-
Question 1
Correct
-
A 90-year-old female arrives at the emergency department after experiencing a brief episode of aphasia. The episode lasted for 15 minutes, according to her daughter, and has never occurred before. She did not lose consciousness or sustain a head injury. The patient is currently taking atorvastatin, amlodipine, and sertraline. What diagnostic measures can be taken to confirm the diagnosis?
Your Answer: Referral to TIA clinic and consideration for MRI scan
Explanation:The definition of a TIA has changed to be based on tissue rather than time. It is now defined as a temporary episode of neurological dysfunction caused by focal brain, spinal cord, or retinal ischemia without acute infarction. Based on the patient’s symptoms, it is likely that they have experienced a TIA. NICE guidelines recommend urgent referral to a specialist stroke physician within 24 hours for patients who have had a suspected TIA within the last 7 days. An MRI scan may be necessary to confirm the diagnosis. A referral to a TIA clinic is required for patients who have experienced a transient episode of aphasia. CT brain imaging is no longer recommended unless there is a clinical suspicion of an alternative diagnosis that a CT could detect. The ROSIER tool is used to identify patients likely suffering from an acute stroke, not TIA. An ultrasound of the carotids may be appropriate down the line to determine if a carotid endarterectomy is required to reduce the risk of future strokes and TIAs. The diagnosis of TIA is now tissue-based, not time-based, and determining the episode as a TIA based on the duration of symptoms would be inappropriate.
A transient ischaemic attack (TIA) is a brief period of neurological deficit caused by a vascular issue, lasting less than an hour. The original definition of a TIA was based on time, but it is now recognized that even short periods of ischaemia can result in pathological changes to the brain. Therefore, a new ’tissue-based’ definition is now used. The clinical features of a TIA are similar to those of a stroke, but the symptoms resolve within an hour. Possible features include unilateral weakness or sensory loss, aphasia or dysarthria, ataxia, vertigo, or loss of balance, visual problems, sudden transient loss of vision in one eye (amaurosis fugax), diplopia, and homonymous hemianopia.
NICE recommends immediate antithrombotic therapy, giving aspirin 300 mg immediately unless the patient has a bleeding disorder or is taking an anticoagulant. If aspirin is contraindicated, management should be discussed urgently with the specialist team. Specialist review is necessary if the patient has had more than one TIA or has a suspected cardioembolic source or severe carotid stenosis. Urgent assessment within 24 hours by a specialist stroke physician is required if the patient has had a suspected TIA in the last 7 days. Referral for specialist assessment should be made as soon as possible within 7 days if the patient has had a suspected TIA more than a week previously. The person should be advised not to drive until they have been seen by a specialist.
Neuroimaging should be done on the same day as specialist assessment if possible. MRI is preferred to determine the territory of ischaemia or to detect haemorrhage or alternative pathologies. Carotid imaging is necessary as atherosclerosis in the carotid artery may be a source of emboli in some patients. All patients should have an urgent carotid doppler unless they are not a candidate for carotid endarterectomy.
Antithrombotic therapy is recommended, with clopidogrel being the first-line treatment. Aspirin + dipyridamole should be given to patients who cannot tolerate clopidogrel. Carotid artery endarterectomy should only be considered if the patient has suffered a stroke or TIA in the carotid territory and is not severely disabled. It should only be recommended if carotid stenosis is greater
-
This question is part of the following fields:
- Neurological System
-
-
Question 2
Incorrect
-
A 72-year-old male presents to the emergency department with severe, central abdominal pain that is radiating to his back. He has vomited twice and on examination you find he has hypotension and tachycardia. He is a current smoker with a past medical history of hypertension and hypercholesterolaemia. You suspect a visceral artery aneurysm and urgently request a CT scan to confirm. The CT scan reveals an aneurysm in the superior mesenteric artery.
From which level of the vertebrae does this artery originate from the aorta?Your Answer:
Correct Answer: L1
Explanation:The common iliac veins come together at
Anatomical Planes and Levels in the Human Body
The human body can be divided into different planes and levels to aid in anatomical study and medical procedures. One such plane is the transpyloric plane, which runs horizontally through the body of L1 and intersects with various organs such as the pylorus of the stomach, left kidney hilum, and duodenojejunal flexure. Another way to identify planes is by using common level landmarks, such as the inferior mesenteric artery at L3 or the formation of the IVC at L5.
In addition to planes and levels, there are also diaphragm apertures located at specific levels in the body. These include the vena cava at T8, the esophagus at T10, and the aortic hiatus at T12. By understanding these planes, levels, and apertures, medical professionals can better navigate the human body during procedures and accurately diagnose and treat various conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 3
Incorrect
-
Sarah is a 31-year-old woman presenting with diplopia. She has a history of type 1 diabetes and multiple sclerosis. Over the past 3 days, she has been experiencing double vision, particularly when looking to the right.
Sarah denies any associated double vision when looking vertically. She has not noticed any difficulty in moving her eyelids, increased sensitivity to light, or redness in her eye.
During examination, both eyelids display normal strength. With the left eye closed, the right eye displays a full range of movement. However, with the right eye closed, the left eye fails to adduct when looking towards the right. Nystagmus on the right eye is noted when the patient is asked to look to the right with both eyes. On convergence, both eyes can adduct towards the midline. The pupillary exam is normal with both pupils reacting appropriately to light.
What is the underlying pathology responsible for Sarah's diplopia?Your Answer:
Correct Answer: Lesion on the left paramedian area of the midbrain and pons
Explanation:The medial longitudinal fasciculus is located in the midbrain and pons and is responsible for conjugate gaze. Lesions in this area can cause internuclear ophthalmoplegia, which affects adduction but not convergence. A 3rd nerve palsy affects multiple muscles and can involve the pupil, while abducens nerve lesions affect abduction. Lesions in the midbrain and superior pons contain the centres of vision.
Understanding Internuclear Ophthalmoplegia
Internuclear ophthalmoplegia is a condition that affects the horizontal movement of the eyes. It is caused by a lesion in the medial longitudinal fasciculus (MLF), which is responsible for interconnecting the IIIrd, IVth, and VIth cranial nuclei. This area is located in the paramedian region of the midbrain and pons. The main feature of this condition is impaired adduction of the eye on the same side as the lesion, along with horizontal nystagmus of the abducting eye on the opposite side.
The most common causes of internuclear ophthalmoplegia are multiple sclerosis and vascular disease. It is important to note that this condition can also be a sign of other underlying neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 4
Incorrect
-
A 55-year-old male presents to the neurology clinic with his wife. She reports noticing changes in his speech over the past six months. Specifically, she describes it as loud and jerky with pauses between syllables. However, he is still able to comprehend everything he hears. During your examination, you observe the same speech pattern but find no weakness or sensory changes in his limbs. Based on these findings, which area of the brain is most likely affected by a lesion?
Your Answer:
Correct Answer: Cerebellum
Explanation:Scanning dysarthria can be caused by cerebellar disease, which can result in jerky, loud speech with pauses between words and syllables. Other symptoms may include dysdiadochokinesia, nystagmus, and an intention tremor.
Wernicke’s (receptive) aphasia can be caused by a lesion in the superior temporal gyrus, which can lead to nonsensical sentences with word substitution and neologisms. It can also cause comprehension impairment, which is not present in this patient.
Parkinson’s disease can be caused by a lesion in the substantia nigra, which can result in monotonous speech. Other symptoms may include bradykinesia, rigidity, and a resting tremor, which are not observed in this patient.
A middle cerebral artery stroke can cause aphasia, contralateral hemiparesis, and sensory loss, with the upper extremity being more affected than the lower. However, this patient does not exhibit altered sensation on examination.
A lesion in the arcuate fasciculus, which connects Wernicke’s and Broca’s area, can cause poor speech repetition, but this is not evident in this patient.
Cerebellar syndrome is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. When there is damage or injury to one side of the cerebellum, it can cause symptoms on the same side of the body. These symptoms can be remembered using the mnemonic DANISH, which stands for Dysdiadochokinesia, Dysmetria, Ataxia, Nystagmus, Intention tremour, Slurred staccato speech, and Hypotonia.
There are several possible causes of cerebellar syndrome, including genetic conditions like Friedreich’s ataxia and ataxic telangiectasia, neoplastic growths like cerebellar haemangioma, strokes, alcohol use, multiple sclerosis, hypothyroidism, and certain medications or toxins like phenytoin or lead poisoning. In some cases, cerebellar syndrome may be a paraneoplastic condition, meaning it is a secondary effect of an underlying cancer like lung cancer. It is important to identify the underlying cause of cerebellar syndrome in order to provide appropriate treatment and management.
-
This question is part of the following fields:
- Neurological System
-
-
Question 5
Incorrect
-
An aged Parkinson's disease patient is experiencing visual hallucinations. The physician is contemplating examining for dementia with Lewy bodies. What pathological characteristic indicates this?
Your Answer:
Correct Answer: Abnormal collection of alpha-synuclein in neuronal cytoplasms
Explanation:Dementia with Lewy bodies is characterized by the presence of abnormal alpha-synuclein collections in neuronal cytoplasms on histological examination. Alzheimer’s disease is associated with neurofibrillary tangles, while corticobasal degeneration is associated with astroglial inclusions. Vascular dementia and other cerebrovascular conditions are linked to cerebral blood vessel damage. Congo staining for amyloid aggregations is non-specific and can be found in Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease.
Lewy body dementia is a type of dementia that is becoming more recognized and accounts for up to 20% of cases. It is characterized by the presence of Lewy bodies, which are alpha-synuclein cytoplasmic inclusions found in certain areas of the brain. The relationship between Parkinson’s disease and Lewy body dementia is complex, as dementia is often seen in Parkinson’s disease, and up to 40% of Alzheimer’s patients have Lewy bodies.
The features of Lewy body dementia include progressive cognitive impairment, which typically occurs before parkinsonism. However, both features usually occur within a year of each other, unlike Parkinson’s disease, where motor symptoms typically present at least one year before cognitive symptoms. Cognition may fluctuate, and early impairments in attention and executive function are more common than just memory loss. Other features include parkinsonism and visual hallucinations, with delusions and non-visual hallucinations also possible.
Diagnosis is usually clinical, but single-photon emission computed tomography (SPECT) is increasingly used. SPECT uses a radioisotope called 123-I FP-CIT to diagnose Lewy body dementia with a sensitivity of around 90% and a specificity of 100%. Management involves the use of acetylcholinesterase inhibitors and memantine, similar to Alzheimer’s treatment. However, neuroleptics should be avoided as patients with Lewy body dementia are extremely sensitive and may develop irreversible parkinsonism. It is important to note that questions may give a history of a patient who has deteriorated following the introduction of an antipsychotic agent.
-
This question is part of the following fields:
- Neurological System
-
-
Question 6
Incorrect
-
An 80-year-old woman visits her doctor complaining of fatigue, fever and lymphadenopathy. After a thorough examination and discussion of her recent symptoms, the doctor suspects glandular fever. However, in the following week, she experiences weakness on one side of her occipitofrontalis, orbicularis oculi and orbicularis oris muscles.
What is the most probable neurological diagnosis for this patient?Your Answer:
Correct Answer: Cranial nerve VII palsy
Explanation:The flaccid paralysis of the upper and lower face is a classic symptom of cranial nerve VII palsy, also known as Bell’s palsy. This condition is often caused by a viral illness, such as Epstein-Barr virus, which results in temporary inflammation and swelling around the facial nerve. The symptoms typically resolve on their own after a period of time.
While a lacunar stroke can cause unilateral weakness, it would typically affect the arms and/or legs in addition to the facial muscles. Additionally, a lacunar stroke causes upper motor neuron impairment, which would result in forehead sparing.
Lambert-Eaton myasthenic syndrome (LEMS) is a rare autoimmune disorder that can cause fatigable muscle weakness. However, it would cause global disturbance in neuromuscular junction function rather than isolated unilateral impairment of one nerve, making it an unlikely cause of this presentation.
Multiple sclerosis causes lesions within the brain and spinal cord, leading to upper motor neuron disturbances and other clinical signs. However, this would not fit with the presence of occipitofrontalis involvement, as forehead sparing is seen in upper motor neuron lesions.
A partial anterior circulation stroke (PACS) typically presents with two out of three symptoms: unilateral weakness, disturbance in higher function (such as speech), and visual field defects (such as homonymous hemianopia). In this case, there is only unilateral weakness, and a PACS would cause upper motor neuron disturbance, resulting in forehead sparing.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 7
Incorrect
-
A 27-year-old man visits his GP with complaints of recurring episodes of neck, shoulder, and upper arm pain accompanied by paraesthesia in his left forearm and hand. He reports that the symptoms are most severe when he is working at a supermarket, stacking shelves. The patient has no medical history and is not taking any medications regularly. An ECG reveals no abnormalities. What is the probable diagnosis?
Your Answer:
Correct Answer: Thoracic outlet syndrome
Explanation:Understanding Thoracic Outlet Syndrome
Thoracic outlet syndrome (TOS) is a condition that occurs when there is compression of the brachial plexus, subclavian artery, or vein at the thoracic outlet. This disorder can be either neurogenic or vascular, with the former accounting for 90% of cases. TOS is more common in young, thin women with long necks and drooping shoulders, and peak onset typically occurs in the fourth decade of life. The lack of widely agreed diagnostic criteria makes it difficult to determine the exact epidemiology of TOS.
TOS can develop due to neck trauma in individuals with anatomical predispositions. Anatomical anomalies can be in the form of soft tissue or osseous structures, with cervical rib being a well-known osseous anomaly. Soft tissue causes include scalene muscle hypertrophy and anomalous bands. Patients with TOS typically have a history of neck trauma preceding the onset of symptoms.
The clinical presentation of neurogenic TOS includes painless muscle wasting of hand muscles, hand weakness, and sensory symptoms such as numbness and tingling. If autonomic nerves are involved, patients may experience cold hands, blanching, or swelling. Vascular TOS, on the other hand, can lead to painful diffuse arm swelling with distended veins or painful arm claudication and, in severe cases, ulceration and gangrene.
To diagnose TOS, a neurological and musculoskeletal examination is necessary, and stress maneuvers such as Adson’s maneuvers may be attempted. Imaging modalities such as chest and cervical spine plain radiographs, CT or MRI, venography, or angiography may also be helpful. Treatment options for TOS include conservative management with education, rehabilitation, physiotherapy, or taping as the first-line management for neurogenic TOS. Surgical decompression may be warranted where conservative management has failed, especially if there is a physical anomaly. In vascular TOS, surgical treatment may be preferred, and other therapies such as botox injection are being investigated.
-
This question is part of the following fields:
- Neurological System
-
-
Question 8
Incorrect
-
A 25-year-old man is having surgery for an inguinal hernia repair. During the procedure, the surgeons locate the spermatic cord and move it into a hernia ring. They also identify a thin nerve located above the cord. What is the most probable identity of this nerve?
Your Answer:
Correct Answer: Ilioinguinal nerve
Explanation:The inguinal canal is where the ilioinguinal nerve can be found and it is frequently identified during hernia surgery. The genitofemoral nerve divides into two branches, with the genital branch passing through the inguinal canal within the cord structures. Meanwhile, the femoral branch of the genitofemoral nerve enters the thigh at the back of the inguinal ligament, on the outer side of the femoral artery. Lastly, the iliohypogastric nerve penetrates the external oblique aponeurosis above the superficial inguinal ring.
The Ilioinguinal Nerve: Anatomy and Function
The ilioinguinal nerve is a nerve that arises from the first lumbar ventral ramus along with the iliohypogastric nerve. It passes through the psoas major and quadratus lumborum muscles before piercing the internal oblique muscle and passing deep to the aponeurosis of the external oblique muscle. The nerve then enters the inguinal canal and passes through the superficial inguinal ring to reach the skin.
The ilioinguinal nerve supplies the muscles of the abdominal wall through which it passes. It also provides sensory innervation to the skin and fascia over the pubic symphysis, the superomedial part of the femoral triangle, the surface of the scrotum, and the root and dorsum of the penis or labia majora in females.
Understanding the anatomy and function of the ilioinguinal nerve is important for medical professionals, as damage to this nerve can result in pain and sensory deficits in the areas it innervates. Additionally, knowledge of the ilioinguinal nerve is relevant in surgical procedures involving the inguinal region.
-
This question is part of the following fields:
- Neurological System
-
-
Question 9
Incorrect
-
A 67-year-old man comes to the clinic accompanied by his wife, who expresses her worry about his sleep behavior. She reports that he seems to be experiencing vivid dreams and acting them out, causing him to unintentionally harm her on a few occasions.
During which stage of sleep does this occurrence typically happen?Your Answer:
Correct Answer: REM
Explanation:Understanding Sleep Stages: The Sleep Doctor’s Brain
Sleep is a complex process that involves different stages, each with its own unique characteristics. The Sleep Doctor’s Brain provides a simplified explanation of the four main sleep stages: N1, N2, N3, and REM.
N1 is the lightest stage of sleep, characterized by theta waves and often associated with hypnic jerks. N2 is a deeper stage of sleep, marked by sleep spindles and K-complexes. This stage represents around 50% of total sleep. N3 is the deepest stage of sleep, characterized by delta waves. Parasomnias such as night terrors, nocturnal enuresis, and sleepwalking can occur during this stage.
REM, or rapid eye movement, is the stage where dreaming occurs. It is characterized by beta-waves and a loss of muscle tone, including erections. The sleep cycle typically follows a pattern of N1 → N2 → N3 → REM, with each stage lasting for different durations throughout the night.
Understanding the different sleep stages is important for maintaining healthy sleep habits and identifying potential sleep disorders. By monitoring brain activity during sleep, the Sleep Doctor’s Brain can provide valuable insights into the complex process of sleep.
-
This question is part of the following fields:
- Neurological System
-
-
Question 10
Incorrect
-
A senior citizen arrives at the emergency department complaining of abdominal pain, constipation, and confusion. The blood tests reveal hypercalcemia, and the junior doctor suggests that a potential cause of this is an elevated level of parathyroid hormone (PTH) in the bloodstream. Can you provide the most accurate explanation of the functions of PTH?
Your Answer:
Correct Answer: Increases bone resorption, increases renal reabsorption of calcium, increases synthesis of active vitamin D
Explanation:The primary function of PTH is to elevate calcium levels and reduce phosphate levels. It exerts its influence on the bone and kidneys directly, while also indirectly affecting the intestine through vitamin D. PTH promotes bone resorption, enhances calcium reabsorption in the kidneys, and reduces phosphate reabsorption. Additionally, it stimulates the conversion of vitamin D to its active form, which in turn boosts calcium absorption in the intestine.
Maintaining Calcium Balance in the Body
Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.
PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.
Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.
Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.
Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.
-
This question is part of the following fields:
- Neurological System
-
-
Question 11
Incorrect
-
A 35-year-old male presents to the emergency department after experiencing a seizure. He reports a severe headache for the past several hours and feeling nauseous. Upon urgent MRI, oedema is observed in the temporal lobe. Antivirals are immediately initiated. What cells in the central nervous system act as phagocytes?
Your Answer:
Correct Answer: Microglia
Explanation:The central nervous system has a limited number of immune cells, but microglia are specialized phagocytes that play a crucial role in clearing extracellular debris and responding to bacterial or viral infections. The patient in the scenario likely had herpes simplex virus encephalitis, as indicated by the classic sign of temporal lobe edema. Oligodendrocytes are responsible for myelinating axons in the central nervous system, while Schwann cells perform this function in the peripheral nervous system. Astrocytes provide structural support and help regulate extracellular potassium levels.
The nervous system is composed of various types of cells, each with their own unique functions. Oligodendroglia cells are responsible for producing myelin in the central nervous system (CNS) and are affected in multiple sclerosis. Schwann cells, on the other hand, produce myelin in the peripheral nervous system (PNS) and are affected in Guillain-Barre syndrome. Astrocytes provide physical support, remove excess potassium ions, help form the blood-brain barrier, and aid in physical repair. Microglia are specialised CNS phagocytes, while ependymal cells provide the inner lining of the ventricles.
In summary, the nervous system is made up of different types of cells, each with their own specific roles. Oligodendroglia and Schwann cells produce myelin in the CNS and PNS, respectively, and are affected in certain diseases. Astrocytes provide physical support and aid in repair, while microglia are specialised phagocytes in the CNS. Ependymal cells line the ventricles. Understanding the functions of these cells is crucial in understanding the complex workings of the nervous system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 12
Incorrect
-
A 67-year-old man presents to his doctor with a one month history of speech difficulty. He reports experiencing pronunciation difficulties which he has never had before. However, his reading ability remains intact.
During the consultation, the doctor observes occasional pronunciation errors when the patient is asked to repeat certain words. Despite this, the patient is able to construct meaningful sentences with minimal grammatical errors. He also demonstrates the ability to comprehend questions and respond appropriately.
The doctor performs a cranial nerve examination which yields normal results.
Which area of the brain may be affected by a lesion to cause this presentation?Your Answer:
Correct Answer: Arcuate fasciculus
Explanation:Conduction dysphasia is characterized by fluent speech but poor repetition ability, with relatively intact comprehension. This is a typical manifestation of conduction aphasia, which is caused by damage to the arcuate fasciculus connecting Broca’s and Wernicke’s areas. Patients with this condition may be aware of their pronunciation difficulties and may become frustrated when attempting to correct themselves.
Types of Aphasia: Understanding the Different Forms of Language Impairment
Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.
Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.
Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.
Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 13
Incorrect
-
An 87-year-old man has been admitted to the geriatrics ward due to repeated falls at home. He has been experiencing memory problems for the past 5-10 years and has become increasingly aggressive towards his family. Additionally, he has difficulty with self-care and often becomes disoriented.
During examination, there are no noticeable tremors or walking difficulties. The patient does not exhibit any signs of chorea, hallucinations, or vivid dreams. There are no features of disinhibition, and the patient is able to communicate normally.
What type of abnormality would you expect to see on an MRI scan?Your Answer:
Correct Answer: Atrophy of the cortex and hippocampus
Explanation:Alzheimer’s disease is characterized by widespread cerebral atrophy, primarily affecting the cortex and hippocampus. This results in symptoms such as memory loss, behavioral changes, poor self-care, and getting lost frequently. The cortex is responsible for motor planning and behavioral issues, while the hippocampus is responsible for memory features. Atrophy of the caudate head and putamen is not consistent with Alzheimer’s disease, but rather with Huntington’s disease, which is a genetic disorder characterized by chorea. Atrophy of the frontal and temporal lobes is more consistent with frontotemporal dementia, which presents with greater language and behavioral issues. Hyper-intensity of the substantia nigra and red nuclei is not a feature of Alzheimer’s disease, but rather of Parkinson’s disease, which is characterized by movement issues such as tremors and shuffling gait, as well as hallucinations and sleep disturbances.
Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.
The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.
Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.
-
This question is part of the following fields:
- Neurological System
-
-
Question 14
Incorrect
-
A 70-year-old male arrives at the emergency department with a complaint of waking up in the morning with a sudden loss of sensation on the left side of his body. He has a medical history of hypertension and reports no pain. There are no changes to his vision or hearing.
What is the probable diagnosis?Your Answer:
Correct Answer: Lacunar infarct
Explanation:Hemisensory loss in this patient, along with a history of hypertension, is highly indicative of a lacunar infarct. Lacunar strokes are closely linked to hypertension.
Facial pain on the same side and pain in the limbs and torso on the opposite side are typical symptoms of lateral medullary syndrome.
Contralateral homonymous hemianopia is a common symptom of middle cerebral artery strokes.
Lateral pontine syndrome is characterized by deafness on the same side as the lesion.
Stroke can affect different parts of the brain depending on which artery is affected. If the anterior cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the lower extremities being more affected than the upper. If the middle cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the upper extremities being more affected than the lower. They may also experience vision loss and difficulty with language. If the posterior cerebral artery is affected, the person may experience vision loss and difficulty recognizing objects.
Lacunar strokes are a type of stroke that are strongly associated with hypertension. They typically present with isolated weakness or loss of sensation on one side of the body, or weakness with difficulty coordinating movements. They often occur in the basal ganglia, thalamus, or internal capsule.
-
This question is part of the following fields:
- Neurological System
-
-
Question 15
Incorrect
-
A 72-year-old male visits his doctor with complaints of decreased and blurry vision. Upon examination with a slit lamp, a nuclear sclerotic cataract is detected in his right eye. The patient has been diagnosed with type 2 diabetes mellitus for 12 years and is currently on insulin therapy.
What is the primary factor that increases the risk of developing this condition?Your Answer:
Correct Answer: Ageing
Explanation:Ageing is the most significant risk factor for cataracts, although the other factors also contribute to the development of this condition.
Understanding Cataracts
A cataract is a common eye condition that occurs when the lens of the eye becomes cloudy, making it difficult for light to reach the retina and causing reduced or blurred vision. Cataracts are more common in women and increase in incidence with age, affecting 30% of individuals aged 65 and over. The most common cause of cataracts is the normal ageing process, but other possible causes include smoking, alcohol consumption, trauma, diabetes mellitus, long-term corticosteroids, radiation exposure, myotonic dystrophy, and metabolic disorders such as hypocalcaemia.
Patients with cataracts typically experience a gradual onset of reduced vision, faded colour vision, glare, and halos around lights. Signs of cataracts include a defect in the red reflex, which is the reddish-orange reflection seen through an ophthalmoscope when a light is shone on the retina. Diagnosis is made through ophthalmoscopy and slit-lamp examination, which reveal a visible cataract.
In the early stages, age-related cataracts can be managed conservatively with stronger glasses or contact lenses and brighter lighting. However, surgery is the only effective treatment for cataracts, involving the removal of the cloudy lens and replacement with an artificial one. Referral for surgery should be based on the presence of visual impairment, impact on quality of life, patient choice, and the risks and benefits of surgery. Complications following surgery may include posterior capsule opacification, retinal detachment, posterior capsule rupture, and endophthalmitis. Despite these risks, cataract surgery has a high success rate, with 85-90% of patients achieving corrected vision of 6/12 or better on a Snellen chart postoperatively.
-
This question is part of the following fields:
- Neurological System
-
-
Question 16
Incorrect
-
A 49-year-old man with a diagnosis of glioblastoma multiforme and resistance to chemotherapy is referred for a craniotomy to remove the mass-occupying lesion. What is the correct sequence of layers the surgeon must pass through, from most superficial to deepest, during the craniotomy which involves creating an opening through the scalp and meninges?
Your Answer:
Correct Answer: Loose Connective Tissue, Periosteum, Dura Mater, Arachnoid Mater, Pia Mater
Explanation:The outermost layer of the meninges is the dura mater.
To remember the layers of the scalp from superficial to deep, use the acronym SCALP: Skin, Connective tissue, Aponeurosis, Loose connective tissue, Periosteum.
To remember the layers of the meninges from superficial to deep, use the acronym DAP: Dura mater, Arachnoid mater, Pia mater.
The Three Layers of Meninges
The meninges are a group of membranes that cover the brain and spinal cord, providing support to the central nervous system and the blood vessels that supply it. These membranes can be divided into three distinct layers: the dura mater, arachnoid mater, and pia mater.
The outermost layer, the dura mater, is a thick fibrous double layer that is fused with the inner layer of the periosteum of the skull. It has four areas of infolding and is pierced by small areas of the underlying arachnoid to form structures called arachnoid granulations. The arachnoid mater forms a meshwork layer over the surface of the brain and spinal cord, containing both cerebrospinal fluid and vessels supplying the nervous system. The final layer, the pia mater, is a thin layer attached directly to the surface of the brain and spinal cord.
The meninges play a crucial role in protecting the brain and spinal cord from injury and disease. However, they can also be the site of serious medical conditions such as subdural and subarachnoid haemorrhages. Understanding the structure and function of the meninges is essential for diagnosing and treating these conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 17
Incorrect
-
A 2-year-old girl is brought to the paediatric community clinic due to concerns about delayed walking. The mother reports that the child had meningitis at 4 weeks old but has been healthy otherwise. During the examination, the girl displays a spastic gait with uncoordinated and involuntary movements. Based on these symptoms, which area of the brain is likely affected in this case?
Your Answer:
Correct Answer: Basal ganglia and substantia nigra
Explanation:The correct answer is basal ganglia and substantia nigra. The patient in this case has a motor disorder that is characterized by delayed motor milestones, which is likely due to cerebral palsy resulting from severe episodes of meningitis postnatally. There are three types of cerebral palsy, including spastic, dyskinetic, and ataxic. Dyskinetic cerebral palsy is characterized by athetoid movement and oromotor signs, which result from damage to the basal ganglia and substantia nigra. Therefore, in this case, it is the basal ganglia and substantia nigra that are affected. The cerebellum is not involved in this case, as the patient does not display a broad-based gait or unsteadiness. The hippocampus and amygdala are not relevant to the motor pathway, as they are primarily involved in memory and consciousness. The pons is also not involved in this case, as damage to the pons would cause locked-in syndrome, which is characterized by the loss of all motor movement except for eye movement.
Understanding Cerebral Palsy
Cerebral palsy is a condition that affects movement and posture due to damage to the motor pathways in the developing brain. It is the most common cause of major motor impairment and affects 2 in 1,000 live births. The causes of cerebral palsy can be antenatal, intrapartum, or postnatal. Antenatal causes include cerebral malformation and congenital infections such as rubella, toxoplasmosis, and CMV. Intrapartum causes include birth asphyxia or trauma, while postnatal causes include intraventricular hemorrhage, meningitis, and head trauma.
Children with cerebral palsy may exhibit abnormal tone in early infancy, delayed motor milestones, abnormal gait, and feeding difficulties. They may also have associated non-motor problems such as learning difficulties, epilepsy, squints, and hearing impairment. Cerebral palsy can be classified into spastic, dyskinetic, ataxic, or mixed types.
Managing cerebral palsy requires a multidisciplinary approach. Treatments for spasticity include oral diazepam, oral and intrathecal baclofen, botulinum toxin type A, orthopedic surgery, and selective dorsal rhizotomy. Anticonvulsants and analgesia may also be required. Understanding cerebral palsy and its management is crucial in providing appropriate care and support for individuals with this condition.
-
This question is part of the following fields:
- Neurological System
-
-
Question 18
Incorrect
-
A 67-year-old male who has been newly diagnosed with giant cell arteritis presents with a positive relative afferent pupillary defect (RAPD) in his right eye during examination.
What is the significance of RAPD in this patient's diagnosis?Your Answer:
Correct Answer: The left and right eye appears to dilate when light is shone on the left eye
Explanation:When there is a relative afferent pupillary defect, shining light on the affected eye causes both the affected and normal eye to appear to dilate. This occurs because there are differences in the afferent pathway between the two eyes, often due to retinal or optic nerve disease, which results in reduced constriction of both pupils when light is directed from the unaffected eye to the affected eye.
A relative afferent pupillary defect, also known as the Marcus-Gunn pupil, can be identified through the swinging light test. This condition is caused by a lesion that is located anterior to the optic chiasm, which can be found in the optic nerve or retina. When light is shone on the affected eye, it appears to dilate while the normal eye remains unchanged.
The causes of a relative afferent pupillary defect can vary. For instance, it may be caused by a detachment of the retina or optic neuritis, which is often associated with multiple sclerosis. The pupillary light reflex pathway involves the afferent pathway, which starts from the retina and goes through the optic nerve, lateral geniculate body, and midbrain. The efferent pathway, on the other hand, starts from the Edinger-Westphal nucleus in the midbrain and goes through the oculomotor nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 19
Incorrect
-
A 35-year-old man visits his doctor with complaints of blurry vision that has been ongoing for the past two months. The blurriness initially started in his right eye but has now spread to his left eye as well. He denies experiencing any pain or discharge from his eyes but admits to occasionally seeing specks and flashes in his vision.
During the physical examination, the doctor notices needle injection scars on the patient's forearm. After some reluctance, the patient admits to having a history of heroin use. Upon fundoscopy, the doctor observes white lesions surrounded by areas of hemorrhagic necrotic areas in the patient's retina.
Which organism is most likely responsible for causing this patient's eye condition?Your Answer:
Correct Answer: Cytomegalovirus
Explanation:Understanding Chorioretinitis and Its Causes
Chorioretinitis is a medical condition that affects the retina and choroid, which are the two layers of tissue at the back of the eye. This condition is characterized by inflammation and damage to these tissues, which can lead to vision loss and other complications. There are several possible causes of chorioretinitis, including syphilis, cytomegalovirus, toxoplasmosis, sarcoidosis, and tuberculosis.
Syphilis is a sexually transmitted infection caused by the bacterium Treponema pallidum. It can affect various parts of the body, including the eyes, and can lead to chorioretinitis if left untreated. Cytomegalovirus is a common virus that can cause chorioretinitis in people with weakened immune systems, such as those with HIV/AIDS. Toxoplasmosis is a parasitic infection that can be contracted from contaminated food or water, and can also cause chorioretinitis.
Sarcoidosis is a condition that causes inflammation in various parts of the body, including the eyes. It can lead to chorioretinitis as well as other eye problems such as uveitis and optic neuritis. Tuberculosis is a bacterial infection that can affect the lungs and other parts of the body, including the eyes. It can cause chorioretinitis as well as other eye problems such as iritis and scleritis.
In summary, chorioretinitis is a serious eye condition that can lead to vision loss and other complications. It can be caused by various infections and inflammatory conditions, including syphilis, cytomegalovirus, toxoplasmosis, sarcoidosis, and tuberculosis. Early diagnosis and treatment are essential for preventing further damage and preserving vision.
-
This question is part of the following fields:
- Neurological System
-
-
Question 20
Incorrect
-
A 60-year-old carpenter comes to your clinic complaining of back pain. He reports that this started a few weeks ago after lifting heavy wood. He experiences a sharp pain that travels from his lower back down the lateral aspect of his left thigh. Despite resting his leg, the pain persists. You suspect that he may have a herniated disc that is compressing his sciatic nerve and want to perform an examination to confirm the presence of sciatic nerve lesion features.
What is the most probable feature that you will discover during the examination?Your Answer:
Correct Answer: Right sided foot drop
Explanation:Foot drop is a possible consequence of sciatic nerve damage. The patient in question may have a herniated disc caused by heavy lifting, which is compressing their sciatic nerve and leading to weakness in the foot dorsiflexors.
If a person experiences pain when they abduct their hip, it could be due to damage to the superior gluteal nerve.
Damage to the femoral nerve can cause pain when extending the knee, as well as pain when flexing the thigh.
Femoral nerve damage can also result in loss of sensation over the medial aspect of the thigh, as well as the anterior aspect of the thigh and lower leg.
Damage to the lateral cutaneous nerve of the thigh can cause loss of sensation over the posterior surface of the thigh, as well as the lateral surface of the thigh.
Understanding Foot Drop: Causes and Examination
Foot drop is a condition that occurs when the foot dorsiflexors become weak. This can be caused by various factors, including a common peroneal nerve lesion, L5 radiculopathy, sciatic nerve lesion, superficial or deep peroneal nerve lesion, or central nerve lesions. However, the most common cause is a common peroneal nerve lesion, which is often due to compression at the neck of the fibula. This can be triggered by certain positions, prolonged confinement, recent weight loss, Baker’s cysts, or plaster casts to the lower leg.
To diagnose foot drop, a thorough examination is necessary. If the patient has an isolated peroneal neuropathy, there will be weakness of foot dorsiflexion and eversion, and reflexes will be normal. Weakness of hip abduction is suggestive of an L5 radiculopathy. Bilateral symptoms, fasciculations, or other abnormal neurological findings are indications for specialist referral.
If foot drop is diagnosed, conservative management is appropriate. Patients should avoid leg crossing, squatting, and kneeling. Symptoms typically improve over 2-3 months.
-
This question is part of the following fields:
- Neurological System
-
-
Question 21
Incorrect
-
A 15-year-old boy fell from a height of 2 meters while climbing a tree and caught himself with his right arm on a branch just before hitting the ground. He immediately felt pain in his hand and lower neck. Despite the pain, he managed to lower himself to the ground and make his way to the hospital.
Upon examination, there are no visible wounds or fractures, but there is a noticeable reduction in movement and power of the intrinsic hand muscles. All other joints in the upper limb appear to be normal.
What nerve root injury pattern did the boy sustain?Your Answer:
Correct Answer: T1
Explanation:Brachial Plexus Injuries: Erb-Duchenne and Klumpke’s Paralysis
Erb-Duchenne paralysis is a type of brachial plexus injury that results from damage to the C5 and C6 roots. This can occur during a breech presentation, where the baby’s head and neck are pulled to the side during delivery. Symptoms of Erb-Duchenne paralysis include weakness or paralysis of the arm, shoulder, and hand, as well as a winged scapula.
On the other hand, Klumpke’s paralysis is caused by damage to the T1 root of the brachial plexus. This type of injury typically occurs due to traction, such as when a baby’s arm is pulled during delivery. Klumpke’s paralysis can result in a loss of intrinsic hand muscles, which can affect fine motor skills and grip strength.
It is important to note that brachial plexus injuries can have long-term effects on a person’s mobility and quality of life. Treatment options may include physical therapy, surgery, or a combination of both. Early intervention is key to improving outcomes and minimizing the impact of these injuries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 22
Incorrect
-
As a general practice registrar, you are reviewing a patient who was referred to ENT and has a history of acoustic neuroma on the right side. The patient, who is in their early 50s, returned 2 months ago with pulsatile tinnitus in the left ear and was diagnosed with a left-sided acoustic neuroma after undergoing an MRI scan. Surgery is scheduled for later this week. What could be the probable cause of this patient's recurrent acoustic neuromas?
Your Answer:
Correct Answer: Neurofibromatosis type 2
Explanation:Neurofibromatosis type 2 is commonly linked to bilateral acoustic neuromas (vestibular schwannomas). Additionally, individuals with this condition may also experience benign neurological tumors and lens opacities.
Vestibular schwannomas, also known as acoustic neuromas, make up about 5% of intracranial tumors and 90% of cerebellopontine angle tumors. These tumors typically present with a combination of vertigo, hearing loss, tinnitus, and an absent corneal reflex. The specific symptoms can be predicted based on which cranial nerves are affected. For example, cranial nerve VIII involvement can cause vertigo, unilateral sensorineural hearing loss, and unilateral tinnitus. Bilateral vestibular schwannomas are associated with neurofibromatosis type 2.
If a vestibular schwannoma is suspected, it is important to refer the patient to an ear, nose, and throat specialist urgently. However, it is worth noting that these tumors are often benign and slow-growing, so observation may be appropriate initially. The diagnosis is typically confirmed with an MRI of the cerebellopontine angle, and audiometry is also important as most patients will have some degree of hearing loss. Treatment options include surgery, radiotherapy, or continued observation.
-
This question is part of the following fields:
- Neurological System
-
-
Question 23
Incorrect
-
A 67-year-old male visits the head and neck clinic after undergoing surgery to remove a malignant tumor in his mouth. He reports experiencing numbness and tingling in the floor of his mouth, as well as pain in his tongue since the operation. You suspect that the lingual nerve may have been damaged during the procedure.
What is the nerve responsible for these symptoms?Your Answer:
Correct Answer: Mandibular nerve
Explanation:The lingual nerve is derived from the posterior trunk of the mandibular nerve and is responsible for providing sensory innervation to the presulcal area of the tongue, floor of the mouth, and mandibular lingual gingivae. The patient’s symptoms suggest damage to this nerve.
The hypoglossal nerve is involved in tongue movement, and damage to this nerve can cause the tongue to deviate towards the side of the lesion.
The greater auricular nerve provides sensory innervation to the parotid gland and external ear.
The oculomotor nerve is responsible for various functions, including eye movement, accommodation, eyelid movement, and pupil constriction.
The phrenic nerve originates at C3-5 and supplies the diaphragm, as well as providing sensation to the central diaphragm and pericardium.
Lingual Nerve: Sensory Nerve to the Tongue and Mouth
The lingual nerve is a sensory nerve that provides sensation to the mucosa of the presulcal part of the tongue, floor of the mouth, and mandibular lingual gingivae. It arises from the posterior trunk of the mandibular nerve and runs past the tensor veli palatini and lateral pterygoid muscles. At this point, it is joined by the chorda tympani branch of the facial nerve.
After emerging from the cover of the lateral pterygoid, the lingual nerve proceeds antero-inferiorly, lying on the surface of the medial pterygoid and close to the medial aspect of the mandibular ramus. At the junction of the vertical and horizontal rami of the mandible, it is anterior to the inferior alveolar nerve. The lingual nerve then passes below the mandibular attachment of the superior pharyngeal constrictor and lies on the periosteum of the root of the third molar tooth.
Finally, the lingual nerve passes medial to the mandibular origin of mylohyoid and then passes forwards on the inferior surface of this muscle. Overall, the lingual nerve plays an important role in providing sensory information to the tongue and mouth.
-
This question is part of the following fields:
- Neurological System
-
-
Question 24
Incorrect
-
A 70-year-old man experiences a fall resulting in a fractured neck of femur. He undergoes a left hip hemiarthroplasty and two months later presents with an abnormal gait. Upon standing on his left leg, his pelvis dips on the right side, but there is no evidence of foot drop. What could be the underlying cause of this presentation?
Your Answer:
Correct Answer: Superior gluteal nerve damage
Explanation:The cause of this patient’s trendelenburg gait is damage to the superior gluteal nerve, resulting in weakened abductor muscles. A common diagnostic test involves asking the patient to stand on one leg, which causes the pelvis to dip on the opposite side. The absence of a foot drop rules out the potential for polio or L5 radiculopathy.
The gluteal region is composed of various muscles and nerves that play a crucial role in hip movement and stability. The gluteal muscles, including the gluteus maximus, medius, and minimis, extend and abduct the hip joint. Meanwhile, the deep lateral hip rotators, such as the piriformis, gemelli, obturator internus, and quadratus femoris, rotate the hip joint externally.
The nerves that innervate the gluteal muscles are the superior and inferior gluteal nerves. The superior gluteal nerve controls the gluteus medius, gluteus minimis, and tensor fascia lata muscles, while the inferior gluteal nerve controls the gluteus maximus muscle.
If the superior gluteal nerve is damaged, it can result in a Trendelenburg gait, where the patient is unable to abduct the thigh at the hip joint. This weakness causes the pelvis to tilt down on the opposite side during the stance phase, leading to compensatory movements such as trunk lurching to maintain a level pelvis throughout the gait cycle. As a result, the pelvis sags on the opposite side of the lesioned superior gluteal nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 25
Incorrect
-
A 45-year-old woman presents to the clinic with a history of multiple minor falls and confusion. She has been experiencing daily headaches with nausea for the past 3 years, which have worsened at night and occasionally wake her up. Imaging reveals an intracranial mass located on the left hemisphere's convexity, and a biopsy of the mass shows a whorled pattern of calcified cellular growth that forms syncytial nests and appears as round, eosinophilic laminar structure.
What is the most probable diagnosis for this patient?Your Answer:
Correct Answer: Meningioma
Explanation:Meningiomas are the second most frequent type of primary brain tumour, often found in the convexities of cerebral hemispheres and parasagittal regions. The biopsy findings of this patient suggest the presence of psammoma bodies, which are mineral deposits formed by calcification of spindle cells in concentric whorls within the tumour.
Ependymomas usually present as paraventricular tumours and exhibit perivascular rosettes under light microscopy.
Glioblastomas are the most common primary malignant brain tumour in adults. Light microscopy reveals hypercellular areas of atypical astrocytes surrounding regions of necrosis.
Medulloblastomas are malignant cerebellar tumours that typically occur in children and are characterized by small blue cells that may encircle neutrophils.
Brain tumours can be classified into different types based on their location, histology, and clinical features. Metastatic brain cancer is the most common form of brain tumours, which often cannot be treated with surgical intervention. Glioblastoma multiforme is the most common primary tumour in adults and is associated with a poor prognosis. Meningioma is the second most common primary brain tumour in adults, which is typically benign and arises from the arachnoid cap cells of the meninges. Vestibular schwannoma is a benign tumour arising from the eighth cranial nerve, while pilocytic astrocytoma is the most common primary brain tumour in children. Medulloblastoma is an aggressive paediatric brain tumour that arises within the infratentorial compartment, while ependymoma is commonly seen in the 4th ventricle and may cause hydrocephalus. Oligodendroma is a benign, slow-growing tumour common in the frontal lobes, while haemangioblastoma is a vascular tumour of the cerebellum. Pituitary adenoma is a benign tumour of the pituitary gland that can be either secretory or non-secretory, while craniopharyngioma is a solid/cystic tumour of the sellar region that is derived from the remnants of Rathke’s pouch.
-
This question is part of the following fields:
- Neurological System
-
-
Question 26
Incorrect
-
A 54 year old female who has undergone a hysterectomy presents to the clinic with complaints of pain and decreased sensation on the inner part of her thigh. Upon examination, weak thigh adduction is noted. What nerve injury is most probable?
Your Answer:
Correct Answer: Obturator nerve
Explanation:The adductor nerve is responsible for providing sensation to the inner part of the thigh and facilitating adduction and internal rotation of the thigh. This nerve is commonly damaged during surgeries involving the pelvic or abdominal region. It is improbable for the L3 spinal cord to be compressed in such cases.
Anatomy of the Obturator Nerve
The obturator nerve is formed by branches from the ventral divisions of L2, L3, and L4 nerve roots, with L3 being the main contributor. It descends vertically in the posterior part of the psoas major muscle and emerges from its medial border at the lateral margin of the sacrum. After crossing the sacroiliac joint, it enters the lesser pelvis and descends on the obturator internus muscle to enter the obturator groove. The nerve lies lateral to the internal iliac vessels and ureter in the lesser pelvis and is joined by the obturator vessels lateral to the ovary or ductus deferens.
The obturator nerve supplies the muscles of the medial compartment of the thigh, including the external obturator, adductor longus, adductor brevis, adductor magnus (except for the lower part supplied by the sciatic nerve), and gracilis. The cutaneous branch, which is often absent, supplies the skin and fascia of the distal two-thirds of the medial aspect of the thigh when present.
The obturator canal connects the pelvis and thigh and contains the obturator artery, vein, and nerve, which divides into anterior and posterior branches. Understanding the anatomy of the obturator nerve is important in diagnosing and treating conditions that affect the medial thigh and pelvic region.
-
This question is part of the following fields:
- Neurological System
-
-
Question 27
Incorrect
-
A teenage boy is diagnosed with epilepsy. Following a seizure, he reports experiencing temporary paralysis and expresses concern that it may be a serious issue. He also notes soreness in the back of his head and suspects he may have injured it during the seizure. What is the medical term for this symptom?
Your Answer:
Correct Answer: Todd's palsy
Explanation:Todd’s palsy, which is often linked to epilepsy, is a temporary paralysis that occurs after a seizure. It should not be confused with Bell’s palsy, which affects the facial nerve, or Erb’s palsy, which affects the nerves in the upper limb, particularly C5-6. Additionally, transient ischemic attacks (TIAs) and cerebellar tonsil herniation, which is caused by increased pressure within the skull, are not related to Todd’s palsy.
Epilepsy Classification: Understanding Seizures
Epilepsy is a neurological disorder that affects millions of people worldwide. The classification of epilepsy has undergone changes in recent years, with the new basic seizure classification based on three key features. The first feature is where seizures begin in the brain, followed by the level of awareness during a seizure, which is important as it can affect safety during a seizure. The third feature is other features of seizures.
Focal seizures, previously known as partial seizures, start in a specific area on one side of the brain. The level of awareness can vary in focal seizures, and they can be further classified as focal aware, focal impaired awareness, and awareness unknown. Focal seizures can also be classified as motor or non-motor, or having other features such as aura.
Generalized seizures involve networks on both sides of the brain at the onset, and consciousness is lost immediately. The level of awareness in the above classification is not needed, as all patients lose consciousness. Generalized seizures can be further subdivided into motor and non-motor, with specific types including tonic-clonic, tonic, clonic, typical absence, and atonic.
Unknown onset is a term reserved for when the origin of the seizure is unknown. Focal to bilateral seizure starts on one side of the brain in a specific area before spreading to both lobes, previously known as secondary generalized seizures. Understanding the classification of epilepsy and the different types of seizures can help in the diagnosis and management of this condition.
-
This question is part of the following fields:
- Neurological System
-
-
Question 28
Incorrect
-
A 33-year-old woman visits an ophthalmology clinic complaining of reduced sensation in her left eye for the past 2 months. She first noticed it while putting on contact lenses. Her medical history includes multiple facial fractures due to a traumatic equestrian event that occurred 2 months ago.
During the examination, the corneal reflex is absent in her left eye, while her right eye shows bilateral tearing and blinking. There is no facial asymmetry, and the strength of the facial muscles is normal on both sides.
Which structure is most likely to have been affected by the trauma?Your Answer:
Correct Answer: Superior orbital fissure
Explanation:The ophthalmic nerve passes through the superior orbital fissure, which is the correct answer. This nerve is responsible for the afferent limb of the corneal reflex, while the efferent limb is controlled by the facial nerve. Since the patient has no facial asymmetry and normal power, it suggests that the lesion affects the afferent limb controlled by the ophthalmic nerve.
The other options are incorrect. The foramen rotundum transmits the mandibular nerve, the internal acoustic meatus transmits the facial nerve, the infraorbital foramen transmits the nasopalatine nerve, and the optic canal transmits the optic nerve. None of these nerves play a role in the corneal reflex.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 29
Incorrect
-
A 25-year-old individual visits a maxillofacial clinic complaining of facial pain that has persisted for 3 months after sustaining a basal skull fracture in a car accident. According to neuroimaging reports, where is the lesion most likely located, indicating damage to the maxillary nerve as it traverses the sphenoid bone?
Your Answer:
Correct Answer: Foramen rotundum
Explanation:The correct location for the passage of the maxillary nerve is the foramen rotundum. In the case of a basal skull fracture involving the sphenoid bone, the lesion is most likely located in the foramen rotundum. The foramen ovale is not the correct location as it is where the mandibular nerve passes through. The foramen spinosum is also not the correct location as it transmits the middle meningeal artery and vein, not the maxillary nerve. The hypoglossal canal is also not the correct location as it transmits the twelfth cranial nerve, not the maxillary nerve.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 30
Incorrect
-
A 35-year-old woman presents to the Emergency Department with progressive weakness of her lower limbs. Her symptoms started three days previously when she noticed her legs felt heavy when rising from a seated position. This weakness has progressed to the point now where she is unable to stand unassisted and has now started to affect some of the muscles of her abdominal wall and lower back. She is otherwise well, apart from suffering a diarrhoeal illness 12 days previously. Neurological examination of the lower limbs identifies generalised weakness, reduced tone and absent reflexes; sensory examination is unremarkable.
Which of the following organisms is most likely to have caused this patient's diarrhoeal symptoms?Your Answer:
Correct Answer: Campylobacter jejuni
Explanation:The correct answer for the trigger of Guillain-Barre syndrome is Campylobacter jejuni. The patient’s symptoms of ascending muscle weakness without sensory signs and absent reflexes and reduced tone suggest a lower motor neuron lesion, which is likely due to GBS. GBS is an autoimmune-mediated demyelinating disease of the peripheral nervous system that is often triggered by an infection, with Campylobacter jejuni being the classic trigger. None of the other options are associated with GBS. Bacillus cereus can cause food poisoning from rice, resulting in vomiting and diarrhoea. Escherichia coli is common among travellers and can cause watery stools and abdominal cramps. Shigella can cause bloody diarrhoea with vomiting and abdominal pain.
Understanding Guillain-Barre Syndrome and Miller Fisher Syndrome
Guillain-Barre syndrome is a condition that affects the peripheral nervous system and is often triggered by an infection, particularly Campylobacter jejuni. The immune system attacks the myelin sheath that surrounds nerve fibers, leading to demyelination. This results in symptoms such as muscle weakness, tingling sensations, and paralysis.
The pathogenesis of Guillain-Barre syndrome involves the cross-reaction of antibodies with gangliosides in the peripheral nervous system. Studies have shown a correlation between the presence of anti-ganglioside antibodies, particularly anti-GM1 antibodies, and the clinical features of the syndrome. In fact, anti-GM1 antibodies are present in 25% of patients with Guillain-Barre syndrome.
Miller Fisher syndrome is a variant of Guillain-Barre syndrome that is characterized by ophthalmoplegia, areflexia, and ataxia. This syndrome typically presents as a descending paralysis, unlike other forms of Guillain-Barre syndrome that present as an ascending paralysis. The eye muscles are usually affected first in Miller Fisher syndrome. Studies have shown that anti-GQ1b antibodies are present in 90% of cases of Miller Fisher syndrome.
In summary, Guillain-Barre syndrome and Miller Fisher syndrome are conditions that affect the peripheral nervous system and are often triggered by infections. The pathogenesis of these syndromes involves the cross-reaction of antibodies with gangliosides in the peripheral nervous system. While Guillain-Barre syndrome is characterized by muscle weakness and paralysis, Miller Fisher syndrome is characterized by ophthalmoplegia, areflexia, and ataxia.
-
This question is part of the following fields:
- Neurological System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)