-
Question 1
Incorrect
-
A 67-year-old man presents with hypertension and a history of angina and peripheral vascular disease. During the physical examination, you detect a renal bruit on the left side. What is the most effective approach to evaluate renal blood flow in this individual?
Your Answer: Serum creatinine
Correct Answer: Para-aminohippurate (PAH) clearance
Explanation:Renal artery stenosis is the likely diagnosis for the patient, as it causes a reduction in renal blood flow. To measure renal plasma flow, the gold standard method in renal physiology is the use of para-aminohippurate (PAH) clearance.
Inulin is an ideal substance for measuring creatinine clearance (CrCl) as it is completely filtered at the glomerulus and not secreted or reabsorbed by the tubules. The Modification of Diet in Renal Disease (MDRD) and Cockcroft-Gault equation are commonly used to estimate creatinine clearance.
Reabsorption and Secretion in Renal Function
In renal function, reabsorption and secretion play important roles in maintaining homeostasis. The filtered load is the amount of a substance that is filtered by the glomerulus and is determined by the glomerular filtration rate (GFR) and the plasma concentration of the substance. The excretion rate is the amount of the substance that is eliminated in the urine and is determined by the urine flow rate and the urine concentration of the substance. Reabsorption occurs when the filtered load is greater than the excretion rate, and secretion occurs when the excretion rate is greater than the filtered load.
The reabsorption rate is the difference between the filtered load and the excretion rate, and the secretion rate is the difference between the excretion rate and the filtered load. Reabsorption and secretion can occur in different parts of the nephron, including the proximal tubule, loop of Henle, distal tubule, and collecting duct. These processes are regulated by various hormones and signaling pathways, such as aldosterone, antidiuretic hormone (ADH), and atrial natriuretic peptide (ANP).
Overall, reabsorption and secretion are important mechanisms for regulating the composition of the urine and maintaining fluid and electrolyte balance in the body. Dysfunction of these processes can lead to various renal disorders, such as diabetes insipidus, renal tubular acidosis, and Fanconi syndrome.
-
This question is part of the following fields:
- Renal System
-
-
Question 2
Incorrect
-
A 42-year-old man visits the clinic complaining of a tickly cough that has been bothering him for the past two weeks. He reports no other symptoms and his respiratory exam appears normal. The patient recently began taking an ACE inhibitor, which you suspect may be the cause of his cough. You decide to switch him to an angiotensin receptor blocker instead. Many antihypertensive medications target components of the renin-angiotensin-aldosterone system. Which enzyme catalyzes the hydrolysis of angiotensinogen to produce the hormone angiotensin I, an important player in this system?
Your Answer: Angiotensin-converting-enzyme
Correct Answer: Renin
Explanation:The kidneys produce renin in their juxtaglomerular cells, which plays a crucial role in the renin-angiotensin-aldosterone system. This enzyme converts angiotensinogen into angiotensin I through a hydrolysis reaction. More information on this system can be found below.
Another important enzyme in this system is angiotensin-converting-enzyme (ACE), which is primarily located in the lungs but can also be found in smaller quantities in endothelial cells of the vasculature and kidney epithelial cells. ACE converts angiotensin I to angiotensin II and is the target of ACE inhibitors.
Carbonic anhydrase is an enzyme that facilitates the reaction between water and carbon dioxide to form bicarbonate, and it can also catalyze the reverse reaction. Carbonic anhydrase inhibitors target this enzyme.
Cyclooxygenase-2 (COX-2) is involved in the synthesis of prostaglandins, and NSAIDs are believed to work by inhibiting both COX-1 and COX-2 enzymes.
The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.
-
This question is part of the following fields:
- Renal System
-
-
Question 3
Incorrect
-
A middle-aged woman presents with collapse and weakness on her left side. Her husband reports that she has a medical history of hyperthyroidism, diabetes, and autosomal dominant polycystic kidney disease, but no known drug allergies. A CT scan of her head reveals a significant intracerebral bleed on the left side. What is the probable cause of the bleed?
Your Answer: Hypertension
Correct Answer: Ruptured berry aneurysm
Explanation:Autosomal dominant polycystic kidney disease increases the risk of brain haemorrhage due to ruptured berry aneurysms.
Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited kidney disease that affects 1 in 1,000 Caucasians. The disease is caused by mutations in two genes, PKD1 and PKD2, which produce polycystin-1 and polycystin-2 respectively. ADPKD type 1 accounts for 85% of cases, while ADPKD type 2 accounts for 15% of cases. ADPKD type 1 is caused by a mutation in the PKD1 gene on chromosome 16, while ADPKD type 2 is caused by a mutation in the PKD2 gene on chromosome 4. ADPKD type 1 tends to present with renal failure earlier than ADPKD type 2.
To screen for ADPKD in relatives of affected individuals, an abdominal ultrasound is recommended. The diagnostic criteria for ultrasound include the presence of two cysts, either unilateral or bilateral, if the individual is under 30 years old. If the individual is between 30-59 years old, two cysts in both kidneys are required for diagnosis. If the individual is over 60 years old, four cysts in both kidneys are necessary for diagnosis.
For some patients with ADPKD, tolvaptan, a vasopressin receptor 2 antagonist, may be an option to slow the progression of cyst development and renal insufficiency. However, NICE recommends tolvaptan only for adults with ADPKD who have chronic kidney disease stage 2 or 3 at the start of treatment, evidence of rapidly progressing disease, and if the company provides it with the agreed discount in the patient access scheme.
-
This question is part of the following fields:
- Renal System
-
-
Question 4
Incorrect
-
A 49-year-old woman visits the clinic complaining of occasional palpitations over the last 7 days. The palpitations occur without any physical exertion and are not accompanied by chest pain. Upon examination, her heart appears to be functioning normally. An ECG is conducted, revealing indications of hyperkalaemia. What is an ECG indicator of hyperkalaemia?
Your Answer: Inverted T waves
Correct Answer: Small or absent P waves
Explanation:The presence of small or inverted T waves on an ECG can indicate hyperkalaemia, along with other signs such as absent or reduced P waves, broad and bizarre QRS complexes, and tall-tented T waves. In severe cases, hyperkalaemia can lead to asystole.
Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.
There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.
It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.
-
This question is part of the following fields:
- Renal System
-
-
Question 5
Incorrect
-
A 73-year-old man comes to the clinic with complaints of increasing nocturia, a feeble urinary stream, and some weight loss in the past few months. Upon examination, an enlarged prostate with nodules is observed, and he is promptly referred for further testing, which reveals prostate cancer cells.
During the local urology cancer multidisciplinary team meeting, his case is discussed, and the team recommends a course of bicalutamide. What is the mechanism of action of this medication?Your Answer: Gonadotrophin-releasing hormone agonist
Correct Answer: Androgen receptor blocker
Explanation:Bicalutamide, a non-steroidal drug, is utilized in the treatment of prostate cancer as an androgen receptor blocker. It is often used in combination with other approaches such as hormonal treatment, radiotherapy, chemotherapy, and prostatectomy. Abiraterone, on the other hand, is an androgen synthesis blocker that inhibits enzymes required for production. It is typically used for hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after anti-androgen therapy has failed. Goserelin is a gonadotrophin-releasing hormone (GnRH) agonist that ultimately downregulates sex hormones. It is initially co-prescribed with an anti-androgen due to its potential to cause an initial flare in testosterone levels. More recently, GnRH antagonists like abarelix have been used to quickly suppress testosterone without the initial flare seen with agonists. Cyproterone acetate, which exhibits progestogenic activity and steroidal and antiandrogenic effects, is another drug used in prostate cancer management but is less commonly used due to the widespread use of non-steroidal drugs like bicalutamide.
Prostate cancer management varies depending on the stage of the disease and the patient’s life expectancy and preferences. For localized prostate cancer (T1/T2), treatment options include active monitoring, watchful waiting, radical prostatectomy, and radiotherapy (external beam and brachytherapy). For localized advanced prostate cancer (T3/T4), options include hormonal therapy, radical prostatectomy, and radiotherapy. Patients may develop proctitis and are at increased risk of bladder, colon, and rectal cancer following radiotherapy for prostate cancer.
In cases of metastatic prostate cancer, reducing androgen levels is a key aim of treatment. A combination of approaches is often used, including anti-androgen therapy, synthetic GnRH agonist or antagonists, bicalutamide, cyproterone acetate, abiraterone, and bilateral orchidectomy. GnRH agonists, such as Goserelin (Zoladex), initially cause a rise in testosterone levels before falling to castration levels. To prevent a rise in testosterone, anti-androgens are often used to cover the initial therapy. GnRH antagonists, such as degarelix, are being evaluated to suppress testosterone while avoiding the flare phenomenon. Chemotherapy with docetaxel is also an option for the treatment of hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after androgen deprivation therapy has failed, and before chemotherapy is indicated.
-
This question is part of the following fields:
- Renal System
-
-
Question 6
Incorrect
-
A 9-year-old boy comes to the GP after experiencing bloody diarrhoea for the past 6 days. He complains of abdominal pain and has been urinating very little. His mother has also noticed multiple bruises on his body without any known cause. What is the most probable organism responsible for his symptoms?
Your Answer: Norovirus
Correct Answer: E. coli
Explanation:The patient’s symptoms suggest that they may be suffering from haemolytic uraemic syndrome (HUS), which is often caused by an infection with E.coli 0157:H7.
HUS is characterized by a combination of haemolytic anaemia, thrombocytopaenia, and acute kidney injury, which can ultimately lead to renal failure.
The presence of bloody diarrhoea in the patient’s medical history is a significant indicator of HUS. Additionally, the reduced urine output is likely due to the acute kidney injury, while the bruising may be a result of the thrombocytopaenia associated with HUS.
Understanding Haemolytic Uraemic Syndrome
Haemolytic uraemic syndrome (HUS) is a condition that primarily affects young children and is characterized by a triad of symptoms, including acute kidney injury, microangiopathic haemolytic anaemia, and thrombocytopenia. The most common cause of HUS in children is Shiga toxin-producing Escherichia coli (STEC) 0157:H7, which accounts for over 90% of cases. Other causes of HUS include pneumococcal infection, HIV, systemic lupus erythematosus, drugs, and cancer.
To diagnose HUS, doctors may perform a full blood count, check for evidence of STEC infection in stool culture, and conduct PCR for Shiga toxins. Treatment for HUS is supportive and may include fluids, blood transfusion, and dialysis if required. Antibiotics are not recommended, despite the preceding diarrhoeal illness in many patients. The indications for plasma exchange in HUS are complicated, and as a general rule, plasma exchange is reserved for severe cases of HUS not associated with diarrhoea. Eculizumab, a C5 inhibitor monoclonal antibody, has shown greater efficiency than plasma exchange alone in the treatment of adult atypical HUS.
In summary, HUS is a serious condition that primarily affects young children and is characterized by a triad of symptoms. The most common cause of HUS in children is STEC 0157:H7, and diagnosis may involve various tests. Treatment is supportive, and antibiotics are not recommended. The indications for plasma exchange are complicated, and eculizumab may be more effective in treating adult atypical HUS.
-
This question is part of the following fields:
- Renal System
-
-
Question 7
Incorrect
-
A woman in her 30s experiences dehydration from diarrhoea and vomiting, leading to activation of the renin-angiotensin-aldosterone system by her kidneys. This increases the pressure across the glomerulus and maintains glomerular filtration rate. What is the normal passage of blood through this area?
Your Answer: efferent arteriole- glomerular capillary bed- afferent arteriole- peritubular capillaries and medullary vasa recta
Correct Answer: afferent arteriole- glomerular capillary bed- efferent arteriole- peritubular capillaries and medullary vasa recta
Explanation:The journey of blood to a nephron begins with the afferent arteriole, followed by the glomerular capillary bed, efferent arteriole, and finally the peritubular capillaries and medullary vasa recta.
The afferent arteriole is the first stage, where blood enters the nephron. From there, it flows through the glomerulus and exits through the efferent arteriole.
If the efferent arteriole is constricted, it can increase pressure across the glomerulus, leading to a higher filtration fraction and maintaining eGFR.
The Loop of Henle and its Role in Renal Physiology
The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.
-
This question is part of the following fields:
- Renal System
-
-
Question 8
Incorrect
-
A 35-year-old man with end-stage renal failure due to polycystic kidney disease is being evaluated for a possible kidney transplant. Donor screening, which involves human leukocyte antigen (HLA) testing, has been conducted on several family members. Which HLA class is the most crucial in minimizing rejection risk for this patient?
Your Answer: DQ
Correct Answer: DR
Explanation:The HLA system, also known as the major histocompatibility complex (MHC), is located on chromosome 6 and is responsible for human leucocyte antigens. Class 1 antigens include A, B, and C, while class 2 antigens include DP, DQ, and DR. When matching for a renal transplant, the importance of HLA antigens is ranked as DR > B > A.
Graft survival rates for renal transplants are high, with a 90% survival rate at one year and a 60% survival rate at ten years for cadaveric transplants. Living-donor transplants have even higher survival rates, with a 95% survival rate at one year and a 70% survival rate at ten years. However, postoperative problems can occur, such as acute tubular necrosis of the graft, vascular thrombosis, urine leakage, and urinary tract infections.
Hyperacute rejection can occur within minutes to hours after a transplant and is caused by pre-existing antibodies against ABO or HLA antigens. This type of rejection is an example of a type II hypersensitivity reaction and leads to widespread thrombosis of graft vessels, resulting in ischemia and necrosis of the transplanted organ. Unfortunately, there is no treatment available for hyperacute rejection, and the graft must be removed.
Acute graft failure, which occurs within six months of a transplant, is usually due to mismatched HLA and is caused by cell-mediated cytotoxic T cells. This type of failure is usually asymptomatic and is detected by a rising creatinine, pyuria, and proteinuria. Other causes of acute graft failure include cytomegalovirus infection, but it may be reversible with steroids and immunosuppressants.
Chronic graft failure, which occurs after six months of a transplant, is caused by both antibody and cell-mediated mechanisms that lead to fibrosis of the transplanted kidney, known as chronic allograft nephropathy. The recurrence of the original renal disease, such as MCGN, IgA, or FSGS, can also cause chronic graft failure.
-
This question is part of the following fields:
- Renal System
-
-
Question 9
Correct
-
A 67-year-old man is being evaluated on the ward. He was admitted with community-acquired pneumonia and required IV antibiotics. The results of his blood tests taken this morning are as follows:
- Sodium (Na+): 143 mmol/L (135 - 145)
- Potassium (K+): 6.5 mmol/L (3.5 - 5.0)
- Bicarbonate: 25 mmol/L (22 - 29)
- Urea: 5.5 mmol/L (2.0 - 7.0)
- Creatinine: 115 µmol/L (55 - 120)
An urgent ECG is ordered, which reveals peaked T waves and a loss of P waves.
What is the immediate course of action for this patient?Your Answer: IV calcium gluconate
Explanation:The correct treatment for stabilizing the cardiac membrane in a patient with hyperkalaemia and ECG changes, such as peaked T waves and loss of P waves, is IV calcium gluconate. This is the first-line treatment option, as it can effectively stabilize the cardiac membrane and prevent arrhythmias. Other treatment options, such as calcium resonium, combined insulin/dextrose infusion, and nebulised salbutamol, can be used to treat hyperkalaemia, but only after IV calcium gluconate has been given.
Managing Hyperkalaemia: A Step-by-Step Guide
Hyperkalaemia is a serious condition that can lead to life-threatening arrhythmias if left untreated. To manage hyperkalaemia, it is important to address any underlying factors that may be contributing to the condition, such as acute kidney injury, and to stop any aggravating drugs, such as ACE inhibitors. Treatment can be categorised based on the severity of the hyperkalaemia, which is classified as mild, moderate, or severe based on the patient’s potassium levels.
ECG changes are also important in determining the appropriate management for hyperkalaemia. Peaked or ‘tall-tented’ T waves, loss of P waves, broad QRS complexes, and a sinusoidal wave pattern are all associated with hyperkalaemia and should be evaluated in all patients with new hyperkalaemia.
The principles of treatment modalities for hyperkalaemia include stabilising the cardiac membrane, shifting potassium from extracellular to intracellular fluid compartments, and removing potassium from the body. IV calcium gluconate is used to stabilise the myocardium, while insulin/dextrose infusion and nebulised salbutamol can be used to shift potassium from the extracellular to intracellular fluid compartments. Calcium resonium, loop diuretics, and dialysis can be used to remove potassium from the body.
In practical terms, all patients with severe hyperkalaemia or ECG changes should receive emergency treatment, including IV calcium gluconate to stabilise the myocardium and insulin/dextrose infusion to shift potassium from the extracellular to intracellular fluid compartments. Other treatments, such as nebulised salbutamol, may also be used to temporarily lower serum potassium levels. Further management may involve stopping exacerbating drugs, treating any underlying causes, and lowering total body potassium through the use of calcium resonium, loop diuretics, or dialysis.
-
This question is part of the following fields:
- Renal System
-
-
Question 10
Incorrect
-
A 58-year-old male comes to the rheumatology clinic complaining of persistent pain caused by his rheumatoid arthritis. He is prescribed an NSAID for pain management. How does this medication impact his kidneys?
Your Answer: Glomerulus contraction
Correct Answer: Afferent arteriole constriction
Explanation:NSAIDs are commonly used drugs that have anti-inflammatory properties. They work by inhibiting the enzymes COX-1 and COX-2, which are responsible for synthesizing prostanoids such as prostaglandins and thromboxanes.
Prostaglandins play a crucial role in the kidney by causing vasodilation of the afferent arterioles in the glomeruli. This increases blood flow into the glomerulus and leads to an increase in the glomerular filtration rate (GFR).
When NSAIDs inhibit the COX enzymes, they reduce the levels of prostaglandins in the body. This results in a loss of vasodilation in the afferent arterioles, which leads to reduced renal perfusion and a decrease in GFR.
The Impact of NSAIDs on Kidney Function
NSAIDs are commonly used anti-inflammatory drugs that work by inhibiting the enzymes COX-1 and COX-2, which are responsible for the synthesis of prostanoids such as prostaglandins and thromboxanes. In the kidneys, prostaglandins play a crucial role in vasodilating the afferent arterioles of the glomeruli, allowing for increased blood flow and a higher glomerular filtration rate (GFR).
However, when NSAIDs inhibit the COX enzymes, the levels of prostaglandins decrease, leading to a reduction in afferent arteriole vasodilation and subsequently, a decrease in renal perfusion and GFR. This can have negative consequences for kidney function, particularly in individuals with pre-existing kidney disease or those taking high doses of NSAIDs for prolonged periods of time.
It is important for healthcare providers to consider the potential impact of NSAIDs on kidney function and to monitor patients accordingly, especially those at higher risk for kidney damage. Alternative treatments or lower doses of NSAIDs may be recommended to minimize the risk of kidney injury.
-
This question is part of the following fields:
- Renal System
-
-
Question 11
Incorrect
-
A 62-year-old male with type 2 diabetes is urgently referred by his GP due to poor glycaemic control for the past three days, with home blood glucose readings around 25 mmol/L. He is currently being treated with metformin and lisinopril. Yesterday, his GP checked his U+E and found that his serum sodium was 138 mmol/L (137-144), serum potassium was 5.8 mmol/L (3.5-4.9), serum urea was 20 mmol/L (2.5-7.5), and serum creatinine was 350 µmol/L (60-110). On examination, he has a temperature of 39°C, a pulse of 108 bpm, a blood pressure of 96/60 mmHg, a respiratory rate of 32/min, and oxygen saturations of 99% on air. His cardiovascular, respiratory, and abdominal examination are otherwise normal. Further investigations reveal a plasma glucose level of 17 mmol/L (3.0-6.0) and urine analysis showing blood ++ and protein ++, but ketones are negative. What is the likely diagnosis?
Your Answer: Diabetic ketoacidosis
Correct Answer: Sepsis
Explanation:The causes of septic shock are important to understand in order to provide appropriate treatment and improve patient outcomes. Septic shock can cause fever, hypotension, and renal failure, as well as tachypnea due to metabolic acidosis. However, it is crucial to rule out other conditions such as hyperosmolar hyperglycemic state or diabetic ketoacidosis, which have different symptoms and diagnostic criteria.
While metformin can contribute to acidosis, it is unlikely to be the primary cause in this case. Diabetic patients may be prone to renal tubular acidosis, but this is not likely to be the cause of an acute presentation. Instead, a type IV renal tubular acidosis, characterized by hyporeninaemic hypoaldosteronism, may be a more likely association.
Overall, it is crucial to carefully evaluate patients with septic shock and consider all possible causes of their symptoms. By ruling out other conditions and identifying the underlying cause of the acidosis, healthcare providers can provide targeted treatment and improve patient outcomes. Further research and education on septic shock and its causes can also help to improve diagnosis and treatment in the future.
-
This question is part of the following fields:
- Renal System
-
-
Question 12
Incorrect
-
During your placement on a gastro ward, a patient in their late 60s develops excessive diarrhea. Can you identify the location in the gastrointestinal tract where most of the water is absorbed?
Your Answer: Rectum
Correct Answer: Jejunum
Explanation:The absorption of water in the gastrointestinal tract is facilitated by the absorption of ions across cell membranes. The majority of water is absorbed in the small intestine, particularly in the jejunum.
Water Absorption in the Human Body
Water absorption in the human body is a crucial process that occurs in the small bowel and colon. On average, a person ingests up to 2000ml of liquid orally within a 24-hour period. Additionally, gastrointestinal secretions contribute to a further 8000ml of fluid entering the small bowel. The process of intestinal water absorption is passive and is dependent on the solute load. In the jejunum, the active absorption of glucose and amino acids creates a concentration gradient that facilitates the flow of water across the membrane. On the other hand, in the ileum, most water is absorbed through facilitated diffusion, which involves the movement of water molecules with sodium ions.
The colon also plays a significant role in water absorption, with approximately 150ml of water entering it daily. However, the colon can adapt and increase this amount following resection. Overall, water absorption is a complex process that involves various mechanisms and is essential for maintaining proper hydration levels in the body.
-
This question is part of the following fields:
- Renal System
-
-
Question 13
Incorrect
-
A 60-year-old man complains of excessive urination and increased thirst. You want to examine for diabetes insipidus.
What is the most suitable test to conduct?Your Answer: Short Synacthen test
Correct Answer: Water deprivation test
Explanation:The water deprivation test is a diagnostic tool for investigating diabetes insipidus. The Short Synacthen test is utilized to diagnose Addison’s disease. Cranial diabetes insipidus can be treated with Desmopressin, while nephrogenic diabetes insipidus can be treated with thiazide diuretics.
Diabetes insipidus is a medical condition that can be caused by either a decreased secretion of antidiuretic hormone (ADH) from the pituitary gland (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be caused by various factors such as head injury, pituitary surgery, and infiltrative diseases like sarcoidosis. On the other hand, nephrogenic DI can be caused by genetic factors, electrolyte imbalances, and certain medications like lithium and demeclocycline. The common symptoms of DI are excessive urination and thirst. Diagnosis is made through a water deprivation test and checking the osmolality of the urine. Treatment options include thiazides and a low salt/protein diet for nephrogenic DI, while central DI can be treated with desmopressin.
-
This question is part of the following fields:
- Renal System
-
-
Question 14
Incorrect
-
Which of the following is the primary location for the release of dehydroepiandrosterone in individuals?
Your Answer: Zona fasciculata of the adrenal gland
Correct Answer: Zona reticularis of the adrenal gland
Explanation:The adrenal cortex can be remembered with the mnemonic GFR-ACD, where DHEA is a hormone with androgenic effects that is primarily secreted by the adrenal gland.
The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.
-
This question is part of the following fields:
- Renal System
-
-
Question 15
Incorrect
-
A 5-year-old boy presents with pain in the abdomen and painless blood in the urine. Upon examination, a lump is felt in the left flank. What is the probable diagnosis?
Your Answer: Ulcerative colitis
Correct Answer: Wilms' tumour
Explanation:A Wilms’ tumour is the most prevalent type of renal carcinoma in children, making renal cell carcinoma an incorrect diagnosis. Ulcerative colitis is rare in children of this age, and the other potential diagnoses are unlikely based on the child’s symptoms.
Wilms’ Tumour: A Common Childhood Malignancy
Wilms’ tumour, also known as nephroblastoma, is a prevalent type of cancer in children, with a median age of diagnosis at 3 years old. It is often associated with Beckwith-Wiedemann syndrome, hemihypertrophy, and a loss-of-function mutation in the WT1 gene on chromosome 11. The most common presenting feature is an abdominal mass, which is usually painless, but other symptoms such as haematuria, flank pain, anorexia, and fever may also occur. In 95% of cases, the tumour is unilateral, and metastases are found in 20% of patients, most commonly in the lungs.
If a child presents with an unexplained enlarged abdominal mass, it is crucial to arrange a paediatric review within 48 hours to rule out Wilms’ tumour. The management of this cancer typically involves nephrectomy, chemotherapy, and radiotherapy if the disease is advanced. Fortunately, the prognosis for Wilms’ tumour is good, with an 80% cure rate.
Histologically, Wilms’ tumour is characterized by epithelial tubules, areas of necrosis, immature glomerular structures, stroma with spindle cells, and small cell blastomatous tissues resembling the metanephric blastema. Overall, early detection and prompt treatment are essential for a successful outcome in children with Wilms’ tumour.
-
This question is part of the following fields:
- Renal System
-
-
Question 16
Correct
-
A 6-year-old girl presents to the emergency department with her parents, who are concerned about her extremely swollen legs. The patient reports feeling fine and has no significant medical history.
Upon examination, there is pitting edema that extends to the lower abdominal wall. Laboratory tests confirm hypoalbuminemia.
A urine dipstick reveals ++++ proteinuria and no red blood cells.
What is the probable result of electron microscopy of a renal biopsy?Your Answer: Effacement of podocyte foot processes
Explanation:Effacement of podocyte foot processes is observed in minimal change disease on electron microscopy, indicating fusion of podocytes. This condition is the most common cause of nephrotic syndrome in children, which is characterized by hypoalbuminemia, edema, and marked proteinuria. Although normal glomerular architecture may be observed in minimal change disease when viewed with a light microscope, electron microscopy is necessary to detect the effacement of podocyte foot processes. Kimmelstiel-Wilson lesions are not a feature of minimal change disease, as they are commonly observed in diabetic nephropathy. Similarly, mesangial cell proliferation is not a hallmark of minimal change disease, as it is typically observed in membranoproliferative glomerulonephritis, which presents as a nephritic syndrome and is not consistent with the patient’s symptoms. Overall, minimal change disease is typically responsive to steroid treatment and has a favorable prognosis.
Minimal change disease is a condition that typically presents as nephrotic syndrome, with children accounting for 75% of cases and adults accounting for 25%. While most cases are idiopathic, a cause can be found in around 10-20% of cases, such as drugs like NSAIDs and rifampicin, Hodgkin’s lymphoma, thymoma, or infectious mononucleosis. The pathophysiology of the disease involves T-cell and cytokine-mediated damage to the glomerular basement membrane, resulting in polyanion loss and a reduction of electrostatic charge, which increases glomerular permeability to serum albumin.
The features of minimal change disease include nephrotic syndrome, normotension (hypertension is rare), and highly selective proteinuria, where only intermediate-sized proteins like albumin and transferrin leak through the glomerulus. Renal biopsy shows normal glomeruli on light microscopy, while electron microscopy shows fusion of podocytes and effacement of foot processes.
Management of minimal change disease involves oral corticosteroids, which are effective in 80% of cases. For steroid-resistant cases, cyclophosphamide is the next step. The prognosis for the disease is generally good, although relapse is common. Roughly one-third of patients have just one episode, one-third have infrequent relapses, and one-third have frequent relapses that stop before adulthood.
-
This question is part of the following fields:
- Renal System
-
-
Question 17
Incorrect
-
A healthy 35-year-old man gives a blood donation of 500ml. What is the most probable process that will take place?
Your Answer: Reduction of urine output
Correct Answer: Activation of the renin angiotensin system
Explanation:Losing 500ml of fluid (for a 70 Kg male) is typically enough to trigger the renin angiotensin system, but it is unlikely to cause any other bodily disruptions.
Understanding Bleeding and its Effects on the Body
Bleeding, even if it is of a small volume, triggers a response in the body that causes generalised splanchnic vasoconstriction. This response is mediated by the activation of the sympathetic nervous system. The process of vasoconstriction is usually enough to maintain renal perfusion and cardiac output if the volume of blood lost is small. However, if greater volumes of blood are lost, the renin angiotensin system is activated, resulting in haemorrhagic shock.
The body’s physiological measures can restore circulating volume if the source of bleeding ceases. Ongoing bleeding, on the other hand, will result in haemorrhagic shock. Blood loss is typically quantified by the degree of shock produced, which is determined by parameters such as blood loss volume, pulse rate, blood pressure, respiratory rate, urine output, and symptoms. Understanding the effects of bleeding on the body is crucial in managing and treating patients who experience blood loss.
-
This question is part of the following fields:
- Renal System
-
-
Question 18
Incorrect
-
Which one of the following structures is not located behind the left kidney?
Your Answer: Medial arcuate ligament
Correct Answer: 10th rib
Explanation:Renal Anatomy: Understanding the Structure and Relations of the Kidneys
The kidneys are two bean-shaped organs located in a deep gutter alongside the vertebral bodies. They measure about 11cm long, 5cm wide, and 3 cm thick, with the left kidney usually positioned slightly higher than the right. The upper pole of both kidneys approximates with the 11th rib, while the lower border is usually alongside L3. The kidneys are surrounded by an outer cortex and an inner medulla, which contains pyramidal structures that terminate at the renal pelvis into the ureter. The renal sinus lies within the kidney and contains branches of the renal artery, tributaries of the renal vein, major and minor calyces, and fat.
The anatomical relations of the kidneys vary depending on the side. The right kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, and transversus abdominis, while the left kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, transversus abdominis, stomach, pancreas, spleen, and distal part of the small intestine. Each kidney and suprarenal gland is enclosed within a common layer of investing fascia, derived from the transversalis fascia, which is divided into anterior and posterior layers (Gerotas fascia).
At the renal hilum, the renal vein lies most anteriorly, followed by the renal artery (an end artery), and the ureter lies most posteriorly. Understanding the structure and relations of the kidneys is crucial in diagnosing and treating renal diseases and disorders.
-
This question is part of the following fields:
- Renal System
-
-
Question 19
Incorrect
-
A 75-year-old woman is admitted for a laparoscopic cholecystectomy. As part of her pre-operative evaluation, it is discovered that she is taking furosemide to manage her hypertension. What percentage of the sodium filtered at the glomerulus will be eliminated?
Your Answer: Between 1 and 2%
Correct Answer: Up to 25%
Explanation:Loop diuretics cause significant increases in sodium excretion by acting on both the medullary and cortical regions of the thick ascending limb of the loop of Henle. This leads to a reduction in the medullary osmolal gradient and an increase in the excretion of free water, along with sodium loss. Unlike thiazide diuretics, which do not affect urine concentration and are more likely to cause hyponatremia, loop diuretics result in the loss of both sodium and water.
Diuretic drugs are classified into three major categories based on the location where they inhibit sodium reabsorption. Loop diuretics act on the thick ascending loop of Henle, thiazide diuretics on the distal tubule and connecting segment, and potassium sparing diuretics on the aldosterone-sensitive principal cells in the cortical collecting tubule. Sodium is reabsorbed in the kidney through Na+/K+ ATPase pumps located on the basolateral membrane, which return reabsorbed sodium to the circulation and maintain low intracellular sodium levels. This ensures a constant concentration gradient.
The physiological effects of commonly used diuretics vary based on their site of action. furosemide, a loop diuretic, inhibits the Na+/K+/2Cl- carrier in the ascending limb of the loop of Henle and can result in up to 25% of filtered sodium being excreted. Thiazide diuretics, which act on the distal tubule and connecting segment, inhibit the Na+Cl- carrier and typically result in between 3 and 5% of filtered sodium being excreted. Finally, spironolactone, a potassium sparing diuretic, inhibits the Na+/K+ ATPase pump in the cortical collecting tubule and typically results in between 1 and 2% of filtered sodium being excreted.
-
This question is part of the following fields:
- Renal System
-
-
Question 20
Incorrect
-
A 5-year-old boy comes to his family doctor with a purple rash on his buttocks and behind his knees. His parents have observed that his urine has been slightly pink for the past few days. The boy had recently recuperated from a mild cold. The doctor suspects that he may have an IgA-mediated small vessel vasculitis.
What is the suspected diagnosis of this condition?Your Answer: Post-streptococcal glomerulonephritis
Correct Answer: Henoch-Schonlein purpura
Explanation:The correct answer is Henoch-Schonlein purpura, which is a type of small vessel vasculitis mediated by IgA. It typically affects children who have recently had a viral infection and is characterized by a purplish rash on the buttocks and flexor surfaces of the upper and lower limbs. Treatment is mainly supportive.
Granulomatosis with polyangitis is not the correct answer as it is a different type of vasculitis that is not IgA-mediated. It usually presents with a triad of upper respiratory symptoms (such as sinusitis and epistaxis), lower respiratory tract symptoms (like cough and haemoptysis), and glomerulonephritis (which causes haematuria and proteinuria leading to frothy urine).
Kawasaki disease is another type of vasculitis that affects children, but it is a medium vessel vasculitis triggered by unknown mechanisms. The classic presentation includes prolonged fever (lasting over 5 days) and redness of the eyes, hands, and feet. There may also be mucosal involvement with the characteristic strawberry tongue.
Minimal change disease is the most common cause of nephrotic syndrome in young children. It can also be associated with a preceding viral infection, but it does not present with a purplish rash. Instead, it is characterized by facial swelling and frothy urine.
Understanding Henoch-Schonlein Purpura
Henoch-Schonlein purpura (HSP) is a type of small vessel vasculitis that is mediated by IgA. It is often associated with IgA nephropathy, also known as Berger’s disease. HSP is commonly observed in children following an infection.
The condition is characterized by a palpable purpuric rash, which is accompanied by localized oedema over the buttocks and extensor surfaces of the arms and legs. Other symptoms include abdominal pain and polyarthritis. In some cases, patients may also experience haematuria and renal failure, which are indicative of IgA nephropathy.
Treatment for HSP typically involves analgesia for arthralgia. While there is inconsistent evidence for the use of steroids and immunosuppressants, supportive care is generally recommended for patients with nephropathy. The prognosis for HSP is usually excellent, particularly in children without renal involvement. However, it is important to monitor blood pressure and urinalysis to detect any signs of progressive renal involvement. Approximately one-third of patients may experience a relapse.
In summary, Henoch-Schonlein purpura is a self-limiting condition that is often seen in children following an infection. While the symptoms can be uncomfortable, the prognosis is generally good. However, it is important to monitor patients for any signs of renal involvement and provide appropriate supportive care.
-
This question is part of the following fields:
- Renal System
-
-
Question 21
Incorrect
-
A 38-year-old male patient complains of a painless lump in his left testicle that he discovered during self-examination. Upon examination, a solid nodule is palpable in the left testicle, and ultrasound imaging reveals an irregular mass lesion. The patient's serum AFP and HCG levels are both normal. What is the probable diagnosis?
Your Answer: Yolk sac tumour
Correct Answer: Seminoma
Explanation:A seminoma is the most probable diagnosis for this man based on his age, symptoms, and normal levels of tumour markers. Teratomas and yolk sac tumours usually result in elevated AFP and HCG levels, which are not present in seminomas. Epididymo-orchitis does not cause painless irregular mass lesions.
Overview of Testicular Disorders
Testicular disorders can range from benign conditions to malignant tumors. Testicular cancer is the most common malignancy in men aged 20-30 years, with germ-cell tumors accounting for 95% of cases. Seminomas are the most common subtype, while non-seminomatous germ cell tumors include teratoma, yolk sac tumor, choriocarcinoma, and mixed germ cell tumors. Risk factors for testicular cancer include cryptorchidism, infertility, family history, Klinefelter’s syndrome, and mumps orchitis. The most common presenting symptom is a painless lump, but pain, hydrocele, and gynecomastia may also be present.
Benign testicular disorders include epididymo-orchitis, which is an acute inflammation of the epididymis often caused by bacterial infection. Testicular torsion, which results in testicular ischemia and necrosis, is most common in males aged between 10 and 30. Hydrocele presents as a mass that transilluminates and may occur as a result of a patent processus vaginalis in children. Treatment for these conditions varies, with orchidectomy being the primary treatment for testicular cancer. Surgical exploration is necessary for testicular torsion, while epididymo-orchitis and hydrocele may require medication or surgical procedures depending on the severity of the condition.
-
This question is part of the following fields:
- Renal System
-
-
Question 22
Incorrect
-
A 55-year-old woman who underwent laparoscopic cholecystectomy is being evaluated on postoperative day 2. She reports multiple episodes of vomiting and passing urine only once since the operation. Her medical history includes poorly controlled hypertension on dual therapy. She is currently taking fenoldopam, ACE inhibitors, calcium channel blockers, atorvastatin, and paracetamol. On physical examination, she has dry mucous membranes and a BMI of 31 kg/m². Her vital signs show a mean arterial pressure of 80 mmHg and a heart rate of 110 beats per minute. Laboratory results reveal:
Na+ 130 mmol/L (135 - 145)
K+ 5.1 mmol/L (3.5 - 5.0)
Creatinine 160 µmol/L (55 - 120)
What is the most important medication that should be discontinued in this patient?Your Answer: Calcium channel blockers
Correct Answer: ACE inhibitors
Explanation:In cases of acute kidney injury (AKI), it is crucial to identify and treat the underlying cause. However, it is important to note that ACE inhibitors should be discontinued as they can worsen renal function by causing efferent arteriolar vasodilation, leading to a decrease in GFR. On the other hand, atorvastatin should not be stopped as it does not accumulate and worsen renal function, but frequent monitoring is necessary. If AKI is caused by rhabdomyolysis, then statins should be immediately discontinued. Calcium channel blockers do not exacerbate renal impairment, but it is advisable to reduce the dose and withhold them if clinical signs appear. Fenoldopam, on the other hand, does not impair kidney function but rather increases blood flow to the renal cortex and medullary regions by decreasing systemic vascular resistance.
Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.
The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.
Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.
-
This question is part of the following fields:
- Renal System
-
-
Question 23
Incorrect
-
A 42-year-old woman comes to the clinic for a follow-up on her ambulatory blood pressure test results. The test shows an average blood pressure of 150/92 mmHg. You suggest starting antihypertensive medication and recommend ACE inhibitors as the first-line treatment for her age group. These medications work by inhibiting the action of angiotensin-converting-enzyme, which converts angiotensin I to angiotensin II. Renin catalyzes the hydrolysis of angiotensinogen to produce angiotensin I. Where in the body is renin produced?
Your Answer: Adrenal cortex
Correct Answer: Kidneys
Explanation:Renin, which is produced in the kidneys’ juxtaglomerular cells, plays a crucial role in the renin-angiotensin-aldosterone system by converting angiotensinogen into angiotensin I. Angiotensin-converting-enzyme, which is primarily located in the lungs, converts angiotensin I to angiotensin II. The adrenal cortex produces aldosterone, a vital compound in the system, while the liver produces angiotensinogen. The pancreas, on the other hand, has no involvement in this system and produces insulin, glucagon, and other hormones and enzymes. Based on the World Health Organisation’s hypertension classification, the patient in question has mild hypertension, and according to current NICE guidelines, individuals under 55 years old with mild hypertension should receive lifestyle advice and be prescribed ACE inhibitors.
The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.
-
This question is part of the following fields:
- Renal System
-
-
Question 24
Correct
-
A 65-year-old woman visits her GP after experiencing painless frank haematuria. She reports that this happened two days ago and her urine looked like port wine. She has a smoking history of 30 pack-years and denies drinking alcohol.
The patient is urgently referred for cystoscopy, which reveals a 2x3cm ulcerated lesion adjacent to the left ureteric orifice. The lesion is biopsied and diagnosed as transitional cell carcinoma.
Which venous structure transmits blood from the tumour to the internal iliac veins?Your Answer: Vesicouterine plexus
Explanation:The vesicouterine plexus is responsible for draining the bladder in females.
Bladder Anatomy and Innervation
The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.
-
This question is part of the following fields:
- Renal System
-
-
Question 25
Correct
-
A 15-year-old teenage boy comes to see his General Practitioner with swelling in his left scrotum. He reports no pain or other symptoms. During examination in a supine position, the GP notes that the left testicle is smaller than the right and there are no abnormal masses on either side. The GP diagnoses the patient with a varicocele, which is caused by increased hydrostatic pressure in the venous plexus of the left scrotum. The question is, where does the left testicular (gonadal) vein drain into?
Your Answer: Left renal vein
Explanation:The left renal vein receives drainage from the left testicular vein, while the common iliac and internal iliac veins do not receive any blood from the testicles. The internal iliac veins collect blood from the pelvic internal organs and join the external iliac vein, which drains blood from the legs, to form the common iliac vein. On the other hand, the right testicular vein directly drains into the inferior vena cava since it is situated to the right of the midline. The great saphenous veins, which are located superficially, collect blood from the toes.
Scrotal Problems: Epididymal Cysts, Hydrocele, and Varicocele
Epididymal cysts are the most frequent cause of scrotal swellings seen in primary care. They are usually found posterior to the testicle and separate from the body of the testicle. Epididymal cysts may be associated with polycystic kidney disease, cystic fibrosis, or von Hippel-Lindau syndrome. Diagnosis is usually confirmed by ultrasound, and management is typically supportive. However, surgical removal or sclerotherapy may be attempted for larger or symptomatic cysts.
Hydrocele refers to the accumulation of fluid within the tunica vaginalis. They can be communicating or non-communicating. Communicating hydroceles are common in newborn males and usually resolve within the first few months of life. Non-communicating hydroceles are caused by excessive fluid production within the tunica vaginalis. Hydroceles may develop secondary to epididymo-orchitis, testicular torsion, or testicular tumors. Diagnosis may be clinical, but ultrasound is required if there is any doubt about the diagnosis or if the underlying testis cannot be palpated. Management depends on the severity of the presentation, and further investigation, such as ultrasound, is usually warranted to exclude any underlying cause such as a tumor.
Varicocele is an abnormal enlargement of the testicular veins. They are usually asymptomatic but may be important as they are associated with infertility. Varicoceles are much more common on the left side and are classically described as a bag of worms. Diagnosis is made through ultrasound with Doppler studies. Management is usually conservative, but occasionally surgery is required if the patient is troubled by pain. There is ongoing debate regarding the effectiveness of surgery to treat infertility.
-
This question is part of the following fields:
- Renal System
-
-
Question 26
Correct
-
A 72-year-old man is brought to the emergency department by ambulance after collapsing at work due to dizziness. The paramedic reports that his ECG indicates hyperkalaemia. What is an ECG sign of hyperkalaemia?
Your Answer: Sinusoidal waveform
Explanation:Hyperkalaemia can be identified on an ECG by the presence of a sinusoidal waveform, as well as small or absent P waves, tall-tented T waves, and broad bizarre QRS complexes. In severe cases, the QRS complexes may even form a sinusoidal wave pattern. Asystole can also occur as a result of hyperkalaemia.
On the other hand, ECG signs of hypokalaemia include small or inverted T waves, ST segment depression, and prominent U waves. A prolonged PR interval and long QT interval may also be present, although the latter can also be a sign of hyperkalaemia. In healthy individuals, narrow QRS complexes are typically observed, whereas hyperkalaemia can cause the QRS complexes to become wide and abnormal.
Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.
There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.
It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.
-
This question is part of the following fields:
- Renal System
-
-
Question 27
Correct
-
A 65-year-old man comes in with symptoms related to his lower urinary tract and is given the option to take a PSA test. What factor could potentially affect the accuracy of his PSA level?
Your Answer: Vigorous exercise in the past 48 hours
Explanation:Understanding PSA Testing for Prostate Cancer
Prostate specific antigen (PSA) is an enzyme produced by the prostate gland that has become an important marker for prostate cancer. However, there is still much debate about its usefulness as a screening tool. The NHS Prostate Cancer Risk Management Programme (PCRMP) has published guidelines on how to handle requests for PSA testing in asymptomatic men. While a recent European trial showed a reduction in prostate cancer deaths, there is also a high risk of over-diagnosis and over-treatment. As a result, the National Screening Committee has decided not to introduce a prostate cancer screening programme yet, but rather allow men to make an informed choice.
PSA levels may be raised by various factors, including benign prostatic hyperplasia, prostatitis, ejaculation, vigorous exercise, urinary retention, and instrumentation of the urinary tract. However, PSA levels are not always a reliable indicator of prostate cancer. For example, around 20% of men with prostate cancer have a normal PSA level, while around 33% of men with a PSA level of 4-10 ng/ml will be found to have prostate cancer. To add greater meaning to a PSA level, age-adjusted upper limits and monitoring changes in PSA level over time (PSA velocity or PSA doubling time) are used. The PCRMP recommends age-adjusted upper limits for PSA levels, with a limit of 3.0 ng/ml for men aged 50-59 years, 4.0 ng/ml for men aged 60-69 years, and 5.0 ng/ml for men over 70 years old.
-
This question is part of the following fields:
- Renal System
-
-
Question 28
Correct
-
A 56-year-old man with a history of alcohol excess and type 2 diabetes presents to the emergency department in an intoxicated state. He takes metformin and his recent HbA1c was 44 mmol/mol. On arrival, his blood sugar is 5.1 mmol/L and he frequently needs to urinate. The examination is unremarkable except for his intoxicated state. His blood test shows a creatinine level of 66 µmol/L (55 - 120). What is causing the patient's polyuria?
Your Answer: ADH suppression in the posterior pituitary gland
Explanation:Alcohol bingeing can result in the suppression of ADH in the posterior pituitary gland, leading to polyuria.
Polyuria, or excessive urination, can be caused by a variety of factors. A recent review in the BMJ categorizes these causes by their frequency of occurrence. The most common causes of polyuria include the use of diuretics, caffeine, and alcohol, as well as diabetes mellitus, lithium, and heart failure. Less common causes include hypercalcaemia and hyperthyroidism, while rare causes include chronic renal failure, primary polydipsia, and hypokalaemia. The least common cause of polyuria is diabetes insipidus, which occurs in less than 1 in 10,000 cases. It is important to note that while these frequencies may not align with exam questions, understanding the potential causes of polyuria can aid in diagnosis and treatment.
-
This question is part of the following fields:
- Renal System
-
-
Question 29
Correct
-
A 58-year-old man is having a radical nephrectomy performed through a posterior approach. What is the structure that is most likely to be encountered during the surgical procedure?
Your Answer: 12th rib
Explanation:During a posterior approach, the kidneys may come across the 11th and 12th ribs which are located at the back. It is important to note that a potential complication of this surgery is the occurrence of a pneumothorax.
Renal Anatomy: Understanding the Structure and Relations of the Kidneys
The kidneys are two bean-shaped organs located in a deep gutter alongside the vertebral bodies. They measure about 11cm long, 5cm wide, and 3 cm thick, with the left kidney usually positioned slightly higher than the right. The upper pole of both kidneys approximates with the 11th rib, while the lower border is usually alongside L3. The kidneys are surrounded by an outer cortex and an inner medulla, which contains pyramidal structures that terminate at the renal pelvis into the ureter. The renal sinus lies within the kidney and contains branches of the renal artery, tributaries of the renal vein, major and minor calyces, and fat.
The anatomical relations of the kidneys vary depending on the side. The right kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, and transversus abdominis, while the left kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, transversus abdominis, stomach, pancreas, spleen, and distal part of the small intestine. Each kidney and suprarenal gland is enclosed within a common layer of investing fascia, derived from the transversalis fascia, which is divided into anterior and posterior layers (Gerotas fascia).
At the renal hilum, the renal vein lies most anteriorly, followed by the renal artery (an end artery), and the ureter lies most posteriorly. Understanding the structure and relations of the kidneys is crucial in diagnosing and treating renal diseases and disorders.
-
This question is part of the following fields:
- Renal System
-
-
Question 30
Incorrect
-
A 54-year-old male comes to the emergency surgical department complaining of intense abdominal pain. He has no history of malignancy and is generally healthy. The biochemistry lab contacts the ward with an urgent message that his corrected calcium level is 3.6 mmol/l. What is the preferred medication for treating this abnormality?
Your Answer: Vitamin D
Correct Answer: IV Pamidronate
Explanation:Pamidronate is the preferred drug due to its high efficacy and prolonged effects. If using calcitonin, it should be combined with another medication to ensure continued treatment of hypercalcemia after its short-term effects wear off. Zoledronate is the preferred option for cases related to cancer.
Managing Hypercalcaemia
Hypercalcaemia can be managed through various methods. The first step is to rehydrate the patient with normal saline, usually at a rate of 3-4 litres per day. Once rehydration is achieved, bisphosphonates can be administered. These drugs take 2-3 days to work, with maximum effect seen at 7 days.
Calcitonin is another option that can be used for quicker effect than bisphosphonates. In cases of sarcoidosis, steroids may also be used. However, loop diuretics such as furosemide should be used with caution as they may worsen electrolyte derangement and volume depletion. They are typically reserved for patients who cannot tolerate aggressive fluid rehydration.
In summary, the management of hypercalcaemia involves rehydration with normal saline followed by the use of bisphosphonates, calcitonin, or steroids in certain cases. Loop diuretics may also be used, but with caution. It is important to monitor electrolyte levels and adjust treatment accordingly.
-
This question is part of the following fields:
- Renal System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)