-
Question 1
Incorrect
-
When conducting minor surgery on the scalp, which region is considered a hazardous area in terms of infection spreading to the central nervous system (CNS)?
Your Answer: Pericranium
Correct Answer: Loose areolar tissue
Explanation:The risk of infection spreading easily makes this area highly dangerous. The emissary veins that drain this region could facilitate the spread of sepsis to the cranial cavity.
Patients with head injuries should be managed according to ATLS principles and extracranial injuries should be managed alongside cranial trauma. Different types of traumatic brain injury include extradural hematoma, subdural hematoma, and subarachnoid hemorrhage. Primary brain injury may be focal or diffuse, while secondary brain injury occurs when cerebral edema, ischemia, infection, tonsillar or tentorial herniation exacerbates the original injury. Management may include IV mannitol/furosemide, decompressive craniotomy, and ICP monitoring. Pupillary findings can provide information on the location and severity of the injury.
-
This question is part of the following fields:
- Neurological System
-
-
Question 2
Incorrect
-
Where does the spinal cord terminate in infants?
Your Answer: L1
Correct Answer: L3
Explanation:During the third month of development, the spinal cord of the foetus extends throughout the entire vertebral canal. However, as the vertebral column continues to grow, it surpasses the growth rate of the spinal cord. As a result, at birth, the spinal cord is located at the level of L3, but by adulthood, it shifts up to L1-2.
The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.
One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 3
Incorrect
-
A young woman comes in with a sudden and severe headache at the back of her head, which quickly leads to seizures. Upon examination, doctors discover an aneurysm. During the assessment, they observe that her right eye is displaced downwards and to the side. What could be the probable reason for this?
Your Answer: Abducens nerve palsy
Correct Answer: Oculomotor nerve palsy
Explanation:When someone has oculomotor nerve palsy, their medial rectus muscle is disabled, which causes the lateral rectus muscle to move the eye uncontrollably to the side. Additionally, the superior rectus, inferior rectus, and inferior oblique muscles are also affected, causing the eye to move downwards due to the unopposed action of the superior oblique muscle. This condition also results in ptosis, or drooping of the eyelid, due to paralysis of the levator palpebrae superioris muscle, and mydriasis, or dilation of the pupil, due to damage to the parasympathetic fibers.
Disorders of the Oculomotor System: Nerve Path and Palsy Features
The oculomotor system is responsible for controlling eye movements and pupil size. Disorders of this system can result in various nerve path and palsy features. The oculomotor nerve has a large nucleus at the midbrain and its fibers pass through the red nucleus and the pyramidal tract, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience ptosis, eye down and out, and an inability to move the eye superiorly, inferiorly, or medially. The pupil may also become fixed and dilated.
The trochlear nerve has the longest intracranial course and is the only nerve to exit the dorsal aspect of the brainstem. Its nucleus is located at the midbrain and it passes between the posterior cerebral and superior cerebellar arteries, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience vertical diplopia (diplopia on descending the stairs) and an inability to look down and in.
The abducens nerve has its nucleus in the mid pons and is responsible for the convergence of eyes in primary position. When this nerve is affected, patients may experience lateral diplopia towards the side of the lesion and the eye may deviate medially. Understanding the nerve path and palsy features of the oculomotor system can aid in the diagnosis and treatment of disorders affecting this important system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 4
Correct
-
A 90-year-old man was brought to the clinic by his family due to a decline in his memory over the past 6 months, accompanied by occasional confusion. His personality and behavior remain unchanged. Upon neurological examination, no abnormalities were found. Following further investigations, he was diagnosed with dementia. What is the probable molecular pathology underlying his symptoms?
Your Answer: Presence of neurofibrillary tangles
Explanation:Alzheimer’s disease is the most prevalent cause of dementia, followed by vascular dementia. It is characterized by the accumulation of type A-Beta-amyloid protein, leading to cortical plaques, and abnormal aggregation of the tau protein, resulting in intraneuronal neurofibrillary tangles. Parkinson’s disease is indicated by the loss of dopaminergic neurons in the substantia nigra, while Lewy body dementia is suggested by the presence of Lewy bodies. Vascular dementia is associated with atherosclerosis of cerebral arteries.
Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.
The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.
Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.
-
This question is part of the following fields:
- Neurological System
-
-
Question 5
Incorrect
-
You have been requested by the GP to have a conversation with an 85-year-old man regarding his recent diagnosis of Alzheimer's disease. Alzheimer's is the most prevalent cause of dementia in the UK, and it is characterized by the abnormal hyperphosphorylation and aggregation of tau protein, which is primarily found in neurons. What is the typical outcome of this protein's hyperphosphorylation or abnormal phosphorylation?
Your Answer: Reduced acetylcholine receptors at the neuromuscular junction
Correct Answer: Reduced binding to microtubules, and reduced microtubule stability
Explanation:The binding of Tau protein to microtubules, which helps to stabilize their assembly, is inhibited by phosphorylation. This can lead to decreased microtubule stability. Blood pressure is not typically impacted by this process. Lewy bodies are more commonly associated with Parkinson’s disease, while reduced acetylcholine receptors at the neuromuscular junction are a hallmark of myasthenia gravis.
Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.
The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.
Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.
-
This question is part of the following fields:
- Neurological System
-
-
Question 6
Incorrect
-
A 46-year-old man comes to the clinic complaining of bilateral sciatica and partial urinary incontinence. Upon conducting a comprehensive examination and lumbosacral magnetic resonance imaging, the diagnosis of cauda equina syndrome is confirmed at the L2 level.
What is the most probable finding to be observed during the examination?Your Answer: Hyperreflexic knee jerk reflex
Correct Answer: S2-S4 anaesthesia
Explanation:Lesions in the lower lumbar region cannot result in upper motor neuron signs because the spinal cord terminates at L1.
The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.
One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 7
Incorrect
-
An 88-year-old male is brought to the emergency department by his carer due to complaints of numbness and tingling in his face upon waking up. His medical history includes hypertension and type 2 diabetes mellitus. Upon examination, he exhibits altered sensation limited to his face, with no signs of limb weakness, visual changes, or hearing loss. An MRI scan confirms ischaemia to the thalamus. Which specific nucleus of the thalamus is most likely affected?
Your Answer: Medial geniculate nucleus
Correct Answer: Ventral posteromedial nucleus
Explanation:If the medial portion of the ventral posterior nucleus of the thalamus is damaged, it can lead to changes in facial sensation. In contrast, damage to other areas of the thalamus can affect different functions. For example, damage to the medial geniculate nucleus can affect hearing, while damage to the lateral geniculate nucleus can affect vision. Damage to the ventral anterior nucleus can cause problems with movement, and damage to the ventral posterolateral nucleus can affect body sensation such as touch, pain, and pressure.
The Thalamus: Relay Station for Motor and Sensory Signals
The thalamus is a structure located between the midbrain and cerebral cortex that serves as a relay station for motor and sensory signals. Its main function is to transmit these signals to the cerebral cortex, which is responsible for processing and interpreting them. The thalamus is composed of different nuclei, each with a specific function. The lateral geniculate nucleus relays visual signals, while the medial geniculate nucleus transmits auditory signals. The medial portion of the ventral posterior nucleus (VML) is responsible for facial sensation, while the ventral anterior/lateral nuclei relay motor signals. Finally, the lateral portion of the ventral posterior nucleus is responsible for body sensation, including touch, pain, proprioception, pressure, and vibration. Overall, the thalamus plays a crucial role in the transmission of sensory and motor information to the brain, allowing us to perceive and interact with the world around us.
-
This question is part of the following fields:
- Neurological System
-
-
Question 8
Incorrect
-
A 49-year-old female patient complains of weakness and paraesthesias in her left hand and visits her GP. During the examination, the doctor observes reduced power in the hypothenar and intrinsic muscles, along with decreased sensation on the medial palm and medial two and a half digits. However, the sensation to the dorsum of the hand remains unaffected, and wrist flexion is normal. Based on these findings, where is the most probable location of the ulnar nerve lesion?
Your Answer: Carpal tunnel
Correct Answer: Guyon's canal
Explanation:Distal ulnar nerve compression can occur at Guyon’s canal, which is located adjacent to the carpal tunnel. The ulnar nerve passes through this canal as a mixed motor/sensory bundle and then splits into various branches in the palm. In this patient’s case, her symptoms suggest compression at Guyon’s canal, possibly due to a ganglion cyst or hamate fracture. It is important to note that the carpal tunnel transmits the median nerve, not the ulnar nerve, and compression at the more proximal cubital tunnel would affect all branches of the ulnar nerve, including those responsible for sensation to the back of the hand and wrist flexion. Additionally, lesions in the purely sensory branches of the ulnar nerve would not cause the motor symptoms experienced by this patient.
The ulnar nerve originates from the medial cord of the brachial plexus, specifically from the C8 and T1 nerve roots. It provides motor innervation to various muscles in the hand, including the medial two lumbricals, adductor pollicis, interossei, hypothenar muscles (abductor digiti minimi, flexor digiti minimi), and flexor carpi ulnaris. Sensory innervation is also provided to the medial 1 1/2 fingers on both the palmar and dorsal aspects. The nerve travels through the posteromedial aspect of the upper arm and enters the palm of the hand via Guyon’s canal, which is located superficial to the flexor retinaculum and lateral to the pisiform bone.
The ulnar nerve has several branches that supply different muscles and areas of the hand. The muscular branch provides innervation to the flexor carpi ulnaris and the medial half of the flexor digitorum profundus. The palmar cutaneous branch arises near the middle of the forearm and supplies the skin on the medial part of the palm, while the dorsal cutaneous branch supplies the dorsal surface of the medial part of the hand. The superficial branch provides cutaneous fibers to the anterior surfaces of the medial one and one-half digits, and the deep branch supplies the hypothenar muscles, all the interosseous muscles, the third and fourth lumbricals, the adductor pollicis, and the medial head of the flexor pollicis brevis.
Damage to the ulnar nerve at the wrist can result in a claw hand deformity, where there is hyperextension of the metacarpophalangeal joints and flexion at the distal and proximal interphalangeal joints of the 4th and 5th digits. There may also be wasting and paralysis of intrinsic hand muscles (except for the lateral two lumbricals), hypothenar muscles, and sensory loss to the medial 1 1/2 fingers on both the palmar and dorsal aspects. Damage to the nerve at the elbow can result in similar symptoms, but with the addition of radial deviation of the wrist. It is important to diagnose and treat ulnar nerve damage promptly to prevent long-term complications.
-
This question is part of the following fields:
- Neurological System
-
-
Question 9
Incorrect
-
Which one of the following statements regarding cerebral palsy is inaccurate?
Your Answer: It is the most common cause of major motor impairment in children
Correct Answer: Less than 5% of children will have epilepsy
Explanation:Understanding Cerebral Palsy
Cerebral palsy is a condition that affects movement and posture due to damage to the motor pathways in the developing brain. It is the most common cause of major motor impairment and affects 2 in 1,000 live births. The causes of cerebral palsy can be antenatal, intrapartum, or postnatal. Antenatal causes include cerebral malformation and congenital infections such as rubella, toxoplasmosis, and CMV. Intrapartum causes include birth asphyxia or trauma, while postnatal causes include intraventricular hemorrhage, meningitis, and head trauma.
Children with cerebral palsy may exhibit abnormal tone in early infancy, delayed motor milestones, abnormal gait, and feeding difficulties. They may also have associated non-motor problems such as learning difficulties, epilepsy, squints, and hearing impairment. Cerebral palsy can be classified into spastic, dyskinetic, ataxic, or mixed types.
Managing cerebral palsy requires a multidisciplinary approach. Treatments for spasticity include oral diazepam, oral and intrathecal baclofen, botulinum toxin type A, orthopedic surgery, and selective dorsal rhizotomy. Anticonvulsants and analgesia may also be required. Understanding cerebral palsy and its management is crucial in providing appropriate care and support for individuals with this condition.
-
This question is part of the following fields:
- Neurological System
-
-
Question 10
Correct
-
You have been summoned to attend to a patient on your ward due to concerns about his breathing and possible deterioration. The patient is 78 years old. He is only responsive to pain and his breathing rate is 6 breaths per minute. Upon examination, you observe that he has pinpoint pupils. The nerve responsible for innervating the muscle that causes pupil constriction, known as constrictor pupillae, is derived from which nerve?
Your Answer: Oculomotor nerve
Explanation:The correct answer is the oculomotor nerve, which is the third cranial nerve responsible for supplying motor innervation to four extra-orbital muscles and parasympathetic fibers to constrictor pupillae and ciliaris. The optic nerve is the second cranial nerve that carries visual information from the retina, while the trochlear nerve is the fourth cranial nerve that supplies the superior oblique extra-orbital muscle. The ophthalmic nerve is the first division of the trigeminal nerve that carries sensation from the orbit, upper eyelid, and forehead, and the abducens nerve is the sixth cranial nerve that supplies the lateral rectus extra-orbital muscle. The patient’s presentation is consistent with opioid overdose, which is characterized by reduced respiratory rate, altered conscious level, and pinpoint pupils. Intravenous naloxone can reverse opioid overdose.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)