-
Question 1
Correct
-
As a doctor on a 4-month placement in intensive care, you admit a 32-year-old man following a closed head injury sustained in a road traffic accident. The patient has no past medical history and initially presents with a Glasgow coma score of 14/15 and no focal neurological deficit. Invasive monitoring is undertaken, and his heart rate, blood pressure, and intracranial pressure are normal. He is started on maintenance intravenous fluids.
However, a few hours later, the patient becomes agitated and confused, and his Glasgow coma score drops to 11/15. His observations reveal a regular heart rate of 101 beats per minute, a blood pressure of 161/89 mmHg, and an intracranial pressure of 18 mmHg. Which pathophysiological changes could explain his clinical deterioration and hypertension?Your Answer: Rise in intracranial pressure causing fall in cerebral perfusion pressure
Explanation:When intracranial pressure (ICP) rises rapidly, it can lead to a decrease in cerebral perfusion pressure (CPP). This can occur in individuals with head injuries, as seen in the scenario where a patient’s Glasgow coma score dropped from 14/15 to 11/15 and they became agitated. The patient’s ICP also increased to 18 mmHg, likely due to brain swelling or a hematoma. The decrease in CPP can cause hypoperfusion and hypoxia in normal brain tissue, leading to neurological deterioration. CPP is calculated by subtracting ICP from mean arterial pressure. As a result of the decrease in CPP, the body may respond by increasing mean arterial pressure, resulting in hypertension in the patient.
Understanding Cerebral Perfusion Pressure
Cerebral perfusion pressure (CPP) refers to the pressure gradient that drives blood flow to the brain. It is a crucial factor in maintaining optimal cerebral perfusion, which is tightly regulated by the body. Any sudden increase in CPP can lead to a rise in intracranial pressure (ICP), while a decrease in CPP can result in cerebral ischemia. To calculate CPP, one can subtract the ICP from the mean arterial pressure.
In cases of trauma, it is essential to carefully monitor and control CPP. This may require invasive methods to measure both ICP and mean arterial pressure (MAP). By doing so, healthcare professionals can ensure that the brain receives adequate blood flow and oxygenation, which is vital for optimal brain function. Understanding CPP is crucial in managing traumatic brain injuries and other conditions that affect cerebral perfusion.
-
This question is part of the following fields:
- Neurological System
-
-
Question 2
Incorrect
-
A 25-year-old female comes to the GP complaining of sudden eye pain and vision changes. During the examination, the GP observes a significant relative afferent pupillary defect (RAPD) in her right eye. What will occur when the GP shines a penlight into her right eye?
Your Answer: Pupillary constriction in the right eye but no constriction in the left
Correct Answer: No pupillary constriction in both eyes
Explanation:The process of transmitting light through the afferent pathway begins with the retina receiving the light. An action potential is then generated in the optic nerve, which travels through the left and right lateral geniculate bodies. Finally, axons synapse at the left and right pre-tectal nuclei.
When there is a defect in the afferent pathway, a relative afferent pupillary defect (RAPD) can occur. This is characterized by the absence of constriction in both pupils when a light is shined in the affected eye. For example, if there is a RAPD in the left eye, shining the light in the left eye will result in absent constriction in both pupils, while shining the light in the right eye will result in constriction of both pupils.
In this question, there is a RAPD in the right eye. Therefore, shining the light in the right eye will result in absent constriction in both eyes. Any answers indicating full or partial constriction in one or both pupils are incorrect.
A relative afferent pupillary defect, also known as the Marcus-Gunn pupil, can be identified through the swinging light test. This condition is caused by a lesion that is located anterior to the optic chiasm, which can be found in the optic nerve or retina. When light is shone on the affected eye, it appears to dilate while the normal eye remains unchanged.
The causes of a relative afferent pupillary defect can vary. For instance, it may be caused by a detachment of the retina or optic neuritis, which is often associated with multiple sclerosis. The pupillary light reflex pathway involves the afferent pathway, which starts from the retina and goes through the optic nerve, lateral geniculate body, and midbrain. The efferent pathway, on the other hand, starts from the Edinger-Westphal nucleus in the midbrain and goes through the oculomotor nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 3
Incorrect
-
Which of the following characteristics does not increase the risk of refeeding syndrome?
Your Answer: BMI < 16 kg/m2
Correct Answer: Thyrotoxicosis
Explanation:Understanding Refeeding Syndrome and its Metabolic Consequences
Refeeding syndrome is a condition that occurs when a person is fed after a period of starvation. This can lead to metabolic abnormalities such as hypophosphataemia, hypokalaemia, hypomagnesaemia, and abnormal fluid balance. These metabolic consequences can result in organ failure, making it crucial to be aware of the risks associated with refeeding.
To prevent refeeding problems, it is recommended to re-feed patients who have not eaten for more than five days at less than 50% energy and protein levels. Patients who are at high risk for refeeding problems include those with a BMI of less than 16 kg/m2, unintentional weight loss of more than 15% over 3-6 months, little nutritional intake for more than 10 days, and hypokalaemia, hypophosphataemia, or hypomagnesaemia prior to feeding (unless high). Patients with two or more of the following are also at high risk: BMI less than 18.5 kg/m2, unintentional weight loss of more than 10% over 3-6 months, little nutritional intake for more than 5 days, and a history of alcohol abuse, drug therapy including insulin, chemotherapy, diuretics, and antacids.
To prevent refeeding syndrome, it is recommended to start at up to 10 kcal/kg/day and increase to full needs over 4-7 days. It is also important to start oral thiamine 200-300mg/day, vitamin B co strong 1 tds, and supplements immediately before and during feeding. Additionally, K+ (2-4 mmol/kg/day), phosphate (0.3-0.6 mmol/kg/day), and magnesium (0.2-0.4 mmol/kg/day) should be given to patients. By understanding the risks associated with refeeding syndrome and taking preventative measures, healthcare professionals can ensure the safety and well-being of their patients.
-
This question is part of the following fields:
- Neurological System
-
-
Question 4
Incorrect
-
A 35-year-old male presents to the acute eye clinic with sudden onset of a painful red eye. He denies any history of trauma and has a medical history of ankylosing spondylitis for the past 8 years. On examination, his left eye has a visual acuity of 6/60 while his right eye is 6/6. Mild hypopyon is observed in his left eye during slit lamp examination. The diagnosis is anterior uveitis and he is prescribed steroid eye drops and cycloplegics. Which structure in the eye is affected in this case?
Your Answer: Cornea and lens
Correct Answer: Ciliary body and iris
Explanation:Anterior uveitis, also known as iritis, is a type of inflammation that affects the iris and ciliary body in the front part of the uvea. This condition is often associated with HLA-B27 and may be linked to other conditions such as ankylosing spondylitis, reactive arthritis, ulcerative colitis, Crohn’s disease, Behcet’s disease, and sarcoidosis. Symptoms of anterior uveitis include sudden onset of eye discomfort and pain, small and irregular pupils, intense sensitivity to light, blurred vision, redness in the eye, tearing, and a ring of redness around the cornea. In severe cases, pus and inflammatory cells may accumulate in the front chamber of the eye, leading to a visible fluid level. Treatment for anterior uveitis involves urgent evaluation by an ophthalmologist, cycloplegic agents to relieve pain and photophobia, and steroid eye drops to reduce inflammation.
-
This question is part of the following fields:
- Neurological System
-
-
Question 5
Correct
-
A 65-year-old man arrives at the emergency department with a sudden onset of aphasia lasting for 15 minutes. His partner mentions a similar incident occurred a month ago, but he did not seek medical attention as it resolved on its own.
Upon point of care testing, his capillary blood glucose level is 6.5 mmol/L (3.9 - 7.1). An urgent CT scan of his brain is conducted, which reveals no signs of acute infarct. However, upon returning from the scan, he regains full speech and denies experiencing any other neurological symptoms.
What aspect of the episode suggests a diagnosis of transient ischaemic attack?Your Answer: There was no evidence of acute infarction on CT imaging, and the episode was brief
Explanation:The definition of a TIA has been updated to focus on tissue-based factors rather than time-based ones. It is now defined as a brief episode of neurological dysfunction caused by focal brain, spinal cord, or retinal ischemia, without acute infarction. The new guidelines emphasize the importance of focal neurology and negative brain imaging in diagnosing a TIA, which typically lasts less than an hour. This is a departure from the previous definition, which focused on symptoms resolving within 24 hours and led to delays in diagnosis and treatment. Patients may have a history of stereotyped episodes preceding a TIA. Focal neurology is a hallmark of TIA, which can affect motor, sensory, aphasic, or visual areas of the brain. In cases where isolated aphasia lasts only 30 minutes and brain imaging shows no infarction, the patient has had a TIA rather than a stroke.
A transient ischaemic attack (TIA) is a brief period of neurological deficit caused by a vascular issue, lasting less than an hour. The original definition of a TIA was based on time, but it is now recognized that even short periods of ischaemia can result in pathological changes to the brain. Therefore, a new ’tissue-based’ definition is now used. The clinical features of a TIA are similar to those of a stroke, but the symptoms resolve within an hour. Possible features include unilateral weakness or sensory loss, aphasia or dysarthria, ataxia, vertigo, or loss of balance, visual problems, sudden transient loss of vision in one eye (amaurosis fugax), diplopia, and homonymous hemianopia.
NICE recommends immediate antithrombotic therapy, giving aspirin 300 mg immediately unless the patient has a bleeding disorder or is taking an anticoagulant. If aspirin is contraindicated, management should be discussed urgently with the specialist team. Specialist review is necessary if the patient has had more than one TIA or has a suspected cardioembolic source or severe carotid stenosis. Urgent assessment within 24 hours by a specialist stroke physician is required if the patient has had a suspected TIA in the last 7 days. Referral for specialist assessment should be made as soon as possible within 7 days if the patient has had a suspected TIA more than a week previously. The person should be advised not to drive until they have been seen by a specialist.
Neuroimaging should be done on the same day as specialist assessment if possible. MRI is preferred to determine the territory of ischaemia or to detect haemorrhage or alternative pathologies. Carotid imaging is necessary as atherosclerosis in the carotid artery may be a source of emboli in some patients. All patients should have an urgent carotid doppler unless they are not a candidate for carotid endarterectomy.
Antithrombotic therapy is recommended, with clopidogrel being the first-line treatment. Aspirin + dipyridamole should be given to patients who cannot tolerate clopidogrel. Carotid artery endarterectomy should only be considered if the patient has suffered a stroke or TIA in the carotid territory and is not severely disabled. It should only be recommended if carotid stenosis is greater
-
This question is part of the following fields:
- Neurological System
-
-
Question 6
Correct
-
Does the external branch of the superior laryngeal nerve innervate the cricothyroid muscle?
Your Answer: Cricothyroid
Explanation:The intrinsic muscles of the larynx, with the exception of the cricothyroid muscle, are innervated by the innervation. The cricothyroid muscle is innervated by the external branch of the superior laryngeal nerve.
The Recurrent Laryngeal Nerve: Anatomy and Function
The recurrent laryngeal nerve is a branch of the vagus nerve that plays a crucial role in the innervation of the larynx. It has a complex path that differs slightly between the left and right sides of the body. On the right side, it arises anterior to the subclavian artery and ascends obliquely next to the trachea, behind the common carotid artery. It may be located either anterior or posterior to the inferior thyroid artery. On the left side, it arises left to the arch of the aorta, winds below the aorta, and ascends along the side of the trachea.
Both branches pass in a groove between the trachea and oesophagus before entering the larynx behind the articulation between the thyroid cartilage and cricoid. Once inside the larynx, the recurrent laryngeal nerve is distributed to the intrinsic larynx muscles (excluding cricothyroid). It also branches to the cardiac plexus and the mucous membrane and muscular coat of the oesophagus and trachea.
Damage to the recurrent laryngeal nerve, such as during thyroid surgery, can result in hoarseness. Therefore, understanding the anatomy and function of this nerve is crucial for medical professionals who perform procedures in the neck and throat area.
-
This question is part of the following fields:
- Neurological System
-
-
Question 7
Incorrect
-
A 47-year-old woman is in recovery after a transsphenoidal hypophysectomy. Regrettably, she experiences a postoperative hemorrhage. What is the most probable initial symptom that will occur?
Your Answer: Abducens nerve palsy
Correct Answer: Bitemporal hemianopia
Explanation:An expanding haematoma at the site of the pituitary, which is surrounded by a dura sheath, can compress the optic chiasm similar to how a growing pituitary tumour would.
The pituitary gland is a small gland located within the sella turcica in the sphenoid bone of the middle cranial fossa. It weighs approximately 0.5g and is covered by a dural fold. The gland is attached to the hypothalamus by the infundibulum and receives hormonal stimuli from the hypothalamus through the hypothalamo-pituitary portal system. The anterior pituitary, which develops from a depression in the wall of the pharynx known as Rathkes pouch, secretes hormones such as ACTH, TSH, FSH, LH, GH, and prolactin. GH and prolactin are secreted by acidophilic cells, while ACTH, TSH, FSH, and LH are secreted by basophilic cells. On the other hand, the posterior pituitary, which is derived from neuroectoderm, secretes ADH and oxytocin. Both hormones are produced in the hypothalamus before being transported by the hypothalamo-hypophyseal portal system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 8
Correct
-
A 65-year-old male presents to the preoperative hernia clinic with complaints of visual difficulty. During the examination, a homonymous hemianopia is observed. What is the most probable location of the lesion?
Your Answer: Optic tract
Explanation:Although the students don’t seem to be fond of them, the college appears to approve. It’s important to note that a homonymous hemianopia suggests an optic tract injury, while inferior quadranopias are typically caused by parietal lobe lesions. Optic chiasm lesions or pituitary tumors, on the other hand, result in bitemporal hemianopias.
Understanding Visual Field Defects
Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.
When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.
Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.
Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.
-
This question is part of the following fields:
- Neurological System
-
-
Question 9
Correct
-
An 80-year-old woman is receiving end-of-life care after being diagnosed with terminal lung cancer. She has been experiencing increased pain over the last 2 weeks and has been prescribed a syringe driver with subcutaneous fentanyl to help manage her pain.
What is the benefit of using fentanyl instead of morphine in this situation?Your Answer: Fentanyl has a faster onset than morphine
Explanation:Fentanyl is a potent opioid that provides faster pain relief than morphine due to its higher lipophilicity, allowing it to quickly penetrate the central nervous system. However, it is important to note that both fentanyl and morphine can cause constipation and are highly addictive. Additionally, fentanyl is significantly more potent than morphine, with a potency of 80-100 times greater.
Understanding Opioids: Types, Receptors, and Clinical Uses
Opioids are a class of chemical compounds that act upon opioid receptors located within the central nervous system (CNS). These receptors are G-protein coupled receptors that have numerous actions throughout the body. There are three clinically relevant groups of opioid receptors: mu (µ), kappa (κ), and delta (δ) receptors. Endogenous opioids, such as endorphins, dynorphins, and enkephalins, are produced by specific cells within the CNS and their actions depend on whether µ-receptors or δ-receptors and κ-receptors are their main target.
Drugs targeted at opioid receptors are the largest group of analgesic drugs and form the second and third steps of the WHO pain ladder of managing analgesia. The choice of which opioid drug to use depends on the patient’s needs and the clinical scenario. The first step of the pain ladder involves non-opioids such as paracetamol and non-steroidal anti-inflammatory drugs. The second step involves weak opioids such as codeine and tramadol, while the third step involves strong opioids such as morphine, oxycodone, methadone, and fentanyl.
The strength, routes of administration, common uses, and significant side effects of these opioid drugs vary. Weak opioids have moderate analgesic effects without exposing the patient to as many serious adverse effects associated with strong opioids. Strong opioids have powerful analgesic effects but are also more liable to cause opioid-related side effects such as sedation, respiratory depression, constipation, urinary retention, and addiction. The sedative effects of opioids are also useful in anesthesia with potent drugs used as part of induction of a general anesthetic.
-
This question is part of the following fields:
- Neurological System
-
-
Question 10
Correct
-
A 29-year-old male visits an acute eye clinic with a complaint of a painful eye. During the examination, the ophthalmologist observes a photophobic red eye and identifies a distinctive lesion, resulting in a quick diagnosis of herpes simplex keratitis.
What is the description of the lesion?Your Answer: Dendritic corneal lesion
Explanation:Keratitis caused by herpes simplex is characterized by dendritic lesions that appear as a branched pattern on fluorescein dye. This is typically seen during slit lamp examination. While severe inflammation may be present, indicated by the presence of an inflammatory exudate of the anterior chamber (hypopyon), this is not specific to herpes simplex and may be associated with other causes of keratitis or anterior uveitis. It’s worth noting that herpes zoster ophthalmicus (HZO) is not caused by herpes simplex, but rather occurs when the dormant shingles virus in the ophthalmic nerve reactivates. Hutchinson’s sign, which is a vesicular rash at the tip of the nose in the context of an acute red eye, is suggestive of HZO. Lastly, it’s important to note that a tear dropped pupil is not a feature of keratitis and may be caused by blunt trauma.
Understanding Herpes Simplex Keratitis
Herpes simplex keratitis is a condition that primarily affects the cornea and is caused by the herpes simplex virus. The most common symptom of this condition is a dendritic corneal ulcer, which can cause a red, painful eye, photophobia, and epiphora. In some cases, visual acuity may also be decreased. Fluorescein staining may show an epithelial ulcer, which can help with diagnosis.
One common treatment for this condition is topical acyclovir, which can help to reduce the severity of symptoms and prevent further complications.
-
This question is part of the following fields:
- Neurological System
-
-
Question 11
Incorrect
-
A 26-year-old female presents to her physician complaining of tingling in her left arm and double vision for the past three days. She reports feeling fatigued for the past six months. She has no significant medical history and is not taking any medications. She smokes five cigarettes per day, drinks one bottle of wine per week, and works as a journalist.
During the neurological examination, the physician observed reduced sensation in the patient's left upper limb. Additionally, the patient's right eye failed to adduct and her left eye demonstrated nystagmus on left lateral gaze. Based on these findings, where is the anatomical location of the lesion causing the eye signs on examination likely to be?Your Answer: Neuromuscular junction
Correct Answer: Medial longitudinal fasciculus
Explanation:The correct answer is the medial longitudinal fasciculus, which is a myelinated structure located in the brainstem responsible for conjugate eye movements. In this case, the patient’s symptoms and examination findings suggest a diagnosis of internuclear ophthalmoplegia, which is a disorder of conjugate lateral gaze caused by a lesion in the medial longitudinal fasciculus. This is often associated with multiple sclerosis. The affected eye fails to adduct when attempting to look contralaterally, and the contralateral eye demonstrates nystagmus. Mamillary bodies, neuromuscular junction, and optic nerve are not the likely causes of the patient’s symptoms.
Understanding Internuclear Ophthalmoplegia
Internuclear ophthalmoplegia is a condition that affects the horizontal movement of the eyes. It is caused by a lesion in the medial longitudinal fasciculus (MLF), which is responsible for interconnecting the IIIrd, IVth, and VIth cranial nuclei. This area is located in the paramedian region of the midbrain and pons. The main feature of this condition is impaired adduction of the eye on the same side as the lesion, along with horizontal nystagmus of the abducting eye on the opposite side.
The most common causes of internuclear ophthalmoplegia are multiple sclerosis and vascular disease. It is important to note that this condition can also be a sign of other underlying neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 12
Incorrect
-
You are requested to assess a 45-year-old man who was previously healthy but has been stabbed in the back after an attack. A puncture wound measuring 3 cm is observed just to the right of the T5 vertebrae. During the examination, a reduction in fine touch sensation is detected on the right side.
Where would you anticipate detecting a decrease in temperature sensation, if any?Your Answer: Right side, below the lesion
Correct Answer: Left side, below the lesion
Explanation:The spinothalamic tract crosses over at the same level where the nerve root enters the spinal cord, while the corticospinal tract, dorsal column medial lemniscus, and spinocerebellar tracts cross over at the medulla within the brain. Quick response stimuli such as pain and temperature cross over first.
Brown-Sequard syndrome is a result of the body’s unique anatomy. Understanding which types of nerve fibers cross over at the spinal level versus within the brain is crucial in diagnosing this syndrome.
Pain and temperature are carried in the spinothalamic tract, which crosses over at the spinal level it enters at. Therefore, a hemisection of the cord will result in contralateral loss of these functions. On the other hand, the corticospinal tract, dorsal column medial lemniscus pathway, and spinocerebellar tract all cross over above the spinal cord, resulting in ipsilateral loss of these functions with a hemisection.
In the case of a puncture wound on the right side, the contralateral loss would present on the left side below the lesion, as the fibers run in a caudocranial direction. Bilateral loss would only occur with a complete severing of the cord.
The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.
One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 13
Correct
-
A 55-year-old woman is brought to the emergency department by her family members after experiencing a funny turn at home, lasting approximately 3 minutes. She reported a metallic taste in her mouth and a metallic smell, as well as hearing her father's voice speaking to her.
What is the probable site of the pathology?Your Answer: Temporal lobe
Explanation:Temporal lobe seizures can lead to hallucinations.
Localising Features of Focal Seizures in Epilepsy
Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.
On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.
-
This question is part of the following fields:
- Neurological System
-
-
Question 14
Incorrect
-
A child with severe hydrocephalus is exhibiting a lack of upward gaze. What specific area of the brain is responsible for this impairment?
Your Answer: Inferior colliculi
Correct Answer: Superior colliculi
Explanation:The superior colliculi play a crucial role in upward gaze and are located on both sides of the tectal or quadrigeminal plate. Damage or compression of the superior colliculi, such as in severe hydrocephalus, can result in the inability to look up, known as sunsetting of the eyes.
The optic chiasm serves as the connection between the anterior and posterior optic pathways. The nasal fibers of the optic nerves cross over at the chiasm, leading to monocular visual field deficits with anterior pathway lesions and binocular visual field deficits with posterior pathway lesions.
The lateral geniculate body in the thalamus is where the optic tract connects with the optic radiations, while the inferior colliculi and medial geniculate bodies are responsible for processing auditory stimuli.
Understanding the Diencephalon: An Overview of Brain Anatomy
The diencephalon is a part of the brain that is located between the cerebral hemispheres and the brainstem. It is composed of several structures, including the thalamus, hypothalamus, epithalamus, and subthalamus. Each of these structures plays a unique role in regulating various bodily functions and behaviors.
The thalamus is responsible for relaying sensory information from the body to the cerebral cortex, which is responsible for processing and interpreting this information. The hypothalamus, on the other hand, is involved in regulating a wide range of bodily functions, including hunger, thirst, body temperature, and sleep. It also plays a role in regulating the release of hormones from the pituitary gland.
The epithalamus is a small structure that is involved in regulating the sleep-wake cycle and the production of melatonin, a hormone that helps to regulate sleep. The subthalamus is involved in regulating movement and is part of the basal ganglia, a group of structures that are involved in motor control.
Overall, the diencephalon plays a crucial role in regulating many of the body’s essential functions and behaviors. Understanding its anatomy and function can help us better understand how the brain works and how we can maintain optimal health and well-being.
-
This question is part of the following fields:
- Neurological System
-
-
Question 15
Incorrect
-
A 37-year-old woman presents with blurring of vision on lateral gaze. She had a previous episode of pain on eye movement and difficulty seeing red colors six months ago, which resolved on its own after a week.
She sought consultation with a neurologist who conducted an examination. The left eye failed to adduct on rightward gaze, while the right eye exhibited nystagmus. Leftward, upward, and downward gazes were unremarkable. The pupils were equal and reactive to light.
Peripheral examination yielded no significant findings. An MRI brain scan was ordered, and the results are pending.
Based on this presentation, where is the most likely location of the lesion?Your Answer: Oculomotor nerve
Correct Answer: Medial longitudinal fasciculus
Explanation:The patient’s symptoms suggest a diagnosis of multiple sclerosis, as she is presenting with internuclear ophthalmoplegia, which is caused by a lesion in the medial longitudinal fasciculus. This highly myelinated tract coordinates eye movements by communicating information from the vestibular nucleus to the oculomotor, trochlear, and abducens nuclei. Her previous episode of optic neuritis further supports a diagnosis of multiple sclerosis, which affects the axonal myelin sheath and commonly affects highly myelinated areas.
A lesion of the optic chiasm would present with bitemporal hemianopia or tunnel vision, without affecting eye movements. A lesion of the optic radiation would cause homonymous hemianopia or quadrantanopia, but eye movement control is confined to the brainstem nuclei. Periventricular lesions commonly cause numbness and impaired motor function, but do not involve cranial nerves. Lesions of the oculomotor nerve would cause a more significant ophthalmoplegia with ptosis and mydriasis in the affected eye, and the eye in the ‘down and out’ position, but this presentation does not fit the patient’s symptoms.
Understanding Internuclear Ophthalmoplegia
Internuclear ophthalmoplegia is a condition that affects the horizontal movement of the eyes. It is caused by a lesion in the medial longitudinal fasciculus (MLF), which is responsible for interconnecting the IIIrd, IVth, and VIth cranial nuclei. This area is located in the paramedian region of the midbrain and pons. The main feature of this condition is impaired adduction of the eye on the same side as the lesion, along with horizontal nystagmus of the abducting eye on the opposite side.
The most common causes of internuclear ophthalmoplegia are multiple sclerosis and vascular disease. It is important to note that this condition can also be a sign of other underlying neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 16
Correct
-
A 28-year-old woman presents with recurrent slurring of speech that worsens when she continues to talk. She also reports feeling tired constantly, is occasionally short of breath and has experienced some double vision that gets worse when reading or watching TV. Her symptoms have progressively deteriorated over the past 4 months and she has intermittent weakness in her legs and arms, she feels as though her legs will give way when she gets up from her chair and has difficulty combing her hair.
On examination the patient appears well, there appears to be mild ptosis bilaterally and also a midline neck lump. The patient was referred to the neurology team and is due for further investigation.
What is the initial test that should be done?Your Answer: Serum acetylcholine receptor (AChR) antibody analysis
Explanation:Myasthenia gravis is an autoimmune disorder that results in muscle weakness and fatigue, particularly in the eyes, face, neck, and limbs. It is more common in women and is associated with thymomas and other autoimmune disorders. Diagnosis is made through electromyography and testing for antibodies to acetylcholine receptors. Treatment includes acetylcholinesterase inhibitors and immunosuppression, and in severe cases, plasmapheresis or intravenous immunoglobulins may be necessary.
-
This question is part of the following fields:
- Neurological System
-
-
Question 17
Incorrect
-
A 65-year-old male arrives at the emergency department with a sudden onset of numbness on the lateral aspect of his calf and an inability to dorsiflex his foot. Which nerve is most likely affected in this presentation?
Your Answer: Posterior femoral cutaneous nerve
Correct Answer: Common peroneal nerve
Explanation:The most frequent reason for foot drop is a lesion in the common peroneal nerve.
The common peroneal nerve is responsible for providing sensation to the posterolateral part of the leg and controlling the anterior and lateral compartments of the lower leg. If it is compressed or damaged, it can result in foot drop.
While the sciatic nerve divides into the common peroneal nerve, it would cause additional symptoms.
The femoral nerve only innervates the upper thigh and inner leg, so it would not cause foot drop.
The tibial nerve is the other branch of the sciatic nerve and controls the muscles in the posterior compartment of the leg.
The posterior femoral cutaneous nerve is responsible for providing sensation to the skin of the posterior aspect of the thigh.
Understanding Foot Drop: Causes and Examination
Foot drop is a condition that occurs when the foot dorsiflexors become weak. This can be caused by various factors, including a common peroneal nerve lesion, L5 radiculopathy, sciatic nerve lesion, superficial or deep peroneal nerve lesion, or central nerve lesions. However, the most common cause is a common peroneal nerve lesion, which is often due to compression at the neck of the fibula. This can be triggered by certain positions, prolonged confinement, recent weight loss, Baker’s cysts, or plaster casts to the lower leg.
To diagnose foot drop, a thorough examination is necessary. If the patient has an isolated peroneal neuropathy, there will be weakness of foot dorsiflexion and eversion, and reflexes will be normal. Weakness of hip abduction is suggestive of an L5 radiculopathy. Bilateral symptoms, fasciculations, or other abnormal neurological findings are indications for specialist referral.
If foot drop is diagnosed, conservative management is appropriate. Patients should avoid leg crossing, squatting, and kneeling. Symptoms typically improve over 2-3 months.
-
This question is part of the following fields:
- Neurological System
-
-
Question 18
Incorrect
-
During a routine physical exam, a patient in their mid-40s was found to have one eye drifting towards the midline when instructed to look straight. Subsequent MRI scans revealed a tumor pressing on one of the skull's foramina. Which foramen of the skull is likely affected by the tumor?
Your Answer: Optic canal
Correct Answer: Superior orbital fissure
Explanation:The correct answer is that the abducens nerve passes through the superior orbital fissure. This is supported by the patient’s symptoms, which suggest damage to the abducens nerve that innervates the lateral rectus muscle responsible for abducting the eye. The other options are incorrect as they do not innervate the eye or are located in anatomically less appropriate positions. It is important to understand the functions of the nerves and their corresponding foramina to correctly answer this question.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 19
Incorrect
-
A 49-year-old patient visits your clinic with complaints of unintentional weight loss, increased appetite, and diarrhea. She frequently experiences a rapid heartbeat and feels hot and sweaty in your office. During examination, you observe lid retraction in her eyes and a pulse rate of 110 beats per minute. You suspect thyrotoxicosis and plan to measure her serum levels of thyroid stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4). Since TSH is secreted by the anterior pituitary, which other hormone is also released by this gland?
Your Answer: Aldosterone
Correct Answer: Prolactin
Explanation:The hormone secreted by the anterior pituitary gland that stimulates breast development in puberty and during pregnancy, as well as milk production after delivery, is prolactin. Along with prolactin, the anterior pituitary gland also secretes growth hormone, adrenocorticotropic hormone (ACTH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and melanocyte releasing hormone.
antidiuretic hormone (ADH), also known as vasopressin, is secreted by the posterior pituitary gland. It increases water reabsorption in the collecting ducts of the kidneys.
Aldosterone is released by the zona glomerulosa of the adrenal cortex. It is a mineralocorticoid that increases sodium reabsorption in the distal nephron of the kidney, leading to water retention.
Cortisol is released by the zona fasiculata of the adrenal gland. It is a glucocorticoid that has various actions, including increasing protein catabolism, glycogenolysis, and gluconeogenesis.
The pituitary gland is a small gland located within the sella turcica in the sphenoid bone of the middle cranial fossa. It weighs approximately 0.5g and is covered by a dural fold. The gland is attached to the hypothalamus by the infundibulum and receives hormonal stimuli from the hypothalamus through the hypothalamo-pituitary portal system. The anterior pituitary, which develops from a depression in the wall of the pharynx known as Rathkes pouch, secretes hormones such as ACTH, TSH, FSH, LH, GH, and prolactin. GH and prolactin are secreted by acidophilic cells, while ACTH, TSH, FSH, and LH are secreted by basophilic cells. On the other hand, the posterior pituitary, which is derived from neuroectoderm, secretes ADH and oxytocin. Both hormones are produced in the hypothalamus before being transported by the hypothalamo-hypophyseal portal system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 20
Incorrect
-
A 32-year-old woman needs an episiotomy during a ventouse-assisted vaginal delivery. Which nerve is typically numbed to facilitate the procedure?
Your Answer: Ilioinguinal
Correct Answer: Pudendal
Explanation:The posterior vulval area is innervated by the pudendal nerve, which is commonly blocked during procedures like episiotomy.
The Pudendal Nerve and its Functions
The pudendal nerve is a nerve that originates from the S2, S3, and S4 nerve roots and exits the pelvis through the greater sciatic foramen. It then re-enters the perineum through the lesser sciatic foramen. This nerve provides innervation to the anal sphincters and external urethral sphincter, as well as cutaneous innervation to the perineum surrounding the anus and posterior vulva.
Late onset pudendal neuropathy may occur due to traction and compression of the pudendal nerve by the foetus during late pregnancy. This condition may contribute to the development of faecal incontinence. Understanding the functions of the pudendal nerve is important in diagnosing and treating conditions related to the perineum and surrounding areas.
-
This question is part of the following fields:
- Neurological System
-
-
Question 21
Incorrect
-
A 6-year-old girl is brought to you by her father who complains that his daughter has been vomiting for the past few weeks, especially in the morning, and has complained of double vision for the past week. You suspect the child may have increased intracranial pressure, and order a CT brain to rule out an intracranial mass.
If the underlying cause of her symptoms turned out to a medulloblastoma, what histological finding would be most characteristic?Your Answer: Spindle cells in concentric whorls and calcified psammoma bodies
Correct Answer: Small, blue cells with rosette patterns
Explanation:The histological appearance of a medulloblastoma is small, blue cells with rosette patterns, which is the most common malignant primary tumour in the paediatric population and frequently found in the infratentorial region.
Brain tumours can be classified into different types based on their location, histology, and clinical features. Metastatic brain cancer is the most common form of brain tumours, which often cannot be treated with surgical intervention. Glioblastoma multiforme is the most common primary tumour in adults and is associated with a poor prognosis. Meningioma is the second most common primary brain tumour in adults, which is typically benign and arises from the arachnoid cap cells of the meninges. Vestibular schwannoma is a benign tumour arising from the eighth cranial nerve, while pilocytic astrocytoma is the most common primary brain tumour in children. Medulloblastoma is an aggressive paediatric brain tumour that arises within the infratentorial compartment, while ependymoma is commonly seen in the 4th ventricle and may cause hydrocephalus. Oligodendroma is a benign, slow-growing tumour common in the frontal lobes, while haemangioblastoma is a vascular tumour of the cerebellum. Pituitary adenoma is a benign tumour of the pituitary gland that can be either secretory or non-secretory, while craniopharyngioma is a solid/cystic tumour of the sellar region that is derived from the remnants of Rathke’s pouch.
-
This question is part of the following fields:
- Neurological System
-
-
Question 22
Incorrect
-
A 68-year-old man visits his GP complaining of an 8-week cough and an unintentional weight loss of 7kg. He has a smoking history of 35 pack-years. The GP observes some alterations in his left eye, which are indicative of Horner's syndrome.
The man is referred to the suspected cancer pathway and is subsequently diagnosed with a Pancoast tumour.
What symptom is this individual most likely to exhibit?Your Answer: Mydriasis
Correct Answer: Anhidrosis
Explanation:Horner’s syndrome is characterized by meiosis, ptosis, and enophthalmos, and may also present with anhidrosis. Anhidrosis is a common symptom in preganglionic and central causes of Horner’s syndrome, while postganglionic causes do not typically result in anhidrosis. Exophthalmos is not associated with Horner’s syndrome, but rather with other conditions. Hypopyon and mydriasis are also not symptoms of Horner’s syndrome.
Horner’s syndrome is a condition characterized by several features, including a small pupil (miosis), drooping of the upper eyelid (ptosis), a sunken eye (enophthalmos), and loss of sweating on one side of the face (anhidrosis). The cause of Horner’s syndrome can be determined by examining additional symptoms. For example, congenital Horner’s syndrome may be identified by a difference in iris color (heterochromia), while anhidrosis may be present in central or preganglionic lesions. Pharmacologic tests, such as the use of apraclonidine drops, can also be helpful in confirming the diagnosis and identifying the location of the lesion. Central lesions may be caused by conditions such as stroke or multiple sclerosis, while postganglionic lesions may be due to factors like carotid artery dissection or cluster headaches. It is important to note that the appearance of enophthalmos in Horner’s syndrome is actually due to a narrow palpebral aperture rather than true enophthalmos.
-
This question is part of the following fields:
- Neurological System
-
-
Question 23
Correct
-
A 72-year-old man with a history of a basal skull tumour visits his GP with a complaint of progressive loss of taste in the posterior third of his tongue over the course of 4 weeks.
Which cranial nerve is most likely affected in causing this presentation?Your Answer: Glossopharyngeal
Explanation:The glossopharyngeal nerve is responsible for taste sensation in the posterior 1/3rd of the tongue. Glossopharyngeal nerve palsy is rare but can be caused by various factors such as tumors or trauma. In this case, the patient’s isolated lower cranial nerve palsy may be due to a basal skull tumor compressing the medullary cranial nerves (IX, X, XI, XII). The patient’s complaint of taste loss towards the anterior portion of the tongue suggests a glossopharyngeal problem rather than a facial, olfactory, or hypoglossal issue.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 24
Incorrect
-
A teenage boy suffers a severe traumatic brain injury. During examination, it is observed that his right pupil is fixed and dilated. Which part of the central nervous system is responsible for the affected nuclei of the cranial nerve?
Your Answer: Thalamus
Correct Answer: Midbrain
Explanation:Located in the midbrain, the nuclei of the third cranial nerves are responsible for controlling various eye movements. When a patient experiences a third cranial nerve palsy, they may exhibit symptoms such as a fixed and dilated pupil, ptosis, and downward lateral deviation of the eye. These symptoms occur due to compression of the parasympathetic fibers of the nerve, which are located in the peripheral part of the nerve. It’s important to note that the parasympathetic fibers of the third nerve do not relay with the thalamus and do not travel through the pons or medulla. Additionally, the sympathetic chain is not responsible for this condition.
Disorders of the Oculomotor System: Nerve Path and Palsy Features
The oculomotor system is responsible for controlling eye movements and pupil size. Disorders of this system can result in various nerve path and palsy features. The oculomotor nerve has a large nucleus at the midbrain and its fibers pass through the red nucleus and the pyramidal tract, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience ptosis, eye down and out, and an inability to move the eye superiorly, inferiorly, or medially. The pupil may also become fixed and dilated.
The trochlear nerve has the longest intracranial course and is the only nerve to exit the dorsal aspect of the brainstem. Its nucleus is located at the midbrain and it passes between the posterior cerebral and superior cerebellar arteries, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience vertical diplopia (diplopia on descending the stairs) and an inability to look down and in.
The abducens nerve has its nucleus in the mid pons and is responsible for the convergence of eyes in primary position. When this nerve is affected, patients may experience lateral diplopia towards the side of the lesion and the eye may deviate medially. Understanding the nerve path and palsy features of the oculomotor system can aid in the diagnosis and treatment of disorders affecting this important system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 25
Correct
-
A 45-year-old woman presents with unsteadiness on her feet. She reports leaning to her right and has sustained scrapes on her right arm from falling on this side. During her walk to the examination room, she displays a broad-based ataxic gait, with a tendency to lean to the right.
Upon neurological examination, she exhibits an intention tremor and dysdiadochokinesia of her right hand. Her right lower limb is positive for the heel-shin test. Additionally, there is a gaze-evoked nystagmus of the right eye.
What is the likely location of the brain lesion?Your Answer: Right cerebellum
Explanation:Unilateral damage to the cerebellum results in symptoms that are on the same side as the lesion. In this case, if the right cerebellum is damaged, the individual may experience dysdiadochokinesia, ataxia, nystagmus, intention tremor, scanning dysarthria, and a positive heel-shin test. Damage to the left cerebellum would not cause symptoms on the right side. Damage to the left temporal lobe may result in changes in behavior and emotions, forgetfulness, disruptions in the sense of smell, taste, and hearing, and language and speech disorders. Damage to the right parietal lobe may cause alexia, agraphia, acalculia, left-sided hemi-spatial neglect, homonymous inferior quadrantanopia, loss of sensations like touch, apraxias, or astereognosis.
Cerebellar syndrome is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. When there is damage or injury to one side of the cerebellum, it can cause symptoms on the same side of the body. These symptoms can be remembered using the mnemonic DANISH, which stands for Dysdiadochokinesia, Dysmetria, Ataxia, Nystagmus, Intention tremour, Slurred staccato speech, and Hypotonia.
There are several possible causes of cerebellar syndrome, including genetic conditions like Friedreich’s ataxia and ataxic telangiectasia, neoplastic growths like cerebellar haemangioma, strokes, alcohol use, multiple sclerosis, hypothyroidism, and certain medications or toxins like phenytoin or lead poisoning. In some cases, cerebellar syndrome may be a paraneoplastic condition, meaning it is a secondary effect of an underlying cancer like lung cancer. It is important to identify the underlying cause of cerebellar syndrome in order to provide appropriate treatment and management.
-
This question is part of the following fields:
- Neurological System
-
-
Question 26
Incorrect
-
A 65-year-old man visits his GP complaining of vision changes, including deteriorating visual acuity, colour perception, and distorted images. After conducting tests, the diagnosis of dry age-related macular degeneration (Dry-AMD) is confirmed. What retinal sign is typical of Dry-AMD?
Your Answer: Papilloedema
Correct Answer: Drusen
Explanation:Drusen, which are yellow deposits on the retina visible during fundoscopy, can indicate the severity of dry-AMD based on their distribution and quantity. Wet-AMD is more commonly associated with retinal hemorrhages and neovascularization. While painless vision loss can be caused by papilledema, this condition is typically linked to disorders that directly impact the optic disc.
Age-related macular degeneration (ARMD) is a common cause of blindness in the UK, characterized by degeneration of the central retina (macula) and the formation of drusen. The risk of ARMD increases with age, smoking, family history, and conditions associated with an increased risk of ischaemic cardiovascular disease. ARMD is classified into dry and wet forms, with the latter carrying the worst prognosis. Clinical features include subacute onset of visual loss, difficulties in dark adaptation, and visual hallucinations. Signs include distortion of line perception, the presence of drusen, and well-demarcated red patches in wet ARMD. Investigations include slit-lamp microscopy, colour fundus photography, fluorescein angiography, indocyanine green angiography, and ocular coherence tomography. Treatment options include a combination of zinc with anti-oxidant vitamins for dry ARMD and anti-VEGF agents for wet ARMD. Laser photocoagulation is also an option, but anti-VEGF therapies are usually preferred.
-
This question is part of the following fields:
- Neurological System
-
-
Question 27
Incorrect
-
A 26-year-old man has been admitted to the emergency department after being involved in a road traffic accident. He is experiencing severe pain and requires frequent analgesia. Which pathway do his unmyelinated C type fibers use to transmit this pain?
Your Answer: Corticospinal
Correct Answer: Spinothalamic tract
Explanation:The spinothalamic tract conveys pain and temperature sensations from the spinal cord to the brain by synapsing with secondary sensory neurons in the spinal cord. These neurons immediately cross over to the opposite side and ascend to the brain. In contrast, the dorsal column tracts ascend on the same side of the body. Although these tracts run alongside each other in the brainstem, they remain separate. As a result, damage to these tracts can cause peculiar deficits, with touch being affected on the same side as the injury and pain on the opposite side.
Spinal cord lesions can affect different tracts and result in various clinical symptoms. Motor lesions, such as amyotrophic lateral sclerosis and poliomyelitis, affect either upper or lower motor neurons, resulting in spastic paresis or lower motor neuron signs. Combined motor and sensory lesions, such as Brown-Sequard syndrome, subacute combined degeneration of the spinal cord, Friedrich’s ataxia, anterior spinal artery occlusion, and syringomyelia, affect multiple tracts and result in a combination of spastic paresis, loss of proprioception and vibration sensation, limb ataxia, and loss of pain and temperature sensation. Multiple sclerosis can involve asymmetrical and varying spinal tracts and result in a combination of motor, sensory, and ataxia symptoms. Sensory lesions, such as neurosyphilis, affect the dorsal columns and result in loss of proprioception and vibration sensation.
-
This question is part of the following fields:
- Neurological System
-
-
Question 28
Incorrect
-
As a neurology doctor, you have been requested to assess a 36-year-old woman who was in a car accident and suffered a significant head injury.
Upon arrival, she is unconscious, and there are some minor twitching movements in her right arm and leg. When she wakes up, these movements become more severe, with her right arm and leg repeatedly flinging out with different amplitudes.
Based on the likely diagnosis, where is the lesion most likely located?Your Answer: Left motor cortex
Correct Answer: Left basal ganglia
Explanation:The patient is exhibiting signs of hemiballismus, which is characterized by involuntary and sudden jerking movements on one side of the body. These movements typically occur on the side opposite to the lesion and may decrease in intensity during periods of relaxation or sleep. The most common location for the lesion causing hemiballismus is the basal ganglia, specifically on the contralateral side. A lesion in the left motor cortex would result in decreased function on the right side of the body, and psychosomatic factors are not the cause of this movement disorder. A lesion in the right basal ganglia would cause movement disorders on the left side of the body.
Understanding Hemiballism
Hemiballism is a condition that arises from damage to the subthalamic nucleus. It is characterized by sudden, involuntary, and jerking movements that occur on the side opposite to the lesion. The movements primarily affect the proximal limb muscles, while the distal muscles may display more choreiform-like movements. Interestingly, the symptoms may decrease while the patient is asleep.
The main treatment for hemiballism involves the use of antidopaminergic agents such as Haloperidol. These medications help to reduce the severity of the symptoms and improve the patient’s quality of life. It is important to note that early diagnosis and treatment are crucial in managing this condition. With proper care and management, individuals with hemiballism can lead fulfilling lives.
-
This question is part of the following fields:
- Neurological System
-
-
Question 29
Incorrect
-
A 50-year-old woman complains of persistent headache and bilateral leg weakness. Upon undergoing a brain MRI scan, a well-defined midline tumour of the dura mater is discovered, protruding into both hemispheres. Which region is the likely origin of the tumour?
Your Answer: Precentral gyrus
Correct Answer: Falx cerebri
Explanation:The presentation suggests that there may be a mass occupying the midline region, which is affecting the precentral gyrus area. This region is covered by the falx cerebri of the dura mater, which separates the two cerebral hemispheres.
It is unlikely that a tumour arising from the corpus callosum would be a tumour of the dura mater.
A tumour arising from the falx cerebelli would not typically cause bilateral leg weakness, as this symptom is associated with falcine meningiomas of the falx cerebri that compress the primary motor cortex (precentral gyrus).
A tumour arising from the falx cerebri could present as described above, with the tumour originating from the dura mater that separates the two hemispheres and affecting the precentral gyrus.
A tumour arising from the postcentral gyrus or precentral gyrus would not be a tumour of the dura mater.
The Three Layers of Meninges
The meninges are a group of membranes that cover the brain and spinal cord, providing support to the central nervous system and the blood vessels that supply it. These membranes can be divided into three distinct layers: the dura mater, arachnoid mater, and pia mater.
The outermost layer, the dura mater, is a thick fibrous double layer that is fused with the inner layer of the periosteum of the skull. It has four areas of infolding and is pierced by small areas of the underlying arachnoid to form structures called arachnoid granulations. The arachnoid mater forms a meshwork layer over the surface of the brain and spinal cord, containing both cerebrospinal fluid and vessels supplying the nervous system. The final layer, the pia mater, is a thin layer attached directly to the surface of the brain and spinal cord.
The meninges play a crucial role in protecting the brain and spinal cord from injury and disease. However, they can also be the site of serious medical conditions such as subdural and subarachnoid haemorrhages. Understanding the structure and function of the meninges is essential for diagnosing and treating these conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 30
Incorrect
-
A 70-year-old man is undergoing an elective total knee replacement surgery for chronic osteoarthritis. The surgical team aims to minimize the risk of damage to the common peroneal nerve and tibial nerve during the procedure. Can you identify the anatomical landmark where the sciatic nerve divides into these two nerves?
Your Answer: Medial head of gastrocnemius
Correct Answer: Apex of the popliteal fossa
Explanation:The sciatic nerve is derived from the lumbosacral plexus and consists of nerve roots L4-S3. It enters the gluteal region through the greater sciatic foramen and emerges inferiorly to the piriformis muscle, traveling inferolaterally. The nerve enters the posterior thigh by passing deep to the long head of biceps femoris and eventually splits into the tibial and common fibular nerves at the apex of the popliteal fossa. The sciatic nerve primarily innervates the muscles of the posterior thigh and the hamstring portion of the adductor magnus, but it has no direct sensory function.
Understanding the Sciatic Nerve
The sciatic nerve is the largest nerve in the body, formed from the sacral plexus and arising from spinal nerves L4 to S3. It passes through the greater sciatic foramen and emerges beneath the piriformis muscle, running under the cover of the gluteus maximus muscle. The nerve provides cutaneous sensation to the skin of the foot and leg, as well as innervating the posterior thigh muscles and lower leg and foot muscles. Approximately halfway down the posterior thigh, the nerve splits into the tibial and common peroneal nerves. The tibial nerve supplies the flexor muscles, while the common peroneal nerve supplies the extensor and abductor muscles.
The sciatic nerve also has articular branches for the hip joint and muscular branches in the upper leg, including the semitendinosus, semimembranosus, biceps femoris, and part of the adductor magnus. Cutaneous sensation is provided to the posterior aspect of the thigh via cutaneous nerves, as well as the gluteal region and entire lower leg (except the medial aspect). The nerve terminates at the upper part of the popliteal fossa by dividing into the tibial and peroneal nerves. The nerve to the short head of the biceps femoris comes from the common peroneal part of the sciatic, while the other muscular branches arise from the tibial portion. The tibial nerve goes on to innervate all muscles of the foot except the extensor digitorum brevis, which is innervated by the common peroneal nerve.
-
This question is part of the following fields:
- Neurological System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)