00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - As a medical student observing a parathyroidectomy in the short-stay surgical theatre, you...

    Correct

    • As a medical student observing a parathyroidectomy in the short-stay surgical theatre, you witness the ligation of blood vessels supplying the parathyroid glands. The ENT consultant requests you to identify the arteries responsible for supplying oxygenated blood to the parathyroid gland. Can you correctly name these arteries?

      Your Answer: Superior and inferior thyroid arteries

      Explanation:

      The superior and inferior thyroid arteries provide oxygenated blood supply to the parathyroid glands. The existence of inferior parathyroid arteries and superior parathyroid arteries is not supported by anatomical evidence. While a middle thyroid artery may exist in some individuals, it is a rare variation that is not relevant to the question at hand.

      Anatomy and Development of the Parathyroid Glands

      The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.

      The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.

    • This question is part of the following fields:

      • Cardiovascular System
      14.8
      Seconds
  • Question 2 - What is the primary function of vitamin B12 within the human body? ...

    Incorrect

    • What is the primary function of vitamin B12 within the human body?

      Your Answer: Production of thyroid hormones

      Correct Answer: Synthesis of DNA

      Explanation:

      The Importance of Vitamin B12 in the Body

      Vitamin B12, also known as cobalamin, is a compound that contains cobalt and is obtained from the diet. The body has limited ability to store B12, which is why it is important to consume it regularly. Vitamin B12 works closely with folate in the body and has several important roles. It is essential for the synthesis of DNA, which allows for cell replication and tissue growth. B12 and folate are both necessary for this process. Additionally, B12 is involved in the synthesis of the myelin sheath that covers nerves and speeds up nervous transmission. It also plays a role in the metabolism of amino acids to remove harmful homocysteine, the metabolism of fats, and has an antioxidant function in association with glutathione. B12 is required for bone marrow turnover to produce healthy blood cells and platelets, which means it has some role in immunity and coagulation.

      However, a deficiency in vitamin B12 can lead to several signs and symptoms. These include megaloblastic anaemia, fatigue, breathlessness, abnormal bleeding due to reduced platelet production, impaired immune response due to reduced leucocyte production, poor function of tissues such as the skin and gut which require a high cell turnover to maintain function, and infertility. It is important to ensure that you are consuming enough vitamin B12 in your diet to avoid these deficiencies and maintain optimal health.

    • This question is part of the following fields:

      • Clinical Sciences
      23.2
      Seconds
  • Question 3 - A 25-year-old patient is undergoing routine pulmonary function testing to assess her chronic...

    Incorrect

    • A 25-year-old patient is undergoing routine pulmonary function testing to assess her chronic condition. The results are compared to a standardised predicted value and presented in the table below:

      FEV1 75% of predicted
      FVC 70% of predicted
      FEV1/FVC 105%

      What is the probable condition that this patient is suffering from, which can account for the above findings?

      Your Answer: COPD

      Correct Answer: Neuromuscular disorder

      Explanation:

      The patient’s pulmonary function tests indicate a restrictive pattern, as both FEV1 and FVC are reduced. This suggests a possible neuromuscular disorder, as all other options would result in an obstructive pattern on the tests. Asthma, bronchiectasis, and COPD are unlikely diagnoses for a 20-year-old and would not match the test results. Pneumonia may affect the patient’s ability to perform the tests, but it is typically an acute condition that requires immediate treatment with antibiotics.

      Understanding Pulmonary Function Tests

      Pulmonary function tests are a useful tool in determining whether a respiratory disease is obstructive or restrictive. These tests measure various aspects of lung function, such as forced expiratory volume in one second (FEV1) and forced vital capacity (FVC). By analyzing the results of these tests, doctors can diagnose and monitor conditions such as asthma, COPD, pulmonary fibrosis, and neuromuscular disorders.

      In obstructive lung diseases, such as asthma and COPD, the FEV1 is significantly reduced, while the FVC may be reduced or normal. The FEV1% (FEV1/FVC) is also reduced. On the other hand, in restrictive lung diseases, such as pulmonary fibrosis and asbestosis, the FEV1 is reduced, but the FVC is significantly reduced. The FEV1% (FEV1/FVC) may be normal or increased.

      It is important to note that there are many conditions that can affect lung function, and pulmonary function tests are just one tool in diagnosing and managing respiratory diseases. However, understanding the results of these tests can provide valuable information for both patients and healthcare providers.

    • This question is part of the following fields:

      • Respiratory System
      19.4
      Seconds
  • Question 4 - A 65-year-old man is admitted after experiencing an acute coronary syndrome. He is...

    Incorrect

    • A 65-year-old man is admitted after experiencing an acute coronary syndrome. He is prescribed aspirin, clopidogrel, nitrates, and morphine. Due to his high 6-month risk score, percutaneous coronary intervention is planned and he is given intravenous tirofiban. What is the mechanism of action of this medication?

      Your Answer: Reversible direct thrombin inhibitor

      Correct Answer: Glycoprotein IIb/IIIa receptor antagonist

      Explanation:

      Glycoprotein IIb/IIIa Receptor Antagonists

      Glycoprotein IIb/IIIa receptor antagonists are a class of drugs that inhibit the function of the glycoprotein IIb/IIIa receptor, which is found on the surface of platelets. These drugs are used to prevent blood clots from forming in patients with acute coronary syndrome, unstable angina, or during percutaneous coronary intervention (PCI).

      Examples of glycoprotein IIb/IIIa receptor antagonists include abciximab, eptifibatide, and tirofiban. These drugs work by blocking the binding of fibrinogen to the glycoprotein IIb/IIIa receptor, which prevents platelet aggregation and the formation of blood clots.

      Glycoprotein IIb/IIIa receptor antagonists are typically administered intravenously and are used in combination with other antiplatelet agents, such as aspirin and clopidogrel. While these drugs are effective at preventing blood clots, they can also increase the risk of bleeding. Therefore, careful monitoring of patients is necessary to ensure that the benefits of these drugs outweigh the risks.

    • This question is part of the following fields:

      • Cardiovascular System
      44.5
      Seconds
  • Question 5 - An ECG is performed on a 60-year-old patient in the cardiology ward. On...

    Incorrect

    • An ECG is performed on a 60-year-old patient in the cardiology ward. On the ECG there are regular p waves present, and a QRS complex is associated with each p wave. The PR interval is 0.26 seconds. There are no missed p waves.

      What is the most probable diagnosis?

      Your Answer: 3rd degree heart block

      Correct Answer: 1st degree heart block

      Explanation:

      Understanding Heart Blocks: Types and Features

      Heart blocks are a type of cardiac conduction disorder that can lead to serious complications such as syncope and heart failure. There are three types of heart blocks: first degree, second degree, and third degree (complete) heart block.

      First degree heart block is characterized by a prolonged PR interval of more than 0.2 seconds. Second degree heart block can be further divided into two types: type 1 (Mobitz I, Wenckebach) and type 2 (Mobitz II). Type 1 is characterized by a progressive prolongation of the PR interval until a dropped beat occurs, while type 2 has a constant PR interval but the P wave is often not followed by a QRS complex.

      Third degree (complete) heart block is the most severe type of heart block, where there is no association between the P waves and QRS complexes. This can lead to a regular bradycardia with a heart rate of 30-50 bpm, wide pulse pressure, and cannon waves in the neck JVP. Additionally, variable intensity of S1 can be observed.

      It is important to recognize the features of heart blocks and differentiate between the types in order to provide appropriate management and prevent complications. Regular monitoring and follow-up with a healthcare provider is recommended for individuals with heart blocks.

    • This question is part of the following fields:

      • Cardiovascular System
      11
      Seconds
  • Question 6 - A 54-year-old man with a history of acromegaly presents for a check-up. He...

    Incorrect

    • A 54-year-old man with a history of acromegaly presents for a check-up. He reports experiencing pins and needles in his hands in the early morning hours, and a positive Tinel's sign. Which muscle is most likely to be weak?

      Your Answer: Adductor pollicis

      Correct Answer: Abductor pollicis brevis

      Explanation:

      Carpal Tunnel Syndrome and Median Nerve Innervation

      Carpal tunnel syndrome is a condition that can cause weakness in the abductor pollicis brevis muscle, which is innervated by the median nerve. This muscle, along with the opponens pollicis, is controlled by the median nerve. The flexor pollicis brevis muscle may also be innervated by either the median or ulnar nerve. In this case, the symptoms suggest carpal tunnel syndrome, which is often associated with acromegaly. Early intervention is crucial in treating carpal tunnel syndrome, as permanent nerve damage can occur if decompression is delayed.

    • This question is part of the following fields:

      • Clinical Sciences
      15.1
      Seconds
  • Question 7 - A 5-year-old girl experiences vomiting, hypotension, and severe urticaria after consuming a peanut....

    Incorrect

    • A 5-year-old girl experiences vomiting, hypotension, and severe urticaria after consuming a peanut. Which cell line is primarily involved in the development of this condition?

      Your Answer: Common lymphoid progenitor

      Correct Answer: Common myeloid progenitor

      Explanation:

      Mast cells originate from common myeloid progenitor cells.

      Haematopoiesis: The Generation of Immune Cells

      Haematopoiesis is the process by which immune cells are produced from haematopoietic stem cells in the bone marrow. These stem cells give rise to two main types of progenitor cells: myeloid and lymphoid progenitor cells. All immune cells are derived from these progenitor cells.

      The myeloid progenitor cells generate cells such as macrophages/monocytes, dendritic cells, neutrophils, eosinophils, basophils, and mast cells. On the other hand, lymphoid progenitor cells give rise to T cells, NK cells, B cells, and dendritic cells.

      This process is essential for the proper functioning of the immune system. Without haematopoiesis, the body would not be able to produce the necessary immune cells to fight off infections and diseases. Understanding haematopoiesis is crucial in developing treatments for diseases that affect the immune system.

    • This question is part of the following fields:

      • Haematology And Oncology
      14.7
      Seconds
  • Question 8 - A 65-year-old man has been prescribed dapagliflozin by his physician to improve management...

    Incorrect

    • A 65-year-old man has been prescribed dapagliflozin by his physician to improve management of his pre-existing type 2 diabetes mellitus following a raised HbA1c reading.

      What is the main site of action for this medication?

      Your Answer: Renal cortical collecting duct

      Correct Answer: Renal proximal convoluted tubule

      Explanation:

      The proximal convoluted tubule in the nephron is responsible for the majority of glucose reabsorption. Dapagliflozin, a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, acts on this area to reduce glucose reabsorption, resulting in glycosuria. While this can aid in glycaemic control and weight loss, it also increases the risk of urinary tract infections. Other SGLT-2 inhibitors include canagliflozin and empagliflozin. The distal convoluted tubule is important for ion absorption, while the cortical collecting duct regulates water reabsorption. Sulfonylureas act on pancreatic beta cells, not acinar cells, which are responsible for exocrine function and are not targeted by SGLT-2 inhibitors.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      8.2
      Seconds
  • Question 9 - Roughly what percentage of saliva production comes from the submandibular glands? ...

    Incorrect

    • Roughly what percentage of saliva production comes from the submandibular glands?

      Your Answer: 10%

      Correct Answer: 70%

      Explanation:

      Anatomy of the Submandibular Gland

      The submandibular gland is located beneath the mandible and is surrounded by the superficial platysma, deep fascia, and mandible. It is also in close proximity to various structures such as the submandibular lymph nodes, facial vein, marginal mandibular nerve, cervical branch of the facial nerve, deep facial artery, mylohyoid muscle, hyoglossus muscle, lingual nerve, submandibular ganglion, and hypoglossal nerve.

      The submandibular duct, also known as Wharton’s duct, is responsible for draining saliva from the gland. It opens laterally to the lingual frenulum on the anterior floor of the mouth and is approximately 5 cm in length. The lingual nerve wraps around the duct, and as it passes forward, it crosses medial to the nerve to lie above it before crossing back, lateral to it, to reach a position below the nerve.

      The submandibular gland receives sympathetic innervation from the superior cervical ganglion and parasympathetic innervation from the submandibular ganglion via the lingual nerve. Its arterial supply comes from a branch of the facial artery, which passes through the gland to groove its deep surface before emerging onto the face by passing between the gland and the mandible. The anterior facial vein provides venous drainage, and the gland’s lymphatic drainage goes to the deep cervical and jugular chains of nodes.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      15.8
      Seconds
  • Question 10 - A 56-year-old patient has presented with symptoms of polydipsia, polyuria, and fatigue. His...

    Incorrect

    • A 56-year-old patient has presented with symptoms of polydipsia, polyuria, and fatigue. His doctor ordered a fasting glucose test, which revealed an abnormal result consistent with a diagnosis of type II diabetes mellitus. The patient has a history of hypertension and is a chronic alcoholic.

      The doctor advises the patient to make lifestyle modifications and prescribes a 3-month course of metformin. However, the doctor warns the patient that there is an increased risk of complications when alcohol interacts with metformin. What specific complication is the doctor referring to?

      Your Answer: Drowsiness

      Correct Answer: Lactic acidosis

      Explanation:

      Metformin can rarely cause lactic acidosis, which is a significant side-effect. The risk of lactic acidosis is further increased when alcohol is consumed with metformin.

      When alcohol is taken with drugs such as metronidazole, disulfiram-like reactions may occur. These reactions are characterized by symptoms such as flushing, nausea, vomiting, and sweating after alcohol consumption.

      Alcohol has a mild sedative effect, and when combined with sedative drugs like central nervous system depressants or sedating antihistamines, it can cause severe drowsiness.

      Metformin is a medication commonly used to treat type 2 diabetes mellitus, as well as polycystic ovarian syndrome and non-alcoholic fatty liver disease. Unlike other medications, such as sulphonylureas, metformin does not cause hypoglycaemia or weight gain, making it a first-line treatment option, especially for overweight patients. Its mechanism of action involves activating the AMP-activated protein kinase, increasing insulin sensitivity, decreasing hepatic gluconeogenesis, and potentially reducing gastrointestinal absorption of carbohydrates. However, metformin can cause gastrointestinal upsets, reduced vitamin B12 absorption, and in rare cases, lactic acidosis, particularly in patients with severe liver disease or renal failure. It is contraindicated in patients with chronic kidney disease, recent myocardial infarction, sepsis, acute kidney injury, severe dehydration, and those undergoing iodine-containing x-ray contrast media procedures. When starting metformin, it should be titrated up slowly to reduce the incidence of gastrointestinal side-effects, and modified-release metformin can be considered for patients who experience unacceptable side-effects.

    • This question is part of the following fields:

      • General Principles
      28.9
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (1/3) 33%
Clinical Sciences (0/2) 0%
Respiratory System (0/1) 0%
Haematology And Oncology (0/1) 0%
Renal System (1/1) 100%
Musculoskeletal System And Skin (0/1) 0%
General Principles (1/1) 100%
Passmed