00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A man in his forties comes in with chest pain resembling a heart...

    Correct

    • A man in his forties comes in with chest pain resembling a heart attack and is diagnosed with a myocardial infarction. During his hospitalization, it is discovered that he has familial hypercholesterolemia but his triglyceride levels are normal. What is the underlying biochemical abnormality?

      Your Answer: Defective LDL receptors

      Explanation:

      Lipid Metabolism and Transport in the Body

      The breakdown of triglycerides in the small intestine is facilitated by pancreatic lipase. These triglycerides are then transported to the liver and other parts of the body through chylomicrons.

      Very low-density lipoprotein (VLDL) is responsible for carrying triglycerides from the liver to peripheral tissues. When there is an overproduction of VLDL in the liver, it can lead to high levels of triglycerides in the body.

      Pure hypercholesterolaemia is a condition that arises due to a defect in the process of cholesterol uptake into cells. This process relies on apolipoprotein B-100 binding to LDL receptors and facilitating endocytosis. When this process is disrupted, it can lead to high levels of cholesterol in the body.

    • This question is part of the following fields:

      • Basic Sciences
      3.3
      Seconds
  • Question 2 - What is the term for the process described below in laboratory testing?

    Enzymes...

    Correct

    • What is the term for the process described below in laboratory testing?

      Enzymes are immobilised on a solid surface, such as a bead or well, and allowed to come into contact with the sample. After washing, another enzyme is added with a label allowing quantitation of the analyte.

      Your Answer: Enzyme-linked immunosorbent assay

      Explanation:

      ELISA: A Common Immunoassay in Medical Diagnostic Testing

      An enzyme-linked immunosorbent assay (ELISA) is a type of immunoassay that is widely used in medical diagnostic testing. This method uses antibodies to identify and/or quantify the analyte being tested. The ELISA process involves several steps, including coating a plate with the antigen, adding the patient’s sample, washing the plate to remove any unbound material, adding an enzyme-linked antibody, washing the plate again, and adding a substrate to produce a measurable signal.

      Over time, many modifications have been made to the ELISA, making it a versatile tool in the laboratory for measuring various analytes. Some of the substances that can be measured using immunoassays include thyroid hormone, testosterone, oestrogen, troponin, and vitamin D. The ELISA has been around for a long time and is still widely used today due to its accuracy, sensitivity, and specificity.

    • This question is part of the following fields:

      • Basic Sciences
      2.3
      Seconds
  • Question 3 - What is a good dietary source of vitamin A? ...

    Correct

    • What is a good dietary source of vitamin A?

      Your Answer: Liver

      Explanation:

      The Importance of Vitamin A in Our Body

      Vitamin A is an essential nutrient that can be found in various sources such as liver, fish liver oils, dark green leafy vegetables, carrots, and mangoes. It can also be added to certain foods like cereals and margarines. This nutrient plays a crucial role in our body as it is required for vision, growth and development of tissues, regulation of gene transcription, and synthesis of hydrophobic glycoproteins and parts of the protein kinase enzyme pathways.

      One of the primary functions of vitamin A is to support our vision. It is a component of rhodopsin, a pigment that is necessary for the rod cells of the retina. Without vitamin A, our eyesight can be compromised, leading to various eye problems. Additionally, vitamin A is also essential for the growth and development of many types of tissues in our body. It helps in maintaining healthy skin, teeth, and bones.

      Moreover, vitamin A is involved in regulating gene transcription, which is the process of converting DNA into RNA. This nutrient also plays a role in the synthesis of hydrophobic glycoproteins and parts of the protein kinase enzyme pathways. These processes are essential for the proper functioning of our body.

      In conclusion, vitamin A is a vital nutrient that our body needs to function correctly. It is essential for our vision, growth and development of tissues, regulation of gene transcription, and synthesis of hydrophobic glycoproteins and parts of the protein kinase enzyme pathways. Therefore, it is crucial to include vitamin A-rich foods in our diet or take supplements if necessary.

    • This question is part of the following fields:

      • Basic Sciences
      1.3
      Seconds
  • Question 4 - What occurs in eukaryotic prometaphase? ...

    Correct

    • What occurs in eukaryotic prometaphase?

      Your Answer: The nuclear membrane and the nucleoli disintegrate and kinetochores appear

      Explanation:

      The Significance of Prometaphase in Cell Division

      Prometaphase is a crucial phase in cell division that marks the transition from prophase to metaphase. Although it is often considered as a part of these two phases, it has distinct events that make it an individual phase. During prometaphase, the nuclear membrane disintegrates, and the nucleoli are no longer visible. Additionally, each chromosome forms two kinetochores near the centromere, which serve as attachment points for spindle fibers. These fibers connect to the opposite poles of the cell, forming travelling lines that will separate the sister chromatids during anaphase.

      Prophase is characterized by chromatin condensation, while DNA and centrosome duplication occur during interphase. Chromosome alignment takes place during metaphase, and the sister chromatids separate during anaphase. Prometaphase, therefore, plays a crucial role in preparing the chromosomes for separation during anaphase. Its distinct events make it an essential phase in cell division, and its proper execution is necessary for successful cell division.

    • This question is part of the following fields:

      • Basic Sciences
      2.3
      Seconds
  • Question 5 - What are the potential clinical consequences of a lack of vitamin E? ...

    Correct

    • What are the potential clinical consequences of a lack of vitamin E?

      Your Answer: Ataxia

      Explanation:

      Vitamin E Deficiency

      Vitamin E deficiency is a rare condition that is more likely to occur in individuals with problems affecting the absorption of dietary fats. This includes those with a history of bowel surgery, pancreatic insufficiency, and cystic fibrosis. Premature infants are also at a higher risk of developing this deficiency as vitamin E does not easily cross the placenta. However, supplementation with vitamin E can reverse the damage in some cases.

      The effects of vitamin E deficiency can be severe and can cause spinocerebellar degeneration, which includes limb ataxia, loss of joint position sense, loss of sensation of vibration, and loss of deep tendon reflexes. Additionally, it can cause degeneration of retinal pigments, leading to blindness. In premature infants, it can cause haemolytic anaemia, thrombocytosis, and oedema.

      Overall, vitamin E deficiency is crucial in preventing and treating its effects. It is important to identify individuals who are at a higher risk of developing this deficiency and provide them with appropriate supplementation to prevent any long-term damage.

    • This question is part of the following fields:

      • Basic Sciences
      2.3
      Seconds
  • Question 6 - A 70-year-old male smoker complains of calf pain.

    The GP performs a clinical...

    Correct

    • A 70-year-old male smoker complains of calf pain.

      The GP performs a clinical test by raising the patient's legs and observing for the angle at which there is blanching. After one minute, the legs are lowered over the side of the couch so that they are fully dependent with feet on the floor. Reactive hyperaemia is observed.

      Which clinical test does this describe?

      Your Answer: Buerger's test

      Explanation:

      Tests for Assessing Arterial and Venous Circulation, Hip Dysfunction, and Meniscal Tear

      Buerger’s test is a method used to evaluate the arterial circulation of the lower limb. The test involves observing the angle at which blanching occurs, with a lower angle indicating a higher likelihood of arterial insufficiency. Additionally, the degree of reactive hyperaemia on dependency of the limb after one minute is another positive sign of arterial insufficiency during the test.

      Another test used to assess circulation is the Ankle-Brachial Pressure Index (ABPI), which involves using blood pressure cuffs to determine the degree of claudication. McMurray’s test, on the other hand, is used to evaluate for a meniscal tear within the knee joint.

      Perthe’s test is a method used to assess the patency of the deep femoral vein prior to varicose vein surgery. Lastly, Trendelenburg’s test is used to evaluate hip dysfunction. These tests are important in diagnosing and treating various conditions related to circulation and joint function.

    • This question is part of the following fields:

      • Basic Sciences
      2.3
      Seconds
  • Question 7 - What is the end result of meiosis in a cell? ...

    Correct

    • What is the end result of meiosis in a cell?

      Your Answer: 4 haploid cells

      Explanation:

      Meiosis

      Meiosis is a crucial process that occurs in the genetic cells of eukaryotic organisms. Its primary purpose is to recombine genes, which results in genetic variation while also ensuring genetic preservation. Although meiosis shares some similarities with mitosis, it is restricted to genetic cells, also known as gametes, of eukaryotic organisms.

      During meiosis, a gamete duplicates each of its chromosomes and divides into two diploid cells. These cells then divide into four haploid cells by the end of the second stage of meiosis (telophase II and cytokinesis). These haploid cells are either sperm cells (male) or eggs (female) in mammals. When these haploid cells fuse together, they produce a diploid zygote that contains two copies of parental genes.

      In summary, meiosis is a crucial process that ensures genetic variation and preservation in eukaryotic organisms. It involves the duplication and division of genetic cells into haploid cells, which can then fuse together to produce a diploid zygote.

    • This question is part of the following fields:

      • Basic Sciences
      1.9
      Seconds
  • Question 8 - Of which cellular structure is the fibrillar centre a component? ...

    Correct

    • Of which cellular structure is the fibrillar centre a component?

      Your Answer: The nucleolus

      Explanation:

      The Fibrillar Centre in the Nucleolus

      The fibrillar centre is a crucial component of the nucleolus, which is found in most metazoan nucleoli, particularly in higher eukaryotes. Along with the dense fibrillar components and the granular component, it forms the three major components of the nucleolus. During the end of mitosis, the fibrillar centre serves as a storage point for nucleolar ribosomal chromatin and associated ribonucleoprotein transcripts. As the nucleolus becomes active, the ribosomal chromatin and ribonucleoprotein transcripts begin to form the dense fibrillar components, which are more peripherally located and surround the fibrillar centres. The transcription zone for multiple copies of the pre-rRNA genes is the border between these two structures. It is important to note that the fibrillar centre is not a component of any of the cell structures mentioned in the incorrect answer options.

    • This question is part of the following fields:

      • Basic Sciences
      2.3
      Seconds
  • Question 9 - A couple in their late 20s comes to your clinic seeking advice regarding...

    Correct

    • A couple in their late 20s comes to your clinic seeking advice regarding the possibility of their children inheriting cystic fibrosis. The husband has a confirmed diagnosis of the condition, but the carrier status of the wife is unknown.

      What is the likelihood of any of their offspring being affected by cystic fibrosis?

      Your Answer: 2.50%

      Explanation:

      Cystic Fibrosis Inheritance

      Cystic fibrosis (CF) is a genetic disorder that affects the chloride ion channels, leading to the thickening of respiratory and other secretions. It is an autosomal recessive condition, which means that a person must inherit two copies of the defective gene, one from each parent, to develop the disease. The most common defective allele is carried by approximately 1 in 20 people.

      If a man with CF has children with a woman who does not carry the recessive gene, then none of their children will be affected by the disease. However, they will all be carriers of the CF gene. On the other hand, if the woman is a carrier of the CF gene, there is a 50% chance that each child will inherit one copy of the defective gene from each parent and be affected by the disease. The remaining 50% of the children will inherit one copy of the defective gene and one normal gene, making them carriers of the CF gene but not affected by the disease.

      In summary, the probability of any child being affected by CF is 2.5% if one parent has the defective gene and the other does not. It is important for individuals who are carriers of the CF gene to be aware of their status and seek genetic counseling before planning to have children.

    • This question is part of the following fields:

      • Basic Sciences
      2.3
      Seconds
  • Question 10 - What controls the specific stages of the cell cycle? ...

    Correct

    • What controls the specific stages of the cell cycle?

      Your Answer: Cyclins and cyclin-dependent kinases

      Explanation:

      Regulation of the Cell Cycle by Cyclins and Cyclin-Dependent Kinases

      The cell cycle is controlled by the activity of proteins known as cyclins and phosphorylating enzymes called cyclin-dependent kinases (CDKs). Cyclins and CDKs combine to form an activated heterodimer, where cyclins act as the regulatory subunits and CDKs act as the catalytic subunits. Neither of these molecules is active on their own. When a cyclin binds to a CDK, the CDK phosphorylates other target proteins, either activating or deactivating them. This coordination leads to the entry into the next phase of the cell cycle. The specific proteins that are activated depend on the different combinations of cyclin-CDK. Additionally, CDKs are always present in cells, while cyclins are produced at specific points in the cell cycle in response to other signaling pathways.

      In summary, the cell cycle is regulated by the interaction between cyclins and CDKs. This interaction leads to the phosphorylation of target proteins, which ultimately controls the progression of the cell cycle.

    • This question is part of the following fields:

      • Basic Sciences
      4.2
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Basic Sciences (10/10) 100%
Passmed