravenous fluids.

      However, a few hours later, the patient becomes agitated and confused, and his Glasgow coma score drops to 11/15. His observations reveal a regular heart rate of 101 beats per minute, a blood pressure of 161/89 mmHg, and an intracranial pressure of 18 mmHg. Which pathophysiological changes could explain his clinical deterioration and hypertension?

      Your Answer: Fall in cardiac output causing cerebral hypoxia

      Correct Answer: Rise in intracranial pressure causing fall in cerebral perfusion pressure

      Explanation:

      When intracranial pressure (ICP) rises rapidly, it can lead to a decrease in cerebral perfusion pressure (CPP). This can occur in individuals with head injuries, as seen in the scenario where a patient’s Glasgow coma score dropped from 14/15 to 11/15 and they became agitated. The patient’s ICP also increased to 18 mmHg, likely due to brain swelling or a hematoma. The decrease in CPP can cause hypoperfusion and hypoxia in normal brain tissue, leading to neurological deterioration. CPP is calculated by subtracting ICP from mean arterial pressure. As a result of the decrease in CPP, the body may respond by increasing mean arterial pressure, resulting in hypertension in the patient.

      Understanding Cerebral Perfusion Pressure

      Cerebral perfusion pressure (CPP) refers to the pressure gradient that drives blood flow to the brain. It is a crucial factor in maintaining optimal cerebral perfusion, which is tightly regulated by the body. Any sudden increase in CPP can lead to a rise in intracranial pressure (ICP), while a decrease in CPP can result in cerebral ischemia. To calculate CPP, one can subtract the ICP from the mean arterial pressure.

      In cases of trauma, it is essential to carefully monitor and control CPP. This may require invasive methods to measure both ICP and mean arterial pressure (MAP). By doing so, healthcare professionals can ensure that the brain receives adequate blood flow and oxygenation, which is vital for optimal brain function. Understanding CPP is crucial in managing traumatic brain injuries and other conditions that affect cerebral perfusion.

    • This question is part of the following fields:

      • Neurological System
      25.2
      Seconds
  • Question 11 - A 25-year-old woman is seeking your assistance in getting a referral to a...

    Incorrect

    • A 25-year-old woman is seeking your assistance in getting a referral to a clinical geneticist. She has a family history of Huntington's disease, with her grandfather having died from the condition and her father recently being diagnosed. She wants to learn more about the disease and its genetic inheritance. Which of the following statements is accurate?

      Your Answer: Huntington's disease is inherited in an autosomal recessive manner

      Correct Answer: Huntington's disease is caused by a defect on chromosome 4

      Explanation:

      The cause of Huntington’s disease is a flaw in the huntingtin gene located on chromosome 4, resulting in a degenerative and irreversible neurological disorder. It is inherited in an autosomal dominant pattern and affects both genders equally.

      Huntington’s disease is a genetic disorder that causes progressive and incurable neurodegeneration. It is inherited in an autosomal dominant manner and is caused by a trinucleotide repeat expansion of CAG in the huntingtin gene on chromosome 4. This can result in the phenomenon of anticipation, where the disease presents at an earlier age in successive generations. The disease leads to the degeneration of cholinergic and GABAergic neurons in the striatum of the basal ganglia, which can cause a range of symptoms.

      Typically, symptoms of Huntington’s disease develop after the age of 35 and can include chorea, personality changes such as irritability, apathy, and depression, intellectual impairment, dystonia, and saccadic eye movements. Unfortunately, there is currently no cure for Huntington’s disease, and it usually results in death around 20 years after the initial symptoms develop.

    • This question is part of the following fields:

      • Neurological System
      17.8
      Seconds
  • Question 12 - A 65-year-old man comes to the emergency department after experiencing a sudden, severe...

    Incorrect

    • A 65-year-old man comes to the emergency department after experiencing a sudden, severe headache that started one hour ago. He describes it as feeling like he was hit in the head with a hammer while he was in the shower.

      During the examination, the patient has a dilated left pupil with an eye that is fixed to the lower lateral quadrant. Although he feels nauseous, there is no change in his Glasgow Coma Scale score (GCS).

      Which of the following dural folds is responsible for the compression of the oculomotor nerve, resulting in the eye signs observed in this case?

      Your Answer: Corpus callosum

      Correct Answer: Tentorium cerebelli

      Explanation:

      The tentorium cerebelli, which is a fold of the dura mater on both sides, separates the cerebellum from the occipital lobes. When there are expanding mass lesions, the brain can be pushed down past this fold, resulting in the compression of local structures such as the oculomotor nerve. This compression can cause abnormal eye positioning and a dilated pupil in the patient.

      It is important to note that the corpus callosum is not a fold of the meninges. Instead, it is a bundle of neuronal fibers that connect the two hemispheres of the brain.

      The falx cerebri, on the other hand, is a fold of the dura mater that extends inferiorly between the two hemispheres of the brain.

      The arachnoid and pia mater are the middle and innermost layers of the meninges, respectively. They are not involved in the fold of the dura mater that separates the occipital lobe from the cerebellum.

      The Three Layers of Meninges

      The meninges are a group of membranes that cover the brain and spinal cord, providing support to the central nervous system and the blood vessels that supply it. These membranes can be divided into three distinct layers: the dura mater, arachnoid mater, and pia mater.

      The outermost layer, the dura mater, is a thick fibrous double layer that is fused with the inner layer of the periosteum of the skull. It has four areas of infolding and is pierced by small areas of the underlying arachnoid to form structures called arachnoid granulations. The arachnoid mater forms a meshwork layer over the surface of the brain and spinal cord, containing both cerebrospinal fluid and vessels supplying the nervous system. The final layer, the pia mater, is a thin layer attached directly to the surface of the brain and spinal cord.

      The meninges play a crucial role in protecting the brain and spinal cord from injury and disease. However, they can also be the site of serious medical conditions such as subdural and subarachnoid haemorrhages. Understanding the structure and function of the meninges is essential for diagnosing and treating these conditions.

    • This question is part of the following fields:

      • Neurological System
      26.4
      Seconds
  • Question 13 - A 35-year-old male presents to the acute eye clinic with sudden onset of...

    Incorrect

    • A 35-year-old male presents to the acute eye clinic with sudden onset of a painful red eye. He denies any history of trauma and has a medical history of ankylosing spondylitis for the past 8 years. On examination, his left eye has a visual acuity of 6/60 while his right eye is 6/6. Mild hypopyon is observed in his left eye during slit lamp examination. The diagnosis is anterior uveitis and he is prescribed steroid eye drops and cycloplegics. Which structure in the eye is affected in this case?

      Your Answer: Cornea

      Correct Answer: Ciliary body and iris

      Explanation:

      Anterior uveitis, also known as iritis, is a type of inflammation that affects the iris and ciliary body in the front part of the uvea. This condition is often associated with HLA-B27 and may be linked to other conditions such as ankylosing spondylitis, reactive arthritis, ulcerative colitis, Crohn’s disease, Behcet’s disease, and sarcoidosis. Symptoms of anterior uveitis include sudden onset of eye discomfort and pain, small and irregular pupils, intense sensitivity to light, blurred vision, redness in the eye, tearing, and a ring of redness around the cornea. In severe cases, pus and inflammatory cells may accumulate in the front chamber of the eye, leading to a visible fluid level. Treatment for anterior uveitis involves urgent evaluation by an ophthalmologist, cycloplegic agents to relieve pain and photophobia, and steroid eye drops to reduce inflammation.

    • This question is part of the following fields:

      • Neurological System
      14.3
      Seconds
  • Question 14 - A 70-year-old individual arrives at the emergency department with a complaint of double...

    Incorrect

    • A 70-year-old individual arrives at the emergency department with a complaint of double vision. Upon examination, it was found that one of the cranial nerves was acutely paralyzed. Imaging studies revealed a large aneurysm in the right carotid artery within the cavernous sinus, which was compressing a nerve. Which nerve is most likely affected by the development of this aneurysm, given its close anatomical proximity to the artery, resulting in the patient's visual symptoms?

      Your Answer:

      Correct Answer: Abducens nerve

      Explanation:

      The abducens nerve is at the highest risk of being affected by an enlarging aneurysm from the internal carotid artery as it travels alongside it in the middle of the cavernous sinus. On the other hand, the ophthalmic, oculomotor, and trochlear nerves travel along the lateral wall of the cavernous sinus and are not in close proximity to the internal carotid artery. Additionally, the optic nerve does not travel within the cavernous sinus and is therefore unlikely to be compressed by an intracavernous aneurysm.

      Understanding the Cavernous Sinus

      The cavernous sinuses are a pair of structures located on the sphenoid bone, running from the superior orbital fissure to the petrous temporal bone. They are situated between the pituitary fossa and the sphenoid sinus on the medial side, and the temporal lobe on the lateral side. The cavernous sinuses contain several important structures, including the oculomotor, trochlear, ophthalmic, and maxillary nerves, as well as the internal carotid artery and sympathetic plexus, and the abducens nerve.

      The lateral wall components of the cavernous sinuses include the oculomotor, trochlear, ophthalmic, and maxillary nerves, while the contents of the sinus run from medial to lateral and include the internal carotid artery and sympathetic plexus, and the abducens nerve. The blood supply to the cavernous sinuses comes from the ophthalmic vein, superficial cortical veins, and basilar plexus of veins posteriorly. The cavernous sinuses drain into the internal jugular vein via the superior and inferior petrosal sinuses.

      In summary, the cavernous sinuses are important structures located on the sphenoid bone that contain several vital nerves and blood vessels. Understanding their location and contents is crucial for medical professionals in diagnosing and treating various conditions that may affect these structures.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 15 - Which one of the following is not a typical feature of neuropraxia? ...

    Incorrect

    • Which one of the following is not a typical feature of neuropraxia?

      Your Answer:

      Correct Answer: Axonal degeneration distal to the site of injury

      Explanation:

      Neuropraxia typically results in full recovery within 6-8 weeks after nerve injury, and Wallerian degeneration is not a common occurrence. Additionally, autonomic function is typically maintained.

      Nerve injuries can be classified into three types: neuropraxia, axonotmesis, and neurotmesis. Neuropraxia occurs when the nerve is intact but its electrical conduction is affected. However, full recovery is possible, and autonomic function is preserved. Wallerian degeneration, which is the degeneration of axons distal to the site of injury, does not occur. Axonotmesis, on the other hand, happens when the axon is damaged, but the myelin sheath is preserved, and the connective tissue framework is not affected. Wallerian degeneration occurs in this type of injury. Lastly, neurotmesis is the most severe type of nerve injury, where there is a disruption of the axon, myelin sheath, and surrounding connective tissue. Wallerian degeneration also occurs in this type of injury.

      Wallerian degeneration typically begins 24-36 hours following the injury. Axons are excitable before degeneration occurs, and the myelin sheath degenerates and is phagocytosed by tissue macrophages. Neuronal repair may only occur physiologically where nerves are in direct contact. However, nerve regeneration may be hampered when a large defect is present, and it may not occur at all or result in the formation of a neuroma. If nerve regrowth occurs, it typically happens at a rate of 1mm per day.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 16 - A 56-year-old patient has undergone surgery for thyroid cancer and his family has...

    Incorrect

    • A 56-year-old patient has undergone surgery for thyroid cancer and his family has noticed a change in his voice, becoming more hoarse a week after the surgery. Which nerve is likely to have been damaged during the surgery to cause this change in his voice?

      Your Answer:

      Correct Answer: Recurrent laryngeal nerve

      Explanation:

      During surgeries of the thyroid and parathyroid glands, the recurrent laryngeal nerve is at risk due to its close proximity to the inferior thyroid artery. This nerve is responsible for supplying all intrinsic muscles of the larynx (excluding the cricothyroid muscle) that control the opening and closing of the vocal folds, as well as providing sensory innervation below the vocal folds. If damaged, it can result in hoarseness of voice or, in severe cases, aphonia.

      The glossopharyngeal nerve, on the other hand, does not play a role in voice production. Its primary areas of innervation include the posterior part of the tongue, the middle ear, part of the pharynx, the carotid body and carotid sinus, and the parotid gland. It also provides motor supply to the stylopharyngeus muscle. Damage to this nerve typically presents with impaired swallowing and changes in taste.

      The ansa cervicalis is located in the carotid triangle and is unlikely to be damaged during thyroid surgery. However, it may be used to re-innervate the vocal folds in the event of damage to the recurrent laryngeal nerve post-thyroidectomy. The ansa cervicalis primarily innervates the majority of infrahyoid muscles, with the exception of the stylohyoid and thyrohyoid. Damage to these muscles would primarily result in difficulty swallowing.

      Finally, the superior laryngeal nerve is responsible for innervating the cricothyroid muscle. If this nerve is paralyzed, it can cause an inability to produce high-pitched voice, which may go unnoticed in many patients for an extended period of time.

      The Recurrent Laryngeal Nerve: Anatomy and Function

      The recurrent laryngeal nerve is a branch of the vagus nerve that plays a crucial role in the innervation of the larynx. It has a complex path that differs slightly between the left and right sides of the body. On the right side, it arises anterior to the subclavian artery and ascends obliquely next to the trachea, behind the common carotid artery. It may be located either anterior or posterior to the inferior thyroid artery. On the left side, it arises left to the arch of the aorta, winds below the aorta, and ascends along the side of the trachea.

      Both branches pass in a groove between the trachea and oesophagus before entering the larynx behind the articulation between the thyroid cartilage and cricoid. Once inside the larynx, the recurrent laryngeal nerve is distributed to the intrinsic larynx muscles (excluding cricothyroid). It also branches to the cardiac plexus and the mucous membrane and muscular coat of the oesophagus and trachea.

      Damage to the recurrent laryngeal nerve, such as during thyroid surgery, can result in hoarseness. Therefore, understanding the anatomy and function of this nerve is crucial for medical professionals who perform procedures in the neck and throat area.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 17 - A 62-year-old man comes to the emergency department with recent involuntary movements. During...

    Incorrect

    • A 62-year-old man comes to the emergency department with recent involuntary movements. During the examination, it is observed that he has unmanageable thrashing movements of his left arm and leg, which cannot be diverted. A CT scan reveals a fresh acute infarct.

      What part of the brain has been impacted by this infarct, causing these symptoms?

      Your Answer:

      Correct Answer: Subthalamic nucleus

      Explanation:

      Lesions of the subthalamic nucleus (STN) within the basal ganglia can result in a hemiballismus, characterized by uncontrollable thrashing movements. The STN plays a role in unconscious motor control by providing excitatory input to the globus pallidus internus (GPi), which then acts in an inhibitory way on motor outflow from the cortex. When the STN is damaged, there is less activity within the GPi and relative hyperactivity of the motor cortex, leading to excessive movements.

      In contrast, lesions of the caudate nucleus within the basal ganglia can cause behavioral changes and agitation. The caudate processes motor information from the cortex and provides an excitatory input to the globus pallidus externus (GPe), which then has an excitatory input to the STN. Lesions of the caudate result in motor hyperactivity, but this manifests as a restless state rather than uncontrolled movements. The caudate also plays a role in the neural circuits underlying goal-directed behaviors, and lesions can result in personality and behavioral changes.

      Lesions of the medial pons can cause hemiplegia and hemisensory loss or locked-in syndrome, depending on the level of disruption to the motor and sensory pathways. Lesions above the level of the trigeminal and facial motor nuclei can result in a full locked-in syndrome, while lesions below these nuclei result in hemiplegia and hemisensory loss but with preservation of facial sensation and movement.

      Lesions of the substantia nigra result in Parkinsonism, as the dopaminergic neurons of the substantia nigra have an inhibitory effect on the outflow of the striatum. This prevents motor information from leaving the cortex, resulting in the bradykinesia characteristic of Parkinsonism.

      Thalamic lesions most commonly cause hemisensory loss, as the thalamus acts as a sensory gateway that allows processing of sensory information before relaying it to the relevant primary cortex. Lesions disrupt this pathway and prevent information from reaching the cortex.

      Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.

      In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 18 - Which of the following surgical procedures will have the most significant long-term effect...

    Incorrect

    • Which of the following surgical procedures will have the most significant long-term effect on a patient's calcium metabolism?

      Your Answer:

      Correct Answer: Extensive small bowel resection

      Explanation:

      Maintaining Calcium Balance in the Body

      Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.

      PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.

      Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.

      Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.

      Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 19 - A laceration of the wrist produces a median nerve transection in a 50-year-old...

    Incorrect

    • A laceration of the wrist produces a median nerve transection in a 50-year-old patient. The wound is clean and seen immediately after injury. Collateral soft tissue damage is absent. The patient asks what the prognosis is. You indicate that the nerve should regrow at approximately:

      Your Answer:

      Correct Answer: 1 mm per day

      Explanation:

      When a peripheral nerve is cut, it causes bleeding and the nerve ends retract. The axon, which is the part of the nerve that transmits signals, starts to degenerate immediately after the injury. This degeneration occurs both in the part of the nerve that is distal to the injury and in the part that is proximal to the first node of Ranvier. As the degenerated axonal fragments are removed by phagocytosis, empty spaces are left in the neurilemmal sheath where the axons used to be.

      After a few days, axons from the proximal part of the nerve start to regrow. If they are able to make contact with the distal neurilemmal sheath, they can regrow at a rate of about 1 mm per day. However, if there is any trauma, fracture, infection, or separation of the neurilemmal sheath ends that prevents contact between the axons, the regrowth can be erratic and may result in the formation of a traumatic neuroma.

      In cases where the nerve injury is accompanied by significant soft tissue damage and bleeding (which increases the risk of infection), some surgeons may choose to delay the reattachment of the severed nerve ends for several weeks.

      Nerve injuries can be classified into three types: neuropraxia, axonotmesis, and neurotmesis. Neuropraxia occurs when the nerve is intact but its electrical conduction is affected. However, full recovery is possible, and autonomic function is preserved. Wallerian degeneration, which is the degeneration of axons distal to the site of injury, does not occur. Axonotmesis, on the other hand, happens when the axon is damaged, but the myelin sheath is preserved, and the connective tissue framework is not affected. Wallerian degeneration occurs in this type of injury. Lastly, neurotmesis is the most severe type of nerve injury, where there is a disruption of the axon, myelin sheath, and surrounding connective tissue. Wallerian degeneration also occurs in this type of injury.

      Wallerian degeneration typically begins 24-36 hours following the injury. Axons are excitable before degeneration occurs, and the myelin sheath degenerates and is phagocytosed by tissue macrophages. Neuronal repair may only occur physiologically where nerves are in direct contact. However, nerve regeneration may be hampered when a large defect is present, and it may not occur at all or result in the formation of a neuroma. If nerve regrowth occurs, it typically happens at a rate of 1mm per day.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 20 - A 73-year-old female is seen by an ophthalmologist for a follow-up after being...

    Incorrect

    • A 73-year-old female is seen by an ophthalmologist for a follow-up after being diagnosed with primary open-angle glaucoma. The patient is asymptomatic and has 20/20 vision with glasses. During the examination, it is noted that the patient's intraocular pressure remains significantly elevated despite consistent use of a prostaglandin analogue. The decision is made to initiate treatment with timolol eye drops.

      What is the main mode of action of timolol eye drops?

      Your Answer:

      Correct Answer: Reduces aqueous production

      Explanation:

      Timolol, a beta-blocker, is commonly used as a second-line treatment for primary open-angle glaucoma. It works by reducing the production of aqueous humor, which in turn lowers intraocular pressure. Mitotic agents like pilocarpine can cause pupil constriction and may be used in acute closed-angle glaucoma to increase space for aqueous drainage. However, this mechanism is not routinely used in open-angle glaucoma. Carbonic anhydrase inhibitors like acetazolamide can also reduce aqueous production but are taken orally and can cause systemic side effects. Increasing trabecular meshwork drainage is a mechanism used by drugs like pilocarpine, while increasing uveoscleral drainage is achieved by drugs like latanoprost, a prostaglandin analogue.

      Primary open-angle glaucoma is a type of optic neuropathy that is associated with increased intraocular pressure (IOP). It is classified based on whether the peripheral iris is covering the trabecular meshwork, which is important in the drainage of aqueous humour from the anterior chamber of the eye. In open-angle glaucoma, the iris is clear of the meshwork, but the trabecular network offers increased resistance to aqueous outflow, causing increased IOP. This condition affects 0.5% of people over the age of 40 and its prevalence increases with age up to 10% over the age of 80 years. Both males and females are equally affected. The main causes of primary open-angle glaucoma are increasing age and genetics, with first-degree relatives of an open-angle glaucoma patient having a 16% chance of developing the disease.

      Primary open-angle glaucoma is characterised by a slow rise in intraocular pressure, which is symptomless for a long period. It is typically detected following an ocular pressure measurement during a routine examination by an optometrist. Signs of the condition include increased intraocular pressure, visual field defect, and pathological cupping of the optic disc. Case finding and provisional diagnosis are done by an optometrist, and referral to an ophthalmologist is done via the GP. Final diagnosis is made through investigations such as automated perimetry to assess visual field, slit lamp examination with pupil dilatation to assess optic nerve and fundus for a baseline, applanation tonometry to measure IOP, central corneal thickness measurement, and gonioscopy to assess peripheral anterior chamber configuration and depth. The risk of future visual impairment is assessed using risk factors such as IOP, central corneal thickness (CCT), family history, and life expectancy.

      The majority of patients with primary open-angle glaucoma are managed with eye drops that aim to lower intraocular pressure and prevent progressive loss of visual field. According to NICE guidelines, the first line of treatment is a prostaglandin analogue (PGA) eyedrop, followed by a beta-blocker, carbonic anhydrase inhibitor, or sympathomimetic eyedrop as a second line of treatment. Surgery or laser treatment can be tried in more advanced cases. Reassessment is important to exclude progression and visual field loss and needs to be done more frequently if IOP is uncontrolled, the patient is high risk, or there

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 21 - A 38-year-old male comes to his GP complaining of recurring episodes of abdominal...

    Incorrect

    • A 38-year-old male comes to his GP complaining of recurring episodes of abdominal pain. He characterizes the pain as dull, affecting his entire abdomen, and accompanied by intermittent diarrhea and constipation. He has observed that his symptoms have intensified since his wife departed, and he has been under work-related stress. The physician suspects that he has irritable bowel syndrome.

      What are the nerve fibers that are stimulated to produce his pain?

      Your Answer:

      Correct Answer: C fibres

      Explanation:

      Neurons and Synaptic Signalling

      Neurons are the building blocks of the nervous system and are made up of dendrites, a cell body, and axons. They can be classified by their anatomical structure, axon width, and function. Neurons communicate with each other at synapses, which consist of a presynaptic membrane, synaptic gap, and postsynaptic membrane. Neurotransmitters are small chemical messengers that diffuse across the synaptic gap and activate receptors on the postsynaptic membrane. Different neurotransmitters have different effects, with some causing excitation and others causing inhibition. The deactivation of neurotransmitters varies, with some being degraded by enzymes and others being reuptaken by cells. Understanding the mechanisms of neuronal communication is crucial for understanding the functioning of the nervous system.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 22 - A 29-year-old male visits an acute eye clinic with a complaint of a...

    Incorrect

    • A 29-year-old male visits an acute eye clinic with a complaint of a painful eye. During the examination, the ophthalmologist observes a photophobic red eye and identifies a distinctive lesion, resulting in a quick diagnosis of herpes simplex keratitis.

      What is the description of the lesion?

      Your Answer:

      Correct Answer: Dendritic corneal lesion

      Explanation:

      Keratitis caused by herpes simplex is characterized by dendritic lesions that appear as a branched pattern on fluorescein dye. This is typically seen during slit lamp examination. While severe inflammation may be present, indicated by the presence of an inflammatory exudate of the anterior chamber (hypopyon), this is not specific to herpes simplex and may be associated with other causes of keratitis or anterior uveitis. It’s worth noting that herpes zoster ophthalmicus (HZO) is not caused by herpes simplex, but rather occurs when the dormant shingles virus in the ophthalmic nerve reactivates. Hutchinson’s sign, which is a vesicular rash at the tip of the nose in the context of an acute red eye, is suggestive of HZO. Lastly, it’s important to note that a tear dropped pupil is not a feature of keratitis and may be caused by blunt trauma.

      Understanding Herpes Simplex Keratitis

      Herpes simplex keratitis is a condition that primarily affects the cornea and is caused by the herpes simplex virus. The most common symptom of this condition is a dendritic corneal ulcer, which can cause a red, painful eye, photophobia, and epiphora. In some cases, visual acuity may also be decreased. Fluorescein staining may show an epithelial ulcer, which can help with diagnosis.

      One common treatment for this condition is topical acyclovir, which can help to reduce the severity of symptoms and prevent further complications.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 23 - A child is diagnosed with Klumpke's palsy after birth. What is the most...

    Incorrect

    • A child is diagnosed with Klumpke's palsy after birth. What is the most probable symptom that will be observed?

      Your Answer:

      Correct Answer: Loss of flexors of the wrist

      Explanation:

      Klumpke’s paralysis is characterized by several features, including claw hand with extended MCP joints and flexed IP joints, loss of sensation over the medial aspect of the forearm and hand, Horner’s syndrome, and loss of flexors of the wrist. This condition is caused by a C8, T1 root lesion, which typically occurs during delivery when the arm is extended.

      Understanding the Brachial Plexus and Cutaneous Sensation of the Upper Limb

      The brachial plexus is a network of nerves that originates from the anterior rami of C5 to T1. It is divided into five sections: roots, trunks, divisions, cords, and branches. To remember these sections, a common mnemonic used is Real Teenagers Drink Cold Beer.

      The roots of the brachial plexus are located in the posterior triangle and pass between the scalenus anterior and medius muscles. The trunks are located posterior to the middle third of the clavicle, with the upper and middle trunks related superiorly to the subclavian artery. The lower trunk passes over the first rib posterior to the subclavian artery. The divisions of the brachial plexus are located at the apex of the axilla, while the cords are related to the axillary artery.

      The branches of the brachial plexus provide cutaneous sensation to the upper limb. This includes the radial nerve, which provides sensation to the posterior arm, forearm, and hand; the median nerve, which provides sensation to the palmar aspect of the thumb, index, middle, and half of the ring finger; and the ulnar nerve, which provides sensation to the palmar and dorsal aspects of the fifth finger and half of the ring finger.

      Understanding the brachial plexus and its branches is important in diagnosing and treating conditions that affect the upper limb, such as nerve injuries and neuropathies. It also helps in understanding the cutaneous sensation of the upper limb and how it relates to the different nerves of the brachial plexus.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 24 - A 65-year-old man with uncontrolled diabetes visits the ophthalmology clinic for his annual...

    Incorrect

    • A 65-year-old man with uncontrolled diabetes visits the ophthalmology clinic for his annual eye examination. During fundoscopy, the ophthalmologist observes fluffy white patches on the retina.

      What is the underlying pathology indicated by this discovery?

      Your Answer:

      Correct Answer: Retinal infarction

      Explanation:

      Cotton wool spots in diabetic retinopathy indicate areas of retinal infarction.

      Understanding Diabetic Retinopathy

      Diabetic retinopathy is a leading cause of blindness in adults aged 35-65 years-old. The condition is caused by hyperglycaemia, which leads to abnormal metabolism in the retinal vessel walls, causing damage to endothelial cells and pericytes. This damage leads to increased vascular permeability, which causes exudates seen on fundoscopy. Pericyte dysfunction predisposes to the formation of microaneurysms, while neovascularization is caused by the production of growth factors in response to retinal ischaemia.

      Patients with diabetic retinopathy are typically classified into those with non-proliferative diabetic retinopathy (NPDR), proliferative retinopathy (PDR), and maculopathy. NPDR is further classified into mild, moderate, and severe, depending on the presence of microaneurysms, blot haemorrhages, hard exudates, cotton wool spots, venous beading/looping, and intraretinal microvascular abnormalities. PDR is characterized by retinal neovascularization, which may lead to vitreous haemorrhage, and fibrous tissue forming anterior to the retinal disc. Maculopathy is based on location rather than severity and is more common in Type II DM.

      Management of diabetic retinopathy involves optimizing glycaemic control, blood pressure, and hyperlipidemia, as well as regular review by ophthalmology. For maculopathy, intravitreal vascular endothelial growth factor (VEGF) inhibitors are used if there is a change in visual acuity. Non-proliferative retinopathy is managed through regular observation, while severe/very severe cases may require panretinal laser photocoagulation. Proliferative retinopathy is treated with panretinal laser photocoagulation, intravitreal VEGF inhibitors, and vitreoretinal surgery in severe or vitreous haemorrhage cases. Examples of VEGF inhibitors include ranibizumab, which has a strong evidence base for slowing the progression of proliferative diabetic retinopathy and improving visual acuity.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 25 - Which of the following structures suspends the spinal cord in the dural sheath?...

    Incorrect

    • Which of the following structures suspends the spinal cord in the dural sheath?

      Your Answer:

      Correct Answer: Denticulate ligaments

      Explanation:

      The length of the spinal cord is around 45cm in males and 43cm in females. The denticulate ligament is an extension of the pia mater, which has sporadic lateral projections that connect the spinal cord to the dura mater.

      The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.

      One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 26 - A 68-year-old patient is admitted for surgery following a car accident that resulted...

    Incorrect

    • A 68-year-old patient is admitted for surgery following a car accident that resulted in a fractured tibia. After 12 hours of the operation, the patient reports experiencing severe pain and tingling sensations. Upon examination, the anterior leg appears red, swollen, and feels cooler than the rest of the limb. The patient's ability to dorsiflex the foot is impaired, and there is a loss of sensation over the first and second toes. The intracompartmental pressure of the anterior leg compartment is 40mmHg. Which nerve is responsible for the patient's abnormal sensations and impaired movement?

      Your Answer:

      Correct Answer: Deep peroneal nerve

      Explanation:

      The deep peroneal (fibular) nerve is responsible for supplying the anterior leg compartment and runs alongside the anterior tibial artery. It enables dorsiflexion by supplying the extensor muscles of the leg, which explains why the patient is unable to perform this movement. If there is increased pressure in this leg compartment, it can compress this nerve and cause the patient’s symptoms.

      The lateral plantar nerve, which is a branch of the tibial nerve, travels in the posterior leg compartment and is unlikely to be affected in this case. Additionally, it supplies the lateral part of the foot and does not contribute to dorsiflexion, so it cannot explain the patient’s symptoms.

      The tibial nerve also travels in the posterior compartment of the leg and is unlikely to be affected in this case.

      Answer 3 is incorrect because there is no such thing as an anterior tibial nerve; there is only an anterior tibial artery.

      The superficial peroneal nerve runs in the lateral compartment of the leg and is responsible for foot eversion and sensation over the lateral dorsum of the foot. If this nerve is compromised, the patient may experience impaired foot eversion and reduced sensation in this area.

      The Deep Peroneal Nerve: Origin, Course, and Actions

      The deep peroneal nerve is a branch of the common peroneal nerve that originates at the lateral aspect of the fibula, deep to the peroneus longus muscle. It is composed of nerve root values L4, L5, S1, and S2. The nerve pierces the anterior intermuscular septum to enter the anterior compartment of the lower leg and passes anteriorly down to the ankle joint, midway between the two malleoli. It terminates in the dorsum of the foot.

      The deep peroneal nerve innervates several muscles, including the tibialis anterior, extensor hallucis longus, extensor digitorum longus, peroneus tertius, and extensor digitorum brevis. It also provides cutaneous innervation to the web space of the first and second toes. The nerve’s actions include dorsiflexion of the ankle joint, extension of all toes (extensor hallucis longus and extensor digitorum longus), and inversion of the foot.

      After its bifurcation past the ankle joint, the lateral branch of the deep peroneal nerve innervates the extensor digitorum brevis and the extensor hallucis brevis, while the medial branch supplies the web space between the first and second digits. Understanding the origin, course, and actions of the deep peroneal nerve is essential for diagnosing and treating conditions that affect this nerve, such as foot drop and nerve entrapment syndromes.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 27 - A 25-year-old man has his impacted 3rd molar surgically removed. After the procedure,...

    Incorrect

    • A 25-year-old man has his impacted 3rd molar surgically removed. After the procedure, he experiences numbness on the anterolateral part of his tongue. What is the probable cause of this?

      Your Answer:

      Correct Answer: Injury to the lingual nerve

      Explanation:

      A lingual neuropraxia may occur in some patients after surgical extraction of these teeth, resulting in anesthesia of the front part of the tongue on the same side. The teeth are innervated by the inferior alveolar nerve.

      Lingual Nerve: Sensory Nerve to the Tongue and Mouth

      The lingual nerve is a sensory nerve that provides sensation to the mucosa of the presulcal part of the tongue, floor of the mouth, and mandibular lingual gingivae. It arises from the posterior trunk of the mandibular nerve and runs past the tensor veli palatini and lateral pterygoid muscles. At this point, it is joined by the chorda tympani branch of the facial nerve.

      After emerging from the cover of the lateral pterygoid, the lingual nerve proceeds antero-inferiorly, lying on the surface of the medial pterygoid and close to the medial aspect of the mandibular ramus. At the junction of the vertical and horizontal rami of the mandible, it is anterior to the inferior alveolar nerve. The lingual nerve then passes below the mandibular attachment of the superior pharyngeal constrictor and lies on the periosteum of the root of the third molar tooth.

      Finally, the lingual nerve passes medial to the mandibular origin of mylohyoid and then passes forwards on the inferior surface of this muscle. Overall, the lingual nerve plays an important role in providing sensory information to the tongue and mouth.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 28 - A 50-year-old woman visits her doctor with concerns about her vision. She reports...

    Incorrect

    • A 50-year-old woman visits her doctor with concerns about her vision. She reports experiencing double vision and had a recent fall while descending the stairs at her home. She denies experiencing any eye pain.

      Which cranial nerve is most likely responsible for her symptoms?

      Your Answer:

      Correct Answer: Trochlear nerve

      Explanation:

      If you experience worsened vision while descending stairs, it may be indicative of 4th nerve palsy, which is characterized by vertical diplopia. This is because the 4th nerve is responsible for downward eye movement.

      Understanding Fourth Nerve Palsy

      Fourth nerve palsy is a condition that affects the superior oblique muscle, which is responsible for depressing the eye and moving it inward. One of the main features of this condition is vertical diplopia, which is double vision that occurs when looking straight ahead. This is often noticed when reading a book or going downstairs. Another symptom is subjective tilting of objects, also known as torsional diplopia. Patients may also develop a head tilt, which they may or may not be aware of. When looking straight ahead, the affected eye appears to deviate upwards and is rotated outwards. Understanding the symptoms of fourth nerve palsy can help individuals seek appropriate treatment and management for this condition.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 29 - At which of the following anatomical locations does the common peroneal nerve bifurcate...

    Incorrect

    • At which of the following anatomical locations does the common peroneal nerve bifurcate into the superficial and deep peroneal nerves?

      Your Answer:

      Correct Answer: At the lateral aspect of the neck of the fibula

      Explanation:

      The point where the common peroneal nerve is most susceptible to injury is at the neck of the fibula, where it divides into two branches.

      The common peroneal nerve originates from the dorsal divisions of the sacral plexus, specifically from L4, L5, S1, and S2. This nerve provides sensation to the skin and fascia of the anterolateral surface of the leg and dorsum of the foot, as well as innervating the muscles of the anterior and peroneal compartments of the leg, extensor digitorum brevis, and the knee, ankle, and foot joints. It is located laterally within the sciatic nerve and passes through the lateral and proximal part of the popliteal fossa, under the cover of biceps femoris and its tendon, to reach the posterior aspect of the fibular head. The common peroneal nerve divides into the deep and superficial peroneal nerves at the point where it winds around the lateral surface of the neck of the fibula in the body of peroneus longus, approximately 2 cm distal to the apex of the head of the fibula. It is palpable posterior to the head of the fibula. The nerve has several branches, including the nerve to the short head of biceps, articular branch (knee), lateral cutaneous nerve of the calf, and superficial and deep peroneal nerves at the neck of the fibula.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 30 - A 33-year-old female comes to see you with a complaint of right wrist...

    Incorrect

    • A 33-year-old female comes to see you with a complaint of right wrist pain that has been bothering her for the past two months. She mentions having difficulty buttoning up her clothes with her right hand. During your examination, you observe that she struggles to pick up a pen with her index finger and thumb, indicating impairment of her pincer grip. Based on these findings, you suspect that she may have sustained damage to her anterior interosseous nerve.

      What muscle is innervated by this nerve?

      Your Answer:

      Correct Answer: Flexor pollicis longus

      Explanation:

      The flexor pollicis longus muscle is innervated by the anterior interosseous nerve, which is a branch of the median nerve. This nerve also innervates the pronator quadratus and the radial half of the flexor digitorum profundus muscles. If this nerve is damaged, it can result in weakness of the pincer grip, as observed in the patient. The ulnar nerve innervates the adductor pollicis muscle, while the radial nerve innervates the abductor pollicis longus muscle. The tibial nerve innervates the flexor digitorum brevis muscle.

      The anterior interosseous nerve is a branch of the median nerve that supplies the deep muscles on the front of the forearm, excluding the ulnar half of the flexor digitorum profundus. It runs alongside the anterior interosseous artery along the anterior of the interosseous membrane of the forearm, between the flexor pollicis longus and flexor digitorum profundus. The nerve supplies the whole of the flexor pollicis longus and the radial half of the flexor digitorum profundus, and ends below in the pronator quadratus and wrist joint. The anterior interosseous nerve innervates 2.5 muscles, namely the flexor pollicis longus, pronator quadratus, and the radial half of the flexor digitorum profundus. These muscles are located in the deep level of the anterior compartment of the forearm.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurological System (3/13) 23%
Passmed