-
Question 1
Incorrect
-
What is the name of the cells that make up the outermost layer of the retina and are first exposed to light?
Your Answer: Bipolar cells
Correct Answer: Ganglion cells
Explanation:The Retina and its Cell Types
The retina is composed of various types of cells, with the ganglion cell layer being the most superficial layer that is first exposed to light. Ganglion cells are the only neurons present in the retina, and they have an axon that extends centrally to form the optic nerve. These cells form synapses with bipolar cells, which are located deeper in the retina. Bipolar cells, in turn, synapse with photoreceptors, which are situated in the deepest layer of the retina. Supporting cells such as horizontal cells and amacrine cells are positioned between the other cells.
Photoreceptors play a crucial role in the retina by absorbing light and generating electrical impulses that travel through the optic nerve to the occipital lobe, where photographic images are created. The retina’s complex structure and the interactions between its various cell types enable us to see the world around us.
-
This question is part of the following fields:
- Histology
-
-
Question 2
Incorrect
-
In what location can calcitonin-secreting C-cells be found?
Your Answer: In the duodenal mucosa
Correct Answer: Between thyroid follicles
Explanation:Endocrine Glands and Cells in the Body
The thyroid gland is composed of follicles that contain colloid and are lined by follicular cells. These cells produce thyroid hormones, T4 and T3. The parafollicular cells, also known as C-cells, are located between the thyroid follicles and produce calcitonin. Calcitonin is produced in hypercalcaemia and inhibits osteoclast resorption of bone, which promotes hypocalcaemia. Tumours of the parafollicular cells can cause hypocalcaemia and have raised levels of calcitonin.
The parathyroid gland produces parathyroid hormone, which activates osteoclasts and promotes hypercalcaemia. This hormone works in conjunction with vitamin D. The islets of Langerhans contain alpha-cells, beta-cells, and delta-cells. These cells produce glucagon, insulin, and somatostatin, respectively. Lastly, there are multiple endocrine cells in the duodenal mucosa that secrete hormones with various gastrointestinal and metabolic functions. These cells include S-cells, L-cells, and I-cells.
-
This question is part of the following fields:
- Histology
-
-
Question 3
Correct
-
A biopsy is obtained from an inflamed tissue. It reveals apoptotic epithelial cells with an excess of lymphocytes, occasional macrophages, and a few neutrophils present. What type of inflammation is this?
Your Answer: Chronic
Explanation:Different Forms of Inflammation
There are various types of inflammation, each with its own distinct characteristics. Chronic inflammation, such as autoimmune hepatitis, is primarily characterized by lymphocytes, with some macrophages and neutrophils. This type of inflammation causes tissue damage, which is evident in apoptotic epithelial cells.
Acute inflammation, on the other hand, involves mainly neutrophils and macrophages, with fewer lymphocytes. It also causes more tissue oedema and hyperaemia than chronic inflammation.
Allergic inflammation, like asthma, is characterized by an eosinophilic infiltrate, along with excess mast cells and basophils in chronic cases.
Granulomatous inflammation requires the presence of granulomas, which are formed from an inner core of macrophages, surrounded by lymphocytes (T-cells), and finally sealed off by fibroblasts.
Malignant tissue can also cause inflammation with oedema, which can have a mixture of inflammatory cells infiltrating. Overall, the different forms of inflammation is crucial in diagnosing and treating various diseases.
-
This question is part of the following fields:
- Histology
-
-
Question 4
Incorrect
-
What characteristic might indicate the presence of high-grade dysplasia?
Your Answer: No visible mitoses
Correct Answer: High Ki67 index
Explanation:Dysplasia and its Association with Malignancy
Dysplasia refers to the cellular changes that occur during the development of malignancy. The degree of dysplasia in a cell is directly proportional to its likelihood of being found in an invasive cancer. Cells with higher-grade dysplasia have more genetic abnormalities than those with low-grade dysplasia.
Progressive dysplasia is characterized by variations in the appearance of cells and their nuclei, which is not typical in most tissues where cells appear similar. The nuclei of dysplastic cells are larger, and there is an increase in the number of nucleoli. The Ki67 index is a marker of proliferation, and a higher Ki67 index indicates a higher rate of cell turnover.
In most tissues, mitoses are rare, but malignant tissues made up of dysplastic cells show visible mitoses. dysplasia and its association with malignancy is crucial in the early detection and treatment of cancer.
-
This question is part of the following fields:
- Histology
-
-
Question 5
Incorrect
-
What is the cell type in the glomerulus that has a role in phagocytosis?
Your Answer: Glomerular endothelial cells
Correct Answer: Mesangial cells
Explanation:The Structure of the Glomerulus
The glomerulus is composed of glomerular capillaries that are lined by a basement membrane and podocyte processes. Podocytes are connected to the epithelial cells of Bowman’s capsule, which are then connected to the cells of the proximal convoluted tubule. Supporting cells called mesangial cells are located between the capillary endothelial cells and podocytes. These cells produce the extracellular matrix that supports the structure of the glomerulus and remove dead cells through phagocytosis. Additionally, mesangial cells may play a role in regulating glomerular blood flow. Overall, the glomerulus is a complex structure that plays a crucial role in the filtration of blood in the kidneys.
-
This question is part of the following fields:
- Histology
-
-
Question 6
Incorrect
-
In what location can Leydig cells be found?
Your Answer: In testicular seminiferous tubules
Correct Answer: Between testicular seminiferous tubules
Explanation:Cell Types and Functions in Male Reproductive System
The male reproductive system is composed of various organs that work together to produce and transport sperm. Two main types of epithelial cells are present in the testes: Sertoli cells and Leydig cells. Leydig cells are located between the seminiferous tubules and produce androgens, including testosterone. On the other hand, Sertoli cells are arranged in tubular structures and have a basal and luminal compartment where spermatogonia divide and spermatids mature, respectively. Testosterone diffuses into Sertoli cells and is converted into a more active form called 5-hydroxytestosterone.
The epididymis is lined by tall columnar epithelial cells with long microvilli. These cells phagocytose dead spermatozoa and produce substances that aid in sperm maturation. The prostate gland is an exocrine gland composed of acinar and ductal cells. Its secretory products are essential for the stability of spermatozoa. Lastly, the seminal vesicles have a convoluted lining of secretory epithelial cells that produce the majority of the volume of seminal fluid, including fructose, which serves as the energy source for spermatozoa. the functions of these cells and organs is crucial in comprehending the male reproductive system’s overall function.
-
This question is part of the following fields:
- Histology
-
-
Question 7
Correct
-
Which type of cell creates the visceral peritoneum?
Your Answer: Mesothelial cells
Explanation:Different Types of Cells in the Body
Mesothelial cells are a type of flat epithelial cells that are responsible for lining cavities in the body. These cells can be found in the parietal and visceral pleura, peritoneum, tunica vaginalis, and pericardium. They secrete a small amount of lubricant fluid that allows the parietal and visceral layers to move against each other with low friction. However, mesothelial cells are also known for their development into mesothelioma, a malignant tumor that is strongly associated with asbestos exposure and has a poor prognosis.
Endothelial cells, on the other hand, are responsible for lining blood vessels. Fibroblasts are cells that secrete extracellular matrix, which is important for tissue repair and wound healing. Mesangial cells are supporting cells of the glomerular capillaries, which are responsible for filtering blood in the kidneys. Lastly, goblet cells are mucus-secreting cells that can be found throughout the body, particularly in the respiratory and digestive tracts.
Overall, the body is made up of various types of cells that have different functions and play important roles in maintaining overall health and well-being.
-
This question is part of the following fields:
- Histology
-
-
Question 8
Correct
-
What is the composition of nails?
Your Answer: Keratin
Explanation:Skin, Collagen, and Other Components of Tissue
The epidermis is composed of keratinocytes that become less cellular and harder as they move towards the surface. The nail bed is a specialized area of skin that produces hardened plates of keratin to form nails. Type I collagen is the primary structural collagen that helps form bone, cartilage, and tendons. Ehlers-Danlos syndrome is a condition where Type I collagen is defective. Type IV collagen is the primary structural collagen in the basement membrane and is defective in Alport’s syndrome. Hyaluronic acid is a glycosaminoglycan and a major component of the ground substance that surrounds cells. Fibrin is an insoluble protein that cross-links to form clots as part of haemostasis.
Overall, these components play important roles in the structure and function of tissues in the body. their functions and potential defects can aid in the diagnosis and treatment of various conditions.
-
This question is part of the following fields:
- Histology
-
-
Question 9
Incorrect
-
What are the differences between veins and arteries?
Your Answer: Veins have more elastic tissue
Correct Answer: Veins have a thicker serosa
Explanation:Differences between Arteries and Veins
Arteries and veins are two types of blood vessels that have distinct differences in their structure and function. Both arteries and veins have three layers: the tunica intima, tunica muscularis, and tunica serosa. However, there are notable differences between the two.
The tunica intima of both arteries and veins contains endothelium and subendothelial tissue. However, the tunica intima of veins is specialized to form valves. The tunica muscularis of arteries is much thicker and has more elastin than veins. It also has two elastic laminae, one internal and one external. In contrast, the tunica muscularis of veins is thinner and less elastic. The tunica serosa of veins is much thicker and contains more collagen than arteries.
One of the most significant differences between arteries and veins is their internal diameter. Veins have a larger internal diameter than arteries, which allows them to carry a greater volume of blood. Additionally, veins have a thicker serosa than arteries.
In summary, while both arteries and veins have similar layers, their differences lie in the thickness and composition of these layers. The specialized tunica intima of veins allows them to form valves, while the thicker tunica muscularis and serosa of arteries provide them with more elasticity and strength. The larger internal diameter of veins allows them to carry more blood, making them an essential component of the circulatory system.
-
This question is part of the following fields:
- Histology
-
-
Question 10
Incorrect
-
What is the cutaneous sensory organ that has a histological structure resembling the layers of an onion when viewed in cross-section?
Your Answer: Meissner's endings
Correct Answer: Pacinian corpuscles
Explanation:Types of Skin Receptors
Pacinian corpuscles, free nerve endings, Meissner’s corpuscles, and Merkel cells are all types of skin receptors that play a role in sensory perception. Pacinian corpuscles are located deep in the dermis and are responsible for detecting pressure and vibration. They are made up of concentric rings of Schwann cells surrounding a nerve ending, giving them a distinctive onion-like appearance. Free nerve endings, on the other hand, are primary sensory afferents that are found throughout the dermal tissue and act as pain and temperature receptors.
Meissner’s corpuscles are touch receptors that are primarily located on the hands and feet. They are formed of spirally arranged cells in a fibrous coating, allowing them to detect light touch and changes in texture. Finally, Merkel cells are single cells that are found in the epidermis and function as slowly adapting touch receptors. They are similar in appearance to melanocytes but lack cytoplasmic processes.
In summary, these different types of skin receptors work together to provide us with a complex sensory experience, allowing us to perceive pressure, vibration, pain, temperature, and touch.
-
This question is part of the following fields:
- Histology
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)