-
Question 1
Incorrect
-
A 27-year-old man presents to the consultant's office with complaints of increased thirst and frequent urination for the past month. He has a history of physical injuries due to a motor vehicle accident that occurred 4 months ago. The patient is currently not on any medications and is in good health. Urinalysis reveals a decreased sodium concentration and urine osmolarity of 90 mOsm/L. What renal tubular changes would be anticipated in this patient due to his current condition?
Your Answer: Decreased activity of Na-K-Cl cotransporter in the loops of Henle
Correct Answer: Decreased expression of aquaporin-2 channels in the collecting ducts
Explanation:The insertion of aquaporin-2 channels by antidiuretic hormone promotes water reabsorption, which is compromised in central diabetes insipidus (DI) caused by physical trauma to the pituitary gland. Symptoms include increased thirst, polydipsia, and polyuria, with urinalysis showing decreased urine osmolality and sodium concentration. Aldosterone regulates epithelial sodium channel (ENaC) and K+/H+ exchanger, while angiotensin II regulates Na+/H+ exchanger in proximal tubules. Loop diuretics decrease activity of Na-K-Cl cotransporter in the loops of Henle. However, none of these are relevant to this patient’s presentation.
Understanding Antidiuretic Hormone (ADH)
Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.
ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.
Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.
Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 2
Correct
-
A 23-year-old woman presents with clinical manifestations of hyperthyroidism and is diagnosed with Graves disease. What is the most appropriate explanation for the pathophysiology of this condition?
Your Answer: Formation of IgG antibodies to the TSH receptors on the thyroid gland
Explanation:Graves disease typically results in the formation of IgG antibodies that target the TSH receptors located on the thyroid gland, leading to a significant decrease in TSH levels.
Thyroid Hormones and LATS in Graves Disease
Thyroid hormones are produced by the thyroid gland and include triiodothyronine (T3) and thyroxine (T4), with T3 being the major hormone active in target cells. The synthesis and secretion of these hormones involves the active concentration of iodide by the thyroid, which is then oxidized and iodinated by peroxidase in the follicular cells. This process is stimulated by thyroid-stimulating hormone (TSH), which is released by the pituitary gland. The normal thyroid has approximately three months’ worth of reserves of thyroid hormones.
In Graves disease, patients develop IgG antibodies to the TSH receptors on the thyroid gland. This results in chronic and long-term stimulation of the gland with the release of thyroid hormones. As a result, individuals with Graves disease typically have raised thyroid hormones and low TSH levels. It is important to check for thyroid receptor autoantibodies in individuals presenting with hyperthyroidism, as they are present in up to 85% of cases. This condition is known as LATS (long-acting thyroid stimulator) and can lead to a range of symptoms and complications if left untreated.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 3
Correct
-
These thyroid function tests were obtained on a 55-year-old female who has recently been treated for hypertension:
Free T4 28.5 pmol/L (9.8-23.1)
TSH <0.02 mU/L (0.35-5.5)
Free T3 10.8 pmol/L (3.5-6.5)
She now presents with typical symptoms of hyperthyroidism.
Which medication is likely to have caused this?Your Answer: Amiodarone
Explanation:Amiodarone and its Effects on Thyroid Function
Amiodarone is a medication that can have an impact on thyroid function, resulting in both hypo- and hyperthyroidism. This is due to the high iodine content in the drug, which contributes to its antiarrhythmic effects. Atenolol, on the other hand, is a beta blocker that is commonly used to treat thyrotoxicosis. Warfarin is another medication that is used to treat atrial fibrillation.
There are two types of thyrotoxicosis that can be caused by amiodarone. Type 1 results in excess thyroxine synthesis, while type 2 leads to the release of excess thyroxine but normal levels of synthesis. It is important for healthcare professionals to monitor thyroid function in patients taking amiodarone and adjust treatment as necessary to prevent complications.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 4
Incorrect
-
A 62-year-old male with type 2 diabetes is urgently referred by his GP due to poor glycaemic control for the past three days, with home blood glucose readings around 25 mmol/L. He is currently being treated with metformin and lisinopril. Yesterday, his GP checked his U+E and found that his serum sodium was 138 mmol/L (137-144), serum potassium was 5.8 mmol/L (3.5-4.9), serum urea was 20 mmol/L (2.5-7.5), and serum creatinine was 350 µmol/L (60-110). On examination, he has a temperature of 39°C, a pulse of 108 bpm, a blood pressure of 96/60 mmHg, a respiratory rate of 32/min, and oxygen saturations of 99% on air. His cardiovascular, respiratory, and abdominal examination are otherwise normal. Further investigations reveal a plasma glucose level of 17 mmol/L (3.0-6.0) and urine analysis showing blood ++ and protein ++, but ketones are negative. What is the likely diagnosis?
Your Answer: Type 4 renal tubular acidosis
Correct Answer: Sepsis
Explanation:The causes of septic shock are important to understand in order to provide appropriate treatment and improve patient outcomes. Septic shock can cause fever, hypotension, and renal failure, as well as tachypnea due to metabolic acidosis. However, it is crucial to rule out other conditions such as hyperosmolar hyperglycemic state or diabetic ketoacidosis, which have different symptoms and diagnostic criteria.
While metformin can contribute to acidosis, it is unlikely to be the primary cause in this case. Diabetic patients may be prone to renal tubular acidosis, but this is not likely to be the cause of an acute presentation. Instead, a type IV renal tubular acidosis, characterized by hyporeninaemic hypoaldosteronism, may be a more likely association.
Overall, it is crucial to carefully evaluate patients with septic shock and consider all possible causes of their symptoms. By ruling out other conditions and identifying the underlying cause of the acidosis, healthcare providers can provide targeted treatment and improve patient outcomes. Further research and education on septic shock and its causes can also help to improve diagnosis and treatment in the future.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 5
Incorrect
-
A 35-year-old man, with a history of type 1 diabetes, was discovered disoriented on the road. He was taken to the ER and diagnosed with hypoglycemia. As IV access was not feasible, IM glucagon was administered. What accurately explains the medication's mechanism of action?
Your Answer: Increases secretion of desmopressin
Correct Answer: Increases secretion of somatostatin
Explanation:Somatostatin, a hormone that inhibits the secretion of insulin and glucagon, is produced in the pancreas. Glucagon can increase the secretion of somatostatin through a feedback mechanism, while insulin can decrease it. Somatostatin also plays a role in controlling the emptying of the stomach and bowel.
Glucagon is a treatment option for hypoglycemia, along with IV dextrose if the patient is confused and IV access is available.
Cortisol is produced in the adrenal gland’s zona fasciculate and is triggered by ACTH, which is released from the anterior pituitary gland. Glucagon can stimulate ACTH-induced cortisol release.
Desmopressin is an analogue of vasopressin and is used to replace vasopressin/ADH in the treatment of central diabetes insipidus, where there is a lack of ADH due to decreased or non-existent secretion or production by the hypothalamus or posterior pituitary.
Prolactin, produced in the anterior pituitary, is responsible for milk production in the breasts.
Somatostatin: The Inhibitor Hormone
Somatostatin, also known as growth hormone inhibiting hormone (GHIH), is a hormone produced by delta cells found in the pancreas, pylorus, and duodenum. Its main function is to inhibit the secretion of growth hormone, insulin, and glucagon. It also decreases acid and pepsin secretion, as well as pancreatic enzyme secretion. Additionally, somatostatin inhibits the trophic effects of gastrin and stimulates gastric mucous production.
Somatostatin analogs are commonly used in the management of acromegaly, a condition characterized by excessive growth hormone secretion. These analogs work by inhibiting growth hormone secretion, thereby reducing the symptoms associated with acromegaly.
The secretion of somatostatin is regulated by various factors. Its secretion increases in response to fat, bile salts, and glucose in the intestinal lumen, as well as glucagon. On the other hand, insulin decreases the secretion of somatostatin.
In summary, somatostatin plays a crucial role in regulating the secretion of various hormones and enzymes in the body. Its inhibitory effects on growth hormone, insulin, and glucagon make it an important hormone in the management of certain medical conditions.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 6
Incorrect
-
A 57-year-old man with a history of type 2 diabetes visits his GP for a check-up and is prescribed a new medication, a glucagon-like peptide (GLP-1) analogue. Where is this hormone typically secreted from in the body?
Your Answer: Liver
Correct Answer: Ileum
Explanation:When comparing the effects of oral glucose and IV glucose on insulin release, it was found that oral glucose resulted in a higher insulin release. This suggests that the response of the gut plays a role in insulin release. Incretins are a group of hormones produced in the gastrointestinal tract that stimulate insulin release from β-cells, even before blood glucose levels become elevated.
There are two main types of incretins: gastric inhibitory peptide (GIP), which is released from the duodenum and is glucose-dependent, and glucagon-like peptide (GLP-1), which is produced in the distal ileum.
The glucagon gene is processed differently in the brain and intestines than in the pancreas. In the brain and intestines, GLP1&2 are released, which function as appetite suppressants. In the pancreas, they increase insulin release and β-cell proliferation.
Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 7
Incorrect
-
What is the half life of insulin in the circulation of a typical healthy adult?
Your Answer: Over 6 hours
Correct Answer: Less than 30 minutes
Explanation:Enzymes in the bloodstream break down insulin, resulting in a half-life of under 30 minutes. In type 2 diabetes, there may be irregularities in the insulin clearance process.
Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 8
Incorrect
-
A 54-year-old female visits her doctor complaining of chronic thirst, polyuria, and nocturia that have persisted for 2 months. She has a medical history of polycystic kidney disease that has led to chronic kidney disease (CKD). Her most recent eGFR result was 28 mL/min/1.73m². Following a series of tests, she is diagnosed with nephrogenic diabetes insipidus. What would the water deprivation test likely reveal in this patient's case?
Your Answer: Low urine osmolality after fluid deprivation, but high after desmopressin
Correct Answer: Low urine osmolality after both fluid deprivation and desmopressin
Explanation:The correct answer is low urine osmolality after both fluid deprivation and desmopressin. This is indicative of nephrogenic diabetes insipidus, a condition where the kidneys are insensitive to antidiuretic hormone (ADH), resulting in an inability to concentrate urine. This leads to low urine osmolality even during water deprivation and no response to desmopressin. High urine osmolality after both fluid deprivation and desmopressin would be seen in a healthy individual or primary polydipsia, while low urine osmolality after desmopressin but high after fluid deprivation is not commonly seen in any pathological state. Similarly, low urine osmolality after fluid deprivation but high after desmopressin is typically seen in cranial DI, which is not the best answer as the patient has no risk factors for this condition.
The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 9
Incorrect
-
An 80-year-old patient, Gwyneth, is being examined by her physician for recurring dizziness upon standing up, which is interfering with her daily activities. Gwyneth is in good health and does not take any regular medications. The physician diagnoses Gwyneth with orthostatic hypotension and prescribes fludrocortisone as a treatment.
What is the most probable side effect that Gwyneth may encounter?Your Answer: Hyperglycaemia
Correct Answer: Fluid retention
Explanation:Corticosteroids are a class of medications commonly prescribed for various clinical uses, such as treating allergies, inflammatory conditions, auto-immunity, and endogenous steroid replacement.
There are different types of corticosteroids, each with varying levels of glucocorticoid and mineralocorticoid activity. Glucocorticoids mimic cortisol, which is involved in carbohydrate metabolism and the stress response, while mineralocorticoids mimic aldosterone, which regulates sodium and water retention in response to low blood pressure.
The clinical uses and side effects of corticosteroids depend on their level of glucocorticoid and mineralocorticoid activity. Fludrocortisone, for example, has minimal glucocorticoid activity and high mineralocorticoid activity.
Therefore, fluid retention is the most associated side effect with mineralocorticoid activity, while depression, hyperglycemia, osteoporosis, and peptic ulceration are side effects associated with glucocorticoid activity.
Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 10
Incorrect
-
The acute phase response to injury in elderly patients does not involve which of the following?
Your Answer:
Correct Answer: Increased transferrin
Explanation:The acute phase response is characterized by various physiological changes, such as the production of acute phase proteins, decreased levels of transport proteins like albumin and transferrin, hepatic retention of cations, fever, an increase in neutrophil count, elevated muscle proteolysis, and alterations in vascular permeability.
Surgery triggers a stress response that causes hormonal and metabolic changes in the body. This response is characterized by substrate mobilization, muscle protein loss, sodium and water retention, suppression of anabolic hormone secretion, activation of the sympathetic nervous system, and immunological and haematological changes. The hypothalamic-pituitary axis and the sympathetic nervous systems are activated, and the normal feedback mechanisms of control of hormone secretion fail. The stress response is associated with increased growth hormone, cortisol, renin, adrenocorticotrophic hormone (ACTH), aldosterone, prolactin, antidiuretic hormone, and glucagon, while insulin, testosterone, oestrogen, thyroid stimulating hormone, luteinizing hormone, and follicle stimulating hormone are decreased or remain unchanged. The metabolic effects of cortisol are enhanced, including skeletal muscle protein breakdown, stimulation of lipolysis, anti-insulin effect, mineralocorticoid effects, and anti-inflammatory effects. The stress response also affects carbohydrate, protein, lipid, salt and water metabolism, and cytokine release. Modifying the response can be achieved through opioids, spinal anaesthesia, nutrition, growth hormone, anabolic steroids, and normothermia.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 11
Incorrect
-
A 57-year-old woman presents to the physician with a recurring blistering rash on her hands. The rash has also affected her legs, inguinal creases, and the corners of her mouth at different times. She was diagnosed with type 2 diabetes mellitus three months ago and has occasional loose stools. The patient denies experiencing palpitations, abdominal pain, or vomiting, but reports having occasional watery stools.
During the physical examination, the physician observes coalescing erythematous plaques with crusting and scaling at the borders and central areas of brownish induration over the lower abdomen and in the perioral skin.
What is the most likely diagnosis for this patient?Your Answer:
Correct Answer: Glucagonoma
Explanation:The patient is likely suffering from a glucagonoma, a rare tumor that originates from the alpha cells of the pancreas. This condition causes the excessive secretion of glucagon, resulting in hyperglycemia or diabetes mellitus. One of the characteristic symptoms of glucagonoma is necrolytic migratory erythema, a painful and itchy rash that appears on the face, groin, and limbs.
Gastrinoma, on the other hand, does not cause a blistering rash or diabetes mellitus. However, it is often associated with abdominal pain, diarrhea, and ulceration.
Somatostatinoma typically presents with abdominal pain, constipation, hyperglycemia, and steatorrhea, which are not present in this patient.
VIPoma is unlikely as it usually causes intractable diarrhea, hypokalemia, and achlorhydria.
Although zinc deficiency can cause skin lesions that resemble necrolytic migratory erythema, the patient’s recent diabetes mellitus diagnosis and lack of other symptoms make glucagonoma the more likely diagnosis.
Glucagonoma: A Rare Pancreatic Tumor
Glucagonoma is a rare type of pancreatic tumor that usually originates from the alpha cells of the pancreas. These tumors are typically small and malignant, and they can cause a range of symptoms, including diabetes mellitus, venous thrombo-embolism, and a distinctive red, blistering rash known as necrolytic migratory erythema. To diagnose glucagonoma, doctors typically look for a serum level of glucagon that is higher than 1000pg/ml, and they may also use CT scanning to visualize the tumor. Treatment options for glucagonoma include surgical resection and octreotide, a medication that can help to control the symptoms of the disease. Overall, glucagonoma is a rare but serious condition that requires prompt diagnosis and treatment to manage its symptoms and prevent complications.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 12
Incorrect
-
A teenage girl and her mother come to the doctor's office with concerns about ambiguous genitalia. Upon conducting a thorough medical history and various tests, the doctor diagnoses the girl with congenital adrenal hyperplasia. What is the reason for adrenal hyperplasia being a characteristic of this condition?
Your Answer:
Correct Answer: Inefficient cortisol synthesis
Explanation:Low cortisol production and compensatory adrenal hyperplasia are caused by 21-hydroxylase deficiency, leading to increased androgen production and ambiguous genitalia. The enzymes 11-beta hydroxylase and 17-hydroxylase are also involved. Testosterone and estrogen synthesis is not affected as they are produced in the testes and ovaries, respectively. Congenital adrenal hyperplasia is not caused by aldosterone synthesis, despite it occurring in the adrenal cortex.
Congenital adrenal hyperplasia is a genetic condition that affects the adrenal glands and can result in various symptoms depending on the specific enzyme deficiency. One common form is 21-hydroxylase deficiency, which can cause virilization of female genitalia, precocious puberty in males, and a salt-losing crisis in 60-70% of patients during the first few weeks of life. Another form is 11-beta hydroxylase deficiency, which can also cause virilization and precocious puberty, as well as hypertension and hypokalemia. A third form is 17-hydroxylase deficiency, which typically does not cause virilization in females but can result in intersex characteristics in boys and hypertension.
Overall, congenital adrenal hyperplasia can have significant impacts on a person’s physical development and health, and early diagnosis and treatment are important for managing symptoms and preventing complications.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 13
Incorrect
-
A 60-year-old patient visits their doctor complaining of dehydration caused by vomiting and diarrhoea. The kidneys detect reduced renal perfusion, leading to activation of the renin-angiotensin-aldosterone system. What is the specific part of the adrenal gland required for this system?
Your Answer:
Correct Answer: Zona glomerulosa
Explanation:Aldosterone is produced in the zona glomerulosa of the adrenal gland.
Renin is released by juxtaglomerular cells located in the nephron.
ACE is produced by the pulmonary endothelium in the lungs.
The adrenal gland is composed of the zona glomerulosa, fasciculata, and reticularis.
Glucocorticoids are produced in the zona fasciculata.
Adrenal Physiology: Medulla and Cortex
The adrenal gland is composed of two main parts: the medulla and the cortex. The medulla is responsible for secreting the catecholamines noradrenaline and adrenaline, which are released in response to sympathetic nervous system stimulation. The chromaffin cells of the medulla are innervated by the splanchnic nerves, and the release of these hormones is triggered by the secretion of acetylcholine from preganglionic sympathetic fibers. Phaeochromocytomas, which are tumors derived from chromaffin cells, can cause excessive secretion of both adrenaline and noradrenaline.
The adrenal cortex is divided into three distinct zones: the zona glomerulosa, zona fasciculata, and zona reticularis. Each zone is responsible for secreting different hormones. The outer zone, zona glomerulosa, secretes aldosterone, which regulates electrolyte balance and blood pressure. The middle zone, zona fasciculata, secretes glucocorticoids, which are involved in the regulation of metabolism, immune function, and stress response. The inner zone, zona reticularis, secretes androgens, which are involved in the development and maintenance of male sex characteristics.
Most of the hormones secreted by the adrenal cortex, including glucocorticoids and aldosterone, are bound to plasma proteins in the circulation. Glucocorticoids are inactivated and excreted by the liver. Understanding the physiology of the adrenal gland is important for the diagnosis and treatment of various endocrine disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 14
Incorrect
-
A 25-year-old male patient presents to the endocrine clinic with delayed-onset puberty. His history revealed a cleft palate as a child which had been repaired successfully. On direct questioning, he revealed he had anosmia but was told this was due to a minor head injury aged 5. On examination, he was 1.80 metres tall, had sparse pubic hair and small volume testes (Tanner staging grade 1).
Blood results revealed:
FSH 2 IU/L (1-7)
LH 2 IU/L (1-8)
Testosterone 240 ng/dL (280-1100)
What is the most likely cause of this patient's condition?Your Answer:
Correct Answer: Kallmann syndrome
Explanation:The minor head injury is unlikely to be the cause of the patient’s anosmia. However, the combination of anosmia and cleft palate, along with the blood test results indicating hypogonadotropic hypogonadism, suggests that the patient may have Kallmann’s syndrome, which is an X-linked inherited disorder. Constitutional developmental delay is less likely due to the patient’s age and abnormal blood test results.
Empty sella syndrome is a condition where the sella turcica, the area of the brain where the pituitary gland is located, is empty and filled with cerebrospinal fluid. Although this condition can be asymptomatic, it can also present with symptoms of hypopituitarism. However, since the patient also has anosmia and cleft palate, empty sella syndrome is less likely.
Klinefelter’s syndrome is characterized by tall stature, gynecomastia, and small penis/testes. Blood tests would reveal elevated gonadotropins and low testosterone levels. However, since the patient’s FSH and LH levels are low, Klinefelter’s syndrome can be ruled out.
Kallmann’s syndrome is a condition that can cause delayed puberty due to hypogonadotropic hypogonadism. It is often inherited as an X-linked recessive trait and is believed to be caused by a failure of GnRH-secreting neurons to migrate to the hypothalamus. One of the key indicators of Kallmann’s syndrome is anosmia, or a lack of smell, in boys with delayed puberty. Other features may include hypogonadism, cryptorchidism, low sex hormone levels, and normal or above-average height. Some patients may also have cleft lip/palate and visual/hearing defects.
Management of Kallmann’s syndrome typically involves testosterone supplementation. Gonadotrophin supplementation may also be used to stimulate sperm production if fertility is desired later in life. It is important for individuals with Kallmann’s syndrome to receive appropriate medical care and monitoring to manage their symptoms and ensure optimal health outcomes.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 15
Incorrect
-
A 36-year-old male visits the GP after being diagnosed with Conn's syndrome, which causes excessive production of aldosterone. How will this affect the balance of sodium and potassium in his blood?
Your Answer:
Correct Answer: Increased sodium, decreased potassium
Explanation:Hypertension, hypernatraemia, and hypokalemia are common symptoms of primary hyperaldosteronism.
The adrenal gland produces aldosterone, which is responsible for regulating potassium levels. Its primary function is to increase sodium absorption and decrease potassium secretion in the distal tubules and collecting duct of the nephron. As a result, sodium levels increase while potassium levels decrease.
Primary hyperaldosteronism is a condition characterized by hypertension, hypokalaemia, and alkalosis. It was previously believed that adrenal adenoma, also known as Conn’s syndrome, was the most common cause of this condition. However, recent studies have shown that bilateral idiopathic adrenal hyperplasia is responsible for up to 70% of cases. It is important to differentiate between the two causes as it determines the appropriate treatment. Adrenal carcinoma is an extremely rare cause of primary hyperaldosteronism.
To diagnose primary hyperaldosteronism, the 2016 Endocrine Society recommends a plasma aldosterone/renin ratio as the first-line investigation. This test should show high aldosterone levels alongside low renin levels due to negative feedback from sodium retention caused by aldosterone. If the results are positive, a high-resolution CT abdomen and adrenal vein sampling are used to differentiate between unilateral and bilateral sources of aldosterone excess. If the CT is normal, adrenal venous sampling (AVS) can be used to distinguish between unilateral adenoma and bilateral hyperplasia.
The management of primary hyperaldosteronism depends on the underlying cause. Adrenal adenoma is treated with surgery, while bilateral adrenocortical hyperplasia is managed with an aldosterone antagonist such as spironolactone. It is important to accurately diagnose and manage primary hyperaldosteronism to prevent complications such as cardiovascular disease and stroke.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 16
Incorrect
-
A 39-year-old woman presents to the endocrine clinic after being referred by her GP due to a blood pressure reading of 178/101 mm Hg. Upon blood tests, it is discovered that she has hypernatremia and hypokalaemia, along with an elevated aldosterone level. An inconclusive CT scan of the abdomen has been performed to determine if there is an adenoma present.
What is the most suitable investigation to identify if one of the adrenal glands is producing an excess of hormones?Your Answer:
Correct Answer: Adrenal venous sampling (AVS)
Explanation:Adrenal venous sampling (AVS) is the most appropriate investigation to differentiate between unilateral adenoma and bilateral hyperplasia in primary hyperaldosteronism. This method involves catheterizing the adrenal veins and collecting blood samples from each, which can be tested for hormone levels. The affected side can then be surgically removed if necessary. Other options such as surgical removal of adrenals and immunohistochemistry, adrenal biopsy, or repeat CT scan are not as suitable or effective in this scenario.
Primary hyperaldosteronism is a condition characterized by hypertension, hypokalaemia, and alkalosis. It was previously believed that adrenal adenoma, also known as Conn’s syndrome, was the most common cause of this condition. However, recent studies have shown that bilateral idiopathic adrenal hyperplasia is responsible for up to 70% of cases. It is important to differentiate between the two causes as it determines the appropriate treatment. Adrenal carcinoma is an extremely rare cause of primary hyperaldosteronism.
To diagnose primary hyperaldosteronism, the 2016 Endocrine Society recommends a plasma aldosterone/renin ratio as the first-line investigation. This test should show high aldosterone levels alongside low renin levels due to negative feedback from sodium retention caused by aldosterone. If the results are positive, a high-resolution CT abdomen and adrenal vein sampling are used to differentiate between unilateral and bilateral sources of aldosterone excess. If the CT is normal, adrenal venous sampling (AVS) can be used to distinguish between unilateral adenoma and bilateral hyperplasia.
The management of primary hyperaldosteronism depends on the underlying cause. Adrenal adenoma is treated with surgery, while bilateral adrenocortical hyperplasia is managed with an aldosterone antagonist such as spironolactone. It is important to accurately diagnose and manage primary hyperaldosteronism to prevent complications such as cardiovascular disease and stroke.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 17
Incorrect
-
A 44-year-old man has been diagnosed with type II diabetes mellitus but cannot tolerate metformin therapy. What is the mechanism of action of alogliptin, which has been prescribed as an alternative?
Your Answer:
Correct Answer: Reduce the peripheral breakdown of incretins
Explanation:Gliptins (DPP-4 inhibitors) work by inhibiting the enzyme DPP-4, which reduces the breakdown of incretin hormones such as GLP-1. This leads to a glucose-dependent increase in insulin secretion and a reduction in glucagon secretion, ultimately regulating glucose homeostasis. However, gliptins do not increase the production of GLP-1, directly stimulate the release of insulin from pancreatic beta cells, inhibit the SGLT2 receptor, or reduce insulin resistance.
Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 18
Incorrect
-
You have been requested to evaluate a patient in your general practice, who has come in after discovering a new lump in her neck. The patient is in her mid-40s, has no significant medical history, and does not take any regular medications.
Upon examination, you observe a small mass in the front of the neck that moves upwards when the patient swallows. There is no associated lymphadenopathy. You refer the patient for an ultrasound and biopsy, which reveals the presence of 'Orphan Annie eyes with psammoma bodies.'
Based on this finding, what is the most probable diagnosis?Your Answer:
Correct Answer: Papillary thyroid cancer
Explanation:The patient has a painless lump in the thyroid gland that moves on swallowing, indicating thyroid pathology. The biopsy result of Orphan Annie eyes with psammoma bodies is a characteristic finding in papillary thyroid cancer, which is a slow-growing malignancy with less likelihood of lymphadenopathy. Graves’ disease is an incorrect diagnosis as it would not present with this appearance on biopsy and would likely exhibit signs of thyrotoxicosis. A multinodular goitre also does not have this appearance and may cause a thyrotoxic state. Anaplastic carcinoma is a more aggressive thyroid malignancy that readily invades nearby tissues and has a different histological appearance with spindle cells and giant cells.
Thyroid cancer rarely causes hyperthyroidism or hypothyroidism as it does not usually secrete thyroid hormones. The most common type of thyroid cancer is papillary carcinoma, which is often found in young females and has an excellent prognosis. Follicular carcinoma is less common, while medullary carcinoma is a cancer of the parafollicular cells that secrete calcitonin and is associated with multiple endocrine neoplasia type 2. Anaplastic carcinoma is rare and not responsive to treatment, causing pressure symptoms. Lymphoma is also rare and associated with Hashimoto’s thyroiditis.
Management of papillary and follicular cancer involves a total thyroidectomy followed by radioiodine to kill residual cells. Yearly thyroglobulin levels are monitored to detect early recurrent disease. Papillary carcinoma usually contains a mixture of papillary and colloidal filled follicles, while follicular adenoma presents as a solitary thyroid nodule and malignancy can only be excluded on formal histological assessment. Follicular carcinoma may appear macroscopically encapsulated, but microscopically capsular invasion is seen. Medullary carcinoma is associated with raised serum calcitonin levels and familial genetic disease in up to 20% of cases. Anaplastic carcinoma is most common in elderly females and is treated by resection where possible, with palliation achieved through isthmusectomy and radiotherapy. Chemotherapy is ineffective.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 19
Incorrect
-
A 15-year-old girl comes to the Emergency Department complaining of sudden onset pain in the right iliac fossa, along with nausea, vomiting, and fever. She has no significant medical or surgical history. During the examination, you observe rebound tenderness at McBurney's point, guarding, and a positive Rovsing's sign. You suspect appendicitis and decide to take her for surgery.
What is the most probable physiological response in this situation?Your Answer:
Correct Answer: Increased glucagon secretion
Explanation:Glucagon secretion increases in response to physiological stresses such as inflammation of the appendix and surgery. This is because glucagon helps to increase glucose availability in the body through glycogenolysis and gluconeogenesis. During times of stress, the body’s response is to increase glucose and oxygen availability, increased sympathetic activity, and redirect energy towards more crucial functions such as increasing blood pressure and heart rate.
However, insulin and glucagon have opposite effects on glucose regulation. Therefore, any factor that stimulates glucagon secretion must decrease insulin levels. This is because insulin reduces glucose availability in the body, which weakens the body’s ability to cope with stress.
The hypothalamic-pituitary-adrenal axis is also activated during times of stress, leading to the production of cortisol. Cortisol plays an important role in releasing glucose from fat storage, which is necessary for the body’s stress response. Therefore, the level of ACTH, which stimulates cortisol production, would increase rather than decrease.
Cortisol and glucocorticoids also inhibit thyroid hormone secretion. As a result, the level of T4, which is a modulator of metabolic rate, would decrease during times of stress. This is because the body needs to divert energy away from metabolism and towards more acute functions during times of stress.
Glucagon: The Hormonal Antagonist to Insulin
Glucagon is a hormone that is released from the alpha cells of the Islets of Langerhans in the pancreas. It has the opposite metabolic effects to insulin, resulting in increased plasma glucose levels. Glucagon functions by promoting glycogenolysis, gluconeogenesis, and lipolysis. It is regulated by various factors such as hypoglycemia, stresses like infections, burns, surgery, increased catecholamines, and sympathetic nervous system stimulation, as well as increased plasma amino acids. On the other hand, glucagon secretion decreases with hyperglycemia, insulin, somatostatin, and increased free fatty acids and keto acids.
Glucagon is used to rapidly reverse the effects of hypoglycemia in diabetics. It is an essential hormone that plays a crucial role in maintaining glucose homeostasis in the body. Its antagonistic relationship with insulin helps to regulate blood glucose levels and prevent hyperglycemia. Understanding the regulation and function of glucagon is crucial in the management of diabetes and other metabolic disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 20
Incorrect
-
A 32-year-old man visits the clinic complaining of weakness and frequent muscle cramps that have been ongoing for the past two weeks. Upon examination, you observe widespread hyporeflexia. A blood test reveals hypokalaemia, but the cause has not yet been determined. Which of the following conditions is linked to hypokalaemia?
Your Answer:
Correct Answer: Conn's syndrome
Explanation:Primary hyperaldosteronism, also known as Conn’s syndrome, can lead to hypertension, hypernatraemia, and hypokalemia. This condition is caused by an excess of aldosterone, which is responsible for maintaining potassium balance by activating Na+/K+ pumps. However, in excess, aldosterone can cause the movement of potassium into cells, resulting in hypokalaemia. The kidneys play a crucial role in maintaining potassium balance, along with other factors such as insulin, catecholamines, and aldosterone. On the other hand, congenital adrenal hypoplasia, Addison’s disease, rhabdomyolysis, and metabolic acidosis are all causes of hyperkalaemia, which is an excess of potassium in the blood. Addison’s disease and adrenal hypoplasia result in mineralocorticoid deficiency, which can lead to hyperkalaemia. Acidosis can also cause hyperkalaemia by causing positively charged hydrogen ions to enter cells while positively charged potassium ions leave cells and enter the bloodstream.
Primary hyperaldosteronism is a condition characterized by hypertension, hypokalaemia, and alkalosis. It was previously believed that adrenal adenoma, also known as Conn’s syndrome, was the most common cause of this condition. However, recent studies have shown that bilateral idiopathic adrenal hyperplasia is responsible for up to 70% of cases. It is important to differentiate between the two causes as it determines the appropriate treatment. Adrenal carcinoma is an extremely rare cause of primary hyperaldosteronism.
To diagnose primary hyperaldosteronism, the 2016 Endocrine Society recommends a plasma aldosterone/renin ratio as the first-line investigation. This test should show high aldosterone levels alongside low renin levels due to negative feedback from sodium retention caused by aldosterone. If the results are positive, a high-resolution CT abdomen and adrenal vein sampling are used to differentiate between unilateral and bilateral sources of aldosterone excess. If the CT is normal, adrenal venous sampling (AVS) can be used to distinguish between unilateral adenoma and bilateral hyperplasia.
The management of primary hyperaldosteronism depends on the underlying cause. Adrenal adenoma is treated with surgery, while bilateral adrenocortical hyperplasia is managed with an aldosterone antagonist such as spironolactone. It is important to accurately diagnose and manage primary hyperaldosteronism to prevent complications such as cardiovascular disease and stroke.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 21
Incorrect
-
A 63-year-old male presents with a sudden onset of double vision that has been ongoing for eight hours. He has a medical history of hypertension, which is managed with amlodipine and atenolol, and type 2 diabetes that is controlled through diet. Upon examination, the patient displays watering of the right eye, a slight droop of the eyelid, and displacement of the eye to the right. The left eye appears to have a full range of movements, and the pupil size is the same as on the left. What is the probable cause of his symptoms?
Your Answer:
Correct Answer: Diabetes
Explanation:Causes of Painless Partial Third Nerve Palsy
A painless partial third nerve palsy with pupil sparing is most likely caused by diabetes mononeuropathy. This condition is thought to be due to a microangiopathy that leads to the occlusion of the vasa nervorum. On the other hand, an aneurysm of the posterior communicating artery is associated with a painful third nerve palsy, and pupillary dilatation is typical. Cerebral infarction, on the other hand, does not usually cause pain. Hypertension, which is a common condition, would normally cause signs of CVA or TIA. Lastly, cerebral vasculitis can cause symptoms of CVA/TIA, but they usually cause more global neurological symptoms.
In summary, a painless partial third nerve palsy with pupil sparing is most likely caused by diabetes mononeuropathy. Other conditions such as aneurysm of the posterior communicating artery, cerebral infarction, hypertension, and cerebral vasculitis can also cause similar symptoms, but they have different characteristics and causes. It is important to identify the underlying cause of the condition to provide appropriate treatment and management.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 22
Incorrect
-
A 45-year-old patient comes in with symptoms of weight loss, nausea, vomiting, abdominal pain, and hyperpigmentation of the skin. The doctor orders a urea & electrolyte test and a short Synacthen test which comes back abnormal and diagnoses the patient with Addison's disease.
What electrolyte abnormality is most likely to be observed in this patient?Your Answer:
Correct Answer: Hyperkalaemia & hyponatraemia
Explanation:In Addison’s disease, there is a deficiency in the production of both aldosterone and cortisol.
Aldosterone plays a crucial role in the reabsorption of sodium and the excretion of potassium.
Therefore, the absence of aldosterone leads to an imbalance in the levels of sodium and potassium in the body, resulting in hyperkalemia (high potassium levels) and hyponatremia (low sodium levels).
Addison’s disease is the most common cause of primary hypoadrenalism in the UK, with autoimmune destruction of the adrenal glands being the main culprit, accounting for 80% of cases. This results in reduced production of cortisol and aldosterone. Symptoms of Addison’s disease include lethargy, weakness, anorexia, nausea and vomiting, weight loss, and salt-craving. Hyperpigmentation, especially in palmar creases, vitiligo, loss of pubic hair in women, hypotension, hypoglycemia, and hyponatremia and hyperkalemia may also be observed. In severe cases, a crisis may occur, leading to collapse, shock, and pyrexia.
Other primary causes of hypoadrenalism include tuberculosis, metastases (such as bronchial carcinoma), meningococcal septicaemia (Waterhouse-Friderichsen syndrome), HIV, and antiphospholipid syndrome. Secondary causes include pituitary disorders, such as tumours, irradiation, and infiltration. Exogenous glucocorticoid therapy can also lead to hypoadrenalism.
It is important to note that primary Addison’s disease is associated with hyperpigmentation, while secondary adrenal insufficiency is not.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 23
Incorrect
-
Which of the following hinders the production of insulin secretion?
Your Answer:
Correct Answer: Adrenaline
Explanation:The release of insulin can be inhibited by alpha adrenergic drugs, beta blockers, and sympathetic nerves.
Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 24
Incorrect
-
A 55-year-old male visits his GP for an insurance medical. The GP observes that the patient has rough facial features, an enlarged tongue, and greasy skin. The patient is also experiencing profuse sweating. Which hormone excess is likely to be accountable for these symptoms?
Your Answer:
Correct Answer: Growth hormone
Explanation:Acromegaly is a condition that results from an excess of growth hormone, which can cause a person to have a coarse facial appearance, a larger tongue, and excessive sweating and oily skin. This condition is often caused by a pituitary adenoma.
If a person has an excess of insulin, they may experience hypoglycemia and confusion. This can occur in cases of factitious illness, over-administration of insulin in diabetics, and insulinomas (neuroendocrine pancreatic tumors).
An excess of glucagon can cause hyperglycemia. Glucagon is secreted by alpha cells in the pancreas and is often elevated in cases of glucagonomas (neuroendocrine pancreatic tumors).
An excess of thyroid-stimulating hormone can be seen in cases of primary hypothyroidism and secondary hyperthyroidism.
Acromegaly is a condition characterized by excess growth hormone, which is usually caused by a pituitary adenoma in over 95% of cases. However, in some cases, it can be caused by ectopic GHRH or GH production by tumors, such as those found in the pancreas. The condition is associated with a number of physical features, including a coarse facial appearance, spade-like hands, and an increase in shoe size. Other features include a large tongue, prognathism, interdental spaces, excessive sweating, and oily skin, which are caused by sweat gland hypertrophy. In some cases, patients may also experience hypopituitarism, headaches, bitemporal hemianopia, and raised prolactin levels, which can lead to galactorrhea. Approximately 6% of patients with acromegaly also have MEN-1.
Complications associated with acromegaly include hypertension, diabetes (which affects over 10% of patients), cardiomyopathy, and colorectal cancer. It is important to diagnose and treat acromegaly early to prevent these complications from developing.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 25
Incorrect
-
A 19-year-old man was recently admitted to hospital with invasive meningococcal disease. He has no other medical history but is now complaining of extreme fatigue, light-headedness and rapid weight loss. He has also noticed his skin appears much more tanned than usual. His BP is 98/60 mmHg. Capillary glucose is found to be 2.2 mmol/L.
Hb 135 g/L Male: (130 - 180)
Platelets 280 * 109/L (150 - 400)
WBC 5.5 * 109/L (4.0 - 11.0)
Na+ 128 mmol/L (135 - 145)
K+ 5.8 mmol/L (3.5 - 5.0)
Bicarbonate 19 mmol/L (22 - 29)
Urea 8.0 mmol/L (2.0 - 7.0)
Creatinine 125 µmol/L (55 - 120)
What is the most likely cause of his symptoms?Your Answer:
Correct Answer: Waterhouse-Friedrichsen syndrome
Explanation:Understanding Waterhouse-Friderichsen Syndrome
Waterhouse-Friderichsen syndrome is a condition that occurs when the adrenal glands fail due to a previous adrenal haemorrhage caused by a severe bacterial infection. The most common cause of this condition is Neisseria meningitidis, but it can also be caused by other bacteria such as Haemophilus influenzae, Pseudomonas aeruginosa, Escherichia coli, and Streptococcus pneumoniae.
The symptoms of Waterhouse-Friderichsen syndrome are similar to those of hypoadrenalism, including lethargy, weakness, anorexia, nausea and vomiting, and weight loss. Other symptoms may include hyperpigmentation, especially in the palmar creases, vitiligo, and loss of pubic hair in women. In severe cases, a crisis may occur, which can lead to collapse, shock, and pyrexia.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 26
Incorrect
-
A 27-year-old mother is concerned about her infant's skin tone. The baby was delivered naturally 18 days ago and is now showing signs of jaundice. Despite having normal vital signs, what could be the possible reason for the baby's prolonged jaundice?
Your Answer:
Correct Answer: Congenital hypothyroidism
Explanation:The age of the baby is an important factor in determining the possible causes of neonatal jaundice. Congenital hypothyroidism may be responsible for prolonged jaundice in newborns. The following is a summary of the potential causes of jaundice based on the age at which it appears:
Jaundice within 24 hours of birth may be caused by haemolytic disease of the newborn, infections, or G6PD deficiency.
Jaundice appearing between 24-72 hours may be due to physiological factors, sepsis, or polycythaemia.
Jaundice appearing after 72 hours may be caused by extrahepatic biliary atresia, sepsis, or other factors.
Understanding Congenital Hypothyroidism
Congenital hypothyroidism is a condition that affects approximately 1 in 4000 newborns. If left undiagnosed and untreated within the first four weeks of life, it can lead to irreversible cognitive impairment. Some of the common features of this condition include prolonged neonatal jaundice, delayed mental and physical milestones, short stature, a puffy face, macroglossia, and hypotonia.
To ensure early detection and treatment, children are screened for congenital hypothyroidism at 5-7 days of age using the heel prick test. This test involves taking a small sample of blood from the baby’s heel and analyzing it for thyroid hormone levels. If the results indicate low levels of thyroid hormone, the baby will be referred for further testing and treatment.
It is important for parents and healthcare providers to be aware of the signs and symptoms of congenital hypothyroidism and to ensure that newborns receive timely screening and treatment to prevent long-term complications. With early detection and appropriate management, children with congenital hypothyroidism can lead healthy and fulfilling lives.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 27
Incorrect
-
As a medical student on a gastrointestinal ward, you come across a patient suffering from long-standing reflux. During the ward round, you notice that the patient, who is in his late 40s, is being treated with metoclopramide, a pro-kinetic drug that blocks the action of dopamine and speeds up gastrointestinal motility. However, the patient is now experiencing gynaecomastia and erectile dysfunction. Which hormone is most likely being overproduced in this patient, leading to his current symptoms?
Your Answer:
Correct Answer: Prolactin
Explanation:Understanding Prolactin and Galactorrhoea
Prolactin is a hormone produced by the anterior pituitary gland, and its release is regulated by various physiological factors. Dopamine is the primary inhibitor of prolactin release, and dopamine agonists like bromocriptine can be used to manage galactorrhoea. It is crucial to distinguish between the causes of galactorrhoea and gynaecomastia, which are both related to the actions of prolactin on breast tissue.
Excess prolactin can lead to different symptoms in men and women. Men may experience impotence, loss of libido, and galactorrhoea, while women may have amenorrhoea and galactorrhoea. Several factors can cause raised prolactin levels, including prolactinoma, pregnancy, oestrogens, stress, exercise, sleep, acromegaly, polycystic ovarian syndrome, and primary hypothyroidism.
Certain drugs can also increase prolactin levels, such as metoclopramide, domperidone, phenothiazines, and haloperidol. Although rare, some SSRIs and opioids may also cause raised prolactin levels.
In summary, understanding prolactin and its effects on the body is crucial in diagnosing and managing conditions like galactorrhoea. Identifying the underlying causes of raised prolactin levels is essential in providing appropriate treatment and care.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 28
Incorrect
-
A 31-year-old woman arrives at the emergency department feeling lethargic. Her Glasgow coma scale score is 12/15 upon examination.
Her capillary blood glucose level is 1.9 mmol/L.
What is the initial hormone released naturally in this situation?Your Answer:
Correct Answer: Glucagon
Explanation:When blood glucose levels drop, the first hormone to be secreted is glucagon. This can happen due to various reasons, such as insulin or alcohol consumption. The initial response to hypoglycaemia is a decrease in insulin secretion, followed by the release of glucagon from the pancreas’ alpha cells. This prompts the liver to convert stored glycogen into glucose, thereby increasing blood glucose levels.
Later on, growth hormone and cortisol are also released in response to hypoglycaemia. If cortisol production is reduced, as in Addison’s disease, it can lead to low blood glucose levels. This concept is used in the insulin tolerance test, where cortisol levels are measured after inducing hypoglycaemia with insulin.
Incretins, on the other hand, are hormones that lower blood glucose levels, especially after meals. One such incretin is glucagon-like peptide 1 (GLP-1), which is used to treat type 2 diabetes. Exenatide is an example of an injectable GLP-1 analogue medication.
Understanding Hypoglycaemia: Causes, Features, and Management
Hypoglycaemia is a condition characterized by low blood sugar levels, which can lead to a range of symptoms and complications. There are several possible causes of hypoglycaemia, including insulinoma, liver failure, Addison’s disease, and alcohol consumption. The physiological response to hypoglycaemia involves hormonal and sympathoadrenal responses, which can result in autonomic and neuroglycopenic symptoms. While blood glucose levels and symptom severity are not always correlated, common symptoms of hypoglycaemia include sweating, shaking, hunger, anxiety, nausea, weakness, vision changes, confusion, and dizziness. In severe cases, hypoglycaemia can lead to convulsions or coma.
Managing hypoglycaemia depends on the severity of the symptoms and the setting in which it occurs. In the community, individuals with diabetes who inject insulin may be advised to consume oral glucose or a quick-acting carbohydrate such as GlucoGel or Dextrogel. A ‘HypoKit’ containing glucagon may also be prescribed for home use. In a hospital setting, treatment may involve administering a quick-acting carbohydrate or subcutaneous/intramuscular injection of glucagon for unconscious or unable to swallow patients. Alternatively, intravenous glucose solution may be given through a large vein.
Overall, understanding the causes, features, and management of hypoglycaemia is crucial for individuals with diabetes or other conditions that increase the risk of low blood sugar levels. Prompt and appropriate treatment can help prevent complications and improve outcomes.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 29
Incorrect
-
A 45-year-old male has presented to discuss the management of primary hyperparathyroidism. He was diagnosed 3 weeks ago after complaining of bone pain and gastrointestinal discomfort. Today's blood results indicate an electrolyte abnormality.
What is the most probable electrolyte abnormality that will be observed on the blood results?Your Answer:
Correct Answer: Hypophosphataemia
Explanation:Renal phosphate reabsorption is decreased by PTH.
When PTH levels are excessive, as seen in hyperparathyroidism, renal reabsorption is reduced, leading to low serum phosphate levels. PTH inhibits osteoblasts, not osteoclasts, resulting in an increase in plasma calcium levels. PTH is released in response to low calcium levels and works to increase calcium resorption in the kidneys. Additionally, PTH increases magnesium resorption in the kidneys.
It is important to note that PTH does not affect potassium levels.
Understanding Parathyroid Hormone and Its Effects
Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.
The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.
Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 30
Incorrect
-
A 42-year-old woman complains of fatigue after experiencing flu-like symptoms two weeks ago. Upon examination, she has a smooth, small goiter and a pulse rate of 68 bpm. Her lab results show a Free T4 level of 9.3 pmol/L (normal range: 9.8-23.1) and a TSH level of 49.3 mU/L (normal range: 0.35-5.50). What additional test would you perform to confirm the diagnosis?
Your Answer:
Correct Answer: Thyroid peroxidase (TPO) antibodies
Explanation:Diagnosis and Management of Primary Hypothyroidism
The patient’s test results indicate a case of primary hypothyroidism, characterized by low levels of thyroxine (T4) and elevated thyroid-stimulating hormone (TSH). The most likely cause of this condition is Hashimoto’s thyroiditis, which is often accompanied by the presence of thyroid peroxidase antibodies. While the patient has a goitre, it appears to be smooth and non-threatening, so a thyroid ultrasound is not necessary. Additionally, a radio-iodine uptake scan is unlikely to show significant uptake and is therefore not recommended. Positive TSH receptor antibodies are typically associated with Graves’ disease, which is not the likely diagnosis in this case. For further information on Hashimoto’s thyroiditis, patients can refer to Patient.info.
-
This question is part of the following fields:
- Endocrine System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)