00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - Isabella is an 82-year-old female who visits the cardiology clinic for a check-up....

    Correct

    • Isabella is an 82-year-old female who visits the cardiology clinic for a check-up. She experienced a heart attack half a year ago and has been experiencing swollen ankles and difficulty breathing when lying down. You suspect heart failure and arrange for an echocardiogram, prescribe diuretic medications, and conduct a blood test. What blood marker can indicate excessive stretching of the heart muscle?

      Your Answer: Brain natriuretic peptide (BNP)

      Explanation:

      BNP is produced by the ventricles of the heart when the cardiomyocytes are excessively stretched. Its overall effect is to reduce blood pressure by decreasing systemic vascular resistance and increasing natriuresis.

      Troponin is a protein that plays a role in cardiac muscle contraction and is a specific and sensitive marker for myocardial damage in cases of myocardial infarction.

      Creatine kinase and LDH can be used as acute markers for myocardial infarction.

      Myoglobin is released after muscle damage, but it is not specific to acute myocardial infarction and is typically measured in cases of rhabdomyolysis.

      B-type natriuretic peptide (BNP) is a hormone that is primarily produced by the left ventricular myocardium in response to strain. Although heart failure is the most common cause of elevated BNP levels, any condition that causes left ventricular dysfunction, such as myocardial ischemia or valvular disease, may also raise levels. In patients with chronic kidney disease, reduced excretion may also lead to elevated BNP levels. Conversely, treatment with ACE inhibitors, angiotensin-2 receptor blockers, and diuretics can lower BNP levels.

      BNP has several effects, including vasodilation, diuresis, natriuresis, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. Clinically, BNP is useful in diagnosing patients with acute dyspnea. A low concentration of BNP (<100 pg/mL) makes a diagnosis of heart failure unlikely, but elevated levels should prompt further investigation to confirm the diagnosis. Currently, NICE recommends BNP as a helpful test to rule out a diagnosis of heart failure. In patients with chronic heart failure, initial evidence suggests that BNP is an extremely useful marker of prognosis and can guide treatment. However, BNP is not currently recommended for population screening for cardiac dysfunction.

    • This question is part of the following fields:

      • Cardiovascular System
      26.2
      Seconds
  • Question 2 - A 57-year-old man has recently passed away in hospital after being admitted with...

    Incorrect

    • A 57-year-old man has recently passed away in hospital after being admitted with acute shortness of breath upon exertion and bilateral pedal pitting edema. He is known to be suffering from congestive heart failure for the past 5 years.

      His medical history includes well-controlled hypertension, mitral insufficiency and a complicated sore throat as a child. He has no significant past family history. There is no previous history of any heart surgery or interventional procedures. The pathology report confirms the findings of granulomatous nodules consisting of giant cells around areas of fibrinoid necrosis in the heart of the patient.

      What is the causative agent for the pathology described in the heart of this patient?

      Your Answer: Staphylococcus aureus

      Correct Answer: Streptococcus pyogenes

      Explanation:

      Aschoff bodies, which are granulomatous nodules consisting of giant cells around areas of fibrinoid necrosis, are pathognomonic for rheumatic heart disease. This condition is often a sequela of acute rheumatic heart fever, which occurs due to molecular mimicry where antibodies to the bacteria causing a pharyngeal infection react with the cardiac myocyte antigen resulting in valve destruction. The bacterial organism responsible for the pharyngeal infection leading to rheumatic heart disease is the group A β-hemolytic Streptococcus pyogenes.

      In contrast, Staphylococcus aureus is a gram-positive, coagulase-positive bacteria that often causes acute bacterial endocarditis with large vegetations on previously normal cardiac valves. Bacterial endocarditis typically presents with a fever and new-onset murmur, and may be associated with other signs such as Roth spots, Osler nodes, Janeway lesions, and splinter hemorrhages. Staphylococcus epidermidis, on the other hand, is a gram-positive, coagulase-negative bacteria that often causes bacterial endocarditis on prosthetic valves. Streptococcus viridans, a gram-positive, α-hemolytic bacteria, typically causes subacute bacterial endocarditis in individuals with a diseased or previously abnormal valve, with smaller vegetations compared to acute bacterial endocarditis.

      Rheumatic fever is a condition that occurs as a result of an immune response to a recent Streptococcus pyogenes infection, typically occurring 2-4 weeks after the initial infection. The pathogenesis of rheumatic fever involves the activation of the innate immune system, leading to antigen presentation to T cells. B and T cells then produce IgG and IgM antibodies, and CD4+ T cells are activated. This immune response is thought to be cross-reactive, mediated by molecular mimicry, where antibodies against M protein cross-react with myosin and the smooth muscle of arteries. This response leads to the clinical features of rheumatic fever, including Aschoff bodies, which are granulomatous nodules found in rheumatic heart fever.

      To diagnose rheumatic fever, evidence of recent streptococcal infection must be present, along with 2 major criteria or 1 major criterion and 2 minor criteria. Major criteria include erythema marginatum, Sydenham’s chorea, polyarthritis, carditis and valvulitis, and subcutaneous nodules. Minor criteria include raised ESR or CRP, pyrexia, arthralgia, and prolonged PR interval.

      Management of rheumatic fever involves antibiotics, typically oral penicillin V, as well as anti-inflammatories such as NSAIDs as first-line treatment. Any complications that develop, such as heart failure, should also be treated. It is important to diagnose and treat rheumatic fever promptly to prevent long-term complications such as rheumatic heart disease.

    • This question is part of the following fields:

      • Cardiovascular System
      43.8
      Seconds
  • Question 3 - A 78-year-old patient is having an upper gastrointestinal endoscopy to investigate gastro-oesophageal reflux...

    Correct

    • A 78-year-old patient is having an upper gastrointestinal endoscopy to investigate gastro-oesophageal reflux disease. While the procedure is ongoing, the patient experiences several coughing episodes.

      Which two cranial nerves are responsible for this reflex action?

      Your Answer: Cranial nerves IX and X

      Explanation:

      The glossopharyngeal and vagus nerves, which are cranial nerves IX and X respectively, mediate the cough reflex. The facial nerve, or cranial nerve VII, is responsible for facial movements and taste in the anterior 2/3 of the tongue. The vestibulocochlear nerve, or cranial nerve VIII, is responsible for hearing and balance. Cranial nerve XI, also known as the spinal accessory nerve, innervates the sternocleidomastoid muscle and the trapezius muscle. The hypoglossal nerve, or cranial nerve XII, is responsible for the motor innervation of most of the tongue, and damage to this nerve can cause the tongue to deviate towards the side of the lesion when protruded.

      The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.

      The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.

      The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.

    • This question is part of the following fields:

      • Cardiovascular System
      64.5
      Seconds
  • Question 4 - A 57-year-old Asian man arrived at the emergency department with complaints of chest...

    Incorrect

    • A 57-year-old Asian man arrived at the emergency department with complaints of chest pain. After initial investigations, he was diagnosed with a non-ST elevation myocardial infarction. The patient was prescribed dual antiplatelet therapy, consisting of aspirin and ticagrelor, along with subcutaneous fondaparinux. However, a few days after starting the treatment, he reported experiencing shortness of breath. What is the mechanism of action of the drug responsible for this adverse reaction?

      Your Answer: Non-selective COX-1 and COX-2 inhibitor

      Correct Answer: Inhibits ADP binding to platelet receptors

      Explanation:

      ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.

    • This question is part of the following fields:

      • Cardiovascular System
      31.3
      Seconds
  • Question 5 - A 32-year-old woman who is 34 weeks pregnant with her first baby is...

    Incorrect

    • A 32-year-old woman who is 34 weeks pregnant with her first baby is worried about the possibility of her child having a congenital heart defect. She was born with patent ductus arteriosus (PDA) herself and wants to know what treatment options are available for this condition.

      What treatment will you recommend if her baby is diagnosed with PDA?

      Your Answer: Nothing, patent ductus arteriosus mostly close spontaneously

      Correct Answer: The baby receives indomethacin as a neonate

      Explanation:

      The preferred treatment for patent ductus arteriosus (PDA) in neonates is indomethacin or ibuprofen, administered after birth. While PDA is more common in premature infants, a family history of heart defects can increase the risk. Diagnosis typically occurs during postnatal baby checks, often due to the presence of a murmur or symptoms of heart failure. Doing nothing is not a recommended approach, as spontaneous closure is rare. Surgery may be necessary if medical management is unsuccessful. Prostaglandin E1 is not the best answer, as it is typically used in cases where PDA is associated with another congenital heart defect. Indomethacin or ibuprofen are not given to the mother during the antenatal period.

      Understanding Patent Ductus Arteriosus

      Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.

      This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.

      The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      28
      Seconds
  • Question 6 - A 65-year-old man presents to the Emergency Department with a 60-minute history of...

    Incorrect

    • A 65-year-old man presents to the Emergency Department with a 60-minute history of central chest pain that extends to his jaw. An ECG reveals an inferior ST-segment elevation myocardial infarction (STEMI). The QRS is positive in leads I and aVL but negative in leads II and aVF. What type of axis deviation is indicated by this finding?

      Your Answer: Impossible to tell

      Correct Answer: Left

      Explanation:

      To estimate the heart’s axis, one method is the quadrant method, which involves analyzing leads I and aVF. If lead I is positive and lead aVF is negative, this suggests a possible left axis deviation. To confirm left axis deviation, a second method using lead II can be used. If lead II is also negative, then left axis deviation is confirmed. Other types of axis deviation can be determined by analyzing the polarity of leads I and aVF.

      ECG Axis Deviation: Causes of Left and Right Deviation

      Electrocardiogram (ECG) axis deviation refers to the direction of the electrical activity of the heart. A normal axis is between -30 and +90 degrees. Deviation from this range can indicate underlying cardiac or pulmonary conditions.

      Left axis deviation (LAD) can be caused by left anterior hemiblock, left bundle branch block, inferior myocardial infarction, Wolff-Parkinson-White syndrome with a right-sided accessory pathway, hyperkalaemia, congenital heart defects such as ostium primum atrial septal defect (ASD) and tricuspid atresia, and minor LAD in obese individuals.

      On the other hand, right axis deviation (RAD) can be caused by right ventricular hypertrophy, left posterior hemiblock, lateral myocardial infarction, chronic lung disease leading to cor pulmonale, pulmonary embolism, ostium secundum ASD, Wolff-Parkinson-White syndrome with a left-sided accessory pathway, and minor RAD in tall individuals. It is also normal in infants less than one year old.

      It is important to note that Wolff-Parkinson-White syndrome is a common cause of both LAD and RAD, depending on the location of the accessory pathway. Understanding the causes of ECG axis deviation can aid in the diagnosis and management of underlying conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      45
      Seconds
  • Question 7 - A 50-year-old male is diagnosed with hypertension with a blood pressure reading of...

    Correct

    • A 50-year-old male is diagnosed with hypertension with a blood pressure reading of 180/100 mmHg during ambulatory blood pressure monitoring. The physician prescribes Ramipril, an ACE inhibitor. What is the most frequent adverse effect associated with this medication?

      Your Answer: A dry cough

      Explanation:

      Hypotension, particularly on the first dose, and deterioration of renal function are common side effects of ACE inhibitors in patients. Although angioedema is a rare side effect of ACE inhibitors, oedema is typically associated with calcium channel blockers. Diuretics may cause excessive urine output, while shortness of breath and headaches are uncommon.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      19.2
      Seconds
  • Question 8 - Which section of the ECG indicates atrial depolarization? ...

    Correct

    • Which section of the ECG indicates atrial depolarization?

      Your Answer: P wave

      Explanation:

      The depolarization of the atria is represented by the P wave. It should be noted that the QRS complex makes it difficult to observe the repolarization of the atria.

      Understanding the Normal ECG

      The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.

      The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.

      Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      36.4
      Seconds
  • Question 9 - An 80-year-old woman comes to the hospital complaining of chest pain, vomiting, and...

    Correct

    • An 80-year-old woman comes to the hospital complaining of chest pain, vomiting, and sweating for the past two hours. She has a medical history of hypertension and peripheral arterial disease. Despite using sublingual nitrate spray at home, the pain has not subsided. Upon admission, she is found to be tachycardic and tachypneic, but no other respiratory or cardiac abnormalities are detected. An ECG reveals ST segment elevation in leads II, III, and aVF, as well as ST segment depression in leads I and aVL. Which coronary artery is most likely affected?

      Your Answer: Right coronary artery

      Explanation:

      The observed ECG alterations are indicative of an ischemic injury in the lower region of the heart. The ST depressions in leads I and aVL, which are located in the lateral wall, are common reciprocal changes that occur during an inferior myocardial infarction. Typically, the right coronary artery is the most probable site of damage in cases involving lesions in the lower wall.

      Understanding Acute Coronary Syndrome

      Acute coronary syndrome (ACS) is a term used to describe various acute presentations of ischaemic heart disease. It includes ST elevation myocardial infarction (STEMI), non-ST elevation myocardial infarction (NSTEMI), and unstable angina. ACS usually develops in patients with ischaemic heart disease, which is the gradual build-up of fatty plaques in the walls of the coronary arteries. This can lead to a gradual narrowing of the arteries, resulting in less blood and oxygen reaching the myocardium, causing angina. It can also lead to sudden plaque rupture, resulting in a complete occlusion of the artery and no blood or oxygen reaching the area of myocardium, causing a myocardial infarction.

      There are many factors that can increase the chance of a patient developing ischaemic heart disease, including unmodifiable risk factors such as increasing age, male gender, and family history, and modifiable risk factors such as smoking, diabetes mellitus, hypertension, hypercholesterolaemia, and obesity.

      The classic and most common symptom of ACS is chest pain, which is typically central or left-sided and may radiate to the jaw or left arm. Other symptoms include dyspnoea, sweating, and nausea and vomiting. Patients presenting with ACS often have very few physical signs, and the two most important investigations when assessing a patient with chest pain are an electrocardiogram (ECG) and cardiac markers such as troponin.

      Once a diagnosis of ACS has been made, treatment involves preventing worsening of the presentation, revascularising the vessel if occluded, and treating pain. For patients who’ve had a STEMI, the priority of management is to reopen the blocked vessel. For patients who’ve had an NSTEMI, a risk stratification tool is used to decide upon further management. Patients who’ve had an ACS require lifelong drug therapy to help reduce the risk of a further event, which includes aspirin, a second antiplatelet if appropriate, a beta-blocker, an ACE inhibitor, and a statin.

    • This question is part of the following fields:

      • Cardiovascular System
      73.9
      Seconds
  • Question 10 - Whilst in general practice, you review John, a 50-year-old patient with hypertension. Despite...

    Correct

    • Whilst in general practice, you review John, a 50-year-old patient with hypertension. Despite taking lisinopril, his blood pressure remains clinically elevated. Based on current guidelines you consider add-on therapy with a thiazide-like diuretic.

      Which of the following electrolyte imbalances may arise with this new treatment?

      Your Answer: Hypokalaemia

      Explanation:

      Hypokalaemia may be caused by thiazides

      Thiazide diuretics can lead to hypokalaemia by stimulating aldosterone production and inhibiting the Na-Cl symporter. This inhibition results in more sodium being available to activate the Na/K-ATPase channel, leading to increased potassium loss in the urine and hypokalaemia.

      Thiazide diuretics may also cause other side effects such as hypocalciuria, hypomagnesemia, and hyperlipidemia. The other options that describe the opposite of these disturbances are incorrect.

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      100.1
      Seconds
  • Question 11 - A 50-year-old man is undergoing a benign tumour resection via an anterior skull...

    Correct

    • A 50-year-old man is undergoing a benign tumour resection via an anterior skull base approach. The consultant neurosurgeon is being assisted by a surgical trainee. The artery being compressed by the tumour is challenging to identify, but the ophthalmic artery is observed to branch off from it. What is the name of the artery being compressed?

      Your Answer: Internal carotid artery

      Explanation:

      The ophthalmic artery originates from the internal carotid artery, while the vertebral artery gives rise to the posterior inferior cerebellar artery. The internal carotid artery also has other branches, which can be found in the attached notes. Similarly, the basilar artery has its own set of branches.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      121.1
      Seconds
  • Question 12 - A 57-year-old man comes to see his doctor with concerns about his sexual...

    Incorrect

    • A 57-year-old man comes to see his doctor with concerns about his sexual relationship with his new wife. Upon further inquiry, he discloses that he is experiencing difficulty in achieving physical arousal and is experiencing delayed orgasms. He did not report any such issues during his medication review six weeks ago and believes that the recent change in medication may be responsible for this.

      The patient's medical history includes asthma, hypertension, migraine, bilateral hip replacement, and gout.

      Which medication is the most likely cause of his recent prescription change?

      Your Answer: Doxazosin

      Correct Answer: Indapamide

      Explanation:

      Thiazide-like diuretics, including indapamide, can cause sexual dysfunction, which is evident in this patient’s history. Before attempting to manage the issue, it is important to rule out any iatrogenic causes. Ramipril, an ACE-inhibitor, is not associated with sexual dysfunction, while losartan, an angiotensin II receptor blocker, and amlodipine, a dihydropyridine calcium channel blocker, are also not known to cause sexual dysfunction and are used in the management of hypertension.

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      108
      Seconds
  • Question 13 - Which of the following complications is the least commonly associated with ventricular septal...

    Correct

    • Which of the following complications is the least commonly associated with ventricular septal defects in pediatric patients?

      Your Answer: Atrial fibrillation

      Explanation:

      Understanding Ventricular Septal Defect

      Ventricular septal defect (VSD) is a common congenital heart disease that affects many individuals. It is caused by a hole in the wall that separates the two lower chambers of the heart. In some cases, VSDs may close on their own, but in other cases, they require specialized management.

      There are various causes of VSDs, including chromosomal disorders such as Down’s syndrome, Edward’s syndrome, Patau syndrome, and cri-du-chat syndrome. Congenital infections and post-myocardial infarction can also lead to VSDs. The condition can be detected during routine scans in utero or may present post-natally with symptoms such as failure to thrive, heart failure, hepatomegaly, tachypnea, tachycardia, pallor, and a pansystolic murmur.

      Management of VSDs depends on the size and symptoms of the defect. Small VSDs that are asymptomatic may require monitoring, while moderate to large VSDs may result in heart failure and require nutritional support, medication for heart failure, and surgical closure of the defect.

      Complications of VSDs include aortic regurgitation, infective endocarditis, Eisenmenger’s complex, right heart failure, and pulmonary hypertension. Eisenmenger’s complex is a severe complication that results in cyanosis and clubbing and is an indication for a heart-lung transplant. Women with pulmonary hypertension are advised against pregnancy as it carries a high risk of mortality.

      In conclusion, VSD is a common congenital heart disease that requires specialized management. Early detection and appropriate treatment can prevent severe complications and improve outcomes for affected individuals.

    • This question is part of the following fields:

      • Cardiovascular System
      98.2
      Seconds
  • Question 14 - A young man in his early twenties collapses during a game of basketball...

    Correct

    • A young man in his early twenties collapses during a game of basketball and is declared dead upon arrival at the hospital. The autopsy shows irregularities in his heart. What is the probable cause of the irregularities?

      Your Answer: Hypertrophic cardiomyopathy

      Explanation:

      The condition that is most commonly associated with sudden death is hypertrophic cardiomyopathy, making the other options less likely.

      Symptoms of acute myocarditis may include chest pain, fever, palpitations, tachycardia, and difficulty breathing.

      Dilated cardiomyopathy may cause right ventricular failure, leading to symptoms such as difficulty breathing, pulmonary edema, and atrial fibrillation.

      Restrictive cardiomyopathy and constrictive pericarditis have similar presentations, with right heart failure symptoms such as elevated JVP, hepatomegaly, edema, and ascites being predominant.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      18.8
      Seconds
  • Question 15 - A 12-year-old male patient has been diagnosed with Friedreich's ataxia, an autosomal recessive...

    Correct

    • A 12-year-old male patient has been diagnosed with Friedreich's ataxia, an autosomal recessive genetic disease that causes difficulty walking, a loss of sensation in the arms and legs and impaired speech that worsens over time. What condition should this patient be screened for as a result of having this disease?

      Your Answer: Hypertrophic obstructive cardiomyopathy

      Explanation:

      Friedreich’s ataxia is a genetic disorder caused by a deficiency of the frataxin protein, which can lead to cardiac neuropathy and hypertrophic obstructive cardiomyopathy. This condition is not associated with haemophilia, coarctation of the aorta, streptococcal pharyngitis, Kawasaki disease, or coronary artery aneurysm. However, Group A streptococcal infections can cause acute rheumatic fever and chronic rheumatic heart disease, which are autoimmune diseases that affect the heart.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      96.6
      Seconds
  • Question 16 - A 65-year-old man arrives at the emergency department with a sudden onset of...

    Incorrect

    • A 65-year-old man arrives at the emergency department with a sudden onset of numbness in his right arm and leg. Upon examination, he displays reduced sensation and 3 out of 5 power in his right arm and leg. A head CT scan reveals ischaemia in the region of the left middle cerebral artery. Following initial treatment, he is considered unsuitable for clopidogrel and is instead given aspirin and other antiplatelet drug that functions by inhibiting phosphodiesterase.

      What is the name of the additional antiplatelet medication that this patient is likely to have been prescribed alongside aspirin?

      Your Answer: Ticagrelor

      Correct Answer: Dipyridamole

      Explanation:

      Dipyridamole is a medication that inhibits phosphodiesterase non-specifically and reduces the uptake of adenosine by cells. The symptoms and CT scan results of this patient suggest that they have experienced a stroke on the left side due to ischemia. According to the NICE 2010 guidelines, after confirming that the stroke is not hemorrhagic and providing initial treatment, patients are advised to take either clopidogrel or a combination of aspirin and dipyridamole, which acts as a phosphodiesterase inhibitor.

      Heparins function by activating antithrombin III.

      Ticagrelor and prasugrel act as antagonists of the P2Y12 adenosine diphosphate (ADP) receptor.

      Understanding the Mechanism of Action of Dipyridamole

      Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.

      Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.

      Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.

      In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.

    • This question is part of the following fields:

      • Cardiovascular System
      34.7
      Seconds
  • Question 17 - A 32-year-old man is shot in the postero-inferior aspect of his thigh. What...

    Incorrect

    • A 32-year-old man is shot in the postero-inferior aspect of his thigh. What structure is located at the most lateral aspect of the popliteal fossa?

      Your Answer: Popliteal vein

      Correct Answer: Common peroneal nerve

      Explanation:

      The structures found in the popliteal fossa, listed from medial to lateral, include the popliteal artery, popliteal vein, tibial nerve, and common peroneal nerve. The sural nerve, which is a branch of the tibial nerve, typically originates at the lower part of the popliteal fossa, but its location may vary.

      Anatomy of the Popliteal Fossa

      The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.

      The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.

      Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.

    • This question is part of the following fields:

      • Cardiovascular System
      22.6
      Seconds
  • Question 18 - A 65-year-old woman with confirmed heart failure visits her GP with swelling and...

    Correct

    • A 65-year-old woman with confirmed heart failure visits her GP with swelling and discomfort in both legs. During the examination, the GP observes pitting edema and decides to prescribe a brief trial of a diuretic. Which diuretic targets the thick ascending limb of the loop of Henle?

      Your Answer: Furosemide (loop diuretic)

      Explanation:

      Loop Diuretics: Mechanism of Action and Clinical Applications

      Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.

      Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.

    • This question is part of the following fields:

      • Cardiovascular System
      17.8
      Seconds
  • Question 19 - What is the average stroke volume in a resting 75 Kg man? ...

    Correct

    • What is the average stroke volume in a resting 75 Kg man?

      Your Answer: 70ml

      Explanation:

      The range of stroke volumes is between 55 and 100 milliliters.

      The stroke volume refers to the amount of blood that is pumped out of the ventricle during each cycle of cardiac contraction. This volume is usually the same for both ventricles and is approximately 70ml for a man weighing 70Kg. To calculate the stroke volume, the end systolic volume is subtracted from the end diastolic volume. Several factors can affect the stroke volume, including the size of the heart, its contractility, preload, and afterload.

    • This question is part of the following fields:

      • Cardiovascular System
      51.5
      Seconds
  • Question 20 - A 50-year-old man undergoes carotid endarterectomy surgery after experiencing a transient ischaemic attack....

    Correct

    • A 50-year-old man undergoes carotid endarterectomy surgery after experiencing a transient ischaemic attack. The procedure is successful with no complications. However, the patient develops new hoarseness of voice and loss of effective cough mechanism post-surgery. There are no notable findings upon examination of the oral cavity.

      Which structure has been affected by the surgery?

      Your Answer: Cranial nerve X

      Explanation:

      Speech is innervated by the vagus (X) nerve, so any damage to this nerve can cause speech problems. Injuries to one side of the vagus nerve can result in hoarseness and vocal cord paralysis on the same side, while bilateral injuries can lead to aphonia and stridor. Other symptoms of vagal disease may include dysphagia, loss of cough reflex, gastroparesis, and cardiovascular effects. The facial nerve (VII) may also be affected during carotid surgery, causing muscle weakness in facial expression. However, the vestibulocochlear nerve (VIII) is not involved in speech and would not be damaged during carotid surgery. The accessory nerve (XI) does not innervate speech muscles and is rarely affected during carotid surgery, causing weakness in shoulder elevation instead. Hypoglossal (XII) palsy is a rare complication of carotid surgery that causes tongue deviation towards the side of the lesion, but not voice hoarseness.

      The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.

      The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.

      The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.

    • This question is part of the following fields:

      • Cardiovascular System
      73.5
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (13/20) 65%
Passmed