-
Question 1
Correct
-
What is the most frequent reason for osteolytic bone metastasis in adolescents?
Your Answer: Neuroblastoma
Explanation:Neuroblastomas are a childhood tumour that frequently metastasizes widely and causes lytic lesions.
Secondary Malignant Tumours of Bone: Risk of Fracture and Treatment Options
Metastatic lesions affecting bone are more common than primary bone tumours, with typical tumours that spread to bone including breast, bronchus, renal, thyroid, and prostate. These tumours are more likely to affect those over the age of 50, with the commonest bone sites affected being the vertebrae, proximal femur, ribs, sternum, pelvis, and skull. The greatest risk for pathological fracture is osteolytic lesions, and bones with lesions that occupy 50% or less are prone to fracture under loading. The Mirel scoring system is used to determine the risk of fracture, with a score of 9 or greater indicating an impending fracture and requiring prophylactic fixation. Non-operative treatments for hypercalcaemia include rehydration and bisphosphonates, while pain can be managed with opiate analgesics and radiotherapy. Some tumours, such as breast and prostate, may benefit from chemotherapy and/or hormonal agents. In cases where the lesion is an isolated metastatic deposit, excision and reconstruction may be considered for better outcomes.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 2
Incorrect
-
A 75-year-old man has been admitted to the renal ward with acute kidney injury. His blood test reveals low sodium levels and high potassium levels, likely due to his current renal function. You review his medications to ensure they are not exacerbating the situation. Which medication would you contemplate discontinuing due to its link with hyperkalemia?
Your Answer: Salbutamol
Correct Answer: Spironolactone
Explanation:Spironolactone is a diuretic that helps to retain potassium in the body, which can lead to hyperkalaemia. It is important to discontinue its use in patients with hyperkalaemia. Furthermore, it should not be used in cases of acute renal insufficiency.
Salbutamol, on the other hand, does not cause hyperkalaemia. In fact, it can be used to reduce high levels of potassium in severe cases.
Paracetamol, when used as directed, does not have any impact on potassium levels.
Verapamil is a medication that blocks calcium channels and does not affect potassium levels.
Drugs and their Effects on Potassium Levels
Many commonly prescribed drugs have the potential to alter the levels of potassium in the bloodstream. Some drugs can decrease the amount of potassium in the blood, while others can increase it.
Drugs that can decrease serum potassium levels include thiazide and loop diuretics, as well as acetazolamide. On the other hand, drugs that can increase serum potassium levels include ACE inhibitors, angiotensin-2 receptor blockers, spironolactone, and potassium-sparing diuretics like amiloride and triamterene. Additionally, taking potassium supplements like Sando-K or Slow-K can also increase potassium levels in the blood.
It’s important to note that the above list does not include drugs used to temporarily decrease serum potassium levels for patients with hyperkalaemia, such as salbutamol or calcium resonium.
Overall, it’s crucial for healthcare providers to be aware of the potential effects of medications on potassium levels and to monitor patients accordingly.
-
This question is part of the following fields:
- Renal System
-
-
Question 3
Correct
-
A 70-year-old male presents with two episodes of haemetemesis. He has a medical history of ischaemic heart disease (IHD) and is currently on medication. What is the probable reason for his condition?
Your Answer: Peptic ulceration
Explanation:The effects of different medications on renal tubular acidosis (RTA) are significant. RTA is a condition that affects the kidneys’ ability to regulate acid-base balance in the body. Various medications can cause RTA through different mechanisms.
Spironolactone, for instance, is a direct antagonist of aldosterone, a hormone that regulates sodium and potassium levels in the body. By blocking aldosterone, spironolactone can lead to hyperkalemia (high potassium levels) and a reduction in serum bicarbonate, which is a type of RTA known as type 4.
Type 4 RTA can also occur in people with diabetes mellitus due to scarring associated with diabetic nephropathy. Metformin, a medication commonly used to treat diabetes, can cause lactic acidosis, a condition where there is an excess of lactic acid in the blood. Pioglitazone, another diabetes medication, can cause salt and water retention and may also be associated with bladder tumors.
Ramipril, a medication used to treat high blood pressure and heart failure, can also cause hyperkalemia, but this is not related to direct aldosterone antagonism. Healthcare providers must be aware of the effects of different medications on RTA to ensure proper management and treatment of this condition.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 4
Correct
-
As a junior doctor in orthopaedics, you come across a patient during a ward round who had a hemiarthroplasty 6 days ago for a broken hip. Regrettably, the patient has now contracted a bacterial infection at the surgical site. Can you identify which immune-mediated processes are at play to combat this infection?
Your Answer: B cell antigen-presentation
Explanation:The correct answer is B cell antigen presentation. This process helps the body produce a large number of antibodies that are specific to the invading pathogen. It’s important to note that B cells mature into plasma cells, which are responsible for antibody production.
The other options are incorrect. Eosinophils coordinate the body’s response to parasites, while macrophages do not produce antibodies. Megakaryocytes are the precursor cells to platelets and do not participate in antigen presentation. Neutrophils do not coordinate the destruction of parasites; this is primarily the role of eosinophils.
The adaptive immune response involves several types of cells, including helper T cells, cytotoxic T cells, B cells, and plasma cells. Helper T cells are responsible for the cell-mediated immune response and recognize antigens presented by MHC class II molecules. They express CD4, CD3, TCR, and CD28 and are a major source of IL-2. Cytotoxic T cells also participate in the cell-mediated immune response and recognize antigens presented by MHC class I molecules. They induce apoptosis in virally infected and tumor cells and express CD8 and CD3. Both helper T cells and cytotoxic T cells mediate acute and chronic organ rejection.
B cells are the primary cells of the humoral immune response and act as antigen-presenting cells. They also mediate hyperacute organ rejection. Plasma cells are differentiated from B cells and produce large amounts of antibody specific to a particular antigen. Overall, these cells work together to mount a targeted and specific immune response to invading pathogens or abnormal cells.
-
This question is part of the following fields:
- General Principles
-
-
Question 5
Incorrect
-
A 9-year-old girl visits her GP with blisters around her mouth. The doctor diagnoses her with non-bullous impetigo and expresses concern about the possibility of an intracranial infection spreading from her face to her cranial cavity through a connected venous structure. Which venous structure is the facial vein linked to that could result in this spread?
Your Answer: Dual venous sinus
Correct Answer: Cavernous sinus
Explanation:The facial vein is connected to the ophthalmic vein, which can lead to infections spreading to the cranial cavity. However, the dual venous sinus and other external venous systems do not directly connect to the intracerebral structure.
Understanding the Cavernous Sinus
The cavernous sinuses are a pair of structures located on the sphenoid bone, running from the superior orbital fissure to the petrous temporal bone. They are situated between the pituitary fossa and the sphenoid sinus on the medial side, and the temporal lobe on the lateral side. The cavernous sinuses contain several important structures, including the oculomotor, trochlear, ophthalmic, and maxillary nerves, as well as the internal carotid artery and sympathetic plexus, and the abducens nerve.
The lateral wall components of the cavernous sinuses include the oculomotor, trochlear, ophthalmic, and maxillary nerves, while the contents of the sinus run from medial to lateral and include the internal carotid artery and sympathetic plexus, and the abducens nerve. The blood supply to the cavernous sinuses comes from the ophthalmic vein, superficial cortical veins, and basilar plexus of veins posteriorly. The cavernous sinuses drain into the internal jugular vein via the superior and inferior petrosal sinuses.
In summary, the cavernous sinuses are important structures located on the sphenoid bone that contain several vital nerves and blood vessels. Understanding their location and contents is crucial for medical professionals in diagnosing and treating various conditions that may affect these structures.
-
This question is part of the following fields:
- Neurological System
-
-
Question 6
Incorrect
-
You are creating a medication schedule for a patient with chronic renal failure who is elderly. Which medication may require a dosage modification due to the reduced renal clearance?
Your Answer: Omeprazole
Correct Answer: Morphine sulphate
Explanation:Opioid Use in Patients with Abnormal Renal Function
Patients with abnormal renal function should have their opioid doses reduced due to the prolonged duration of action. However, it is important to note that the initial loading dose may need to be greater in these patients to achieve the desired drug effect. This is because patients with chronic renal failure have an increased volume of distribution, which can affect drug concentration in the plasma. Despite the need for a higher initial dose, subsequent doses should be reduced to account for poor drug clearance. It is important to monitor patients closely and adjust doses as needed to avoid adverse effects. None of the other agents typically require caution in patients with abnormal renal function.
-
This question is part of the following fields:
- Pharmacology
-
-
Question 7
Incorrect
-
A 25-year-old female patient arrives at the emergency department complaining of wheezing and difficulty breathing. Her peak flow is decreased.
What class of adrenoceptors should be focused on for the treatment of this patient?Your Answer: Beta 3
Correct Answer: Beta 2
Explanation:The relaxation of smooth muscle in the vasculature, respiratory tree, and GI tract is caused by beta 2 adrenoceptors. This is important in the management of asthma, which is why a beta 2 agonist should be used to target bronchodilation. Alpha 1 adrenoceptors cause salivary secretion and relaxation of GI smooth muscle, while alpha 2 adrenoceptors inhibit neurotransmitter release. Beta 1 adrenoceptors increase heart rate and force.
Adrenoceptors are a type of receptor found in the body that respond to the hormone adrenaline. There are four main types of adrenoceptors: alpha-1, alpha-2, beta-1, and beta-2. Each type of adrenoceptor is responsible for different physiological responses in the body.
Alpha-1 adrenoceptors are found in various tissues throughout the body and are responsible for vasoconstriction, relaxation of GI smooth muscle, salivary secretion, and hepatic glycogenolysis. On the other hand, alpha-2 adrenoceptors are mainly presynaptic and inhibit the release of neurotransmitters such as norepinephrine and acetylcholine from autonomic nerves. They also inhibit insulin and promote platelet aggregation.
Beta-1 adrenoceptors are mainly located in the heart and are responsible for increasing heart rate and force. Beta-2 adrenoceptors, on the other hand, are found in various tissues such as the lungs, blood vessels, and GI tract. They are responsible for vasodilation, bronchodilation, and relaxation of GI smooth muscle. Lastly, beta-3 adrenoceptors are found in adipose tissue and promote lipolysis.
All adrenoceptors are G-protein coupled, meaning they activate intracellular signaling pathways when activated by adrenaline. Alpha-1 adrenoceptors activate phospholipase C, which leads to the production of inositol triphosphate (IP3) and diacylglycerol (DAG). Alpha-2 adrenoceptors inhibit adenylate cyclase, while beta-1 and beta-2 adrenoceptors stimulate adenylate cyclase. Beta-3 adrenoceptors also stimulate adenylate cyclase.
In summary, adrenoceptors play a crucial role in regulating various physiological responses in the body. Understanding their functions and signaling pathways can help in the development of drugs that target these receptors for therapeutic purposes.
-
This question is part of the following fields:
- General Principles
-
-
Question 8
Correct
-
Following the discovery of a pituitary tumour in a 32-year-old woman who presented with amenorrhoea, a brain MRI is conducted to fully evaluate the tumour before surgical removal. The results reveal that the tumour is starting to compress the lateral geniculate nucleus of the thalamus.
What kind of symptom would arise from this compression?Your Answer: Visual impairment
Explanation:Visual impairment can occur as a result of damage to the lateral geniculate nucleus (LGN), which is a part of the thalamus involved in the visual pathway. The LGN receives information from the retina and sends it to the cortex via optic radiations. Although rare, the LGN can be damaged by compression from pituitary tumors or lesions affecting the choroidal arteries. However, damage to the LGN or other parts of the thalamus will not cause auditory impairment, aphasia, or reduced facial sensation. These conditions are typically caused by damage to other regions of the brain.
The Thalamus: Relay Station for Motor and Sensory Signals
The thalamus is a structure located between the midbrain and cerebral cortex that serves as a relay station for motor and sensory signals. Its main function is to transmit these signals to the cerebral cortex, which is responsible for processing and interpreting them. The thalamus is composed of different nuclei, each with a specific function. The lateral geniculate nucleus relays visual signals, while the medial geniculate nucleus transmits auditory signals. The medial portion of the ventral posterior nucleus (VML) is responsible for facial sensation, while the ventral anterior/lateral nuclei relay motor signals. Finally, the lateral portion of the ventral posterior nucleus is responsible for body sensation, including touch, pain, proprioception, pressure, and vibration. Overall, the thalamus plays a crucial role in the transmission of sensory and motor information to the brain, allowing us to perceive and interact with the world around us.
-
This question is part of the following fields:
- Neurological System
-
-
Question 9
Incorrect
-
A 50-year-old man with persistent constipation visits his doctor seeking a laxative prescription. Despite having a good appetite and hydration, he has no notable medical history except for constipation. He is a non-alcoholic but occasionally smokes when socializing with friends.
The doctor intends to prescribe a laxative to alleviate the patient's constipation, but like any other medication, laxatives have side effects that must be taken into account before prescribing.
What is the laxative that has been demonstrated to have carcinogenic properties?Your Answer: Lactulose
Correct Answer: Co-danthramer
Explanation:Co-danthramer is a genotoxic laxative that should only be prescribed to patients receiving palliative care due to its potential to cause cancer. Other laxatives should be considered first for patients with constipation. However, if constipation is not improved by other laxatives, co-danthramer may be prescribed to palliative patients. It is important to note that a high-fibre diet, adequate fluid intake, and exercise are recommended for all patients with constipation. Fruits and vegetables high in fibre and sorbitol, as well as fruit juices high in sorbitol, can also be helpful in preventing and treating constipation.
Understanding Laxatives
Laxatives are frequently prescribed medications in clinical practice, with constipation being a common issue among patients. While constipation may be a symptom of underlying pathology, many patients experience simple idiopathic constipation. The British National Formulary (BNF) categorizes laxatives into four groups: osmotic, stimulant, bulk-forming, and faecal softeners.
Osmotic laxatives, such as lactulose, macrogols, and rectal phosphates, work by drawing water into the bowel to soften stools and promote bowel movements. Stimulant laxatives, including senna, docusate, bisacodyl, and glycerol, stimulate the muscles in the bowel to contract and move stool along. Co-danthramer, a combination of a stimulant and a bulk-forming laxative, should only be prescribed to palliative patients due to its potential carcinogenic effects.
Bulk-forming laxatives, such as ispaghula husk and methylcellulose, work by increasing the bulk of stool and promoting regular bowel movements. Faecal softeners, such as arachis oil enemas, are not commonly prescribed but can be used to soften stool and ease bowel movements.
In summary, understanding the different types of laxatives and their mechanisms of action can help healthcare professionals prescribe the most appropriate treatment for patients experiencing constipation.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 10
Incorrect
-
Which of the following is not a risk factor for developing tuberculosis?
Your Answer: Haematological malignancy
Correct Answer: Amiodarone
Explanation:There are several factors that increase the risk of developing active tuberculosis, including having silicosis, chronic renal failure, being HIV positive, undergoing solid organ transplantation with immunosuppression, engaging in intravenous drug use, having a haematological malignancy, receiving anti-TNF treatment, or having undergone a previous gastrectomy.
Types of Tuberculosis
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis that primarily affects the lungs. There are two types of TB: primary and secondary. Primary TB occurs when a non-immune host is exposed to the bacteria and develops a small lung lesion called a Ghon focus. This focus is made up of macrophages containing tubercles and is accompanied by hilar lymph nodes, forming a Ghon complex. In immunocompetent individuals, the lesion usually heals through fibrosis. However, those who are immunocompromised may develop disseminated disease, also known as miliary tuberculosis.
Secondary TB, also called post-primary TB, occurs when the initial infection becomes reactivated in an immunocompromised host. Reactivation typically occurs in the apex of the lungs and can spread locally or to other parts of the body. Factors that can cause immunocompromise include immunosuppressive drugs, HIV, and malnutrition. While the lungs are still the most common site for secondary TB, it can also affect other areas such as the central nervous system, vertebral bodies, cervical lymph nodes, renal system, and gastrointestinal tract. Tuberculous meningitis is the most serious complication of extra-pulmonary TB. Understanding the differences between primary and secondary TB is crucial in diagnosing and treating the disease.
-
This question is part of the following fields:
- General Principles
-
-
Question 11
Correct
-
A 20-year-old man in India is attacked by a wild dog and subsequently shows symptoms of rabies, including irritability, drooling, and seizures. The virus responsible for rabies is a rhabdovirus, which uses RNA polymerase to create a complementary RNA strand from a single strand of RNA. This newly-synthesised strand then acts as messenger-RNA (mRNA). What is the best description of the rhabdovirus genome?
Your Answer: Negative-sense RNA (âRNA)
Explanation:Virus Classification Based on Genome
Viruses are categorized based on their genome, which can either be DNA or RNA. The RNA or DNA can be single or double-stranded. The genome of a virus determines its classification. The rhabdovirus, for instance, contains a single strand of RNA initially, which means that the first, second, and last answer options cannot be correct.
Positive-sense RNA viruses, such as picornavirus, flavivirus, coronavirus, and calicivirus, use the RNA strand directly as mRNA. On the other hand, negative-sense RNA viruses require RNA polymerase to copy the RNA strand and generate a complementary RNA strand, which then acts as mRNA. The rhabdovirus falls under this category. virus classification based on genome is crucial in developing effective treatments and vaccines.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 12
Correct
-
A research lab is exploring a novel therapy for beta thalassaemia that involves manipulating the RNA splicing process within the cells of affected individuals.
Where does this process primarily occur within the organelles?Your Answer: Nucleus
Explanation:RNA splicing occurs primarily within the nucleus.
The nucleus is where RNA splicing takes place, which involves removing non-coding introns from pre-mRNA and joining coding exons to form mRNA. Alternative splicing can also occur, resulting in different configurations of exons and the ability for a single gene to code for multiple proteins.
Proteasomes are organelles found in eukaryotic cells that break down large proteins.
Ribosomes are responsible for translating mRNA into peptide structures.
Proteins are folded into their proper shape within the rough endoplasmic reticulum.
The smooth endoplasmic reticulum is involved in the synthesis of steroids and lipids.
Functions of Cell Organelles
The functions of major cell organelles can be summarized in a table. The rough endoplasmic reticulum (RER) is responsible for the translation and folding of new proteins, as well as the manufacture of lysosomal enzymes. It is also the site of N-linked glycosylation. Cells such as pancreatic cells, goblet cells, and plasma cells have extensive RER. On the other hand, the smooth endoplasmic reticulum (SER) is involved in steroid and lipid synthesis. Cells of the adrenal cortex, hepatocytes, and reproductive organs have extensive SER.
The Golgi apparatus modifies, sorts, and packages molecules that are destined for cell secretion. The addition of mannose-6-phosphate to proteins designates transport to lysosome. The mitochondrion is responsible for aerobic respiration and contains mitochondrial genome as circular DNA. The nucleus is involved in DNA maintenance, RNA transcription, and RNA splicing, which removes the non-coding sequences of genes (introns) from pre-mRNA and joins the protein-coding sequences (exons).
The lysosome is responsible for the breakdown of large molecules such as proteins and polysaccharides. The nucleolus produces ribosomes, while the ribosome translates RNA into proteins. The peroxisome is involved in the catabolism of very long chain fatty acids and amino acids, resulting in the formation of hydrogen peroxide. Lastly, the proteasome, along with the lysosome pathway, is involved in the degradation of protein molecules that have been tagged with ubiquitin.
-
This question is part of the following fields:
- General Principles
-
-
Question 13
Incorrect
-
A 36-year-old patient, Sarah, arrives at the emergency department with an abrupt onset of left-sided facial weakness. The weakness impacts the entire left side of her face, including her forehead, and her corneal reflex is absent upon examination. The physician prescribes prednisolone and informs Sarah that her facial weakness should improve within a few weeks.
What is the cranial foramen through which the nerve responsible for Sarah's symptoms passes?Your Answer: Jugular foramen
Correct Answer: Internal acoustic meatus
Explanation:The correct answer is the internal acoustic meatus, through which the facial nerve (CN VII) and vestibulocochlear nerve (CN VIII) pass. Emily is likely experiencing Bell’s Palsy, which is treated with prednisolone. The foramen ovale is incorrect, as it is where the mandibular branch of the trigeminal nerve (CN Vâ) passes. The foramen spinosum is also incorrect, as it is where the middle meningeal artery, middle meningeal vein, and meningeal branch of the mandibular nerve (CN Vâ) pass. The jugular foramen is incorrect, as it is where the glossopharyngeal nerve (CN IX), vagus nerve (CN X), and spinal accessory nerve (CN XI) pass. The superior orbital fissure (SOF) is also incorrect, as it is where the lacrimal nerve, frontal and nasociliary branches of the ophthalmic nerve (CN Vâ), trochlear nerve (CN IV), oculomotor nerve (CN III), abducens nerve (CN VI), superior ophthalmic vein, and a branch of the inferior ophthalmic vein pass.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 14
Incorrect
-
A 25-year-old female presents at the renal outpatient clinic with drug-resistant hypertension and longstanding hypokalaemia. After extensive investigation, she is diagnosed with Liddle's syndrome, a rare genetic condition. Along with other medications, amiloride is prescribed. What specific part of the nephron does this medication target?
Your Answer: Descending limb of the loop of Henle
Correct Answer: Distal convoluted tubule
Explanation:Amiloride is a medication that targets the epithelial sodium transport channels in the distal convoluted tubule (DCT) and collecting duct. It is used to treat Liddle’s syndrome, an autosomal dominant disorder caused by a gain of function mutation that prevents the degradation of these channels, leading to increased activity. This condition is characterized by hypertension, hypokalaemia, and metabolic alkalosis. Amiloride works by selectively blocking these channels, helping to counteract the symptoms of the disease.
Potassium-sparing diuretics are classified into two types: epithelial sodium channel blockers (such as amiloride and triamterene) and aldosterone antagonists (such as spironolactone and eplerenone). However, caution should be exercised when using these drugs in patients taking ACE inhibitors as they can cause hyperkalaemia. Amiloride is a weak diuretic that blocks the epithelial sodium channel in the distal convoluted tubule. It is usually given with thiazides or loop diuretics as an alternative to potassium supplementation since these drugs often cause hypokalaemia. On the other hand, aldosterone antagonists like spironolactone act in the cortical collecting duct and are used to treat conditions such as ascites, heart failure, nephrotic syndrome, and Conn’s syndrome. In patients with cirrhosis, relatively large doses of spironolactone (100 or 200 mg) are often used to manage secondary hyperaldosteronism.
-
This question is part of the following fields:
- General Principles
-
-
Question 15
Incorrect
-
A 68-year-old man is diagnosed with a transient ischaemic attack and started on modified-release dipyridamole as part of combination antiplatelet treatment. He already takes a statin. After a week of treatment, he visits his GP with concerns of the drug's mechanism of action.
What is the mechanism of action of modified-release dipyridamole?Your Answer: P2Y12 inhibitor
Correct Answer: Phosphodiesterase inhibitor
Explanation:Dipyridamole is a medication that inhibits phosphodiesterase in a non-specific manner and reduces the uptake of adenosine by cells.
As an antiplatelet agent, dipyridamole works by inhibiting phosphodiesterase. It can be used in combination with aspirin to prevent secondary transient ischemic attacks if clopidogrel is not well-tolerated.
Tirofiban is a drug that inhibits the platelet glycoprotein IIb/IIIa receptor, which binds to collagen.
The platelet receptor glycoprotein VI interacts with subendothelial collagen.
Glycoprotein 1b is the platelet receptor for von Willebrand Factor. Although there is no specific drug that targets this interaction, autoantibodies to glycoprotein Ib are the basis of immune thrombocytopenic purpura (ITP).
Clopidogrel targets the platelet receptor P2Y12, which interacts with adenosine diphosphate.
Understanding the Mechanism of Action of Dipyridamole
Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.
Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.
Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.
In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Correct
-
As a medical student observing a metabolic medicine clinic, a 40-year-old woman comes in seeking answers about her obesity. With a BMI of 46 kg/mÂČ and a family history of obesity, she is referred for further investigation. After genetic sequencing, it is discovered that she has a mutation in a hormone-regulating gene that is secreted by adipose tissue.
Which hormone is likely impacted by this genetic mutation?Your Answer: Leptin
Explanation:Leptin is produced by adipose tissue and is responsible for regulating feelings of fullness and satiety. Mutations in the leptin gene can lead to severe obesity in infants due to increased appetite and reduced feelings of satiety. Ghrelin, on the other hand, is a hormone released by the stomach that stimulates hunger. Melatonin, produced by the pineal gland, regulates the sleep-wake cycle and circadian rhythms but is not known to play a significant role in obesity. Obestatin, released by stomach epithelial cells, has a controversial role in obesity.
The Physiology of Obesity: Leptin and Ghrelin
Leptin is a hormone produced by adipose tissue that plays a crucial role in regulating body weight. It acts on the hypothalamus, specifically on the satiety centers, to decrease appetite and induce feelings of fullness. In cases of obesity, where there is an excess of adipose tissue, leptin levels are high. Leptin also stimulates the release of melanocyte-stimulating hormone (MSH) and corticotrophin-releasing hormone (CRH), which further contribute to the regulation of appetite. On the other hand, low levels of leptin stimulate the release of neuropeptide Y (NPY), which increases appetite.
Ghrelin, on the other hand, is a hormone that stimulates hunger. It is mainly produced by the P/D1 cells lining the fundus of the stomach and epsilon cells of the pancreas. Ghrelin levels increase before meals, signaling the body to prepare for food intake, and decrease after meals, indicating that the body has received enough nutrients.
In summary, the balance between leptin and ghrelin plays a crucial role in regulating appetite and body weight. In cases of obesity, there is an imbalance in this system, with high levels of leptin and potentially disrupted ghrelin signaling, leading to increased appetite and weight gain.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 17
Incorrect
-
A 79-year-old man has just noticed that his heart is beating irregularly. Upon examination, his pulse is found to be irregularly irregular with a rate of 56 bpm. What ECG findings would you anticipate?
Your Answer: A P wave preceding each QRS complex
Correct Answer: No P wave preceding each QRS complex
Explanation:Atrial Fibrillation and its Causes
Atrial fibrillation (AF) is a condition characterized by irregular heartbeats due to the constant activity of the atria. This can lead to the absence of distinct P waves, making it difficult to diagnose. AF can be caused by various factors such as hyperthyroidism, alcohol excess, mitral stenosis, and fibrous degeneration. The primary risks associated with AF are strokes and cardiac failure. Blood clots can form in the atria due to the lack of atrial movement, which can then be distributed into the systemic circulation, leading to strokes. High rates of AF can also cause syncopal episodes and cardiac failure.
The treatment of AF can be divided into controlling the rate or rhythm. If the rhythm cannot be controlled reliably, long-term anticoagulation with warfarin may be necessary to reduce the risk of stroke, depending on other risk factors. Bifid P waves are associated with hypertrophy of the left atrium, while regular P waves with no relation to QRS complexes are seen in complete heart block. Small P waves can be seen in hypokalaemia.
In cases of AF with shock, immediate medical attention is necessary, and emergency drug or electronic cardioversion may be needed. the causes and risks associated with AF is crucial in managing the condition and preventing complications.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Correct
-
A 48-year-old man is referred to a neurology clinic due to experiencing uncontrolled movements of his limbs. The probable diagnosis is Huntington's disease, which results in the deterioration of the basal ganglia.
Which neurotransmitters are expected to be primarily impacted, leading to the manifestation of the man's symptoms?Your Answer: ACh and GABA
Explanation:The neurons responsible for producing ACh and GABA are primarily affected by the degeneration of the basal ganglia in Huntington’s disease, which plays a crucial role in regulating voluntary movement.
Huntington’s disease is a genetic disorder that causes progressive and incurable neurodegeneration. It is inherited in an autosomal dominant manner and is caused by a trinucleotide repeat expansion of CAG in the huntingtin gene on chromosome 4. This can result in the phenomenon of anticipation, where the disease presents at an earlier age in successive generations. The disease leads to the degeneration of cholinergic and GABAergic neurons in the striatum of the basal ganglia, which can cause a range of symptoms.
Typically, symptoms of Huntington’s disease develop after the age of 35 and can include chorea, personality changes such as irritability, apathy, and depression, intellectual impairment, dystonia, and saccadic eye movements. Unfortunately, there is currently no cure for Huntington’s disease, and it usually results in death around 20 years after the initial symptoms develop.
-
This question is part of the following fields:
- Neurological System
-
-
Question 19
Incorrect
-
A previously healthy 95-year-old individual with a history of hypertension arrives at the Emergency department with dysphasia and right-sided hemiplegia. A CT scan is performed urgently 2 hours after the symptoms began, revealing a left hemisphere cerebral infarction. What is the time frame for administering alteplase in the treatment of this patient?
Your Answer: 6 hours
Correct Answer: 4.5 hours
Explanation:Guidelines for Thrombolysis in Stroke Patients
According to the guidelines set by The Royal College of Physicians, thrombolysis with alteplase can be administered within three hours from the onset of stroke symptoms, regardless of the patient’s age, as long as a haemorrhagic stroke is ruled out and there are no contraindications to thrombolysis. However, in patients under the age of 80 years, alteplase can be given up to 4.5 hours from the onset of stroke, and in some cases, up to 6 hours. It is important to note that the benefits of thrombolysis decrease over time.
The guidelines emphasize the importance of timely administration of thrombolysis to maximize its benefits. However, the decision to administer thrombolysis should be made after careful consideration of the patient’s medical history, contraindications, and the potential risks and benefits of the treatment. It is also important to rule out haemorrhagic stroke before administering thrombolysis, as it can worsen the condition and lead to complications. Overall, the guidelines provide a framework for the safe and effective use of thrombolysis in stroke patients.
-
This question is part of the following fields:
- Pharmacology
-
-
Question 20
Incorrect
-
Southern blotting is a molecular biology technique that is commonly used to detect DNA. How important do you think this technique is for someone who is 25 years old?
Your Answer: Amplify DNA
Correct Answer: Detect DNA
Explanation:PCR (Polymerase Chain Reaction)
GEL (Gel Electrophoresis)
BLAST (Basic Local Alignment Search Tool)Overview of Molecular Biology Techniques
Molecular biology techniques are essential tools used in the study of biological molecules such as DNA, RNA, and proteins. These techniques are used to detect and analyze these molecules in various biological samples. The most commonly used techniques include Southern blotting, Northern blotting, Western blotting, and enzyme-linked immunosorbent assay (ELISA).
Southern blotting is a technique used to detect DNA, while Northern blotting is used to detect RNA. Western blotting, on the other hand, is used to detect proteins. This technique involves the use of gel electrophoresis to separate native proteins based on their 3-D structure. It is commonly used in the confirmatory HIV test.
ELISA is a biochemical assay used to detect antigens and antibodies. This technique involves attaching a colour-changing enzyme to the antibody or antigen being detected. If the antigen or antibody is present in the sample, the sample changes colour, indicating a positive result. ELISA is commonly used in the initial HIV test.
In summary, molecular biology techniques are essential tools used in the study of biological molecules. These techniques include Southern blotting, Northern blotting, Western blotting, and ELISA. Each technique is used to detect specific molecules in biological samples and is commonly used in various diagnostic tests.
-
This question is part of the following fields:
- General Principles
-
-
Question 21
Incorrect
-
Which statement about voltage gated ion channels (VGIC) is accurate?
Your Answer: S2 is the putative voltage sensor with every other amino acid residue being charged
Correct Answer: Each subunit has six transmembrane spanning domains (S1-S6)
Explanation:Voltage Gated Ion Channels
Voltage gated ion channels (VGICs) are composed of four subunits, each containing six transmembrane domains (S1-S6). The S4 domain is believed to be the voltage sensor, as every other residue is charged. The channel of calcium and sodium VGICs is formed by a single peptide, while the potassium receptor channel is made up of four separate peptides, indicating that it is evolutionarily more primitive. The sodium VGIC is targeted by local anesthetics. In summary, VGICs are essential for the proper functioning of cells and play a crucial role in the transmission of electrical signals in the nervous system.
-
This question is part of the following fields:
- Pharmacology
-
-
Question 22
Incorrect
-
Sophie is at a crowded concert. She is standing near a group of her favorite band's fans and she can hear part of their conversation. She thinks she hears the name of her favorite band member mentioned.
What kind of illusion is Sophie experiencing?Your Answer: Completion illusion
Correct Answer: Auditory illusion
Explanation:Types of Illusions and Examples
Illusions can occur in any sensory modality, but the most commonly reported are visual. However, there are three broad types of illusions: affect illusion, completion illusion, and pareidolia. Affect illusion is associated with specific mood states, such as someone who has recently been bereaved may ‘see’ their loved one. Completion illusion is due to inattention when reading, such as misreading words or completing faded letters. Pareidolia occurs when an individual perceives a vivid picture in an otherwise vague or obscure stimulus, such as seeing faces or animals in clouds.
Fantastic illusions were described by some of the classic psychiatrists. For example, Fish described a patient who, during an interview, stated that the psychiatrist’s head changed to a rabbit’s head. This patient was known to confabulate and exaggerate. Another example of an auditory illusion is when a partially overheard conversation is misrepresented or misinterpreted by the listener, leading them to believe that they are being discussed.
In conclusion, illusions can occur in various forms and can be caused by different factors. It is important to understand the different types of illusions to avoid misinterpretation and confusion.
-
This question is part of the following fields:
- Psychiatry
-
-
Question 23
Incorrect
-
A woman is undergoing excision of a sub mandibular gland. During the procedure, a vessel is damaged that is located between the gland and the mandible. What is the most probable identity of this vessel?
Your Answer: Lingual artery
Correct Answer: Facial artery
Explanation:Stone formation is favored by the thick consistency of submandibular gland secretions. Additionally, the majority of stones are visible on radiographs. During gland removal surgery, the facial artery is typically tied off as it runs between the gland and mandible. The lingual artery may also be encountered later in the procedure when Wharton’s duct is being moved.
Anatomy of the Submandibular Gland
The submandibular gland is located beneath the mandible and is surrounded by the superficial platysma, deep fascia, and mandible. It is also in close proximity to various structures such as the submandibular lymph nodes, facial vein, marginal mandibular nerve, cervical branch of the facial nerve, deep facial artery, mylohyoid muscle, hyoglossus muscle, lingual nerve, submandibular ganglion, and hypoglossal nerve.
The submandibular duct, also known as Wharton’s duct, is responsible for draining saliva from the gland. It opens laterally to the lingual frenulum on the anterior floor of the mouth and is approximately 5 cm in length. The lingual nerve wraps around the duct, and as it passes forward, it crosses medial to the nerve to lie above it before crossing back, lateral to it, to reach a position below the nerve.
The submandibular gland receives sympathetic innervation from the superior cervical ganglion and parasympathetic innervation from the submandibular ganglion via the lingual nerve. Its arterial supply comes from a branch of the facial artery, which passes through the gland to groove its deep surface before emerging onto the face by passing between the gland and the mandible. The anterior facial vein provides venous drainage, and the gland’s lymphatic drainage goes to the deep cervical and jugular chains of nodes.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 24
Incorrect
-
A 10-year-old girl visits her doctor complaining of wheezing and difficulty breathing, particularly at night and only during the summer. The doctor suspects that the underlying condition involves mast cells, basophils, eosinophils, and a specific type of T cell that responds to extracellular antigens and plays a role in humoral immunity.
What is the name of the T cell responsible for the girl's symptoms, given the likely diagnosis?Your Answer: CD4 T cells
Correct Answer: Th2 cells
Explanation:The symptoms of worsening asthma during the night and only occurring during the summer suggest a diagnosis of allergic asthma, which is mediated by Th2 cells. These cells are a type of CD4+ effector T cell that play a role in initiating the humoral immune response by activating B cells to produce antibodies, including IgA, IgE, and certain subtypes of IgG. While CD4 cells also include Th1 cells, which promote cell-mediated immune responses against intracellular pathogens, CD8 cells are cytotoxic T cells that kill target cells by releasing cytotoxic granules.
T-Helper Cells: Two Major Subsets and Their Functions
T-Helper cells are a type of white blood cell that play a crucial role in the immune system. There are two major subsets of T-Helper cells, each with their own specific functions. The first subset is Th1, which is involved in the cell-mediated response and delayed (type IV) hypersensitivity. Th1 cells secrete cytokines such as IFN-gamma, IL-2, and IL-3, which help activate other immune cells and promote inflammation.
The second subset is Th2, which is involved in mediating humoral (antibody) immunity. Th2 cells are responsible for stimulating the production of antibodies, such as IgE in asthma. They secrete cytokines such as IL-4, IL-5, IL-6, IL-10, and IL-13, which help activate B cells and promote the production of antibodies.
Understanding the functions of these two subsets of T-Helper cells is important for developing treatments for various immune-related disorders. For example, drugs that target Th1 cells may be useful in treating autoimmune diseases, while drugs that target Th2 cells may be useful in treating allergies and asthma.
-
This question is part of the following fields:
- General Principles
-
-
Question 25
Incorrect
-
A pregnant woman at 32 weeks gestation comes to you worried that her baby boy may have Duchenne muscular dystrophy (DMD) after reading about it in a magazine. She is a nursing student who has taken a break for a year. You educate her on the likelihood of her child having DMD and the genetic mutation that causes it.
Which gene is impacted by a deletion mutation in DMD?Your Answer: EMD gene
Correct Answer: Dystrophin gene
Explanation:The cause of Duchenne muscular dystrophy is a mutation in the dystrophin gene. While mutations in the myostatin gene can lead to myostatin-induced muscle hypertrophy, there is no known association with DMD. The dysferlin gene is involved in skeletal muscle repair and mutations can result in various muscular myopathies, but there is no known association with DMD. It should be noted that the myodystrophin gene is fictitious and does not exist.
Dystrophinopathies are a group of genetic disorders that are inherited in an X-linked recessive manner. These disorders are caused by mutations in the dystrophin gene located on the X chromosome at position Xp21. Dystrophin is a protein that is part of a larger membrane-associated complex in muscle cells. It connects the muscle membrane to actin, which is a component of the muscle cytoskeleton.
Duchenne muscular dystrophy is a severe form of dystrophinopathy that is caused by a frameshift mutation in the dystrophin gene. This mutation results in the loss of one or both binding sites, leading to progressive proximal muscle weakness that typically begins around the age of 5 years. Children with Duchenne muscular dystrophy may also exhibit calf pseudohypertrophy and Gower’s sign, which is when they use their arms to stand up from a squatted position. Approximately 30% of patients with Duchenne muscular dystrophy also have intellectual impairment.
In contrast, Becker muscular dystrophy is a milder form of dystrophinopathy that typically develops after the age of 10 years. It is caused by a non-frameshift insertion in the dystrophin gene, which preserves both binding sites. Intellectual impairment is much less common in individuals with Becker muscular dystrophy.
-
This question is part of the following fields:
- Neurological System
-
-
Question 26
Correct
-
What is not considered a risk factor for the development of oesophageal cancer?
Your Answer: Blood group O
Explanation:Oesophageal Cancer: Types, Risk Factors, Features, Diagnosis, and Treatment
Oesophageal cancer used to be mostly squamous cell carcinoma, but adenocarcinoma is now becoming more common, especially in patients with a history of gastro-oesophageal reflux disease (GORD) or Barrett’s. Adenocarcinoma is usually located near the gastroesophageal junction, while squamous cell tumours are found in the upper two-thirds of the oesophagus. The most common presenting symptom is dysphagia, followed by anorexia and weight loss, vomiting, and other possible features such as odynophagia, hoarseness, melaena, and cough.
To diagnose oesophageal cancer, upper GI endoscopy with biopsy is used, and endoscopic ultrasound is preferred for locoregional staging. CT scanning of the chest, abdomen, and pelvis is used for initial staging, and FDG-PET CT may be used for detecting occult metastases if metastases are not seen on the initial staging CT scans. Laparoscopy is sometimes performed to detect occult peritoneal disease.
Operable disease is best managed by surgical resection, with the most common procedure being an Ivor-Lewis type oesophagectomy. However, the biggest surgical challenge is anastomotic leak, which can result in mediastinitis. In addition to surgical resection, many patients will be treated with adjuvant chemotherapy.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 27
Incorrect
-
What is the process called for the removal of non-coding sequences from pre-mRNA and what is the term used for the genes that are removed?
Your Answer: Capping - exons
Correct Answer: Splicing - introns
Explanation:RNA splicing is the process of removing non-coding sequences of genes (introns) from pre-mRNA and joining the protein-coding sequences (exons) to form mature RNA ready for translation into a protein. This process occurs in spliceosomes and is catalysed by small nuclear ribonucleoproteins. The coding sections that remain are known as exons. Capping and polyadenylation are not the correct answers as they refer to different processes that protect mRNA from degradation. The term for the non-coding genes being removed is introns, not exons.
Functions of Cell Organelles
The functions of major cell organelles can be summarized in a table. The rough endoplasmic reticulum (RER) is responsible for the translation and folding of new proteins, as well as the manufacture of lysosomal enzymes. It is also the site of N-linked glycosylation. Cells such as pancreatic cells, goblet cells, and plasma cells have extensive RER. On the other hand, the smooth endoplasmic reticulum (SER) is involved in steroid and lipid synthesis. Cells of the adrenal cortex, hepatocytes, and reproductive organs have extensive SER.
The Golgi apparatus modifies, sorts, and packages molecules that are destined for cell secretion. The addition of mannose-6-phosphate to proteins designates transport to lysosome. The mitochondrion is responsible for aerobic respiration and contains mitochondrial genome as circular DNA. The nucleus is involved in DNA maintenance, RNA transcription, and RNA splicing, which removes the non-coding sequences of genes (introns) from pre-mRNA and joins the protein-coding sequences (exons).
The lysosome is responsible for the breakdown of large molecules such as proteins and polysaccharides. The nucleolus produces ribosomes, while the ribosome translates RNA into proteins. The peroxisome is involved in the catabolism of very long chain fatty acids and amino acids, resulting in the formation of hydrogen peroxide. Lastly, the proteasome, along with the lysosome pathway, is involved in the degradation of protein molecules that have been tagged with ubiquitin.
-
This question is part of the following fields:
- General Principles
-
-
Question 28
Incorrect
-
Samantha is 49-years-old and is being treated for hypertension and gout. Besides a recent gout flare-up, she is currently in good health. Her current medications include Lisinopril, Amlodipine, Bendroflumethiazide, Naproxen, and Allopurinol. During her bi-annual GP review, a random venous glucose test shows a reading of 12.1 mmol/L, and a subsequent oral glucose tolerance test reveals a result of 9.2 mmol/L. What is the most probable reason for her abnormal glucose levels?
Your Answer: Allopurinol
Correct Answer: Bendroflumethiazide
Explanation:Drugs that can cause impaired glucose tolerance
Impaired glucose tolerance can be caused by certain medications. These drugs include thiazides, furosemide (although less common), steroids, tacrolimus, ciclosporin, interferon-alpha, nicotinic acid, and antipsychotics. Beta-blockers can also cause a slight impairment of glucose tolerance and should be used with caution in diabetics as they can interfere with the metabolic and autonomic responses to hypoglycemia. It is important for healthcare providers to be aware of these potential side effects and monitor patients accordingly, especially those with pre-existing diabetes or at risk for developing diabetes. Adequate management and monitoring can help prevent further complications and ensure optimal patient care.
-
This question is part of the following fields:
- General Principles
-
-
Question 29
Incorrect
-
A 28-year-old woman has been brought to the emergency department following a car accident. While crossing the road, she was struck by a car's bumper, resulting in a forceful impact on her leg. Upon examination, it is observed that she has developed foot drop. Which nerve has been affected by the accident?
Your Answer: Medial plantar nerve
Correct Answer: Common peroneal nerve
Explanation:The common peroneal nerve is responsible for providing both sensation and motor function to the lower leg. If this nerve is compressed or damaged, it can result in weakness of foot dorsiflexion and foot eversion, commonly known as foot drop. The nerve runs laterally and curves over the posterior rim of the fibula before dividing into the superficial and deep branches. These branches supply the tibialis anterior, extensor hallucis longus, extensor digitorum longus, and peroneus tertius muscles, which work together to allow dorsiflexion of the foot. Due to its long course throughout the leg and superficial location, the common peroneal nerve is more vulnerable to injury, especially after a direct insult. It is important to note that the median nerve and pudendal nerves are not located in the leg.
Understanding Common Peroneal Nerve Lesion
A common peroneal nerve lesion is a type of nerve injury that often occurs at the neck of the fibula. This condition is characterized by foot drop, which is the most common symptom. Other symptoms include weakness of foot dorsiflexion and eversion, weakness of extensor hallucis longus, sensory loss over the dorsum of the foot and the lower lateral part of the leg, and wasting of the anterior tibial and peroneal muscles.
-
This question is part of the following fields:
- Neurological System
-
-
Question 30
Incorrect
-
A 43-year-old man is brought to the emergency department via ambulance after being found collapsed on the street. He is barely responsive and has a heart rate of 120 beats per minute, blood pressure of 80/40 mmHg, oxygen saturations of 92%, and a temperature of 39 ÂșC. During a full secondary survey, gas gangrene is discovered on his lower limbs. Biopsy results later confirm that the causative organism is Clostridium perfringens. What is the responsible toxin for this presentation?
Your Answer:
Correct Answer: Alpha toxin
Explanation:Gas gangrene is a severe infection caused by Clostridium perfringens, which produces alpha-toxin, a lecithinase. This toxin causes local haemolysis, leading to areas of hypoperfusion and subsequent hypoxia, creating an anaerobic environment that allows the bacteria to thrive and cause further damage.
Cereulide, Exfoliatin, and Exotoxin A are incorrect as they are produced by Bacillus cereus, Staphylococcus aureus, and Pseudomonas aeruginosa, respectively, and cause different illnesses or symptoms such as vomiting and diarrhoea, blistering of the skin, and inhibition of protein synthesis.
Exotoxins vs Endotoxins: Understanding the Differences
Exotoxins and endotoxins are two types of toxins produced by bacteria. Exotoxins are secreted by bacteria, while endotoxins are only released when the bacterial cell is lysed. Exotoxins are typically produced by Gram-positive bacteria, with some exceptions like Vibrio cholerae and certain strains of E. coli.
Exotoxins can be classified based on their primary effects, which include pyrogenic toxins, enterotoxins, neurotoxins, tissue invasive toxins, and miscellaneous toxins. Pyrogenic toxins stimulate the release of cytokines, resulting in fever and rash. Enterotoxins act on the gastrointestinal tract, causing either diarrheal or vomiting illness. Neurotoxins act on the nerves or neuromuscular junction, causing paralysis. Tissue invasive toxins cause damage to tissues, while miscellaneous toxins have various effects.
On the other hand, endotoxins are lipopolysaccharides that are released from Gram-negative bacteria like Neisseria meningitidis. These toxins can cause fever, sepsis, and shock. Unlike exotoxins, endotoxins are not actively secreted by bacteria but are instead released when the bacterial cell is lysed.
Understanding the differences between exotoxins and endotoxins is important in diagnosing and treating bacterial infections. While exotoxins can be targeted with specific treatments like antitoxins, endotoxins are more difficult to treat and often require supportive care.
-
This question is part of the following fields:
- General Principles
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)