-
Question 1
Correct
-
What is the term for the process described below in laboratory testing?
Enzymes are immobilised on a solid surface, such as a bead or well, and allowed to come into contact with the sample. After washing, another enzyme is added with a label allowing quantitation of the analyte.Your Answer: Enzyme-linked immunosorbent assay
Explanation:ELISA: A Common Immunoassay in Medical Diagnostic Testing
An enzyme-linked immunosorbent assay (ELISA) is a type of immunoassay that is widely used in medical diagnostic testing. This method uses antibodies to identify and/or quantify the analyte being tested. The ELISA process involves several steps, including coating a plate with the antigen, adding the patient’s sample, washing the plate to remove any unbound material, adding an enzyme-linked antibody, washing the plate again, and adding a substrate to produce a measurable signal.
Over time, many modifications have been made to the ELISA, making it a versatile tool in the laboratory for measuring various analytes. Some of the substances that can be measured using immunoassays include thyroid hormone, testosterone, oestrogen, troponin, and vitamin D. The ELISA has been around for a long time and is still widely used today due to its accuracy, sensitivity, and specificity.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 2
Correct
-
What are the clinical effects that can occur due to acute or chronic over-administration of multivitamins leading to Vitamin A toxicity?
Your Answer: Nausea, vomiting and headaches
Explanation:The Importance and Risks of Vitamin A
Vitamin A is an essential nutrient that plays a crucial role in various bodily functions such as growth and development, vision, enzyme signalling pathways, and the maintenance of epithelial membranes. However, excessive intake of vitamin A can lead to toxicity, which can cause several adverse effects. These include raised intracranial pressure resulting in headaches, nausea, vomiting, and visual loss, increased bone resorption leading to osteoporosis and hypercalcaemia, liver damage, hair loss, and skin changes. Moreover, there is a possible increased risk of malignancy, particularly among smokers. Pregnant women are also advised to avoid foods rich in vitamin A, such as liver and fish oils, due to the teratogenicity of vitamin A-derived drugs. Therefore, it is crucial to maintain a balanced intake of vitamin A to avoid the risks associated with its toxicity.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 3
Incorrect
-
A 50-year-old female patient presents to the vascular clinic for evaluation of varicose veins. During the assessment, a test is conducted to determine the site of incompetence. The patient is instructed to lie down, and her legs are raised to empty the veins. A constricting band is then placed below the sapheno-femoral junction, and the patient is asked to stand up to observe for varicose vein filling. What is the name of this test?
Your Answer: Perthe's test
Correct Answer: Tourniquet test
Explanation:Tests for Varicose Veins and Arterial Insufficiency
The Trendelenburg and tourniquet tests are both used to evaluate the site of incompetence in varicose veins at the sapheno-femoral junction. During the Trendelenburg test, the examiner applies pressure with their fingers over the junction, while in the tourniquet test, a tourniquet is placed just below the junction. If the veins fill rapidly upon standing, it suggests that the sapheno-femoral junction is not the source of the incompetence.
Buerger’s test is used to assess the arterial circulation of the lower limb. The lower the angle at which blanching occurs, the more likely there is arterial insufficiency. This test is important in diagnosing peripheral artery disease.
The ankle-brachial pressure index (ABPI) is another test used to assess arterial insufficiency. Blood pressure cuffs are used to measure the systolic blood pressure in the ankle and arm. The ratio of the two pressures is calculated, and a lower ratio indicates a higher degree of claudication.
Finally, Perthe’s test is used to assess the patency of the deep femoral vein before varicose vein surgery. This test involves compressing the vein and observing the filling of the superficial veins. If the superficial veins fill quickly, it suggests that the deep femoral vein is patent and can be used for surgery.
In summary, these tests are important in diagnosing and evaluating varicose veins and arterial insufficiency. They help healthcare professionals determine the best course of treatment for their patients.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 4
Incorrect
-
A 29-year-old woman visits your clinic with concerns about a possible pregnancy.
Can you explain the mechanism behind a urinary pregnancy test?Your Answer: Enzymatic degradation
Correct Answer: ELISA
Explanation:Techniques in Biochemistry
Over-the-counter urine pregnancy tests use ELISA to detect beta-HCG in a woman’s urine. The test stick contains antibodies that react with beta-HCG, producing a color change that confirms pregnancy. The urinary pregnancy test is a solid-phase ELISA, where the antibody is immobilized on a specialized filter paper. The fluid travels laterally across the paper to bind with the antibody, and if beta-HCG is present, the line turns blue. Electrophoresis characterizes the electrical charge and size of substances, while PCR identifies specific sequences of DNA or RNA. Radioimmunoassay uses radioactivity to identify specific proteins. Enzymatic degradation breaks down large proteins into smaller subunits for which target antibodies may already exist. This method is used to characterize large proteins for which the structure has not yet been described.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 5
Incorrect
-
What is the composition of enzymes found in lysosomes?
Your Answer: Peroxidases
Correct Answer: Acid hydrolases
Explanation:Lysosomes: The Digestive System of the Cell
Lysosomes are organelles that come from the Golgi apparatus and are enclosed by a membrane. They are responsible for breaking down various biological macromolecules such as proteins, nucleic acids, carbohydrates, and lipids. Lysosomes contain acid hydrolases, which are enzymes that cleave chemical bonds by adding water and function at an acidic pH of around 5. They are involved in digesting foreign agents that are internalized by the cell and breaking down other cellular organelles like mitochondria, allowing for their components to be recycled.
The acidic pH within lysosomes is maintained by a proton pump in the lysosomal membrane, which imports protons from the cytosol coupled to ATP hydrolysis. This acidic environment is necessary for the activity of the acid hydrolases. D-amino acid oxidases and peroxidases are not found in lysosomes but in peroxisomes. Alcohol dehydrogenases and ATPases are not involved in digestion but in other cellular functions. Alcohol dehydrogenases catalyze the interconversion between alcohols and aldehydes or ketones with the reduction of NAD+ to NADH, while ATPases catalyze the breakdown of ATP into ADP and a phosphate ion, releasing energy for the cell’s functions.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 6
Correct
-
What is the primary factor that increases the risk of thiamine (vitamin B1) deficiency?
Your Answer: Chronic alcohol excess
Explanation:Thiamine: Its Roles, Sources, Deficiency States, and Manifestations
Thiamine is a vital nutrient that plays several roles in the body. It acts as a cofactor to enzymes involved in energy production, metabolism of branched chain amino acids, and regulation of nerve and muscle action potentials. It is found in many foods, including wheat, oats, and yeast-containing products. However, deficiency states can occur in chronic alcohol dependence, renal dialysis, and cultures that mainly consume white rice. The deficiency can manifest as ‘dry’ beriberi, which causes peripheral neuropathy, muscle weakness, fatigue, and reduced concentration, or ‘wet’ beriberi, which also involves heart failure and edema. In severe cases, Wernicke-Korsakoff syndrome can develop, which is an emergency requiring urgent IV replacement of thiamine. If left untreated, it can lead to irreversible amnesia, confabulation, and dementia. Therefore, all patients with alcohol-related admissions should be considered for Pabrinex, a B vitamin infusion.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 7
Incorrect
-
What RNA base pairs with adenine when synthesizing a complementary RNA strand from DNA, using RNA polymerase to split the helix at specific points?
Your Answer: Cytosine
Correct Answer: Uracil
Explanation:Differences between DNA and RNA
DNA and RNA differ in several ways. The primary sugar in DNA is deoxyribose, while in RNA it is ribose. Additionally, DNA is double stranded, while RNA is single stranded. This single stranded structure with un-paired bases allows for transcription to occur when the DNA bases are freed. Each base has a specific pairing, with guanine always binding to cytosine and adenine always binding to thymine in the DNA strand. During transcription, the same complementary RNA bases assemble with the DNA bases, except for thymine, which is not an RNA base. Instead, uracil serves as the RNA pyrimidine base equivalent of thymine. Finally, lysine is an amino acid coded for by the RNA base triplet AAA, where A represents adenine.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 8
Incorrect
-
You are evaluating a geriatric patient in the emergency department who has fallen and needs a venous cannula for fluid resuscitation. To ensure maximum flow into the vein, you plan to apply the Hagen-Poiseuille equation to select an appropriate cannula size. Which of the following statements is true according to this law?
Your Answer: Flow is proportional to the radius of the cannula squared
Correct Answer: Flow will be faster through a shorter cannula
Explanation:Poiseuille’s Equation and Fluid Flow in Cylinders
Poiseuille’s equation is used to describe the flow of non-pulsatile laminar fluids through a cylinder. The equation states that the flow rate is directly proportional to the pressure driving the fluid and the fourth power of the radius. Additionally, it is inversely proportional to the viscosity of the fluid and the length of the tube. This means that a short, wide cannula with pressure on the bag will deliver fluids more rapidly than a long, narrow one.
It is important to note that even small changes in the radius of a tube can greatly affect the flow rate. This is because the fourth power of the radius is used in the equation. Therefore, any changes in the radius will have a significant impact on the flow rate. Poiseuille’s equation is crucial in determining the optimal conditions for fluid delivery in medical settings.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 9
Incorrect
-
What role does the nucleolus play in eukaryotic cells?
Your Answer: To produce nuclei for DNA transcription
Correct Answer: To transcribe ribosomal RNA and assemble ribosomes
Explanation:The Nucleolus: Structure and Function
The nucleolus is a non-membrane-bound structure that takes up about a quarter of the nuclear volume. It is composed mainly of proteins and nucleic acids and is responsible for transcribing ribosomal RNA (rRNA) and assembling ribosomes in the cell. Nucleoli are formed in nucleolar organizing regions (NORs), which are also the regions of the genes for three of the four eukaryotic rRNAs.
During ribosome assembly, ribosomal proteins enter the nucleolus from the cytoplasm and begin to assemble on an rRNA precursor. As the pre-rRNA is cleaved to produce 5.8S, 18S, and 28S rRNAs, additional ribosomal proteins and the 5S rRNA (which is synthesized elsewhere in the nucleus) assemble to form preribosomal subunits. These subunits then exit the nucleolus into the cytoplasm and combine to produce the final 40S and 60S ribosomal subunits.
Overall, the nucleolus plays a crucial role in protein synthesis by producing the components necessary for ribosome assembly. Its unique structure and function make it an essential component of the cell’s machinery.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 10
Incorrect
-
What is the primary reason for malnutrition?
Your Answer: Inadequate intake of dietary carbohydrate
Correct Answer: Inadequate intake of calories in any form
Explanation:Malnutrition
Malnutrition refers to a state where the dietary intake is insufficient to maintain a healthy state and stable weight. It can be caused by over- or under-nutrition, but it is commonly used to describe under-nutrition. Malnutrition can be defined as a state of nutrition where a deficiency, excess, or imbalance of energy, protein, and other nutrients causes measurable adverse effects on tissue, function, and clinical outcome. Protein malnutrition is the most severe form of malnutrition, causing significant mortality and clinical effects such as kwashiorkor. Carbohydrate malnutrition is less common as carbohydrate sources are widely grown and cheap. Fat malnutrition rarely results in problems if there is adequate dietary protein and carbohydrate. Deficiencies of fat-soluble vitamins can result in various clinical effects. Body size can give some indication of nutritional status, but many obese patients may have nutritional deficiencies due to their faddy diets.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 11
Incorrect
-
What stage of cellular respiration is responsible for the production of pyruvic acid?
Your Answer: Oxidative phosphorylation
Correct Answer: Glycolysis
Explanation:The Versatility of Pyruvic Acid in Cellular Metabolism
Pyruvic acid is a simple alpha-keto acid that plays a crucial role in several metabolic pathways within the cell. It serves as a central intersection where different pathways converge and diverge. One of the primary ways pyruvic acid is produced is through glycolysis, where glucose is broken down into pyruvic acid. Depending on the cell’s needs, pyruvic acid can be converted back into glucose through gluconeogenesis or used to synthesize fatty acids through the acetyl-CoA pathway. Additionally, pyruvic acid can be used to produce the amino acid alanine.
Pyruvic acid is also involved in respiration, where it enters the Krebs cycle under aerobic conditions. This cycle produces energy in the form of ATP, which is used by the cell for various functions. Under anaerobic conditions, pyruvic acid can ferment into lactic acid, which is used by some organisms as a source of energy.
In summary, pyruvic acid is a versatile molecule that plays a critical role in cellular metabolism. Its ability to be converted into different molecules depending on the cell’s needs makes it an essential component of many metabolic pathways.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 12
Correct
-
What is the primary role of the nuclear membrane?
Your Answer: To regulate transport of molecules in and out of the nucleus
Explanation:The Role of the Nucleus and Nuclear Envelope in Cell Function
The nucleus is a crucial component of eukaryotic cells, serving as the control centre for the cell. It is characterised by a membrane-enclosed structure that contains the cell’s chromosomes and is heavily involved in regulating gene transcription and protein synthesis. The nuclear envelope, which consists of an outer and inner membrane, plays a critical role in regulating the movement of molecules in and out of the nucleus. This is achieved through nuclear pores on the surface of the envelope, which allow the passage of water-soluble molecules. While the incorrect answer options describe minor roles of the nuclear envelope, its primary function is to act as a regulatory barrier for anything that enters or exits the nucleus. Overall, the nucleus and nuclear envelope are essential components of cell function, playing a critical role in regulating gene expression and maintaining cellular homeostasis.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 13
Incorrect
-
A 50-year-old female patient with varicose veins presents to the vascular clinic for evaluation.
During the assessment, a test is conducted to determine the location of incompetence. The patient is instructed to lie down, and the veins are emptied by elevating her legs off the couch. The examiner then identifies the site of the sapheno-femoral junction and applies pressure with their fingers. The patient is then asked to stand up to evaluate vein filling.
What is the name of this test?Your Answer: Perthe's test
Correct Answer: Trendelenburg's test
Explanation:Assessing Varicose Vein Site of Incompetence
The Trendelenburg and tourniquet tests are both used to evaluate the site of incompetence in varicose veins at the sapheno-femoral junction. During the Trendelenburg test, the examiner applies pressure with their fingers over the junction site, while in the tourniquet test, a tourniquet is placed just below the junction level.
If the veins fill quickly upon standing, it indicates that the sapheno-femoral junction is not the source of the incompetence. These tests are essential in determining the location of the varicose vein site of incompetence, which is crucial in planning the appropriate treatment. By identifying the site of incompetence, physicians can perform targeted interventions to improve venous function and alleviate symptoms. Therefore, the Trendelenburg and tourniquet tests are valuable tools in the diagnosis and management of varicose veins.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 14
Incorrect
-
During which stage of the cell cycle does the replication of DNA occur?
Your Answer: M phase
Correct Answer: S phase
Explanation:The Five Phases of the Cell Cycle
The cell cycle is a complex process that is divided into five main phases, each with its unique cellular events. The first phase is the G0 phase, which is a resting phase where the cell has stopped dividing and is out of the cell cycle. The second phase is the G1 phase, also known as interphase Gap 1, where cells increase in size, and a checkpoint control mechanism prepares the cell for DNA synthesis.
The third phase is the S phase, where DNA replication occurs. The fourth phase is the G2 phase, also known as Gap 2, which is a gap between DNA synthesis and the onset of mitosis. During this phase, the cell continues to grow until it is ready to enter mitosis. Finally, the fifth phase is the M phase, also known as mitosis, where cell growth stops, and the cell focuses its energy to divide into two daughter cells.
A checkpoint in the middle of mitosis, known as the metaphase checkpoint, ensures that the cell is prepared to complete division. the five phases of the cell cycle is crucial in how cells divide and grow.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 15
Correct
-
A premature baby is born and the anaesthetists are struggling to ventilate the lungs because of insufficient surfactant. How does Laplace's law explain the force pushing inwards on the walls of the alveolus caused by surface tension between two static fluids, such as air and water in the alveolus?
Your Answer: Inversely proportional to the radius of the alveolus
Explanation:The Relationship between Alveolar Size and Surface Tension in Respiratory Physiology
In respiratory physiology, the alveolus is often represented as a perfect sphere to apply Laplace’s law. According to this law, there is an inverse relationship between the size of the alveolus and the surface tension. This means that smaller alveoli experience greater force than larger alveoli for a given surface tension, causing them to collapse first. This phenomenon is similar to what happens when two balloons of different sizes are attached together, with the smaller balloon emptying into the larger one.
In the lungs, this collapse of smaller alveoli can lead to atelectasis and collapse if surfactant is not present. Surfactant is a substance that reduces surface tension, making it easier to expand the alveoli and preventing smaller alveoli from collapsing. this relationship between alveolar size and surface tension is crucial in respiratory physiology, as it helps explain the importance of surfactant in maintaining proper lung function.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 16
Incorrect
-
A 10-year-old patient presents with recurrent skin cancer and is diagnosed with xeroderma pigmentosum. What is the defective biochemical mechanism in this disease?
Your Answer: Nucleotide transition
Correct Answer: DNA excision repair
Explanation:Xeroderma Pigmentosum and DNA Repair
Deoxyribonucleic acid (DNA) found in the skin cells can absorb ultraviolet (UV) light, which can cause the formation of pyrimidine dimers. These dimers are removed through a process called excision repair, where the damaged DNA is cut out and replaced with new DNA. However, if this process fails, it can lead to mutations in genes that suppress tumors or promote their growth, potentially leading to cancer.
Xeroderma pigmentosum is a genetic disorder that is inherited in an autosomal recessive pattern. This means that an individual must inherit two copies of the mutated gene, one from each parent, to develop the disorder. Generally, disorders that affect metabolism or DNA replication on a cellular or genetic level are inherited in an autosomal recessive pattern. On the other hand, genetic disorders that affect larger structural components are usually inherited in an autosomal dominant pattern. While there are exceptions to these rules, they can serve as a helpful guide for exam preparation.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 17
Correct
-
What could be a potential cause of metabolic acidosis?
Your Answer: Poorly controlled diabetes
Explanation:Acid-Base Imbalances in Different Medical Conditions
Poorly controlled diabetes can cause the breakdown of fatty acids, leading to the production of ketones as an alternative energy source. However, an excess of ketones can result in metabolic acidosis due to their acidic nature. On the other hand, chronic obstructive pulmonary disease (COPD) and suffocation can cause the retention of carbon dioxide, leading to respiratory acidosis. In COPD, there may be a compensatory metabolic alkalosis. Voluntary hyperventilation can cause respiratory alkalosis due to the reduction of carbon dioxide. Vomiting can also lead to metabolic alkalosis. Diabetic ketoacidosis is a complication of type 1 diabetes that results in high blood sugar levels, ketone production, and acidosis.
In summary, different medical conditions can cause acid-base imbalances in the body. It is important to identify the underlying cause of the imbalance to provide appropriate treatment.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 18
Incorrect
-
Which process occurs mainly in the smooth endoplasmic reticulum?
Your Answer: Synthesis of exported proteins
Correct Answer: Steroid synthesis
Explanation:The Functions of Endoplasmic Reticulum and Lysosomes
The endoplasmic reticulum (ER) is a complex network of membranes that is divided into two types: rough and smooth. The rough ER is characterized by the presence of ribosomes on its cytosolic side, which makes it an important site for protein production, modification, and transport. On the other hand, the smooth ER is involved in cholesterol and steroid handling, as well as calcium storage in some cells. This type of ER is particularly prominent in cells that produce large amounts of steroid hormones, such as those found in the adrenal cortex.
Lysosomes, on the other hand, are organelles that are responsible for breaking down and recycling cellular waste. They are formed by the Golgi apparatus, which is another complex network of membranes found in eukaryotic cells. Lysosomes contain a variety of enzymes that are capable of breaking down different types of molecules, including proteins, lipids, and carbohydrates.
In summary, the ER and lysosomes are two important organelles in eukaryotic cells that play different roles in cellular metabolism. While the ER is involved in protein production, modification, and transport, the lysosomes are responsible for breaking down and recycling cellular waste.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 19
Correct
-
What significance do leucine, lysine, and phenylalanine hold?
Your Answer: They are essential amino acids
Explanation:Essential Amino Acids and their Importance in the Diet
There are approximately 20 essential amino acids that are crucial for human health. These amino acids are considered essential because the body cannot produce them on its own and they must be obtained through the diet. While some of these essential amino acids can be used to create other non-essential amino acids, they are still necessary for overall health and wellbeing.
Some examples of essential amino acids include histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. However, the amount of these essential amino acids can vary depending on the type of dietary protein consumed. Additionally, cooking or preserving proteins can alter the amino acid composition, making them less effective for the body.
In summary, essential amino acids play a vital role in maintaining human health and must be obtained through the diet. the importance of these amino acids and their sources can help individuals make informed decisions about their dietary choices.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 20
Correct
-
What is the conversion of pyruvate before it enters the Krebs cycle?
Your Answer: Acetyl-CoA
Explanation:The Krebs cycle occurs in the mitochondrion and involves the conversion of acetyl-CoA to oxaloacetate. This cycle produces six NADH, two FADH, and two ATP for each molecule of glucose. Pyruvate is converted to acetyl-CoA before entering the Krebs cycle, and water and carbon dioxide are end products. Acetic acid itself has no role in the cycle, but its acetyl group is used to form acetyl-CoA. Some anaerobic bacteria can convert sugars to acetic acid directly.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 21
Correct
-
What function does vitamin E serve in the body?
Your Answer: Antioxidant
Explanation:Vitamin E and its Functions
Several substances are classified as vitamin E, with alpha-tocopherol being the most common, accounting for 90% of human vitamin E. Alpha-tocopherol is composed of two carbon rings and a long saturated hydrocarbon chain, making it hydrophobic. It has an aromatic ring with an OH- group attached to it. Other substances with vitamin E activity include other tocopherols and tocotrienols, all of which act as antioxidants. Alpha-tocopherol is particularly important in cell membranes, preventing the peroxidation of unsaturated fatty acids by free radicals. It also has other functions, such as regulating gene transcription, inhibiting clotting formation, reducing proliferation of vascular smooth muscle, and playing a role in immunity.
Despite claims that taking vitamin E can reduce the risk of heart disease, cancer, and enhance sexual performance, there is currently no strong evidence to support these claims.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 22
Incorrect
-
What occurs during metaphase II of meiosis?
Your Answer: Sister chromatids separate on the meiotic spindle
Correct Answer: The cell's chromosomes attach to the meiotic spindle to divide into chromatids
Explanation:The Process of Meiosis
Meiosis is a complex process that involves two major cycles. The first cycle, meiosis I, condenses the reproductive cell’s DNA into chromosomes that are then replicated, creating two pairs of each original chromosome. These pairs are then separated, and the cell divides with one chromosome in each daughter cell. The second cycle, meiosis II, splits the chromosomes into individual chromatids, which are then separated as in meiosis I. This separation is facilitated by a spindle, a set of parallel fibers that attach to the center of each chromosome and split into two, making the chromatids travel on the polar opposite sides of the cell. The cell then divides again, giving rise to four haploid daughter cells.
During meiosis II, the chromosomes align on the spindle in metaphase II. Tetrads separate during anaphase I and line up during metaphase I. Sister chromatids separate on the meiotic spindle during anaphase II. Finally, chromosomes uncoil and lengthen at the end of meiosis, in telophase II. This process is essential for the production of gametes and the continuation of sexual reproduction in many organisms.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 23
Correct
-
What are the primary constituents of the cytoskeleton in eukaryotic cells?
Your Answer: Microfilaments, intermediate filaments and microtubules
Explanation:The Eukaryotic Cytoskeleton: A Structural Support System
The eukaryotic cytoskeleton is a network of structures that provide structural support to the cell. It helps the cell maintain its shape, protects it from external pressure, and performs intracellular transport. The cytoskeleton is made up of three major structures: microfilaments, intermediate filaments, and microtubules. Microfilaments are thin double helices made up of actin and are involved in pressure resistance and cell motility. Intermediate filaments have a more complex structure and maintain cell shape while bearing tension. Microtubules are hollow cylinders made up of alpha and beta tubulin proteins and are involved in intracellular transport, cell movement, and form the mitotic spindle during cytokinesis.
Cilia, flagella, and lamellipodia are structures that are not part of the cell’s cytoskeleton but are made up of components of it and perform unique functions such as cell movement and extracellular sensing. Kinesin and dynein are motor proteins that support microtubule function. Microfilaments and alpha/beta microtubules are incorrect because they leave out intermediate filaments. Tubulin and actin are proteins of microtubules and microfilaments, respectively, but myosin is a motility protein involved in muscle contraction. The eukaryotic cytoskeleton is an essential component of the cell that provides structural support and enables various cellular functions.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 24
Incorrect
-
Of which cellular structure is the fibrillar centre a component?
Your Answer: The chromosomes
Correct Answer: The nucleolus
Explanation:The Fibrillar Centre in the Nucleolus
The fibrillar centre is a crucial component of the nucleolus, which is found in most metazoan nucleoli, particularly in higher eukaryotes. Along with the dense fibrillar components and the granular component, it forms the three major components of the nucleolus. During the end of mitosis, the fibrillar centre serves as a storage point for nucleolar ribosomal chromatin and associated ribonucleoprotein transcripts. As the nucleolus becomes active, the ribosomal chromatin and ribonucleoprotein transcripts begin to form the dense fibrillar components, which are more peripherally located and surround the fibrillar centres. The transcription zone for multiple copies of the pre-rRNA genes is the border between these two structures. It is important to note that the fibrillar centre is not a component of any of the cell structures mentioned in the incorrect answer options.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 25
Incorrect
-
To what type of cell can mesenchymal stem cells transform?
Your Answer: Muscle cells
Correct Answer: Osteoblasts
Explanation:Mesenchymal Cells: The Stem Cells of the Human Skeleton
Mesenchymal cells are the primary stem cells of the human skeleton. These multipotent cells originate in the bone marrow and have the ability to differentiate into various cell types. Osteoblasts, responsible for bone formation, chondrocytes, which give rise to cartilage, and adipocytes, specialized in storing energy as fat, are some of the cells that mesenchymal cells can produce. Muscle cells, or myocytes, arise from muscle satellite cells, while skin cells come from epithelial stem cells. Neurons mostly arise from neural stem cells, although some may come from astrocytes. White blood cells, on the other hand, come from hematopoietic stem cells. Mesenchymal cells play a crucial role in the maintenance and repair of the human skeleton, making them an essential area of study in regenerative medicine.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 26
Incorrect
-
What is the main role of the Golgi apparatus in eukaryotic cells?
Your Answer: Synthesises proteins
Correct Answer: Process of proteins
Explanation:The Golgi Apparatus, Cell Division, and Homeostasis
The Golgi apparatus is a structure found in eukaryotic cells that consists of flattened membrane stacks. Its primary function is to modify proteins that have been synthesized in the rough endoplasmic reticulum, preparing them for secretion or transport within the cell. However, the Golgi apparatus is not directly involved in cell division, which is controlled by the nucleus.
Cell homeostasis, on the other hand, is primarily maintained by membrane-embedded channels or proteins such as the sodium-potassium pump. This mechanism ensures that the cell’s internal environment remains stable. The sodium-potassium pump is an active transport mechanism that involves the binding of three intracellular sodium ions to the protein. Adenosine triphosphate (ATP) donates a phosphate group to the protein, which causes it to change shape and release the sodium ions out of the cell.
The protein then accepts two extracellular potassium ions, and the donated phosphate group detaches, causing the protein to revert to its original shape. This allows the potassium ions to enter the cell, increasing the intracellular potassium concentration and decreasing the intracellular sodium concentration. This process is in contrast to the extracellular conditions.
In summary, the Golgi apparatus modifies proteins for secretion or transport, while cell division is controlled by the nucleus. Cell homeostasis is maintained by membrane-embedded channels or proteins such as the sodium-potassium pump, which actively transports ions to stabilize the cell’s internal environment.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 27
Incorrect
-
A couple in their early 30s come to your clinic seeking advice. The husband has a history of haemophilia B and they are worried about the possibility of passing it on to their children. Can you determine which of their offspring will be affected by the disease?
Your Answer: Half of the daughters and half of the sons will be affected
Correct Answer: All daughters will be carriers; no sons will be affected
Explanation:The inheritance of Haemophilia A and B is crucial in identifying individuals who are at risk of developing the condition. Haemophilia A and B are genetic disorders that are inherited in an X-linked recessive manner. Haemophilia A is caused by a deficiency in clotting factor VIII, while haemophilia B is caused by a deficiency in clotting factor IX.
On the other hand, haemophilia C, which is caused by a deficiency in clotting factor XI, is primarily inherited in an autosomal recessive manner. In X-linked recessive conditions like haemophilia B, males are more likely to be affected than females. This is because males only need one abnormal copy of the gene, which is carried on the X chromosome, to be affected.
Females, on the other hand, can be carriers of the condition if they carry one normal and one abnormal copy of the gene. While carriers can have clotting abnormalities, these are usually milder than those seen in affected individuals. Men cannot pass the condition to their sons, but they will pass on the abnormal X chromosome to all their daughters, who will be carriers.
Female carriers can pass on the condition to around half their sons, and half their daughters will be carriers. Females can only be affected if they are the offspring of an affected male and a carrier female. In summary, the inheritance of haemophilia A and B is crucial in identifying individuals who are at risk of developing the condition. It also helps in providing appropriate genetic counseling and management for affected individuals and their families.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 28
Incorrect
-
A 40-year-old male complains of a painful and swollen right calf. The possibility of deep vein thrombosis (DVT) is being considered. What tests should be conducted to confirm the diagnosis?
Your Answer: MRI of the leg veins
Correct Answer: Dopplers of the leg veins
Explanation:Diagnostic Methods for Deep Vein Thrombosis
When it comes to diagnosing deep vein thrombosis (DVT), there are several methods available. The most common ones are Doppler studies and venography. Doppler studies use B mode ultrasonography to examine the venous system, while venography involves injecting a contrast dye into the veins and taking X-rays. CT scans are not typically used for DVT diagnosis because they require contrast and expose the patient to radiation. D-Dimer concentrations can help rule out DVT if they are negative, but they cannot diagnose it. MRI scans are useful for examining soft tissues and bones, but they are not the best option for visualizing the vasculature. Finally, oxygen saturation of the limbs is not a reliable diagnostic method because tissue perfusion can be the same even if there is arterial disease. Overall, Doppler studies and venography are the most effective methods for diagnosing DVT.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 29
Correct
-
Which form of vitamin D is the most active in the human body?
Your Answer: 1, 25 (OH) 2 vitamin D
Explanation:The Process of Vitamin D Production and Activation
Vitamin D comes in two forms, D2 and D3. D3 can be produced in the skin through a reaction that requires UV light, while D2 cannot. Both forms can also be obtained through diet, with some foods now being supplemented with Vitamin D. However, the production of Vitamin D3 in the skin can be affected by various factors such as seasons, latitude, clothing, sun block, and skin tone, making it difficult for individuals to get adequate levels of Vitamin D through sunlight alone, especially in the UK during winter.
Once absorbed into the lymph, Vitamin D2 and D3 circulate in the bloodstream and reach the liver. Here, the liver enzyme 25-hydroxylase adds an OH group to the Vitamin D molecule, resulting in 25(OH) Vitamin D. The compound then travels to the kidney, where the enzyme 1-alpha hydroxylase adds another OH group, creating the active form of Vitamin D, 1,25 (OH)2Vitamin D. When there is enough of this active form, an inactive metabolite called 24,25 (OH)2Vitamin D is produced instead. this process is important in ensuring adequate Vitamin D levels for overall health and well-being.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 30
Incorrect
-
A couple in their late 20s comes to your clinic seeking advice regarding the possibility of their children inheriting cystic fibrosis. The husband has a confirmed diagnosis of the condition, but the carrier status of the wife is unknown.
What is the likelihood of any of their offspring being affected by cystic fibrosis?Your Answer: 25%
Correct Answer: 2.50%
Explanation:Cystic Fibrosis Inheritance
Cystic fibrosis (CF) is a genetic disorder that affects the chloride ion channels, leading to the thickening of respiratory and other secretions. It is an autosomal recessive condition, which means that a person must inherit two copies of the defective gene, one from each parent, to develop the disease. The most common defective allele is carried by approximately 1 in 20 people.
If a man with CF has children with a woman who does not carry the recessive gene, then none of their children will be affected by the disease. However, they will all be carriers of the CF gene. On the other hand, if the woman is a carrier of the CF gene, there is a 50% chance that each child will inherit one copy of the defective gene from each parent and be affected by the disease. The remaining 50% of the children will inherit one copy of the defective gene and one normal gene, making them carriers of the CF gene but not affected by the disease.
In summary, the probability of any child being affected by CF is 2.5% if one parent has the defective gene and the other does not. It is important for individuals who are carriers of the CF gene to be aware of their status and seek genetic counseling before planning to have children.
-
This question is part of the following fields:
- Basic Sciences
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)