00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 35-year-old woman presents to the Emergency Department with a stab wound to...

    Correct

    • A 35-year-old woman presents to the Emergency Department with a stab wound to her forearm following a robbery. Upon examination, there is numbness observed in the thenar eminence and weakness in finger and wrist flexion. Which nerve is the most probable to have been damaged?

      Your Answer: Median nerve

      Explanation:

      The median nerve is responsible for providing sensation to the thenar eminence and controlling finger and wrist flexion. Its palmar cutaneous branch supplies sensation to the skin on the lateral side of the palm, including the thenar eminence. The median nerve directly innervates the flexor carpi radialis and palmaris longus muscles, which are responsible for wrist flexion, as well as the flexor digitorum superficialis and lateral half of the flexor digitorum profundus muscles via the anterior interosseous nerve, which control finger flexion. Damage to the median nerve can result in weakness in these movements.

      Anatomy and Function of the Median Nerve

      The median nerve is a nerve that originates from the lateral and medial cords of the brachial plexus. It descends lateral to the brachial artery and passes deep to the bicipital aponeurosis and the median cubital vein at the elbow. The nerve then passes between the two heads of the pronator teres muscle and runs on the deep surface of flexor digitorum superficialis. Near the wrist, it becomes superficial between the tendons of flexor digitorum superficialis and flexor carpi radialis, passing deep to the flexor retinaculum to enter the palm.

      The median nerve has several branches that supply the upper arm, forearm, and hand. These branches include the pronator teres, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, flexor pollicis longus, and palmar cutaneous branch. The nerve also provides motor supply to the lateral two lumbricals, opponens pollicis, abductor pollicis brevis, and flexor pollicis brevis muscles, as well as sensory supply to the palmar aspect of the lateral 2 ½ fingers.

      Damage to the median nerve can occur at the wrist or elbow, resulting in various symptoms such as paralysis and wasting of thenar eminence muscles, weakness of wrist flexion, and sensory loss to the palmar aspect of the fingers. Additionally, damage to the anterior interosseous nerve, a branch of the median nerve, can result in loss of pronation of the forearm and weakness of long flexors of the thumb and index finger. Understanding the anatomy and function of the median nerve is important in diagnosing and treating conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      18.1
      Seconds
  • Question 2 - A 57-year-old woman is admitted to the orthogeriatric ward for further investigations into...

    Incorrect

    • A 57-year-old woman is admitted to the orthogeriatric ward for further investigations into the underlying cause of her recurrent falls. During a neurological examination, it is found that she has normal power, tone, reflexes, and coordination in both upper and lower limbs bilaterally, but there is a loss of sensation over the medial aspect of her left leg. Based on this information, which nerve is most likely to have been affected?

      Your Answer:

      Correct Answer: Saphenous nerve

      Explanation:

      The femoral nerve is a nerve that originates from the spinal roots L2, L3, and L4. It provides innervation to several muscles in the thigh, including the pectineus, sartorius, quadriceps femoris, and vastus lateralis, medialis, and intermedius. Additionally, it branches off into the medial cutaneous nerve of the thigh, saphenous nerve, and intermediate cutaneous nerve of the thigh. The femoral nerve passes through the psoas major muscle and exits the pelvis by going under the inguinal ligament. It then enters the femoral triangle, which is located lateral to the femoral artery and vein.

      To remember the femoral nerve’s supply, a helpful mnemonic is don’t MISVQ scan for PE. This stands for the medial cutaneous nerve of the thigh, intermediate cutaneous nerve of the thigh, saphenous nerve, vastus, quadriceps femoris, and sartorius, with the addition of the pectineus muscle. Overall, the femoral nerve plays an important role in the motor and sensory functions of the thigh.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 3 - Where does the spinal cord terminate in infants? ...

    Incorrect

    • Where does the spinal cord terminate in infants?

      Your Answer:

      Correct Answer: L3

      Explanation:

      During the third month of development, the spinal cord of the foetus extends throughout the entire vertebral canal. However, as the vertebral column continues to grow, it surpasses the growth rate of the spinal cord. As a result, at birth, the spinal cord is located at the level of L3, but by adulthood, it shifts up to L1-2.

      The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.

      One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 4 - After a history of neurological disease, a 60-year-old patient comes for clinical examination....

    Incorrect

    • After a history of neurological disease, a 60-year-old patient comes for clinical examination.

      During the examination:

      The patient can smile and show their teeth, but they struggle to clench their teeth.
      There are no issues with eyebrow movement or pupillary size.
      Sensation in the forehead is intact.
      However, there is a decrease in sensory innervation in the area of the buccinator.

      Which nerve is the most likely to be impacted?

      Your Answer:

      Correct Answer: Trigeminal (mandibular branch)

      Explanation:

      Cranial nerve palsies can present with diplopia, or double vision, which is most noticeable in the direction of the weakened muscle. Additionally, covering the affected eye will cause the outer image to disappear. False localising signs can indicate a pathology that is not in the expected anatomical location. One common example is sixth nerve palsy, which is often caused by increased intracranial pressure due to conditions such as brain tumours, abscesses, meningitis, or haemorrhages. Papilloedema may also be present in these cases.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 5 - A 67-year-old male, John, visits his doctor with complaints of right-sided facial weakness....

    Incorrect

    • A 67-year-old male, John, visits his doctor with complaints of right-sided facial weakness. He reports no other symptoms. Upon further examination and imaging, John is diagnosed with a unilateral parotid tumor. What cranial nerve lesion could be responsible for John's presentation?

      Your Answer:

      Correct Answer: Extracranial lesion of right facial nerve

      Explanation:

      Facial nerve palsy can be caused by a tumour in the parotid gland, which is an example of an extracranial lesion of the facial nerve.

      The facial nerve is responsible for controlling the muscles of facial expression, so any damage to the nerve can result in weakness or paralysis of these muscles. Although the trigeminal nerve does not pass through the parotid gland, the facial nerve does.

      When the facial nerve is affected outside of the cranium, it is considered an extracranial lesion. Since the parotid gland is located outside of the cranium, a tumour in this gland that causes facial nerve damage is classified as an extracranial lesion.

      An extracranial palsy on the same side as the lesion is caused by a parotid gland lesion. Therefore, June’s right-sided facial weakness indicates that she has an extracranial lesion of the right facial nerve.

      Cranial nerve palsies can present with diplopia, or double vision, which is most noticeable in the direction of the weakened muscle. Additionally, covering the affected eye will cause the outer image to disappear. False localising signs can indicate a pathology that is not in the expected anatomical location. One common example is sixth nerve palsy, which is often caused by increased intracranial pressure due to conditions such as brain tumours, abscesses, meningitis, or haemorrhages. Papilloedema may also be present in these cases.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 6 - A 75-year-old male is referred to the memory clinic due to a gradual...

    Incorrect

    • A 75-year-old male is referred to the memory clinic due to a gradual decline in his memory. Over the past five months, he has been struggling to recall the names of his loved ones and has been found disoriented and confused on multiple occasions. After an evaluation, the patient is prescribed medication to slow down the advancement of the illness.

      What is the primary enzyme inhibited by the initial medication for the suspected condition?

      Your Answer:

      Correct Answer: Cholinesterase

      Explanation:

      Patients with Alzheimer’s dementia, which is the most prevalent type, experience a decrease in cholinergic neurons. To address this, acetylcholine inhibitors (AChEI) are prescribed to increase the amount of AChEI in the synaptic cleft, resulting in amplified effects at the postsynaptic receptor. Donepezil, galantamine, and rivastigmine are examples of AChEI inhibitors.

      Donepezil is the primary recommendation for treating Alzheimer’s disease, while memantine, an NMDA receptor antagonist, is the secondary recommendation.

      Management of Alzheimer’s Disease

      Alzheimer’s disease is a type of dementia that progressively affects the brain and is the most common form of dementia in the UK. There are both non-pharmacological and pharmacological management options available for patients with Alzheimer’s disease.

      Non-pharmacological management involves offering activities that promote wellbeing and are tailored to the patient’s preferences. Group cognitive stimulation therapy, group reminiscence therapy, and cognitive rehabilitation are some of the options that can be considered.

      Pharmacological management options include acetylcholinesterase inhibitors such as donepezil, galantamine, and rivastigmine for managing mild to moderate Alzheimer’s disease. Memantine, an NMDA receptor antagonist, is a second-line treatment option that can be used for patients with moderate Alzheimer’s who are intolerant of or have a contraindication to acetylcholinesterase inhibitors. It can also be used as an add-on drug to acetylcholinesterase inhibitors for patients with moderate or severe Alzheimer’s or as monotherapy in severe Alzheimer’s.

      When managing non-cognitive symptoms, NICE does not recommend the use of antidepressants for mild to moderate depression in patients with dementia. Antipsychotics should only be used for patients at risk of harming themselves or others or when the agitation, hallucinations, or delusions are causing them severe distress.

      It is important to note that donepezil is relatively contraindicated in patients with bradycardia, and adverse effects may include insomnia. Proper management of Alzheimer’s disease can improve the quality of life for patients and their caregivers.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 7 - A man in his early fifties presents to the GP with hearing loss...

    Incorrect

    • A man in his early fifties presents to the GP with hearing loss in his right ear. After conducting a Webber's and Rinne's test, the following results were obtained:

      - Webber's test: lateralizes to the left ear
      - Rinne's test (left ear): Air > Bone
      - Rinne's test (right ear): Air > Bone

      What is the probable cause of his hearing loss?

      Your Answer:

      Correct Answer: Acoustic neuroma

      Explanation:

      Sensorineural hearing loss in the right ear is indicative of an acoustic neuroma, which is the only option listed as a cause for this type of hearing loss. Other options such as otitis media with effusion and otitis externa cause conductive hearing loss, while ossicular fracture is a rare cause of conductive hearing loss. Understanding the Weber and Rinne tests is important in interpreting these results accurately.

      Vestibular schwannomas, also known as acoustic neuromas, make up about 5% of intracranial tumors and 90% of cerebellopontine angle tumors. These tumors typically present with a combination of vertigo, hearing loss, tinnitus, and an absent corneal reflex. The specific symptoms can be predicted based on which cranial nerves are affected. For example, cranial nerve VIII involvement can cause vertigo, unilateral sensorineural hearing loss, and unilateral tinnitus. Bilateral vestibular schwannomas are associated with neurofibromatosis type 2.

      If a vestibular schwannoma is suspected, it is important to refer the patient to an ear, nose, and throat specialist urgently. However, it is worth noting that these tumors are often benign and slow-growing, so observation may be appropriate initially. The diagnosis is typically confirmed with an MRI of the cerebellopontine angle, and audiometry is also important as most patients will have some degree of hearing loss. Treatment options include surgery, radiotherapy, or continued observation.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 8 - Sarah, a 23-year-old female, visits the clinic to have her 8-week plaster cast...

    Incorrect

    • Sarah, a 23-year-old female, visits the clinic to have her 8-week plaster cast removed from her lower limb. During the examination, it is observed that her right foot is in a plantar flexed position, indicating foot drop.

      The physician proceeds to assess the sensation in Sarah's lower limb and feet and discovers a reduction in the area innervated by the deep fibular nerve.

      What specific region of Sarah's lower limb or foot is likely to be impacted by this condition?

      Your Answer:

      Correct Answer: Webspace between the first and second toes

      Explanation:

      The webbing between the first and second toes is innervated by the deep fibular nerve. The saphenous nerve, which arises from the femoral nerve, provides cutaneous innervation to the medial aspect of the leg. The sural nerve, which arises from the common fibular and tibial nerves, innervates the lateral foot. The majority of innervation to the dorsum of the foot comes from the superficial fibular nerve.

      The common peroneal nerve originates from the dorsal divisions of the sacral plexus, specifically from L4, L5, S1, and S2. This nerve provides sensation to the skin and fascia of the anterolateral surface of the leg and dorsum of the foot, as well as innervating the muscles of the anterior and peroneal compartments of the leg, extensor digitorum brevis, and the knee, ankle, and foot joints. It is located laterally within the sciatic nerve and passes through the lateral and proximal part of the popliteal fossa, under the cover of biceps femoris and its tendon, to reach the posterior aspect of the fibular head. The common peroneal nerve divides into the deep and superficial peroneal nerves at the point where it winds around the lateral surface of the neck of the fibula in the body of peroneus longus, approximately 2 cm distal to the apex of the head of the fibula. It is palpable posterior to the head of the fibula. The nerve has several branches, including the nerve to the short head of biceps, articular branch (knee), lateral cutaneous nerve of the calf, and superficial and deep peroneal nerves at the neck of the fibula.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 9 - Which one of the following is not a content of the cavernous sinus?...

    Incorrect

    • Which one of the following is not a content of the cavernous sinus?

      Your Answer:

      Correct Answer: Optic nerve

      Explanation:

      Cavernous sinus contents mnemonic: OTOM CAT

      Understanding the Cavernous Sinus

      The cavernous sinuses are a pair of structures located on the sphenoid bone, running from the superior orbital fissure to the petrous temporal bone. They are situated between the pituitary fossa and the sphenoid sinus on the medial side, and the temporal lobe on the lateral side. The cavernous sinuses contain several important structures, including the oculomotor, trochlear, ophthalmic, and maxillary nerves, as well as the internal carotid artery and sympathetic plexus, and the abducens nerve.

      The lateral wall components of the cavernous sinuses include the oculomotor, trochlear, ophthalmic, and maxillary nerves, while the contents of the sinus run from medial to lateral and include the internal carotid artery and sympathetic plexus, and the abducens nerve. The blood supply to the cavernous sinuses comes from the ophthalmic vein, superficial cortical veins, and basilar plexus of veins posteriorly. The cavernous sinuses drain into the internal jugular vein via the superior and inferior petrosal sinuses.

      In summary, the cavernous sinuses are important structures located on the sphenoid bone that contain several vital nerves and blood vessels. Understanding their location and contents is crucial for medical professionals in diagnosing and treating various conditions that may affect these structures.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 10 - In the proximal third of the upper arm, where is the musculocutaneous nerve...

    Incorrect

    • In the proximal third of the upper arm, where is the musculocutaneous nerve situated?

      Your Answer:

      Correct Answer: Between the biceps brachii and brachialis muscles

      Explanation:

      The biceps and brachialis muscles are located on either side of the musculocutaneous nerve.

      The Musculocutaneous Nerve: Function and Pathway

      The musculocutaneous nerve is a nerve branch that originates from the lateral cord of the brachial plexus. Its pathway involves penetrating the coracobrachialis muscle and passing obliquely between the biceps brachii and the brachialis to the lateral side of the arm. Above the elbow, it pierces the deep fascia lateral to the tendon of the biceps brachii and continues into the forearm as the lateral cutaneous nerve of the forearm.

      The musculocutaneous nerve innervates the coracobrachialis, biceps brachii, and brachialis muscles. Injury to this nerve can cause weakness in flexion at the shoulder and elbow. Understanding the function and pathway of the musculocutaneous nerve is important in diagnosing and treating injuries or conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 11 - A 65-year-old woman with chronic kidney disease visits the renal clinic for a...

    Incorrect

    • A 65-year-old woman with chronic kidney disease visits the renal clinic for a routine examination. Her blood work reveals hypocalcemia and elevated levels of parathyroid hormone.

      What could be the probable reason for her abnormal blood test results?

      Your Answer:

      Correct Answer: Decreased levels of 1,25-dihydroxycholecalciferol (calcitriol, activated vitamin D)

      Explanation:

      Maintaining Calcium Balance in the Body

      Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.

      PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.

      Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.

      Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.

      Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 12 - A 23 years old male presents to the hospital with a complaint of...

    Incorrect

    • A 23 years old male presents to the hospital with a complaint of reduced ability to flex his left elbow. The doctor observes a significant weakness in the flexion of his left elbow and supination of his forearm. Additionally, the patient reports experiencing a tingling sensation on his left lateral forearm.

      Which nerve is most likely to be damaged in this case?

      Your Answer:

      Correct Answer: Musculocutaneous nerve

      Explanation:

      The musculocutaneous nerve originates from the lateral cord of the brachial plexus and provides innervation to the bicep brachii, brachialis, and coracobrachialis muscles in the upper arm. It then continues into the forearm as the lateral cutaneous nerve of the forearm. Damage to this nerve can result in the aforementioned symptoms.

      The median nerve is responsible for innervating the anterior compartment of the forearm, but does not provide innervation to any muscles in the arm.

      The ulnar nerve provides innervation to the flexor carpi ulnaris and medial half of the flexor digitorum profundus muscles in the forearm, as well as the intrinsic muscles of the hand (excluding the thenar muscles and two lateral lumbricals). It is commonly injured due to a fracture of the medial epicondyle.

      The radial nerve innervates the tricep brachii and extensor muscles in the forearm, and provides sensory innervation to the majority of the posterior forearm and dorsal surface of the lateral three and a half digits. It is typically injured due to a midshaft humeral fracture.

      The Musculocutaneous Nerve: Function and Pathway

      The musculocutaneous nerve is a nerve branch that originates from the lateral cord of the brachial plexus. Its pathway involves penetrating the coracobrachialis muscle and passing obliquely between the biceps brachii and the brachialis to the lateral side of the arm. Above the elbow, it pierces the deep fascia lateral to the tendon of the biceps brachii and continues into the forearm as the lateral cutaneous nerve of the forearm.

      The musculocutaneous nerve innervates the coracobrachialis, biceps brachii, and brachialis muscles. Injury to this nerve can cause weakness in flexion at the shoulder and elbow. Understanding the function and pathway of the musculocutaneous nerve is important in diagnosing and treating injuries or conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 13 - The following statements about the femoral nerve are all true except for one....

    Incorrect

    • The following statements about the femoral nerve are all true except for one. Which statement is incorrect?

      Your Answer:

      Correct Answer: It supplies adductor longus

      Explanation:

      The obturator nerve supplies the adductor longus.

      The femoral nerve is a nerve that originates from the spinal roots L2, L3, and L4. It provides innervation to several muscles in the thigh, including the pectineus, sartorius, quadriceps femoris, and vastus lateralis, medialis, and intermedius. Additionally, it branches off into the medial cutaneous nerve of the thigh, saphenous nerve, and intermediate cutaneous nerve of the thigh. The femoral nerve passes through the psoas major muscle and exits the pelvis by going under the inguinal ligament. It then enters the femoral triangle, which is located lateral to the femoral artery and vein.

      To remember the femoral nerve’s supply, a helpful mnemonic is don’t MISVQ scan for PE. This stands for the medial cutaneous nerve of the thigh, intermediate cutaneous nerve of the thigh, saphenous nerve, vastus, quadriceps femoris, and sartorius, with the addition of the pectineus muscle. Overall, the femoral nerve plays an important role in the motor and sensory functions of the thigh.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 14 - Can you rephrase this inquiry and adjust the age a bit while maintaining...

    Incorrect

    • Can you rephrase this inquiry and adjust the age a bit while maintaining the same paragraph format?

      Your Answer:

      Correct Answer: Flexor digitorum brevis

      Explanation:

      The tibial nerve supplies the flexor digitorum.

      The common peroneal nerve originates from the dorsal divisions of the sacral plexus, specifically from L4, L5, S1, and S2. This nerve provides sensation to the skin and fascia of the anterolateral surface of the leg and dorsum of the foot, as well as innervating the muscles of the anterior and peroneal compartments of the leg, extensor digitorum brevis, and the knee, ankle, and foot joints. It is located laterally within the sciatic nerve and passes through the lateral and proximal part of the popliteal fossa, under the cover of biceps femoris and its tendon, to reach the posterior aspect of the fibular head. The common peroneal nerve divides into the deep and superficial peroneal nerves at the point where it winds around the lateral surface of the neck of the fibula in the body of peroneus longus, approximately 2 cm distal to the apex of the head of the fibula. It is palpable posterior to the head of the fibula. The nerve has several branches, including the nerve to the short head of biceps, articular branch (knee), lateral cutaneous nerve of the calf, and superficial and deep peroneal nerves at the neck of the fibula.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 15 - A 27-year-old male presents to the neurology clinic with worsening epilepsy despite being...

    Incorrect

    • A 27-year-old male presents to the neurology clinic with worsening epilepsy despite being on levetiracetam and sodium valproate. He has had 6 seizures in the past 2 weeks, with one requiring hospitalization. The neurology consultant suggests adding vigabatrin to his treatment regimen.

      What is the mechanism of action of vigabatrin?

      Your Answer:

      Correct Answer: Irreversible inhibitor of GABA transaminase

      Explanation:

      Vigabatrin works by irreversibly inhibiting GABA transaminase, while haloperidol acts as a dopamine (D2) receptor antagonist. Cabergoline, on the other hand, is a dopamine receptor agonist, while benzodiazepines function as GABA receptor agonists. Flumazenil has not been specified in terms of its mechanism of action.

      Vigabatrin and its potential impact on visual fields

      Vigabatrin is a medication used to treat epilepsy and other seizure disorders. However, it is important to note that approximately 40% of patients who take this medication may develop visual field defects, which can potentially be irreversible. Therefore, it is crucial for patients taking vigabatrin to have their visual fields checked every six months to monitor any changes or potential damage. This precautionary measure can help ensure that any visual field defects are caught early and appropriate action can be taken to prevent further damage. It is important for patients to discuss any concerns or questions about vigabatrin and its potential impact on their vision with their healthcare provider.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 16 - A 49-year-old patient visits your clinic with complaints of unintentional weight loss, increased...

    Incorrect

    • A 49-year-old patient visits your clinic with complaints of unintentional weight loss, increased appetite, and diarrhea. She frequently experiences a rapid heartbeat and feels hot and sweaty in your office. During examination, you observe lid retraction in her eyes and a pulse rate of 110 beats per minute. You suspect thyrotoxicosis and plan to measure her serum levels of thyroid stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4). Since TSH is secreted by the anterior pituitary, which other hormone is also released by this gland?

      Your Answer:

      Correct Answer: Prolactin

      Explanation:

      The hormone secreted by the anterior pituitary gland that stimulates breast development in puberty and during pregnancy, as well as milk production after delivery, is prolactin. Along with prolactin, the anterior pituitary gland also secretes growth hormone, adrenocorticotropic hormone (ACTH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and melanocyte releasing hormone.

      antidiuretic hormone (ADH), also known as vasopressin, is secreted by the posterior pituitary gland. It increases water reabsorption in the collecting ducts of the kidneys.

      Aldosterone is released by the zona glomerulosa of the adrenal cortex. It is a mineralocorticoid that increases sodium reabsorption in the distal nephron of the kidney, leading to water retention.

      Cortisol is released by the zona fasiculata of the adrenal gland. It is a glucocorticoid that has various actions, including increasing protein catabolism, glycogenolysis, and gluconeogenesis.

      The pituitary gland is a small gland located within the sella turcica in the sphenoid bone of the middle cranial fossa. It weighs approximately 0.5g and is covered by a dural fold. The gland is attached to the hypothalamus by the infundibulum and receives hormonal stimuli from the hypothalamus through the hypothalamo-pituitary portal system. The anterior pituitary, which develops from a depression in the wall of the pharynx known as Rathkes pouch, secretes hormones such as ACTH, TSH, FSH, LH, GH, and prolactin. GH and prolactin are secreted by acidophilic cells, while ACTH, TSH, FSH, and LH are secreted by basophilic cells. On the other hand, the posterior pituitary, which is derived from neuroectoderm, secretes ADH and oxytocin. Both hormones are produced in the hypothalamus before being transported by the hypothalamo-hypophyseal portal system.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 17 - A person becomes deficient in a certain hormone and as a result, develops...

    Incorrect

    • A person becomes deficient in a certain hormone and as a result, develops cranial diabetes insipidus.

      Where in the hypothalamus is this hormone typically produced?

      Your Answer:

      Correct Answer: Supraoptic nucleus

      Explanation:

      The production of antidiuretic hormone (ADH) is attributed to the supraoptic nucleus located in the hypothalamus. ADH plays a crucial role in retaining water in the distal nephron, and its deficiency can lead to diabetes insipidus.

      Other functions of the hypothalamus include regulating circadian rhythms and the sleep-wake cycle through the suprachiasmatic nucleus, controlling satiety and hunger through the ventromedial and lateral nuclei respectively, and regulating body temperature through the anterior nucleus, which stimulates the parasympathetic nervous system to initiate cooling.

      The hypothalamus is a part of the brain that plays a crucial role in maintaining the body’s internal balance, or homeostasis. It is located in the diencephalon and is responsible for regulating various bodily functions. The hypothalamus is composed of several nuclei, each with its own specific function. The anterior nucleus, for example, is involved in cooling the body by stimulating the parasympathetic nervous system. The lateral nucleus, on the other hand, is responsible for stimulating appetite, while lesions in this area can lead to anorexia. The posterior nucleus is involved in heating the body and stimulating the sympathetic nervous system, and damage to this area can result in poikilothermia. Other nuclei include the septal nucleus, which regulates sexual desire, the suprachiasmatic nucleus, which regulates circadian rhythm, and the ventromedial nucleus, which is responsible for satiety. Lesions in the paraventricular nucleus can lead to diabetes insipidus, while lesions in the dorsomedial nucleus can result in savage behavior.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 18 - A 25-year-old woman with an 8-month-old baby is complaining of pain on the...

    Incorrect

    • A 25-year-old woman with an 8-month-old baby is complaining of pain on the radial side of her wrist. She reports that the pain is most severe when she is using her hand to wring clothes or lift objects. Upon examination, there is no visible swelling, but the Finkelstein's test is positive, leading to a diagnosis of de Quervain's tenosynovitis. Can you identify the nerve that innervates the two muscle tendons affected in this condition?

      Your Answer:

      Correct Answer: Posterior interosseous nerve

      Explanation:

      Hand Nerve Innervation

      De Quervain’s tenosynovitis, also known as mothers wrist, is a condition with an unknown cause, but some experts believe it may be due to repetitive movements like wringing clothes. The anterior interosseous nerve is a branch of the median nerve that provides innervation to the flexor pollicis longus. On the other hand, the recurrent branch of the median nerve innervates the thenar eminence muscles, which are responsible for flexing and opposing the thumb. These muscles include the flexor pollicis brevis, abductor pollicis brevis, and opponens pollicis.

      In contrast, the musculocutaneous nerve does not play a role in thumb movement. Instead, it provides motor supply to the biceps brachii and brachialis muscles, which cause flexion at the elbow joint. Lastly, the ulnar nerve innervates the interossei muscles and lateral two lumbricals of the small muscles of the hand. the innervation of the hand nerves is crucial in diagnosing and treating various hand conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 19 - A 45-year-old woman presents with unsteadiness on her feet. She reports leaning to...

    Incorrect

    • A 45-year-old woman presents with unsteadiness on her feet. She reports leaning to her right and has sustained scrapes on her right arm from falling on this side. During her walk to the examination room, she displays a broad-based ataxic gait, with a tendency to lean to the right.

      Upon neurological examination, she exhibits an intention tremor and dysdiadochokinesia of her right hand. Her right lower limb is positive for the heel-shin test. Additionally, there is a gaze-evoked nystagmus of the right eye.

      What is the likely location of the brain lesion?

      Your Answer:

      Correct Answer: Right cerebellum

      Explanation:

      Unilateral damage to the cerebellum results in symptoms that are on the same side as the lesion. In this case, if the right cerebellum is damaged, the individual may experience dysdiadochokinesia, ataxia, nystagmus, intention tremor, scanning dysarthria, and a positive heel-shin test. Damage to the left cerebellum would not cause symptoms on the right side. Damage to the left temporal lobe may result in changes in behavior and emotions, forgetfulness, disruptions in the sense of smell, taste, and hearing, and language and speech disorders. Damage to the right parietal lobe may cause alexia, agraphia, acalculia, left-sided hemi-spatial neglect, homonymous inferior quadrantanopia, loss of sensations like touch, apraxias, or astereognosis.

      Cerebellar syndrome is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. When there is damage or injury to one side of the cerebellum, it can cause symptoms on the same side of the body. These symptoms can be remembered using the mnemonic DANISH, which stands for Dysdiadochokinesia, Dysmetria, Ataxia, Nystagmus, Intention tremour, Slurred staccato speech, and Hypotonia.

      There are several possible causes of cerebellar syndrome, including genetic conditions like Friedreich’s ataxia and ataxic telangiectasia, neoplastic growths like cerebellar haemangioma, strokes, alcohol use, multiple sclerosis, hypothyroidism, and certain medications or toxins like phenytoin or lead poisoning. In some cases, cerebellar syndrome may be a paraneoplastic condition, meaning it is a secondary effect of an underlying cancer like lung cancer. It is important to identify the underlying cause of cerebellar syndrome in order to provide appropriate treatment and management.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 20 - You are evaluating an 80-year-old woman who was admitted last night with symptoms...

    Incorrect

    • You are evaluating an 80-year-old woman who was admitted last night with symptoms suggestive of a stroke. She is suspected to have lateral medullary syndrome.

      During the examination, you observe that she has lost her sense of taste in the posterior third of her tongue and has an absent gag reflex.

      Through which structure does the affected cranial nerve most likely pass?

      Your Answer:

      Correct Answer: Jugular foramen

      Explanation:

      The jugular foramen is the pathway through which the glossopharyngeal nerve travels.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 21 - A 32-year-old woman needs an episiotomy during a ventouse-assisted vaginal delivery. Which nerve...

    Incorrect

    • A 32-year-old woman needs an episiotomy during a ventouse-assisted vaginal delivery. Which nerve is typically numbed to facilitate the procedure?

      Your Answer:

      Correct Answer: Pudendal

      Explanation:

      The posterior vulval area is innervated by the pudendal nerve, which is commonly blocked during procedures like episiotomy.

      The Pudendal Nerve and its Functions

      The pudendal nerve is a nerve that originates from the S2, S3, and S4 nerve roots and exits the pelvis through the greater sciatic foramen. It then re-enters the perineum through the lesser sciatic foramen. This nerve provides innervation to the anal sphincters and external urethral sphincter, as well as cutaneous innervation to the perineum surrounding the anus and posterior vulva.

      Late onset pudendal neuropathy may occur due to traction and compression of the pudendal nerve by the foetus during late pregnancy. This condition may contribute to the development of faecal incontinence. Understanding the functions of the pudendal nerve is important in diagnosing and treating conditions related to the perineum and surrounding areas.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 22 - A father brings his 14-year-old son into the Emergency Department, who he witnessed...

    Incorrect

    • A father brings his 14-year-old son into the Emergency Department, who he witnessed having a 'fit' 30 minutes ago. This occurred as his son was getting up from his chair. The father noticed some shaking of his son's arms, lasting approximately 10 minutes.

      His son has been very stressed with school projects over the past week, staying up late and often missing meals. His son's past medical and developmental history is non-significant.

      On examination, the son is alert and responsive.

      What are the associated factors with this condition?

      Your Answer:

      Correct Answer: Short postictal period

      Explanation:

      The recovery from syncopal episodes is rapid and the postictal period is short. In contrast, seizures have a much longer postictal period. The stem suggests that the syncope may be due to exam stress and poor nutrition habits. One way to differentiate between seizures and syncope is by the length of the postictal period, with syncope having a quick recovery. Lip smacking is not associated with syncope, but rather with focal seizures of the temporal lobe. The 10-minute postictal period described in the stem is not consistent with a seizure.

      Epilepsy is a neurological condition that causes recurrent seizures. In the UK, around 500,000 people have epilepsy, and two-thirds of them can control their seizures with antiepileptic medication. While epilepsy usually occurs in isolation, certain conditions like cerebral palsy, tuberous sclerosis, and mitochondrial diseases have an association with epilepsy. It’s important to note that seizures can also occur due to other reasons like infection, trauma, or metabolic disturbance.

      Seizures can be classified into focal seizures, which start in a specific area of the brain, and generalised seizures, which involve networks on both sides of the brain. Patients who have had generalised seizures may experience biting their tongue or incontinence of urine. Following a seizure, patients typically have a postictal phase where they feel drowsy and tired for around 15 minutes.

      Patients who have had their first seizure generally undergo an electroencephalogram (EEG) and neuroimaging (usually a MRI). Most neurologists start antiepileptics following a second epileptic seizure. Antiepileptics are one of the few drugs where it is recommended that we prescribe by brand, rather than generically, due to the risk of slightly different bioavailability resulting in a lowered seizure threshold.

      Patients who drive, take other medications, wish to get pregnant, or take contraception need to consider the possible interactions of the antiepileptic medication. Some commonly used antiepileptics include sodium valproate, carbamazepine, lamotrigine, and phenytoin. In case of a seizure that doesn’t terminate after 5-10 minutes, medication like benzodiazepines may be administered to terminate the seizure. If a patient continues to fit despite such measures, they are said to have status epilepticus, which is a medical emergency requiring hospital treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 23 - A 27-year-old male is brought in after collapsing. According to the paramedics, he...

    Incorrect

    • A 27-year-old male is brought in after collapsing. According to the paramedics, he was found unconscious at a bar and no one knows what happened. Upon examination, his eyes remain closed and do not respond to commands, but he mumbles incomprehensibly when pressure is applied to his nailbed. He also opens his eyes and uses his other hand to push away the painful stimulus. His temperature is 37°C, his oxygen saturation is 95% on air, and his pulse is 100 bpm with a blood pressure of 106/76 mmHg. What is his Glasgow coma scale score?

      Your Answer:

      Correct Answer: 9

      Explanation:

      The Glasgow Coma Scale is used because it is simple, has high interobserver reliability, and correlates well with outcome following severe brain injury. It consists of three components: Eye Opening, Verbal Response, and Motor Response. The score is the sum of the scores as well as the individual elements. For example, a score of 10 might be expressed as GCS10 = E3V4M3.

      Best eye response:
      1- No eye opening
      2- Eye opening to pain
      3- Eye opening to sound
      4- Eyes open spontaneously

      Best verbal response:
      1- No verbal response
      2- Incomprehensible sounds
      3- Inappropriate words
      4- Confused
      5- Orientated

      Best motor response:
      1- No motor response.
      2- Abnormal extension to pain
      3- Abnormal flexion to pain
      4- Withdrawal from pain
      5- Localizing pain
      6- Obeys commands

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 24 - A 20-year-old man is rushed to the emergency department following his ejection from...

    Incorrect

    • A 20-year-old man is rushed to the emergency department following his ejection from a car during a road accident.

      During the examination, the patient responds to simple questions with incomprehensible sounds and opens his eyes in response to pain. There is also an abnormal wrist flexion when a sternal rub is applied, and a positive Battle's sign is observed.

      A CT scan of the head is ordered, which reveals a fracture of the petrous temporal bone.

      Which nerve is most likely to be affected by the patient's injury?

      Your Answer:

      Correct Answer: Facial nerve

      Explanation:

      The facial nerve passes through the internal acoustic meatus, which is correct. This nerve provides motor innervation to the muscles of facial expression, parasympathetic innervation to salivary and lacrimal glands, and special sensory innervation of taste in the anterior 2/3 of the tongue via the chorda tympani. The patient in question has a Glasgow Coma Score of 7, indicating nonspecific neurotrauma from a recent road traffic accident. It is unlikely that damage to the internal acoustic meatus would affect the glossopharyngeal or hypoglossal nerves, which pass through different structures. Damage to the oculomotor nerve, which passes through the superior orbital fissure, may cause ptosis and a dilated ‘down-and-out’ pupil.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 25 - A 31-year-old female patient visits her GP with complaints of feeling constantly tired,...

    Incorrect

    • A 31-year-old female patient visits her GP with complaints of feeling constantly tired, lacking energy, and experiencing severe headaches. She reports a loss of libido and irregular menstrual cycles. During an eye exam, bitemporal hemianopia is detected, and an MRI scan reveals a non-functional pituitary tumor that is pressing on an artery. Which artery is being compressed by the patient's tumor?

      Your Answer:

      Correct Answer: Internal carotid artery

      Explanation:

      The internal carotid artery originates from the common carotid artery near the upper border of the thyroid cartilage and travels upwards to enter the skull through the carotid canal. It then passes through the cavernous sinus and divides into the anterior and middle cerebral arteries. In the neck, it is surrounded by various structures such as the longus capitis, pre-vertebral fascia, sympathetic chain, and superior laryngeal nerve. It is also closely related to the external carotid artery, the wall of the pharynx, the ascending pharyngeal artery, the internal jugular vein, the vagus nerve, the sternocleidomastoid muscle, the lingual and facial veins, and the hypoglossal nerve. Inside the cranial cavity, the internal carotid artery bends forwards in the cavernous sinus and is closely related to several nerves such as the oculomotor, trochlear, ophthalmic, and maxillary nerves. It terminates below the anterior perforated substance by dividing into the anterior and middle cerebral arteries and gives off several branches such as the ophthalmic artery, posterior communicating artery, anterior choroid artery, meningeal arteries, and hypophyseal arteries.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 26 - During a clinical examination of a 26-year-old woman with a history of relapsing-remitting...

    Incorrect

    • During a clinical examination of a 26-year-old woman with a history of relapsing-remitting multiple sclerosis, you observe nystagmus of the left eye and significant weakness in adduction of the right eye when she looks to the left. What is the location of the lesion responsible for these findings?

      Your Answer:

      Correct Answer: Midbrain

      Explanation:

      The medial longitudinal fasciculus is situated in the paramedian region of the midbrain and pons.

      The patient’s symptoms are indicative of internuclear ophthalmoplegia (INO), a specific gaze abnormality characterized by impaired adduction of the eye on the affected side and nystagmus of the eye on the opposite side of the lesion. Based on the symptoms, the lesion is likely on the right side. INO is caused by damage to the medial longitudinal fasciculus, which coordinates the simultaneous lateral movements of both eyes. Multiple sclerosis is a common cause of this condition, but cerebrovascular disease is also associated with it, especially in older patients.

      Optic neuritis, a common manifestation of multiple sclerosis, is not responsible for the patient’s symptoms. Optic neuritis typically presents with eye pain, visual acuity loss, and worsened pain on eye movement, which are not mentioned in the scenario.

      Distinguishing between internuclear ophthalmoplegia and oculomotor (third) nerve palsy can be challenging. Symptoms that suggest CN III palsy include ptosis, pupil dilation, and weakness of elevation, which causes the eye to rest in a ‘down and out’ position. Clinical examination findings can help differentiate between trochlear or abducens nerve palsy and internuclear ophthalmoplegia. Abducens nerve damage results in unilateral weakness of the lateral rectus muscle and impaired abduction on the affected side, while trochlear nerve damage leads to unilateral weakness of the superior oblique muscle and impaired intorsion and depression when adducted.

      Understanding Internuclear Ophthalmoplegia

      Internuclear ophthalmoplegia is a condition that affects the horizontal movement of the eyes. It is caused by a lesion in the medial longitudinal fasciculus (MLF), which is responsible for interconnecting the IIIrd, IVth, and VIth cranial nuclei. This area is located in the paramedian region of the midbrain and pons. The main feature of this condition is impaired adduction of the eye on the same side as the lesion, along with horizontal nystagmus of the abducting eye on the opposite side.

      The most common causes of internuclear ophthalmoplegia are multiple sclerosis and vascular disease. It is important to note that this condition can also be a sign of other underlying neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 27 - A 24-year-old dancer undergoes a thyroidectomy due to concerns about the appearance of...

    Incorrect

    • A 24-year-old dancer undergoes a thyroidectomy due to concerns about the appearance of her goitre. Following the surgery, she is informed that there was a laceration of the superior laryngeal nerve, which may affect her ability to produce higher pitches in her voice. She is referred for speech therapy.

      What counseling should be provided to this patient?

      Your Answer:

      Correct Answer: Nerve lacerations have a poor recovery, even with surgical nerve repair

      Explanation:

      The recovery of nerve lacerations is challenging due to the intricate nature of the neuronal system. However, there is a possibility of a better recovery if the injury is small, does not cause nerve stretching, requires a short nerve graft, and the patient is young and medically fit. It is worth noting that repaired nerves can regain sensory function similar to their pre-injury level.

      Nerve injuries can be classified into three types: neuropraxia, axonotmesis, and neurotmesis. Neuropraxia occurs when the nerve is intact but its electrical conduction is affected. However, full recovery is possible, and autonomic function is preserved. Wallerian degeneration, which is the degeneration of axons distal to the site of injury, does not occur. Axonotmesis, on the other hand, happens when the axon is damaged, but the myelin sheath is preserved, and the connective tissue framework is not affected. Wallerian degeneration occurs in this type of injury. Lastly, neurotmesis is the most severe type of nerve injury, where there is a disruption of the axon, myelin sheath, and surrounding connective tissue. Wallerian degeneration also occurs in this type of injury.

      Wallerian degeneration typically begins 24-36 hours following the injury. Axons are excitable before degeneration occurs, and the myelin sheath degenerates and is phagocytosed by tissue macrophages. Neuronal repair may only occur physiologically where nerves are in direct contact. However, nerve regeneration may be hampered when a large defect is present, and it may not occur at all or result in the formation of a neuroma. If nerve regrowth occurs, it typically happens at a rate of 1mm per day.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 28 - Which nerve provides sensation to the skin on the palm side of the...

    Incorrect

    • Which nerve provides sensation to the skin on the palm side of the thumb?

      Your Answer:

      Correct Answer: Median

      Explanation:

      This region receives cutaneous sensation from the median nerve.

      Anatomy and Function of the Median Nerve

      The median nerve is a nerve that originates from the lateral and medial cords of the brachial plexus. It descends lateral to the brachial artery and passes deep to the bicipital aponeurosis and the median cubital vein at the elbow. The nerve then passes between the two heads of the pronator teres muscle and runs on the deep surface of flexor digitorum superficialis. Near the wrist, it becomes superficial between the tendons of flexor digitorum superficialis and flexor carpi radialis, passing deep to the flexor retinaculum to enter the palm.

      The median nerve has several branches that supply the upper arm, forearm, and hand. These branches include the pronator teres, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, flexor pollicis longus, and palmar cutaneous branch. The nerve also provides motor supply to the lateral two lumbricals, opponens pollicis, abductor pollicis brevis, and flexor pollicis brevis muscles, as well as sensory supply to the palmar aspect of the lateral 2 ½ fingers.

      Damage to the median nerve can occur at the wrist or elbow, resulting in various symptoms such as paralysis and wasting of thenar eminence muscles, weakness of wrist flexion, and sensory loss to the palmar aspect of the fingers. Additionally, damage to the anterior interosseous nerve, a branch of the median nerve, can result in loss of pronation of the forearm and weakness of long flexors of the thumb and index finger. Understanding the anatomy and function of the median nerve is important in diagnosing and treating conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 29 - A 29-year-old female is being followed up in the epilepsy clinic after switching...

    Incorrect

    • A 29-year-old female is being followed up in the epilepsy clinic after switching from lamotrigine to carbamazepine for her generalised tonic-clonic seizures. What is the mechanism of action of her new medication?

      Your Answer:

      Correct Answer: Binds to sodium channels to increase their refractory period

      Explanation:

      Carbamazepine binds to voltage-gated sodium channels in the neuronal cell membrane, blocking their action in the inactive form. This results in a longer time for the neuron to depolarize, increasing the absolute refractory period and raising the threshold for seizure activity. It does not bind to potassium channels or GABA receptors. Blocking potassium efflux would increase the refractory period, while promoting potassium efflux would hyperpolarize the cell and also increase the refractory period. Benzodiazepines bind allosterically to GABAA receptors, hyperpolarizing the cell and increasing the refractory period.

      Understanding Carbamazepine: Uses, Mechanism of Action, and Adverse Effects

      Carbamazepine is a medication that is commonly used in the treatment of epilepsy, particularly partial seizures. It is also used to treat trigeminal neuralgia and bipolar disorder. Chemically similar to tricyclic antidepressant drugs, carbamazepine works by binding to sodium channels and increasing their refractory period.

      However, there are some adverse effects associated with carbamazepine use. It is known to be a P450 enzyme inducer, which can affect the metabolism of other medications. Patients may also experience dizziness, ataxia, drowsiness, headache, and visual disturbances, especially diplopia. In rare cases, carbamazepine can cause Steven-Johnson syndrome, leucopenia, agranulocytosis, and hyponatremia secondary to syndrome of inappropriate ADH secretion.

      It is important to note that carbamazepine exhibits autoinduction, which means that when patients start taking the medication, they may experience a return of seizures after 3-4 weeks of treatment. Therefore, it is crucial for patients to be closely monitored by their healthcare provider when starting carbamazepine.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 30 - A 27-year-old man, who has a history of epilepsy, attends a follow-up appointment...

    Incorrect

    • A 27-year-old man, who has a history of epilepsy, attends a follow-up appointment at neurology outpatients. He reports experiencing a prodrome of aura before having floaters in his vision and unusual flashes of color during the ictal phase. The patient has no other notable symptoms or medical history. Which region of the brain is linked to the symptoms described by this patient?

      Your Answer:

      Correct Answer: Occipital lobe

      Explanation:

      Occipital lobe seizures are associated with visual disturbances such as floaters and flashes. The cerebellum is not typically associated with epilepsy, although recent research has potentially implicated this area in refractory epilepsy. Seizures in the frontal lobe can cause random hand and leg movements and abnormal posturing, while seizures in the parietal lobe can cause sensory disturbances such as paraesthesia.

      Localising Features of Focal Seizures in Epilepsy

      Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.

      On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 31 - Which muscle is innervated by the superficial peroneal nerve? ...

    Incorrect

    • Which muscle is innervated by the superficial peroneal nerve?

      Your Answer:

      Correct Answer: Peroneus brevis

      Explanation:

      Anatomy of the Superficial Peroneal Nerve

      The superficial peroneal nerve is responsible for supplying the lateral compartment of the leg, specifically the peroneus longus and peroneus brevis muscles which aid in eversion and plantar flexion. It also provides sensation over the dorsum of the foot, excluding the first web space which is innervated by the deep peroneal nerve.

      The nerve passes between the peroneus longus and peroneus brevis muscles along the proximal one-third of the fibula. Approximately 10-12 cm above the tip of the lateral malleolus, the nerve pierces the fascia. It then bifurcates into intermediate and medial dorsal cutaneous nerves about 6-7 cm distal to the fibula.

      Understanding the anatomy of the superficial peroneal nerve is important in diagnosing and treating conditions that affect the lateral compartment of the leg and dorsum of the foot. Injuries or compression of the nerve can result in weakness or numbness in the affected areas.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 32 - A young woman presents with a bilateral intention tremor. She is also found...

    Incorrect

    • A young woman presents with a bilateral intention tremor. She is also found to have a range of other bilateral deficits, including dysdiadochokinesia, ataxia, nystagmus, and dysarthria. Which anatomical structure has likely been affected?

      Your Answer:

      Correct Answer: Cerebellar vermis

      Explanation:

      The individual has a defect in the cerebellar vermis, which is located between the two hemispheres of the cerebellum. As a result, they are experiencing bilateral cerebellar abnormalities, which is evident from their symptoms. Vermin lesions can be caused by conditions such as Joubert Syndrome, Dandy Walker malformation, and rhombencephalosynapsis. On the other hand, lesions in the spinocerebellar tract or one side of the cerebellar hemisphere would cause unilateral, ipsilateral symptoms, making these options incorrect.

      Spinal cord lesions can affect different tracts and result in various clinical symptoms. Motor lesions, such as amyotrophic lateral sclerosis and poliomyelitis, affect either upper or lower motor neurons, resulting in spastic paresis or lower motor neuron signs. Combined motor and sensory lesions, such as Brown-Sequard syndrome, subacute combined degeneration of the spinal cord, Friedrich’s ataxia, anterior spinal artery occlusion, and syringomyelia, affect multiple tracts and result in a combination of spastic paresis, loss of proprioception and vibration sensation, limb ataxia, and loss of pain and temperature sensation. Multiple sclerosis can involve asymmetrical and varying spinal tracts and result in a combination of motor, sensory, and ataxia symptoms. Sensory lesions, such as neurosyphilis, affect the dorsal columns and result in loss of proprioception and vibration sensation.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 33 - A pregnant woman arrives at the ER with a concern about her facial...

    Incorrect

    • A pregnant woman arrives at the ER with a concern about her facial appearance since waking up this morning. What signs would indicate a diagnosis of Bell's palsy, specifically a unilateral LMN lesion of the facial nerve?

      Your Answer:

      Correct Answer: Unilateral facial weakness involving the forehead and unilateral failure of eye closure

      Explanation:

      When the facial nerve is unilaterally damaged, only the same side of the face is affected because this nerve does not cross over. Despite the fact that the facial nerve also transmits taste signals from the front two-thirds of the tongue, a lower motor neuron (LMN) injury only impacts the nerve’s motor function. This results in weakened facial expression muscles. The muscles in the forehead receive some innervation from the opposite side, so a LMN injury affects the forehead, while an upper motor neuron (UMN) injury does not affect the forehead.

      The facial nerve has a nucleus located in the ventrolateral pontine tegmentum, and its axons exit the ventral pons medial to the spinal trigeminal nucleus. Lesions affecting the corticobulbar tract are known as upper motor neuron lesions, while those affecting the individual branches of the facial nerve are lower motor neuron lesions. The lower motor neurons of the facial nerve can leave from either the left or right posterior or anterior facial motor nucleus, with the temporal branch receiving input from both hemispheres of the cerebral cortex, while the zygomatic, buccal, mandibular, and cervical branches receive input from only the contralateral hemisphere.

      In the case of an upper motor neuron lesion in the left hemisphere, the right mid- and lower-face would be paralyzed, while the forehead would remain unaffected. This is because the anterior facial motor nucleus receives only contralateral cortical input, while the posterior component receives input from both hemispheres. However, a lower motor neuron lesion affecting either the left or right side would paralyze the entire side of the face, as both the anterior and posterior routes on that side would be affected. This is because the nerves no longer have a means to receive compensatory contralateral input at a downstream decussation.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 34 - A 65-year-old patient has presented to your neurology clinic for a routine follow-up...

    Incorrect

    • A 65-year-old patient has presented to your neurology clinic for a routine follow-up a couple of months after being diagnosed with progressive muscular atrophy, a variant of motor neuron disease (MND) that results in a lower motor neuron lesion pattern.

      What signs would you anticipate observing during the examination?

      Your Answer:

      Correct Answer: Hypotonia and hyporeflexia

      Explanation:

      Lower motor neuron lesions result in a reduction of muscle tone and reflexes, which is characterized by hypotonia and hyporeflexia. Additionally, atrophy, wasting, and fasciculations may be observed in the affected muscle groups. It is important to note that hypertonia and hyperreflexia are indicative of an upper motor neuron lesion, and a combination of hypertonia and hyporeflexia or hypotonia and hyperreflexia are not typical patterns of a lower motor neuron lesion. Therefore, normal muscle tone and reflexes would not be expected in a patient with a lower motor neuron lesion.

      The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.

      One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 35 - A 50-year-old patient presents for a routine checkup. During a neurological assessment, it...

    Incorrect

    • A 50-year-old patient presents for a routine checkup. During a neurological assessment, it is discovered that the patient has sensory loss in their middle finger. Which specific dermatome is responsible for this sensory loss?

      Your Answer:

      Correct Answer: C7

      Explanation:

      The middle finger is where the C7 dermatome is located.

      Understanding Dermatomes: Major Landmarks and Mnemonics

      Dermatomes are areas of skin that are innervated by a single spinal nerve. Understanding dermatomes is important in diagnosing and treating various neurological conditions. The major dermatome landmarks are listed in the table above, along with helpful mnemonics to aid in memorization.

      Starting at the top of the body, the C2 dermatome covers the posterior half of the skull, resembling a cap. Moving down to C3, it covers the area of a high turtleneck shirt, while C4 covers the area of a low-collar shirt. The C5 dermatome runs along the ventral axial line of the upper limb, while C6 covers the thumb and index finger. To remember this, make a 6 with your left hand by touching the tip of your thumb and index finger together.

      Moving down to the middle finger and palm of the hand, the C7 dermatome is located here, while the C8 dermatome covers the ring and little finger. The T4 dermatome is located at the nipples, while T5 covers the inframammary fold. The T6 dermatome is located at the xiphoid process, and T10 covers the umbilicus. To remember this, think of BellybuT-TEN.

      The L1 dermatome covers the inguinal ligament, while L4 covers the knee caps. To remember this, think of being Down on aLL fours with the number 4 representing the knee caps. The L5 dermatome covers the big toe and dorsum of the foot (except the lateral aspect), while the S1 dermatome covers the lateral foot and small toe. To remember this, think of S1 as the smallest one. Finally, the S2 and S3 dermatomes cover the genitalia.

      Understanding dermatomes and their landmarks can aid in diagnosing and treating various neurological conditions. The mnemonics provided can help in memorizing these important landmarks.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 36 - A 28-year-old man visits his GP with complaints of bilateral numbness in his...

    Incorrect

    • A 28-year-old man visits his GP with complaints of bilateral numbness in his hands and feet, along with a feeling of muscle weakness that has been progressively worsening for the past 15 months. The man admits to avoiding hospitals and his GP, and has not reported these symptoms to anyone else. Upon examination, reduced bicep reflexes are noted bilaterally. Nerve conduction studies reveal evidence of peripheral nerve demyelination. What is the most probable underlying diagnosis?

      Your Answer:

      Correct Answer: Chronic inflammatory demyelinating polyneuropathy

      Explanation:

      Chronic inflammatory demyelinating polyneuropathy (CIDP) is a condition where the inflammation and infiltration of the endoneurium with inflammatory T cells are thought to be caused by antibodies. This results in the demyelination of peripheral nerves in a segmental manner.

      CIDP is characterized by generalized symptoms and chronicity, and nerve conduction tests can reveal demyelination of the nerves. Guillain Barré syndrome (GBS) is an incorrect answer as it is more acute and often triggered by prior infection, particularly Campylobacter gastrointestinal infection. Diabetic neuropathy is also an incorrect answer as it typically presents as a focal peripheral neuropathy with sensory impairment. Multiple sclerosis (MS) is another incorrect answer as it involves the central nervous system and can present with additional signs/symptoms such as visual impairment and muscle stiffness. MS is diagnosed using an MRI scan and checking for oligoclonal bands in the cerebrospinal fluid.

      Understanding Chronic Inflammatory Demyelinating Polyneuropathy

      Chronic inflammatory demyelinating polyneuropathy (CIDP) is a type of peripheral neuropathy that is caused by antibody-mediated inflammation resulting in segmental demyelination of peripheral nerves. This condition is more common in males than females and shares similar features with Guillain-Barre syndrome (GBS), with motor symptoms being predominant. However, CIDP has a more insidious onset, occurring over weeks to months, and is often considered the chronic version of GBS.

      One of the distinguishing features of CIDP is the high protein content found in the cerebrospinal fluid (CSF). Treatment for CIDP may involve the use of steroids and immunosuppressants, which is different from GBS.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 37 - The thalamus serves as a conduit for sensory information from the peripheries to...

    Incorrect

    • The thalamus serves as a conduit for sensory information from the peripheries to the cortex. Which specific nucleus of the thalamus is accountable for transmitting auditory input from the vestibulocochlear nerve (cranial nerve VIII) to the primary auditory cortex?

      Your Answer:

      Correct Answer: Medial geniculate nucleus

      Explanation:

      If the medial geniculate nucleus of the thalamus is damaged, it can result in hearing impairment. This is because the medial geniculate nucleus is responsible for processing auditory sensory information. It receives input from the inferior colliculus, which in turn receives input from the contralateral vestibulocochlear nerve via the inferior olive. The lateral geniculate nucleus, on the other hand, is responsible for processing visual information. The ventral anterior nucleus receives input regarding unconscious proprioception from the cerebellum, while the medial and lateral ventro-posterior nuclei carry somatosensory information from the face and body, respectively.

      The Thalamus: Relay Station for Motor and Sensory Signals

      The thalamus is a structure located between the midbrain and cerebral cortex that serves as a relay station for motor and sensory signals. Its main function is to transmit these signals to the cerebral cortex, which is responsible for processing and interpreting them. The thalamus is composed of different nuclei, each with a specific function. The lateral geniculate nucleus relays visual signals, while the medial geniculate nucleus transmits auditory signals. The medial portion of the ventral posterior nucleus (VML) is responsible for facial sensation, while the ventral anterior/lateral nuclei relay motor signals. Finally, the lateral portion of the ventral posterior nucleus is responsible for body sensation, including touch, pain, proprioception, pressure, and vibration. Overall, the thalamus plays a crucial role in the transmission of sensory and motor information to the brain, allowing us to perceive and interact with the world around us.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 38 - A 45-year-old obese woman presents to the Emergency Department complaining of sudden lower...

    Incorrect

    • A 45-year-old obese woman presents to the Emergency Department complaining of sudden lower back pain. Upon conducting a neurological examination, you observe a decrease in the left knee jerk reflex compared to the right. Which spinal level does this correspond to?

      Your Answer:

      Correct Answer: L3-L4

      Explanation:

      Memory aid for common reflexes:
      S1-S2, buckle my shoe (ankle)
      L3-L4, kick the door (knee)
      C5-C6, pick up sticks (biceps)
      C7-C8, shut the gate (triceps)

      The reflex tested by tapping the knee is the L3-L4 reflex.

      Reflexes are automatic responses that our body makes in response to certain stimuli. These responses are controlled by the nervous system and do not require conscious thought. There are several common reflexes that are associated with specific roots in the spinal cord. For example, the ankle reflex is associated with the S1-S2 root, while the knee reflex is associated with the L3-L4 root. Similarly, the biceps reflex is associated with the C5-C6 root, and the triceps reflex is associated with the C7-C8 root. Understanding these reflexes can help healthcare professionals diagnose and treat certain conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 39 - A 60-year-old patient presents to the doctor after experiencing syncope. The doctor conducts...

    Incorrect

    • A 60-year-old patient presents to the doctor after experiencing syncope. The doctor conducts a carotid sinus massage to investigate further and observes a drop in the patient's blood pressure. Additionally, the patient displays signs of dizziness during the procedure. Which cranial nerve is responsible for transmitting the afferent response that results in the patient's syncope?

      Your Answer:

      Correct Answer: Glossopharyngeal (IX)

      Explanation:

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 40 - What is the most frequent brain tumour in children? ...

    Incorrect

    • What is the most frequent brain tumour in children?

      Your Answer:

      Correct Answer: Astrocytoma

      Explanation:

      While astrocytoma is the most prevalent brain tumor in children, glioblastoma multiforme is a rare occurrence. Additionally, medulloblastoma is no longer the primary CNS tumor in children, according to Cancer Research UK.

      Understanding CNS Tumours: Types, Diagnosis, and Treatment

      CNS tumours can be classified into different types, with glioma and metastatic disease accounting for 60% of cases, followed by meningioma at 20%, and pituitary lesions at 10%. In paediatric practice, medulloblastomas used to be the most common lesions, but astrocytomas now make up the majority. The location of the tumour can affect the onset of symptoms, with those in the speech and visual areas producing early symptoms, while those in the right temporal and frontal lobe may reach considerable size before becoming symptomatic.

      Diagnosis of CNS tumours is best done through MRI scanning, which provides the best resolution. Treatment usually involves surgery, even if the tumour cannot be completely resected. Tumour debulking can address conditions such as rising ICP and prolong survival and quality of life. Curative surgery is possible for lesions such as meningiomas, but gliomas have a marked propensity to invade normal brain tissue, making complete resection nearly impossible.

      Overall, understanding the types, diagnosis, and treatment of CNS tumours is crucial in managing these conditions and improving patient outcomes. With the right approach, patients can receive timely and effective treatment that addresses their symptoms and improves their quality of life.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 41 - The femoral nerve is accidentally severed by a negligent surgeon during a failed...

    Incorrect

    • The femoral nerve is accidentally severed by a negligent surgeon during a failed femoro-popliteal bypass surgery. What function will be affected?

      Your Answer:

      Correct Answer: Extension of the knee joint

      Explanation:

      The quadriceps muscle, which is responsible for knee joint extension, is supplied by the femoral nerve.

      The femoral nerve is a nerve that originates from the spinal roots L2, L3, and L4. It provides innervation to several muscles in the thigh, including the pectineus, sartorius, quadriceps femoris, and vastus lateralis, medialis, and intermedius. Additionally, it branches off into the medial cutaneous nerve of the thigh, saphenous nerve, and intermediate cutaneous nerve of the thigh. The femoral nerve passes through the psoas major muscle and exits the pelvis by going under the inguinal ligament. It then enters the femoral triangle, which is located lateral to the femoral artery and vein.

      To remember the femoral nerve’s supply, a helpful mnemonic is don’t MISVQ scan for PE. This stands for the medial cutaneous nerve of the thigh, intermediate cutaneous nerve of the thigh, saphenous nerve, vastus, quadriceps femoris, and sartorius, with the addition of the pectineus muscle. Overall, the femoral nerve plays an important role in the motor and sensory functions of the thigh.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 42 - A 20-year-old man visits the clinic with a complaint of ear pain that...

    Incorrect

    • A 20-year-old man visits the clinic with a complaint of ear pain that started two days ago. He mentions that the pain has reduced considerably, but there is a lot of discharge and he cannot hear from the affected ear. During the examination, you observe a perforated tympanic membrane and yellow discharge in the external auditory canal. Based on the symptoms, you suspect a middle ear infection that led to fluid buildup and subsequent perforation of the tympanic membrane. In this context, which nerve branch innervates the stapedius muscle located in the middle ear?

      Note: The changes made are minimal and do not affect the meaning or context of the original text.

      Your Answer:

      Correct Answer: Facial nerve

      Explanation:

      The correct answer is the facial nerve, the seventh cranial nerve. Other nerves mentioned include the vestibulocochlear nerve, maxillary nerve, glossopharyngeal nerve, and mandibular nerve. The stapedius muscle, innervated by the facial nerve, is also discussed. The patient’s ear pain could be due to a perforated eardrum caused by infection.

      The facial nerve is responsible for supplying the muscles of facial expression, the digastric muscle, and various glandular structures. It also contains a few afferent fibers that originate in the genicular ganglion and are involved in taste. Bilateral facial nerve palsy can be caused by conditions such as sarcoidosis, Guillain-Barre syndrome, Lyme disease, and bilateral acoustic neuromas. Unilateral facial nerve palsy can be caused by these conditions as well as lower motor neuron issues like Bell’s palsy and upper motor neuron issues like stroke.

      The upper motor neuron lesion typically spares the upper face, specifically the forehead, while a lower motor neuron lesion affects all facial muscles. The facial nerve’s path includes the subarachnoid path, where it originates in the pons and passes through the petrous temporal bone into the internal auditory meatus with the vestibulocochlear nerve. The facial canal path passes superior to the vestibule of the inner ear and contains the geniculate ganglion at the medial aspect of the middle ear. The stylomastoid foramen is where the nerve passes through the tympanic cavity anteriorly and the mastoid antrum posteriorly, and it also includes the posterior auricular nerve and branch to the posterior belly of the digastric and stylohyoid muscle.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 43 - A 25-year-old male patient complains of headache, confusion, and lethargy. During the examination,...

    Incorrect

    • A 25-year-old male patient complains of headache, confusion, and lethargy. During the examination, he has a fever and exhibits weakness on the right side. A CT scan reveals a ring-enhancing lesion that affects the motor cortex on the left side. What is the most probable diagnosis?

      Your Answer:

      Correct Answer: Cerebral abscess

      Explanation:

      The presence of fever, headache, and rapidly worsening neurological symptoms strongly indicates the possibility of cerebral abscess. A CT scan can confirm this diagnosis by revealing a lesion with a ring-enhancing appearance, as the contrast material cannot reach the center of the abscess cavity. It is important to note that HSV encephalitis does not typically result in ring-enhancing lesions.

      Understanding Brain Abscesses

      Brain abscesses can occur due to various reasons such as sepsis from middle ear or sinuses, head injuries, and endocarditis. The symptoms of brain abscesses depend on the location of the abscess, with those in critical areas presenting earlier. Brain abscesses can cause a mass effect in the brain, leading to raised intracranial pressure. Symptoms of brain abscesses include persistent headaches, fever, focal neurology, nausea, papilloedema, and seizures.

      To diagnose brain abscesses, doctors may perform imaging with CT scanning. Treatment for brain abscesses involves surgery, where a craniotomy is performed to remove the abscess cavity. However, the abscess may reform after drainage. Intravenous antibiotics such as 3rd-generation cephalosporin and metronidazole are also administered, along with intracranial pressure management using dexamethasone.

      Overall, brain abscesses are a serious condition that require prompt diagnosis and treatment to prevent further complications.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 44 - A 50-year-old man with T2DM goes for his yearly diabetic retinopathy screening and...

    Incorrect

    • A 50-year-old man with T2DM goes for his yearly diabetic retinopathy screening and is diagnosed with proliferative diabetic retinopathy. What retinal characteristics are indicative of this condition?

      Your Answer:

      Correct Answer: neovascularization

      Explanation:

      Diabetic retinopathy is a progressive disease that affects the retina and is a complication of diabetes mellitus (DM). The condition is caused by persistent high blood sugar levels, which can damage the retinal vessels and potentially lead to vision loss. The damage is caused by retinal ischaemia, which occurs when the retinal vasculature becomes blocked.

      There are various retinal findings that indicate the presence of diabetic retinopathy, which can be classified into two categories: non-proliferative and proliferative. Non-proliferative diabetic retinopathy is indicated by the presence of microaneurysms, ‘cotton-wool’ spots, ‘dot-blot’ haemorrhages, and venous beading at different stages. However, neovascularization, or the formation of new blood vessels, is the finding associated with more advanced, proliferative retinopathy.

      Understanding Diabetic Retinopathy

      Diabetic retinopathy is a leading cause of blindness in adults aged 35-65 years-old. The condition is caused by hyperglycaemia, which leads to abnormal metabolism in the retinal vessel walls, causing damage to endothelial cells and pericytes. This damage leads to increased vascular permeability, which causes exudates seen on fundoscopy. Pericyte dysfunction predisposes to the formation of microaneurysms, while neovascularization is caused by the production of growth factors in response to retinal ischaemia.

      Patients with diabetic retinopathy are typically classified into those with non-proliferative diabetic retinopathy (NPDR), proliferative retinopathy (PDR), and maculopathy. NPDR is further classified into mild, moderate, and severe, depending on the presence of microaneurysms, blot haemorrhages, hard exudates, cotton wool spots, venous beading/looping, and intraretinal microvascular abnormalities. PDR is characterized by retinal neovascularization, which may lead to vitreous haemorrhage, and fibrous tissue forming anterior to the retinal disc. Maculopathy is based on location rather than severity and is more common in Type II DM.

      Management of diabetic retinopathy involves optimizing glycaemic control, blood pressure, and hyperlipidemia, as well as regular review by ophthalmology. For maculopathy, intravitreal vascular endothelial growth factor (VEGF) inhibitors are used if there is a change in visual acuity. Non-proliferative retinopathy is managed through regular observation, while severe/very severe cases may require panretinal laser photocoagulation. Proliferative retinopathy is treated with panretinal laser photocoagulation, intravitreal VEGF inhibitors, and vitreoretinal surgery in severe or vitreous haemorrhage cases. Examples of VEGF inhibitors include ranibizumab, which has a strong evidence base for slowing the progression of proliferative diabetic retinopathy and improving visual acuity.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 45 - A 79-year-old man comes to the emergency department with visual disturbance and weakness...

    Incorrect

    • A 79-year-old man comes to the emergency department with visual disturbance and weakness on the left side. During the examination, you observe that his left leg has a power of 4/5 on the MRC scale, and his left arm has a power of 3/5. Additionally, you notice that he has lost the left half of his visual field in both eyes. Which artery is most likely responsible for his symptoms?

      Your Answer:

      Correct Answer: Right middle cerebral artery

      Explanation:

      The correct answer is the right middle cerebral artery. This type of stroke can cause contralateral hemiparesis and sensory loss, with the upper extremity being more affected than the lower, as well as contralateral homonymous hemianopia and aphasia. In this case, the patient is experiencing left-sided weakness and left homonymous hemianopia, which would be explained by a stroke affecting the right middle cerebral artery. The other options are incorrect as they do not match the symptoms described in the question.

      Stroke can affect different parts of the brain depending on which artery is affected. If the anterior cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the lower extremities being more affected than the upper. If the middle cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the upper extremities being more affected than the lower. They may also experience vision loss and difficulty with language. If the posterior cerebral artery is affected, the person may experience vision loss and difficulty recognizing objects.

      Lacunar strokes are a type of stroke that are strongly associated with hypertension. They typically present with isolated weakness or loss of sensation on one side of the body, or weakness with difficulty coordinating movements. They often occur in the basal ganglia, thalamus, or internal capsule.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 46 - To which opioid receptor does morphine bind? ...

    Incorrect

    • To which opioid receptor does morphine bind?

      Your Answer:

      Correct Answer: mu

      Explanation:

      This receptor is targeted by pethidine and other traditional opioids.

      Understanding Opioids: Types, Receptors, and Clinical Uses

      Opioids are a class of chemical compounds that act upon opioid receptors located within the central nervous system (CNS). These receptors are G-protein coupled receptors that have numerous actions throughout the body. There are three clinically relevant groups of opioid receptors: mu (µ), kappa (κ), and delta (δ) receptors. Endogenous opioids, such as endorphins, dynorphins, and enkephalins, are produced by specific cells within the CNS and their actions depend on whether µ-receptors or δ-receptors and κ-receptors are their main target.

      Drugs targeted at opioid receptors are the largest group of analgesic drugs and form the second and third steps of the WHO pain ladder of managing analgesia. The choice of which opioid drug to use depends on the patient’s needs and the clinical scenario. The first step of the pain ladder involves non-opioids such as paracetamol and non-steroidal anti-inflammatory drugs. The second step involves weak opioids such as codeine and tramadol, while the third step involves strong opioids such as morphine, oxycodone, methadone, and fentanyl.

      The strength, routes of administration, common uses, and significant side effects of these opioid drugs vary. Weak opioids have moderate analgesic effects without exposing the patient to as many serious adverse effects associated with strong opioids. Strong opioids have powerful analgesic effects but are also more liable to cause opioid-related side effects such as sedation, respiratory depression, constipation, urinary retention, and addiction. The sedative effects of opioids are also useful in anesthesia with potent drugs used as part of induction of a general anesthetic.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 47 - A 28-year-old male comes to the Emergency Department complaining of a severely painful,...

    Incorrect

    • A 28-year-old male comes to the Emergency Department complaining of a severely painful, reddened right-eye that has been going on for 6 hours. He also reports experiencing haloes around light and reduced visual acuity. The patient has a history of hypermetropia. Upon examination, the right-eye appears red with a fixed and dilated pupil and conjunctival injection.

      What is the most probable diagnosis?

      Your Answer:

      Correct Answer: Acute closed-angle glaucoma

      Explanation:

      The correct diagnosis is acute closed-angle glaucoma, which is characterized by an increase in intra-ocular pressure due to impaired aqueous outflow. Symptoms include a painful red eye, reduced visual acuity, and haloes around light. Risk factors include hypermetropia, pupillary dilatation, and age-related lens growth. Examination findings typically include a fixed dilated pupil with conjunctival injection. Treatment options include reducing aqueous secretions with acetazolamide and increasing pupillary constriction with topical pilocarpine.

      Anterior uveitis is an incorrect diagnosis, as it refers to inflammation of the anterior portion of the uvea and is associated with systemic inflammatory conditions. Ophthalmoscopy findings include an irregular pupil.

      Central retinal vein occlusion is also an incorrect diagnosis, as it causes acute blindness due to thromboembolism or vasculitis in the central retinal vein. Ophthalmoscopy typically reveals severe retinal haemorrhages.

      Infective conjunctivitis is another incorrect diagnosis, as it is characterized by sore, red eyes with discharge. Bacterial causes typically result in purulent discharge, while viral cases often have serous discharge.

      Acute angle closure glaucoma (AACG) is a type of glaucoma where there is a rise in intraocular pressure (IOP) due to a blockage in the outflow of aqueous humor. This condition is more likely to occur in individuals with hypermetropia, pupillary dilation, and lens growth associated with aging. Symptoms of AACG include severe pain, decreased visual acuity, a hard and red eye, haloes around lights, and a semi-dilated non-reacting pupil. AACG is an emergency and requires urgent referral to an ophthalmologist. The initial medical treatment involves a combination of eye drops, such as a direct parasympathomimetic, a beta-blocker, and an alpha-2 agonist, as well as intravenous acetazolamide to reduce aqueous secretions. Definitive management involves laser peripheral iridotomy, which creates a tiny hole in the peripheral iris to allow aqueous humor to flow to the angle.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 48 - A 50-year-old male presents to the GP with complaints of hand weakness. He...

    Incorrect

    • A 50-year-old male presents to the GP with complaints of hand weakness. He reports experiencing sensory loss in his little finger and ring finger, as well as weak finger flexion. Can you identify the dermatome responsible for his sensory loss?

      Your Answer:

      Correct Answer: C8

      Explanation:

      The patient has a cervical radiculopathy causing loss of the C8 dermatome located on the little and ring finger, and potentially finger flexion.

      Understanding Dermatomes: Major Landmarks and Mnemonics

      Dermatomes are areas of skin that are innervated by a single spinal nerve. Understanding dermatomes is important in diagnosing and treating various neurological conditions. The major dermatome landmarks are listed in the table above, along with helpful mnemonics to aid in memorization.

      Starting at the top of the body, the C2 dermatome covers the posterior half of the skull, resembling a cap. Moving down to C3, it covers the area of a high turtleneck shirt, while C4 covers the area of a low-collar shirt. The C5 dermatome runs along the ventral axial line of the upper limb, while C6 covers the thumb and index finger. To remember this, make a 6 with your left hand by touching the tip of your thumb and index finger together.

      Moving down to the middle finger and palm of the hand, the C7 dermatome is located here, while the C8 dermatome covers the ring and little finger. The T4 dermatome is located at the nipples, while T5 covers the inframammary fold. The T6 dermatome is located at the xiphoid process, and T10 covers the umbilicus. To remember this, think of BellybuT-TEN.

      The L1 dermatome covers the inguinal ligament, while L4 covers the knee caps. To remember this, think of being Down on aLL fours with the number 4 representing the knee caps. The L5 dermatome covers the big toe and dorsum of the foot (except the lateral aspect), while the S1 dermatome covers the lateral foot and small toe. To remember this, think of S1 as the smallest one. Finally, the S2 and S3 dermatomes cover the genitalia.

      Understanding dermatomes and their landmarks can aid in diagnosing and treating various neurological conditions. The mnemonics provided can help in memorizing these important landmarks.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 49 - A 78-year-old woman with a history of neurosarcoidosis treated with steroids visits her...

    Incorrect

    • A 78-year-old woman with a history of neurosarcoidosis treated with steroids visits her GP complaining of intense facial pain. The pain lasts only a few seconds but is unbearable and worsens with exposure to cold air and touch.

      Upon examination, there are no focal neurological signs. However, a few minutes after the examination, she experiences severe pain on her right cheek, which she describes as always being over her right zygoma.

      Through which opening in the skull does the affected cranial nerve pass?

      Your Answer:

      Correct Answer: Foramen rotundum

      Explanation:

      The correct answer is Foramen rotundum, as the maxillary nerve passes through this foramen to exit the skull. This nerve is responsible for the sensory innervation of the upper teeth, gums, and palate. The patient’s trigeminal neuralgia is caused by irritation of the right-sided maxillary nerve.

      Cribriform plate is not the correct answer, as this area of the skull is where the olfactory nerve passes through to enable the sense of smell.

      Foramen ovale is also not the correct answer, as this foramen is where the mandibular nerve exits the skull to provide sensation to the lower face.

      Jugular foramen is not the correct answer, as this foramen is where the accessory nerve passes through to innervate the sternocleidomastoid and trapezius muscles.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 50 - A 90-year-old man was brought to the clinic by his family due to...

    Incorrect

    • A 90-year-old man was brought to the clinic by his family due to a decline in his memory over the past 6 months, accompanied by occasional confusion. His personality and behavior remain unchanged. Upon neurological examination, no abnormalities were found. Following further investigations, he was diagnosed with dementia. What is the probable molecular pathology underlying his symptoms?

      Your Answer:

      Correct Answer: Presence of neurofibrillary tangles

      Explanation:

      Alzheimer’s disease is the most prevalent cause of dementia, followed by vascular dementia. It is characterized by the accumulation of type A-Beta-amyloid protein, leading to cortical plaques, and abnormal aggregation of the tau protein, resulting in intraneuronal neurofibrillary tangles. Parkinson’s disease is indicated by the loss of dopaminergic neurons in the substantia nigra, while Lewy body dementia is suggested by the presence of Lewy bodies. Vascular dementia is associated with atherosclerosis of cerebral arteries.

      Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.

      The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.

      Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 51 - A 48-year-old woman arrives at the emergency department with symptoms of feeling unwell....

    Incorrect

    • A 48-year-old woman arrives at the emergency department with symptoms of feeling unwell. She reports having a headache and a stiff, painful neck. She is sensitive to light, feels nauseated, and has vomited twice. She experiences alternating sensations of hot and cold and is sweating. During the examination, her temperature is elevated, and Kernig's sign is positive. You decide to perform a lumbar puncture to obtain a sample of cerebrospinal fluid (CSF). In which ventricle is the choroid plexus, the structure responsible for producing the majority of CSF?

      Your Answer:

      Correct Answer: All four of the ventricles

      Explanation:

      The choroid plexus is a branching structure resembling sea coral, consisting of specialized ependymal cells that produce and release cerebrospinal fluid (CSF). It is present in all four ventricles of the brain, with the largest portion located in the lateral ventricles. The choroid plexus is also involved in removing waste products from the CSF.

      The patient described in the previous question displays symptoms and signs indicative of meningitis, including a positive Kernig’s sign. This test involves flexing the thigh and hip to 90 degrees, followed by extending the knee to elicit pain. Analysis of the CSF obtained through lumbar puncture can help identify the cause of meningitis and guide appropriate treatment.

      Cerebrospinal Fluid: Circulation and Composition

      Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.

      The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.

      The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 52 - A 50 year old man comes to the clinic complaining of weakness in...

    Incorrect

    • A 50 year old man comes to the clinic complaining of weakness in his hand. During the examination, he is asked to hold a piece of paper between his thumb and index finger. When the paper is pulled, he struggles to maintain his grip. The patient compensates by flexing his thumb at the interphalangeal joint. What nerve lesion is the most probable cause of his symptoms?

      Your Answer:

      Correct Answer: Deep branch of ulnar nerve

      Explanation:

      Froment’s sign is a test used to assess ulnar nerve palsy, specifically the function of the adductor pollicis muscle which is supplied by the deep branch of the ulnar nerve. It is important to note that the flexor pollicis longus muscle, which is innervated by the anterior interosseous branch of the median nerve and causes flexion of the thumb IP joint, branches off at a more proximal location near the wrist.

      The ulnar nerve originates from the medial cord of the brachial plexus, specifically from the C8 and T1 nerve roots. It provides motor innervation to various muscles in the hand, including the medial two lumbricals, adductor pollicis, interossei, hypothenar muscles (abductor digiti minimi, flexor digiti minimi), and flexor carpi ulnaris. Sensory innervation is also provided to the medial 1 1/2 fingers on both the palmar and dorsal aspects. The nerve travels through the posteromedial aspect of the upper arm and enters the palm of the hand via Guyon’s canal, which is located superficial to the flexor retinaculum and lateral to the pisiform bone.

      The ulnar nerve has several branches that supply different muscles and areas of the hand. The muscular branch provides innervation to the flexor carpi ulnaris and the medial half of the flexor digitorum profundus. The palmar cutaneous branch arises near the middle of the forearm and supplies the skin on the medial part of the palm, while the dorsal cutaneous branch supplies the dorsal surface of the medial part of the hand. The superficial branch provides cutaneous fibers to the anterior surfaces of the medial one and one-half digits, and the deep branch supplies the hypothenar muscles, all the interosseous muscles, the third and fourth lumbricals, the adductor pollicis, and the medial head of the flexor pollicis brevis.

      Damage to the ulnar nerve at the wrist can result in a claw hand deformity, where there is hyperextension of the metacarpophalangeal joints and flexion at the distal and proximal interphalangeal joints of the 4th and 5th digits. There may also be wasting and paralysis of intrinsic hand muscles (except for the lateral two lumbricals), hypothenar muscles, and sensory loss to the medial 1 1/2 fingers on both the palmar and dorsal aspects. Damage to the nerve at the elbow can result in similar symptoms, but with the addition of radial deviation of the wrist. It is important to diagnose and treat ulnar nerve damage promptly to prevent long-term complications.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 53 - A 15-year-old patient presents with a recurring headache. The patient experiences the headache...

    Incorrect

    • A 15-year-old patient presents with a recurring headache. The patient experiences the headache twice a week, affecting only one side of the head. The headache is throbbing, lasts for several hours, and is accompanied by nausea, photophobia, and visual disturbances. There is no association with postural changes, and the headache has remained consistent over time. During a cranial nerve examination, you instruct the patient to clench their jaw while palpating the masseter and temporalis muscles to test the trigeminal nerve (CN V). Which components of the trigeminal nerve contain motor fibers?

      Your Answer:

      Correct Answer: Mandibular nerve only.

      Explanation:

      The mandibular branch of the trigeminal nerve (CN V) is unique in that it carries motor fibers, supplying the muscles of mastication (masseter, temporalis, medial and lateral pterygoid muscles), as well as other muscles such as the tensor veli palatini, mylohyoid, the anterior belly of digastric, and tensor tympani.

      Additional information on the trigeminal nerve and its sensory supply can be found below.

      Based on the patient’s symptoms, it appears that they are experiencing a migraine with aura. The unilateral nature of the symptoms, frequency and duration of the attacks, as well as the presence of pain, visual disturbances, nausea, and sensitivity to light all suggest a migraine diagnosis.

      To test the motor component of the mandibular nerve, the clinician may inspect the masseter and temporalis muscles for bulk and palpate them while the patient clenches their jaw. The jaw jerk reflex may also be assessed.

      The trigeminal nerve is the main sensory nerve of the head and also innervates the muscles of mastication. It has sensory distribution to the scalp, face, oral cavity, nose and sinuses, and dura mater, and motor distribution to the muscles of mastication, mylohyoid, anterior belly of digastric, tensor tympani, and tensor palati. The nerve originates at the pons and has three branches: ophthalmic, maxillary, and mandibular. The ophthalmic and maxillary branches are sensory only, while the mandibular branch is both sensory and motor. The nerve innervates various muscles, including the masseter, temporalis, and pterygoids.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 54 - A 31-year-old woman is seeking advice at the family planning clinic as she...

    Incorrect

    • A 31-year-old woman is seeking advice at the family planning clinic as she plans to start a family soon. She has been researching medications that may harm her baby's growth during pregnancy, especially those that can cause cleft palate and heart defects. Her concerns stem from her friend's experience with her baby being born with these conditions. Can you identify the drug that is linked to cleft palate and congenital heart disease?

      Your Answer:

      Correct Answer: Phenytoin

      Explanation:

      Phenytoin is linked to the development of cleft palate and congenital heart disease, making it a known teratogenic substance.

      Insulin and acetaminophen are considered safe for use during pregnancy and are not known to have any harmful effects on the developing fetus.

      Warfarin, on the other hand, is known to be teratogenic and may cause defects in the hands, nose, and eyes, as well as growth retardation. However, it is not associated with cleft palate or congenital heart disease.

      Tetracyclines can cause discoloration of the teeth and bone defects due to their deposition in these tissues.

      Understanding the Adverse Effects of Phenytoin

      Phenytoin is a medication commonly used to manage seizures. Its mechanism of action involves binding to sodium channels, which increases their refractory period. However, the drug is associated with a large number of adverse effects that can be categorized as acute, chronic, idiosyncratic, and teratogenic.

      Acute adverse effects of phenytoin include dizziness, diplopia, nystagmus, slurred speech, ataxia, confusion, and seizures. Chronic adverse effects may include gingival hyperplasia, hirsutism, coarsening of facial features, drowsiness, megaloblastic anemia, peripheral neuropathy, enhanced vitamin D metabolism causing osteomalacia, lymphadenopathy, and dyskinesia.

      Idiosyncratic adverse effects of phenytoin may include fever, rashes, including severe reactions such as toxic epidermal necrolysis, hepatitis, Dupuytren’s contracture, aplastic anemia, and drug-induced lupus. Finally, teratogenic adverse effects of phenytoin are associated with cleft palate and congenital heart disease.

      It is important to note that phenytoin is also an inducer of the P450 system. While routine monitoring of phenytoin levels is not necessary, trough levels should be checked immediately before a dose if there is a need for adjustment of the phenytoin dose, suspected toxicity, or detection of non-adherence to the prescribed medication.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 55 - A child with severe hydrocephalus is exhibiting a lack of upward gaze. What...

    Incorrect

    • A child with severe hydrocephalus is exhibiting a lack of upward gaze. What specific area of the brain is responsible for this impairment?

      Your Answer:

      Correct Answer: Superior colliculi

      Explanation:

      The superior colliculi play a crucial role in upward gaze and are located on both sides of the tectal or quadrigeminal plate. Damage or compression of the superior colliculi, such as in severe hydrocephalus, can result in the inability to look up, known as sunsetting of the eyes.

      The optic chiasm serves as the connection between the anterior and posterior optic pathways. The nasal fibers of the optic nerves cross over at the chiasm, leading to monocular visual field deficits with anterior pathway lesions and binocular visual field deficits with posterior pathway lesions.

      The lateral geniculate body in the thalamus is where the optic tract connects with the optic radiations, while the inferior colliculi and medial geniculate bodies are responsible for processing auditory stimuli.

      Understanding the Diencephalon: An Overview of Brain Anatomy

      The diencephalon is a part of the brain that is located between the cerebral hemispheres and the brainstem. It is composed of several structures, including the thalamus, hypothalamus, epithalamus, and subthalamus. Each of these structures plays a unique role in regulating various bodily functions and behaviors.

      The thalamus is responsible for relaying sensory information from the body to the cerebral cortex, which is responsible for processing and interpreting this information. The hypothalamus, on the other hand, is involved in regulating a wide range of bodily functions, including hunger, thirst, body temperature, and sleep. It also plays a role in regulating the release of hormones from the pituitary gland.

      The epithalamus is a small structure that is involved in regulating the sleep-wake cycle and the production of melatonin, a hormone that helps to regulate sleep. The subthalamus is involved in regulating movement and is part of the basal ganglia, a group of structures that are involved in motor control.

      Overall, the diencephalon plays a crucial role in regulating many of the body’s essential functions and behaviors. Understanding its anatomy and function can help us better understand how the brain works and how we can maintain optimal health and well-being.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 56 - A 20-year-old male arrives at the emergency department with a depressed skull fracture...

    Incorrect

    • A 20-year-old male arrives at the emergency department with a depressed skull fracture that requires surgical intervention. After a few days, he reports experiencing double vision while walking down stairs and reading. Upon conducting an ocular convergence test, it is observed that the left eye faces downwards and medially, while the right eye does not. Which cranial nerve is most likely responsible for this symptom?

      Your Answer:

      Correct Answer: Trochlear

      Explanation:

      The fourth cranial nerve is susceptible to injury in cases of head trauma due to its lengthy intracranial path. Acute fourth nerve palsy is most commonly caused by head trauma, resulting in vertical diplopia. The double vision is most severe when the affected eye looks inward, which typically occurs during the accommodation reflex while descending stairs.

      Disorders of the Oculomotor System: Nerve Path and Palsy Features

      The oculomotor system is responsible for controlling eye movements and pupil size. Disorders of this system can result in various nerve path and palsy features. The oculomotor nerve has a large nucleus at the midbrain and its fibers pass through the red nucleus and the pyramidal tract, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience ptosis, eye down and out, and an inability to move the eye superiorly, inferiorly, or medially. The pupil may also become fixed and dilated.

      The trochlear nerve has the longest intracranial course and is the only nerve to exit the dorsal aspect of the brainstem. Its nucleus is located at the midbrain and it passes between the posterior cerebral and superior cerebellar arteries, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience vertical diplopia (diplopia on descending the stairs) and an inability to look down and in.

      The abducens nerve has its nucleus in the mid pons and is responsible for the convergence of eyes in primary position. When this nerve is affected, patients may experience lateral diplopia towards the side of the lesion and the eye may deviate medially. Understanding the nerve path and palsy features of the oculomotor system can aid in the diagnosis and treatment of disorders affecting this important system.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 57 - A mother brings her 3-month-old son for his routine check-up. She mentions that...

    Incorrect

    • A mother brings her 3-month-old son for his routine check-up. She mentions that his left hand has been in a fixed 'claw-like' position since birth. Upon examination, the left forearm is found to be supinated and the left wrist and fingers are flexed. Additionally, a slight droop is observed in the right eyelid and the right pupil is constricted.

      What is the probable diagnosis?

      Your Answer:

      Correct Answer: Klumpke palsy

      Explanation:

      Klumpke palsy is a condition that can occur due to shoulder dystocia during birth or sudden upward jerking of the hand. It results from damage to the lower trunk of the brachial plexus (C8, T1) and can cause a flattened forearm, flexed wrist, and fingers. Klumpke injury may also be associated with Horner’s syndrome, which can cause ptosis and miosis on the opposite side of the face.

      Erb-Duchenne palsy is another condition that can occur due to shoulder dystocia during birth, but it results from damage to the upper trunk of the brachial plexus (C5, C6). The affected arm hangs by the side, is internally rotated, and has an extended elbow.

      Radial nerve palsy can be caused by a humeral midshaft fracture and can result in wrist drop.

      Median nerve palsy can have different features depending on the site of the lesion. If the lesion is in the wrist, it can cause paralysis of the thenar muscles, leading to an inability to abduct and oppose the thumb. If the lesion is in the elbow, it can cause a loss of pronation of the forearm and weak wrist flexion.

      Horner’s syndrome is a condition characterized by several features, including a small pupil (miosis), drooping of the upper eyelid (ptosis), a sunken eye (enophthalmos), and loss of sweating on one side of the face (anhidrosis). The cause of Horner’s syndrome can be determined by examining additional symptoms. For example, congenital Horner’s syndrome may be identified by a difference in iris color (heterochromia), while anhidrosis may be present in central or preganglionic lesions. Pharmacologic tests, such as the use of apraclonidine drops, can also be helpful in confirming the diagnosis and identifying the location of the lesion. Central lesions may be caused by conditions such as stroke or multiple sclerosis, while postganglionic lesions may be due to factors like carotid artery dissection or cluster headaches. It is important to note that the appearance of enophthalmos in Horner’s syndrome is actually due to a narrow palpebral aperture rather than true enophthalmos.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 58 - A 63-year-old man arrives at the emergency department with difficulty speaking and weakness...

    Incorrect

    • A 63-year-old man arrives at the emergency department with difficulty speaking and weakness on his right side. The symptoms appeared suddenly, and he did not experience any trauma or pain. During the examination, you observe weakness in his right upper limb. Although he comprehends your inquiries, he struggles to find the right words to respond. There are no alterations in his sensation. You suspect that he has suffered a stroke. Which region of the brain is responsible for expressive dysphasia?

      Your Answer:

      Correct Answer: Broca's area

      Explanation:

      Broca’s area, located in the inferior posterior frontal lobe, is associated with expressive dysphasia, which is characterized by difficulty producing language and non-fluent speech. This condition is sometimes referred to as Broca’s dysphasia. On the other hand, the primary motor cortex, located in the posterior frontal lobe, is responsible for motor control, and lesions in this area can result in motor deficits affecting the opposite side of the body.

      Wernicke’s area, another brain region involved in speech, is primarily responsible for language comprehension and understanding. Lesions in this area can lead to receptive dysphasia, which is characterized by a lack of comprehension and understanding of language. Patients with receptive dysphasia may speak fluently, but their sentences may not make sense and may include neologisms.

      The occipital lobe, located at the back of the brain, is responsible for visual processing. Lesions in this area can result in homonymous hemianopia (with sparing of the macula), agnosias, and cortical blindness.

      Finally, the primary sensory cortex, located in the anterior region of the parietal lobe, receives sensory innervation. Lesions in this area can lead to loss of sensation, proprioception, fine touch, and vibration sense on the opposite side of the body.

      Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.

      In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 59 - A 12-year-old child has sustained a supracondylar fracture of the right humerus. After...

    Incorrect

    • A 12-year-old child has sustained a supracondylar fracture of the right humerus. After undergoing closed reduction, the child reports experiencing tingling sensations in their first and second fingers on the right hand, as well as difficulty moving their thumb. Which nerve is the most probable culprit for this injury?

      Your Answer:

      Correct Answer: Median nerve

      Explanation:

      The median nerve is responsible for providing sensation to the lateral part of the palm and the palmar surface of the three most lateral digits. It is commonly injured at the elbow after supracondylar fractures of the humerus or at the wrist.

      The ulnar nerve is responsible for providing sensation to the palmar surface of the fifth digit and medial part of the fourth digit, along with their associated palm region.

      The musculoskeletal nerve only has one sensory branch, the lateral cutaneous nerve of the forearm, which provides sensation to the lateral aspect of the forearm. Therefore, damage to the musculocutaneous nerve cannot explain tingling sensations or compromised movements of any of the digits.

      The medial cutaneous nerve of the forearm does not run near supracondylar humeral fractures and its branches only reach as far as the wrist, so it cannot explain tingling sensations in the digits.

      The radial nerve is not typically injured at supracondylar humeral fractures and would cause altered sensations localized at the dorsal side of the palm and digits if it were damaged.

      Anatomy and Function of the Median Nerve

      The median nerve is a nerve that originates from the lateral and medial cords of the brachial plexus. It descends lateral to the brachial artery and passes deep to the bicipital aponeurosis and the median cubital vein at the elbow. The nerve then passes between the two heads of the pronator teres muscle and runs on the deep surface of flexor digitorum superficialis. Near the wrist, it becomes superficial between the tendons of flexor digitorum superficialis and flexor carpi radialis, passing deep to the flexor retinaculum to enter the palm.

      The median nerve has several branches that supply the upper arm, forearm, and hand. These branches include the pronator teres, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, flexor pollicis longus, and palmar cutaneous branch. The nerve also provides motor supply to the lateral two lumbricals, opponens pollicis, abductor pollicis brevis, and flexor pollicis brevis muscles, as well as sensory supply to the palmar aspect of the lateral 2 ½ fingers.

      Damage to the median nerve can occur at the wrist or elbow, resulting in various symptoms such as paralysis and wasting of thenar eminence muscles, weakness of wrist flexion, and sensory loss to the palmar aspect of the fingers. Additionally, damage to the anterior interosseous nerve, a branch of the median nerve, can result in loss of pronation of the forearm and weakness of long flexors of the thumb and index finger. Understanding the anatomy and function of the median nerve is important in diagnosing and treating conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 60 - A 28-year-old patient presents to the emergency department after a car accident. During...

    Incorrect

    • A 28-year-old patient presents to the emergency department after a car accident. During your initial assessment, you perform a pupil examination by shining a light in each eye. What two nerves are being tested during this examination?

      Your Answer:

      Correct Answer: Optic nerve and oculomotor nerve

      Explanation:

      The pupillary light reflex involves the optic nerve and oculomotor nerve. The optic nerve carries visual information from the retina when a light is shone in the pupil. The oculomotor nerve then transmits efferent information to the sphincter pupillae muscle, causing it to constrict.

      The second cranial nerve is the optic nerve, responsible for visual information transmission.

      The third cranial nerve is the oculomotor nerve, which provides motor innervation to four extra-orbital muscles and parasympathetic fibers to the constrictor pupillae and ciliaris.

      The fourth cranial nerve is the trochlear nerve, which supplies the superior oblique extra-orbital muscle.

      The ophthalmic nerve is the first division of the trigeminal nerve, the fifth cranial nerve, and carries sensation from the orbit, upper eyelid, and forehead.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 61 - A 25-year-old woman complains of pain in the medial aspect of her thigh....

    Incorrect

    • A 25-year-old woman complains of pain in the medial aspect of her thigh. Upon investigation, a large ovarian cyst is discovered. Which nerve is most likely being compressed as the underlying cause of her discomfort?

      Your Answer:

      Correct Answer: Obturator

      Explanation:

      The cutaneous branch of the obturator nerve is often not present, but it is known to provide sensation to the inner thigh. If there are large tumors in the pelvic area, they may put pressure on this nerve, causing pain that spreads down the leg.

      Anatomy of the Obturator Nerve

      The obturator nerve is formed by branches from the ventral divisions of L2, L3, and L4 nerve roots, with L3 being the main contributor. It descends vertically in the posterior part of the psoas major muscle and emerges from its medial border at the lateral margin of the sacrum. After crossing the sacroiliac joint, it enters the lesser pelvis and descends on the obturator internus muscle to enter the obturator groove. The nerve lies lateral to the internal iliac vessels and ureter in the lesser pelvis and is joined by the obturator vessels lateral to the ovary or ductus deferens.

      The obturator nerve supplies the muscles of the medial compartment of the thigh, including the external obturator, adductor longus, adductor brevis, adductor magnus (except for the lower part supplied by the sciatic nerve), and gracilis. The cutaneous branch, which is often absent, supplies the skin and fascia of the distal two-thirds of the medial aspect of the thigh when present.

      The obturator canal connects the pelvis and thigh and contains the obturator artery, vein, and nerve, which divides into anterior and posterior branches. Understanding the anatomy of the obturator nerve is important in diagnosing and treating conditions that affect the medial thigh and pelvic region.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 62 - An 80-year-old man is brought to the emergency department by his daughter. She...

    Incorrect

    • An 80-year-old man is brought to the emergency department by his daughter. She found him on the floor and noticed slow and shallow breathing. He has a past medical history of asthma and hypertension.

      His arterial blood sample is sent for blood gas analysis. The results return within minutes and show the following:

      PaCO2 High
      PaO2 Low
      pH 7.27

      Which one of the following medications could be causing these arterial blood gas results?

      Your Answer:

      Correct Answer: Opioids

      Explanation:

      Opioid overdose can cause respiratory acidosis due to the resulting respiratory depression. This can lead to an increase in pCO2 and a decrease in pO2, which is similar to type 2 respiratory failure. As a result, ABG may show respiratory acidosis due to the accumulation of CO2.

      It is important to note that paracetamol does not typically cause respiratory depression.

      To manage opioid-induced respiratory depression, naloxone is commonly used. This medication acts as a partial opioid receptor antagonist and counteracts the effects of opioids.

      Doxapram, on the other hand, is a respiratory stimulant and is not used in the treatment of respiratory depression caused by opioids.

      Understanding Opioids: Types, Receptors, and Clinical Uses

      Opioids are a class of chemical compounds that act upon opioid receptors located within the central nervous system (CNS). These receptors are G-protein coupled receptors that have numerous actions throughout the body. There are three clinically relevant groups of opioid receptors: mu (µ), kappa (κ), and delta (δ) receptors. Endogenous opioids, such as endorphins, dynorphins, and enkephalins, are produced by specific cells within the CNS and their actions depend on whether µ-receptors or δ-receptors and κ-receptors are their main target.

      Drugs targeted at opioid receptors are the largest group of analgesic drugs and form the second and third steps of the WHO pain ladder of managing analgesia. The choice of which opioid drug to use depends on the patient’s needs and the clinical scenario. The first step of the pain ladder involves non-opioids such as paracetamol and non-steroidal anti-inflammatory drugs. The second step involves weak opioids such as codeine and tramadol, while the third step involves strong opioids such as morphine, oxycodone, methadone, and fentanyl.

      The strength, routes of administration, common uses, and significant side effects of these opioid drugs vary. Weak opioids have moderate analgesic effects without exposing the patient to as many serious adverse effects associated with strong opioids. Strong opioids have powerful analgesic effects but are also more liable to cause opioid-related side effects such as sedation, respiratory depression, constipation, urinary retention, and addiction. The sedative effects of opioids are also useful in anesthesia with potent drugs used as part of induction of a general anesthetic.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 63 - A 38-year-old male comes to his GP complaining of recurring episodes of abdominal...

    Incorrect

    • A 38-year-old male comes to his GP complaining of recurring episodes of abdominal pain. He characterizes the pain as dull, affecting his entire abdomen, and accompanied by intermittent diarrhea and constipation. He has observed that his symptoms have intensified since his wife departed, and he has been under work-related stress. The physician suspects that he has irritable bowel syndrome.

      What are the nerve fibers that are stimulated to produce his pain?

      Your Answer:

      Correct Answer: C fibres

      Explanation:

      Neurons and Synaptic Signalling

      Neurons are the building blocks of the nervous system and are made up of dendrites, a cell body, and axons. They can be classified by their anatomical structure, axon width, and function. Neurons communicate with each other at synapses, which consist of a presynaptic membrane, synaptic gap, and postsynaptic membrane. Neurotransmitters are small chemical messengers that diffuse across the synaptic gap and activate receptors on the postsynaptic membrane. Different neurotransmitters have different effects, with some causing excitation and others causing inhibition. The deactivation of neurotransmitters varies, with some being degraded by enzymes and others being reuptaken by cells. Understanding the mechanisms of neuronal communication is crucial for understanding the functioning of the nervous system.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 64 - A 72-year-old male presents to the emergency department with severe, central abdominal pain...

    Incorrect

    • A 72-year-old male presents to the emergency department with severe, central abdominal pain that is radiating to his back. He has vomited twice and on examination you find he has hypotension and tachycardia. He is a current smoker with a past medical history of hypertension and hypercholesterolaemia. You suspect a visceral artery aneurysm and urgently request a CT scan to confirm. The CT scan reveals an aneurysm in the superior mesenteric artery.

      From which level of the vertebrae does this artery originate from the aorta?

      Your Answer:

      Correct Answer: L1

      Explanation:

      The common iliac veins come together at

      Anatomical Planes and Levels in the Human Body

      The human body can be divided into different planes and levels to aid in anatomical study and medical procedures. One such plane is the transpyloric plane, which runs horizontally through the body of L1 and intersects with various organs such as the pylorus of the stomach, left kidney hilum, and duodenojejunal flexure. Another way to identify planes is by using common level landmarks, such as the inferior mesenteric artery at L3 or the formation of the IVC at L5.

      In addition to planes and levels, there are also diaphragm apertures located at specific levels in the body. These include the vena cava at T8, the esophagus at T10, and the aortic hiatus at T12. By understanding these planes, levels, and apertures, medical professionals can better navigate the human body during procedures and accurately diagnose and treat various conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 65 - A 67-year-old male presents 7 months after being diagnosed with Parkinson's disease. During...

    Incorrect

    • A 67-year-old male presents 7 months after being diagnosed with Parkinson's disease. During the examination, the patient exhibits rigidity, a Parkinsonian gait, bradykinesia, and a resting tremor on one side of the body. Additionally, the patient displays hypomimia. Currently, the patient is taking levodopa and benserazide, and the neurologist has prescribed pramipexole to keep the levodopa dose low. What is a potential side effect of pramipexole that the patient should be warned about?

      Your Answer:

      Correct Answer: Compulsive gambling

      Explanation:

      Dopamine agonists, which are commonly used in the treatment of Parkinson’s disease, carry a risk of causing impulse control or obsessive disorders, such as excessive gambling or hypersexuality. Patients should be informed of this potential side-effect before starting the medication, as it can have devastating financial consequences for both the patient and their family. Blurred vision is a side-effect of antimuscarinic medications, while peripheral neuropathy is a possible side-effect of several medications, including some antibiotics, cytotoxic drugs, amiodarone, and phenytoin. Weight gain is a common side-effect of certain medications, such as steroids.

      Understanding the Mechanism of Action of Parkinson’s Drugs

      Parkinson’s disease is a complex condition that requires specialized management. The first-line treatment for motor symptoms that affect a patient’s quality of life is levodopa, while dopamine agonists, levodopa, or monoamine oxidase B (MAO-B) inhibitors are recommended for those whose motor symptoms do not affect their quality of life. However, all drugs used to treat Parkinson’s can cause a wide variety of side effects, and it is important to be aware of these when making treatment decisions.

      Levodopa is nearly always combined with a decarboxylase inhibitor to prevent the peripheral metabolism of levodopa to dopamine outside of the brain and reduce side effects. Dopamine receptor agonists, such as bromocriptine, ropinirole, cabergoline, and apomorphine, are more likely than levodopa to cause hallucinations in older patients. MAO-B inhibitors, such as selegiline, inhibit the breakdown of dopamine secreted by the dopaminergic neurons. Amantadine’s mechanism is not fully understood, but it probably increases dopamine release and inhibits its uptake at dopaminergic synapses. COMT inhibitors, such as entacapone and tolcapone, are used in conjunction with levodopa in patients with established PD. Antimuscarinics, such as procyclidine, benzotropine, and trihexyphenidyl (benzhexol), block cholinergic receptors and are now used more to treat drug-induced parkinsonism rather than idiopathic Parkinson’s disease.

      It is important to note that all drugs used to treat Parkinson’s can cause adverse effects, and clinicians must be aware of these when making treatment decisions. Patients should also be warned about the potential for dopamine receptor agonists to cause impulse control disorders and excessive daytime somnolence. Understanding the mechanism of action of Parkinson’s drugs is crucial in managing the condition effectively.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 66 - A 9-year-old girl has recently been diagnosed with focal seizures. She reports feeling...

    Incorrect

    • A 9-year-old girl has recently been diagnosed with focal seizures. She reports feeling tingling in her left leg before an episode, but has no other symptoms. Upon examination, her upper limbs, lower limbs, and cranial nerves appear normal. She does not experience postictal dysphasia and is fully oriented to time, place, and person.

      Which specific region of her brain is impacted by the focal seizures?

      Your Answer:

      Correct Answer: Posterior to the central gyrus

      Explanation:

      Paraesthesia is a symptom that can help localize a seizure in the parietal lobe.

      The correct location for paraesthesia is posterior to the central gyrus, which is part of the parietal lobe. This area is responsible for integrating sensory information, including touch, and damage to this region can cause abnormal sensations like tingling.

      Anterior to the central gyrus is not the correct location for paraesthesia. This area is part of the frontal lobe and seizures here can cause motor disturbances like hand twitches that spread to the face.

      The medial temporal gyrus is also not the correct location for paraesthesia. Seizures in this area can cause symptoms like lip-smacking and tugging at clothes.

      Occipital lobe seizures can cause visual disturbances like flashes and floaters, but not paraesthesia.

      Finally, the prefrontal cortex, which is also located in the frontal lobe, is not associated with paraesthesia.

      Localising Features of Focal Seizures in Epilepsy

      Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.

      On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 67 - A 75-year-old male comes to the neurology clinic accompanied by his wife. He...

    Incorrect

    • A 75-year-old male comes to the neurology clinic accompanied by his wife. He reports experiencing severe headaches for the past two months and losing a significant amount of weight in the last month. His wife adds that he constantly complains of feeling hot, despite trying to cool down. The patient has a history of lung cancer. The physician suspects a hypothalamic lesion may be responsible for his inability to regulate body temperature and orders an MRI of the brain.

      What is the most likely nucleus in the hypothalamus where the lesion is located?

      Your Answer:

      Correct Answer: Posterior nucleus

      Explanation:

      Poikilothermia can be caused by lesions in the posterior nucleus of the hypothalamus, which is likely the case for this patient with lung cancer. Diabetes insipidus can result from a lesion in the supraoptic or paraventricular nucleus, which produce antidiuretic hormone. Anorexia can be caused by a lesion in the lateral nucleus, while hyperphagia can result from a lesion in the ventromedial nucleus, which is responsible for regulating satiety.

      The hypothalamus is a part of the brain that plays a crucial role in maintaining the body’s internal balance, or homeostasis. It is located in the diencephalon and is responsible for regulating various bodily functions. The hypothalamus is composed of several nuclei, each with its own specific function. The anterior nucleus, for example, is involved in cooling the body by stimulating the parasympathetic nervous system. The lateral nucleus, on the other hand, is responsible for stimulating appetite, while lesions in this area can lead to anorexia. The posterior nucleus is involved in heating the body and stimulating the sympathetic nervous system, and damage to this area can result in poikilothermia. Other nuclei include the septal nucleus, which regulates sexual desire, the suprachiasmatic nucleus, which regulates circadian rhythm, and the ventromedial nucleus, which is responsible for satiety. Lesions in the paraventricular nucleus can lead to diabetes insipidus, while lesions in the dorsomedial nucleus can result in savage behavior.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 68 - A motorcyclist in his 30s is involved in a road traffic accident and...

    Incorrect

    • A motorcyclist in his 30s is involved in a road traffic accident and sustains a severe closed head injury. He was not wearing a helmet at the time of the accident. As a result, he develops raised intracranial pressure. Which cranial nerve is most likely to be affected first by this process?

      Your Answer:

      Correct Answer: Abducens

      Explanation:

      The abducens nerve, also known as CN VI, is vulnerable to increased pressure within the skull due to its lengthy path within the cranial cavity. Additionally, it travels over the petrous temporal bone, making it susceptible to sixth nerve palsies that can occur in cases of mastoiditis.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 69 - Linda, a 68-year-old female, visits a shoulder clinic for a routine follow-up appointment...

    Incorrect

    • Linda, a 68-year-old female, visits a shoulder clinic for a routine follow-up appointment after undergoing a right shoulder replacement surgery for osteoarthritis. During the consultation, she reports limited movement in bending her elbow and shoulder.

      Upon examining her upper limb, the surgeon observes decreased flexion at the elbow and suspects nerve damage during the operation.

      Which nerve is most likely to have been affected based on the patient's symptoms and signs?

      Your Answer:

      Correct Answer: Musculocutaneous nerve

      Explanation:

      When the musculocutaneous nerve is injured, it can result in weakness when flexing the upper arm at the shoulder and elbow. This nerve is responsible for innervating the brachialis, biceps brachii, and coracobrachialis muscles. Other nerves, such as the axillary nerve, median nerve, and radial nerve, also play a role in muscle innervation and movement. The axillary nerve innervates the teres minor and deltoid muscles, while the median nerve innervates the majority of the flexor muscles in the forearm, the thenar muscles, and the two lateral lumbricals. The radial nerve innervates the triceps brachii and the muscles in the posterior compartment of the forearm, which generally cause extension of the wrist and fingers.

      The Musculocutaneous Nerve: Function and Pathway

      The musculocutaneous nerve is a nerve branch that originates from the lateral cord of the brachial plexus. Its pathway involves penetrating the coracobrachialis muscle and passing obliquely between the biceps brachii and the brachialis to the lateral side of the arm. Above the elbow, it pierces the deep fascia lateral to the tendon of the biceps brachii and continues into the forearm as the lateral cutaneous nerve of the forearm.

      The musculocutaneous nerve innervates the coracobrachialis, biceps brachii, and brachialis muscles. Injury to this nerve can cause weakness in flexion at the shoulder and elbow. Understanding the function and pathway of the musculocutaneous nerve is important in diagnosing and treating injuries or conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 70 - A 51-year-old male comes to his doctor complaining of increasing back pain. Despite...

    Incorrect

    • A 51-year-old male comes to his doctor complaining of increasing back pain. Despite taking paracetamol and ibuprofen, he has not experienced sufficient pain relief. The doctor considers prescribing a weak opioid, such as codeine, and asks the medical student accompanying him for the week about the receptors that opioids act on to produce their pharmacological effects.

      Which receptors do opioids target?

      Your Answer:

      Correct Answer: Mu, delta and kappa receptors

      Explanation:

      Opioids produce their pharmacological effects by binding to three opioid receptors, namely mu, delta, and kappa, whose genes have been identified and cloned as Oprm, Oprd1, and Oprk1, respectively. It is important to note that alpha and beta receptors are not involved in the mechanism of action of opioids.

      Understanding Opioids: Types, Receptors, and Clinical Uses

      Opioids are a class of chemical compounds that act upon opioid receptors located within the central nervous system (CNS). These receptors are G-protein coupled receptors that have numerous actions throughout the body. There are three clinically relevant groups of opioid receptors: mu (µ), kappa (κ), and delta (δ) receptors. Endogenous opioids, such as endorphins, dynorphins, and enkephalins, are produced by specific cells within the CNS and their actions depend on whether µ-receptors or δ-receptors and κ-receptors are their main target.

      Drugs targeted at opioid receptors are the largest group of analgesic drugs and form the second and third steps of the WHO pain ladder of managing analgesia. The choice of which opioid drug to use depends on the patient’s needs and the clinical scenario. The first step of the pain ladder involves non-opioids such as paracetamol and non-steroidal anti-inflammatory drugs. The second step involves weak opioids such as codeine and tramadol, while the third step involves strong opioids such as morphine, oxycodone, methadone, and fentanyl.

      The strength, routes of administration, common uses, and significant side effects of these opioid drugs vary. Weak opioids have moderate analgesic effects without exposing the patient to as many serious adverse effects associated with strong opioids. Strong opioids have powerful analgesic effects but are also more liable to cause opioid-related side effects such as sedation, respiratory depression, constipation, urinary retention, and addiction. The sedative effects of opioids are also useful in anesthesia with potent drugs used as part of induction of a general anesthetic.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 71 - A 12-year-old boy comes to the GP after experiencing unusual behavior. His mother...

    Incorrect

    • A 12-year-old boy comes to the GP after experiencing unusual behavior. His mother accompanies him and reports that her son suddenly started smacking his lips together for a brief period. She adds that he then complained of smelling a foul odor that she couldn't detect. Given the family history of epilepsy, you suspect that he may have had a seizure. What type of seizure is typically associated with these symptoms?

      Your Answer:

      Correct Answer: Temporal lobe seizure

      Explanation:

      Temporal lobe seizures can lead to hallucinations, including olfactory hallucinations, which is likely the cause of this patient’s presentation.

      Flashes and floaters are a common symptom of occipital lobe seizures.

      Juvenile myoclonic epilepsy can cause occasional generalized seizures and daytime absences.

      Parietal lobe seizures can result in paraesthesia.

      Localising Features of Focal Seizures in Epilepsy

      Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.

      On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 72 - A 19-year-old male is brought to the emergency room following ingestion of a...

    Incorrect

    • A 19-year-old male is brought to the emergency room following ingestion of a significant quantity of cocaine. He is experiencing excessive sweating and heart palpitations. During the examination, his pupils are found to be dilated and he is exhibiting tachycardia and tachypnea.

      From which spinal level do the preganglionic neurons of the system responsible for his symptoms originate?

      Your Answer:

      Correct Answer: T1-L2/3

      Explanation:

      The lateral horns of grey matter give rise to the preganglionic neurons of the sympathetic nervous system.

      Understanding the Autonomic Nervous System

      The autonomic nervous system is responsible for regulating involuntary functions in the body, such as heart rate, digestion, and sexual arousal. It is composed of two main components, the sympathetic and parasympathetic nervous systems, as well as a sensory division. The sympathetic division arises from the T1-L2/3 region of the spinal cord and synapses onto postganglionic neurons at paravertebral or prevertebral ganglia. The parasympathetic division arises from cranial nerves and the sacral spinal cord and synapses with postganglionic neurons at parasympathetic ganglia. The sensory division includes baroreceptors and chemoreceptors that monitor blood levels of oxygen, carbon dioxide, and glucose, as well as arterial pressure and the contents of the stomach and intestines.

      The autonomic nervous system releases neurotransmitters such as noradrenaline and acetylcholine to achieve necessary functions and regulate homeostasis. The sympathetic nervous system causes fight or flight responses, while the parasympathetic nervous system causes rest and digest responses. Autonomic dysfunction refers to the abnormal functioning of any part of the autonomic nervous system, which can present in many forms and affect any of the autonomic systems. To assess a patient for autonomic dysfunction, a detailed history should be taken, and the patient should undergo a full neurological examination and further testing if necessary. Understanding the autonomic nervous system is crucial in diagnosing and treating autonomic dysfunction.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 73 - A 36-year-old patient, Sarah, arrives at the emergency department with an abrupt onset...

    Incorrect

    • A 36-year-old patient, Sarah, arrives at the emergency department with an abrupt onset of left-sided facial weakness. The weakness impacts the entire left side of her face, including her forehead, and her corneal reflex is absent upon examination. The physician prescribes prednisolone and informs Sarah that her facial weakness should improve within a few weeks.

      What is the cranial foramen through which the nerve responsible for Sarah's symptoms passes?

      Your Answer:

      Correct Answer: Internal acoustic meatus

      Explanation:

      The correct answer is the internal acoustic meatus, through which the facial nerve (CN VII) and vestibulocochlear nerve (CN VIII) pass. Emily is likely experiencing Bell’s Palsy, which is treated with prednisolone. The foramen ovale is incorrect, as it is where the mandibular branch of the trigeminal nerve (CN V₃) passes. The foramen spinosum is also incorrect, as it is where the middle meningeal artery, middle meningeal vein, and meningeal branch of the mandibular nerve (CN V₃) pass. The jugular foramen is incorrect, as it is where the glossopharyngeal nerve (CN IX), vagus nerve (CN X), and spinal accessory nerve (CN XI) pass. The superior orbital fissure (SOF) is also incorrect, as it is where the lacrimal nerve, frontal and nasociliary branches of the ophthalmic nerve (CN V₁), trochlear nerve (CN IV), oculomotor nerve (CN III), abducens nerve (CN VI), superior ophthalmic vein, and a branch of the inferior ophthalmic vein pass.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 74 - During a cranial nerve examination of a 75-year-old female, it is observed that...

    Incorrect

    • During a cranial nerve examination of a 75-year-old female, it is observed that her tongue deviates to the right when she is asked to stick it out. Which cranial nerve could be affected in this case?

      Your Answer:

      Correct Answer: Left hypoglossal

      Explanation:

      When the hypoglossal nerve is affected, it can cause the tongue to deviate towards the side of the lesion. This is due to the unopposed action of the genioglossus muscle, which makes up most of the tongue, on the unaffected side. If the patient’s history indicates that their tongue is deviating towards the left, it can be ruled out that the issue is affecting the right cranial nerves. The hypoglossal nerve is responsible for innervating the majority of the tongue’s muscles, including both the extrinsic and intrinsic muscles.

      Cranial nerve palsies can present with diplopia, or double vision, which is most noticeable in the direction of the weakened muscle. Additionally, covering the affected eye will cause the outer image to disappear. False localising signs can indicate a pathology that is not in the expected anatomical location. One common example is sixth nerve palsy, which is often caused by increased intracranial pressure due to conditions such as brain tumours, abscesses, meningitis, or haemorrhages. Papilloedema may also be present in these cases.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 75 - A 75-year-old man is brought to the emergency department by his wife. She...

    Incorrect

    • A 75-year-old man is brought to the emergency department by his wife. She reports that he woke up with numbness in his left arm and leg. During your examination, you observe nystagmus and suspect that he may have lateral medullary syndrome. What other feature is most likely to be present on his examination?

      Your Answer:

      Correct Answer: Ipsilateral dysphagia

      Explanation:

      Lateral medullary syndrome can lead to difficulty swallowing on the same side as the lesion, along with limb sensory loss and nystagmus. This condition is caused by a blockage in the posterior inferior cerebellar artery. However, it does not typically cause ipsilateral deafness or CN III palsy, which are associated with other types of brain lesions. Contralateral homonymous hemianopia with macular sparing and visual agnosia are also not typically seen in lateral medullary syndrome. Ipsilateral facial paralysis can occur in lateral pontine syndrome, but not in lateral medullary syndrome.

      Understanding Lateral Medullary Syndrome

      Lateral medullary syndrome, also referred to as Wallenberg’s syndrome, is a condition that arises when the posterior inferior cerebellar artery becomes blocked. This condition is characterized by a range of symptoms that affect both the cerebellum and brainstem. Cerebellar features of the syndrome include ataxia and nystagmus, while brainstem features include dysphagia, facial numbness, and cranial nerve palsy such as Horner’s. Additionally, patients may experience contralateral limb sensory loss. Understanding the symptoms of lateral medullary syndrome is crucial for prompt diagnosis and treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 76 - A 50-year-old man comes to your clinic complaining of progressive dysarthria, dysphagia, facial...

    Incorrect

    • A 50-year-old man comes to your clinic complaining of progressive dysarthria, dysphagia, facial and tongue weakness, and emotional lability. During the examination, you observe an exaggerated jaw jerk reflex. Which cranial nerve is responsible for this efferent pathway of the reflex?

      Your Answer:

      Correct Answer: Mandibular division of the trigeminal nerve

      Explanation:

      The efferent limb of the jaw jerk reflex is controlled by the mandibular division of the trigeminal nerve (CN V3). This nerve supplies sensation to the lower face and buccal membranes of the mouth, as well as providing secretory-motor function to the parotid gland. In conditions with pathology above the spinal cord, such as pseudobulbar palsy, the jaw jerk reflex can become hyperreflexic as an upper motor sign. The ophthalmic division of the trigeminal nerve (CN V1) and the maxillary division of the trigeminal nerve (CN V2) are not responsible for the efferent limb of the jaw jerk reflex, as they provide sensory function to other areas of the face.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 77 - A 61-year-old woman comes to the Emergency Department with slurred speech and left-sided...

    Incorrect

    • A 61-year-old woman comes to the Emergency Department with slurred speech and left-sided facial drooping. You perform a cranial nerves examination and find that her vagus nerve has been impacted. What sign would you anticipate observing in this patient?

      Your Answer:

      Correct Answer: Uvula deviated to the left

      Explanation:

      The uvula is deviated to the left, indicating a right-sided stroke affecting the vagus nerve (CN X). This can cause a loss of gag reflex and uvula deviation away from the site of the lesion. Loss of taste (anterior 2/3) is a symptom of facial nerve (CN VII) lesions, while tongue deviation to the right is a symptom of hypoglossal nerve (CN XII) lesions. Vertigo is a symptom of vestibulocochlear nerve (CN VIII) lesions.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 78 - A 32-year-old woman has recently had a parathyroidectomy for primary hyperparathyroidism. The surgery...

    Incorrect

    • A 32-year-old woman has recently had a parathyroidectomy for primary hyperparathyroidism. The surgery was challenging, with all four glands explored. The wound was left clean and dry, and a suction drain was inserted. However, on the ward, she becomes agitated and experiences stridor. Upon examination, her neck is soft, and the drain is empty. What is the initial treatment that should be attempted?

      Your Answer:

      Correct Answer: Administration of intravenous calcium gluconate

      Explanation:

      Manipulation of the parathyroid glands can lead to a reduction in blood flow, causing a rapid decrease in serum PTH levels and potentially resulting in symptoms of hypocalcaemia such as neuromuscular irritability and laryngospasm. Immediate administration of intravenous calcium gluconate is crucial for saving the patient’s life. If there is no swelling in the neck and no blood in the drain, it is unlikely that there is a contained haematoma in the neck, which would require removal of skin closure.

      Maintaining Calcium Balance in the Body

      Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.

      PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.

      Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.

      Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.

      Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 79 - What is the most effective test for differentiating between an upper and lower...

    Incorrect

    • What is the most effective test for differentiating between an upper and lower motor neuron lesion of the facial nerve in clinical practice, particularly in older patients?

      Your Answer:

      Correct Answer: Raise eyebrow

      Explanation:

      Facial nerve upper motor neuron lesions result in paralysis of the lower half of the face, while lower motor neuron lesions cause paralysis of the entire face on the same side.

      The facial nerve has a nucleus located in the ventrolateral pontine tegmentum, and its axons exit the ventral pons medial to the spinal trigeminal nucleus. Lesions affecting the corticobulbar tract are known as upper motor neuron lesions, while those affecting the individual branches of the facial nerve are lower motor neuron lesions. The lower motor neurons of the facial nerve can leave from either the left or right posterior or anterior facial motor nucleus, with the temporal branch receiving input from both hemispheres of the cerebral cortex, while the zygomatic, buccal, mandibular, and cervical branches receive input from only the contralateral hemisphere.

      In the case of an upper motor neuron lesion in the left hemisphere, the right mid- and lower-face would be paralyzed, while the forehead would remain unaffected. This is because the anterior facial motor nucleus receives only contralateral cortical input, while the posterior component receives input from both hemispheres. However, a lower motor neuron lesion affecting either the left or right side would paralyze the entire side of the face, as both the anterior and posterior routes on that side would be affected. This is because the nerves no longer have a means to receive compensatory contralateral input at a downstream decussation.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 80 - Emma, a 31-year-old female, has been in labour for 20 hours. She has...

    Incorrect

    • Emma, a 31-year-old female, has been in labour for 20 hours. She has only received Entonox and pethidine for pain relief and now requests an epidural.

      After examining Emma, the anaesthetist determines that she is suitable for an epidural.

      What is the proper sequence of structures that the needle must pass through to administer epidural analgesia to Emma?

      Your Answer:

      Correct Answer: Skin, subcutaneous fat, supraspinous ligament, interspinous ligament, and ligamentum flavum

      Explanation:

      Lumbar Puncture Procedure

      Lumbar puncture is a medical procedure that involves obtaining cerebrospinal fluid. In adults, the procedure is typically performed at the L3/L4 or L4/5 interspace, which is located below the spinal cord’s termination at L1.

      During the procedure, the needle passes through several layers. First, it penetrates the supraspinous ligament, which connects the tips of spinous processes. Then, it passes through the interspinous ligaments between adjacent borders of spinous processes. Next, the needle penetrates the ligamentum flavum, which may cause a give. Finally, the needle passes through the dura mater into the subarachnoid space, which is marked by a second give. At this point, clear cerebrospinal fluid should be obtained.

      Overall, the lumbar puncture procedure is a complex process that requires careful attention to detail. By following the proper steps and guidelines, medical professionals can obtain cerebrospinal fluid safely and effectively.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 81 - Where is the area postrema located in the brain? A 16-year-old girl was...

    Incorrect

    • Where is the area postrema located in the brain? A 16-year-old girl was prescribed erythromycin for her severe acne, but after three days, she had to stop taking it due to severe nausea that made her unable to function.

      Your Answer:

      Correct Answer: Floor of the 4th ventricle

      Explanation:

      The vomiting process is initiated by the chemoreceptor trigger zone, which receives signals from various sources such as the gastrointestinal tract, hormones, and drugs. This zone is located in the area postrema, which is situated on the floor of the 4th ventricle in the medulla. It is noteworthy that the area postrema is located outside the blood-brain barrier. The nucleus of tractus solitarius, which is also located in the medulla, contains autonomic centres that play a role in the vomiting reflex. This nucleus receives signals from the chemoreceptor trigger zone. The vomiting centres in the brain receive inputs from different areas, including the gastrointestinal tract and the vestibular system of the inner ear.

      Vomiting is the involuntary act of expelling the contents of the stomach and sometimes the intestines. This is caused by a reverse peristalsis and abdominal contraction. The vomiting center is located in the medulla oblongata and is activated by receptors in various parts of the body. These include the labyrinthine receptors in the ear, which can cause motion sickness, the over distention receptors in the duodenum and stomach, the trigger zone in the central nervous system, which can be affected by drugs such as opiates, and the touch receptors in the throat. Overall, vomiting is a reflex action that is triggered by various stimuli and is controlled by the vomiting center in the brainstem.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 82 - You are working in the emergency department when a 78-year-old female is brought...

    Incorrect

    • You are working in the emergency department when a 78-year-old female is brought in having been found on her bedroom floor in the morning by her carers. She has a recent diagnosis of dementia but her carers report her to seem much more muddled than usual. Her past medical history includes atrial fibrillation and hypertension. Her medications include ramipril, warfarin, and colecalciferol. A CT scan of her head is done which confirms the diagnosis of subdural hemorrhage.

      What is the most likely cause of this abnormality?

      Your Answer:

      Correct Answer: Damage to bridging veins

      Explanation:

      Subdural haemorrhage occurs when there is damage to the bridging veins between the cortex and venous sinuses, resulting in a collection of blood between the dural and arachnoid coverings of the brain. The most common cause of subdural haemorrhage is trauma, with risk factors including a history of trauma, vulnerability to falls (such as in patients with dementia), increasing age, and use of anticoagulants. In this case, the patient’s fall and dementia put her at risk for subdural haemorrhage due to shearing forces causing a tear in the bridging veins, which may be exacerbated by cerebral atrophy.

      Other types of haemorrhage include extradural haemorrhage, which occurs between the skull and dura mater due to rupture of the middle meningeal artery on the temporal surface, and subarachnoid haemorrhage, which occurs between the arachnoid and pia mater due to rupture of a berry aneurysm. Intracerebral/cerebellar haemorrhage occurs within the brain parenchyma and is typically caused by a haemorrhagic stroke, presenting with sudden onset neurological deficits. CT findings for each type of haemorrhage differ, with subdural haemorrhage presenting as a collection of blood with a crescent shape, extradural haemorrhage as a convex shape, subarachnoid haemorrhage as hyper-attenuation around the circle of Willis, and intracerebral/cerebellar haemorrhage as hyperattenuation in the brain parenchyma.

      Understanding Subdural Haemorrhage

      Subdural haemorrhage is a condition where blood accumulates beneath the dural layer of the meninges. This type of bleeding is not within the brain tissue and is referred to as an extra-axial or extrinsic lesion. Subdural haematomas can be classified into three types based on their age: acute, subacute, and chronic.

      Acute subdural haematomas are caused by high-impact trauma and are associated with other brain injuries. Symptoms and severity of presentation vary depending on the size of the compressive acute subdural haematoma and the associated injuries. CT imaging is the first-line investigation, and surgical options include monitoring of intracranial pressure and decompressive craniectomy.

      Chronic subdural haematomas, on the other hand, are collections of blood within the subdural space that have been present for weeks to months. They are caused by the rupture of small bridging veins within the subdural space, which leads to slow bleeding. Elderly and alcoholic patients are particularly at risk of subdural haematomas due to brain atrophy and fragile or taut bridging veins. Infants can also experience subdural haematomas due to fragile bridging veins rupturing in shaken baby syndrome.

      Chronic subdural haematomas typically present with a progressive history of confusion, reduced consciousness, or neurological deficit. CT imaging shows a crescentic shape, not restricted by suture lines, and compresses the brain. Unlike acute subdurals, chronic subdurals are hypodense compared to the substance of the brain. Treatment options depend on the size and severity of the haematoma, with conservative management or surgical decompression with burr holes being the main options.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 83 - A 25-year-old woman is administered intravenous morphine for acute abdominal pain. What is...

    Incorrect

    • A 25-year-old woman is administered intravenous morphine for acute abdominal pain. What is the primary reason for its analgesic effects?

      Your Answer:

      Correct Answer: Binding to µ opioid receptors within the CNS

      Explanation:

      There are four types of opioid receptors: δ, k, µ, and Nociceptin. The δ receptor is primarily located in the central nervous system and is responsible for producing analgesic and antidepressant effects. The k receptor is mainly found in the CNS and produces analgesic and dissociative effects. The µ receptor is present in both the central and peripheral nervous systems and is responsible for causing analgesia, miosis, and decreased gut motility. The Nociceptin receptor, located in the CNS, affects appetite and tolerance to µ agonists.

      Morphine is a potent painkiller that belongs to the opiate class of drugs. It works by binding to the four types of opioid receptors in the central nervous system and gastrointestinal tract, resulting in its therapeutic effects. However, it can also cause unwanted side effects such as nausea, constipation, respiratory depression, and addiction if used for a prolonged period.

      Morphine can be taken orally or injected intravenously, and its effects can be reversed with naloxone. Despite its effectiveness in managing pain, it is important to use morphine with caution and under the guidance of a healthcare professional to minimize the risk of adverse effects.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 84 - A 45-year-old man arrives at the emergency department after being hit by a...

    Incorrect

    • A 45-year-old man arrives at the emergency department after being hit by a car while crossing the road. According to the paramedics, he was conscious at the scene but his level of consciousness deteriorated during transport. He is currently only responsive to voice and answering in single words. After stabilizing him, a CT scan of the head is urgently requested, which reveals an extradural hemorrhage. One of the common causes of this type of hemorrhage is the rupture of the middle meningeal artery. This artery runs along the deep surface of the cranium, with its anterior division located near which point on the cranium?

      Your Answer:

      Correct Answer: Pterion

      Explanation:

      The pterion is the correct answer, as all of the options are anatomical points on the cranium. The pterion is located in the temporal fossa and marks the junction of four cranial bones. It is a weak area of the skull and a fracture at this site can cause a haemorrhage due to the middle meningeal artery running deep to it. The asterion is where three cranial bones meet, while the lambda is where two cranial bones meet and is the site of the posterior fontanelle in newborns. The bregma is where two cranial bones meet and is the site of the anterior fontanelle during infancy. The nasion is where the nasion bones meet the frontal bones. Extradural haemorrhage is bleeding between the dura mater and the skull, often caused by rupture of the middle meningeal artery following head trauma. It typically presents in older patients with a lucid interval between the head injury and neurological deterioration.

      The Middle Meningeal Artery: Anatomy and Clinical Significance

      The middle meningeal artery is a branch of the maxillary artery, which is one of the two terminal branches of the external carotid artery. It is the largest of the three arteries that supply the meninges, the outermost layer of the brain. The artery runs through the foramen spinosum and supplies the dura mater. It is located beneath the pterion, where the skull is thin, making it vulnerable to injury. Rupture of the artery can lead to an Extradural hematoma.

      In the dry cranium, the middle meningeal artery creates a deep indentation in the calvarium. It is intimately associated with the auriculotemporal nerve, which wraps around the artery. This makes the two structures easily identifiable in the dissection of human cadavers and also easily damaged in surgery.

      Overall, understanding the anatomy and clinical significance of the middle meningeal artery is important for medical professionals, particularly those involved in neurosurgery.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 85 - A 73-year-old man arrives at the emergency department with complaints of sudden onset...

    Incorrect

    • A 73-year-old man arrives at the emergency department with complaints of sudden onset weakness on the right side of his face and arm. He has a medical history of atrial fibrillation and admits to occasionally forgetting to take his anticoagulant medication. During a complete neurological examination, you assess the corneal reflex. What nerves are involved in the corneal reflex test?

      Your Answer:

      Correct Answer: Ophthalmic nerve and facial nerve

      Explanation:

      The corneal reflex involves the afferent limb of the nasociliary branch of the ophthalmic nerve and the efferent impulse of the facial nerve. The optic nerve carries visual information, the oculomotor nerve supplies motor innervation to extra-ocular muscles, the ophthalmic nerve carries sensation from the orbit, and the facial nerve innervates muscles of facial expression and carries taste and parasympathetic fibers.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 86 - A 28-year-old woman visits her doctor complaining of fatigue. She reports feeling weak...

    Incorrect

    • A 28-year-old woman visits her doctor complaining of fatigue. She reports feeling weak for the past few months, especially towards the end of the day. She denies any changes in her sleep patterns, mood, diet, or weight. Additionally, she mentions experiencing double vision at times.

      During the examination, the doctor observes partial ptosis in both eyes, with the left eye being more affected. The patient's other cranial nerves appear normal, and her limbs have a power of 4/5. Her sensation and reflexes are intact.

      What is the underlying pathophysiology of the probable diagnosis?

      Your Answer:

      Correct Answer: Acetylcholine receptor antibodies

      Explanation:

      The patient’s symptoms suggest a possible diagnosis of myasthenia gravis, which is characterized by the body producing antibodies against the acetylcholine receptor, leading to dysfunction at the neuromuscular junction.

      Cerebral infarction typically presents with sudden onset, unilateral neurological symptoms that do not fluctuate.

      While multiple sclerosis (MS) involves demyelination of the central nervous system, the patient’s symptoms are more consistent with myasthenia gravis. MS typically presents with optic neuritis, which causes painful vision loss.

      Guillain-Barré syndrome involves demyelination of the peripheral nervous system and typically presents with progressive weakness and diminished reflexes.

      Myasthenia gravis is an autoimmune disorder that results in muscle weakness and fatigue, particularly in the eyes, face, neck, and limbs. It is more common in women and is associated with thymomas and other autoimmune disorders. Diagnosis is made through electromyography and testing for antibodies to acetylcholine receptors. Treatment includes acetylcholinesterase inhibitors and immunosuppression, and in severe cases, plasmapheresis or intravenous immunoglobulins may be necessary.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 87 - A 60-year-old man undergoes an ultrasound screening for abdominal aortic aneurysms and is...

    Incorrect

    • A 60-year-old man undergoes an ultrasound screening for abdominal aortic aneurysms and is found to have a large aneurysm. He is referred to a vascular surgeon and scheduled for endovascular surgery. During this procedure, a graft is inserted through the femoral artery and into the aorta. Can you identify the level at which the aorta passes through the diaphragm?

      Your Answer:

      Correct Answer: T12

      Explanation:

      Anatomical Planes and Levels in the Human Body

      The human body can be divided into different planes and levels to aid in anatomical study and medical procedures. One such plane is the transpyloric plane, which runs horizontally through the body of L1 and intersects with various organs such as the pylorus of the stomach, left kidney hilum, and duodenojejunal flexure. Another way to identify planes is by using common level landmarks, such as the inferior mesenteric artery at L3 or the formation of the IVC at L5.

      In addition to planes and levels, there are also diaphragm apertures located at specific levels in the body. These include the vena cava at T8, the esophagus at T10, and the aortic hiatus at T12. By understanding these planes, levels, and apertures, medical professionals can better navigate the human body during procedures and accurately diagnose and treat various conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 88 - A 47-year-old woman is experiencing muscle spasticity due to relapsing-remitting multiple sclerosis. Baclofen...

    Incorrect

    • A 47-year-old woman is experiencing muscle spasticity due to relapsing-remitting multiple sclerosis. Baclofen is prescribed to alleviate the pain associated with spasticity.

      What is the mechanism of action of Baclofen?

      Your Answer:

      Correct Answer: Gamma-aminobutyric acid (GABA) receptor agonist

      Explanation:

      Baclofen is a medication that acts as an agonist at GABA receptors in the central nervous system. It is primarily used as a muscle relaxant to treat spasticity conditions such as multiple sclerosis and cerebral palsy. It should be noted that baclofen is not a GABA antagonist like flumazenil, nor does it act as an NMDA agonist like the toxin responsible for Amanita muscaria poisoning. Additionally, baclofen does not exert its effects at muscarinic receptors like buscopan, which is commonly used to treat pain associated with bowel wall spasm and respiratory secretions during end-of-life care. Instead, baclofen specifically targets GABA receptors.

      Baclofen is a medication that is commonly prescribed to alleviate muscle spasticity in individuals with conditions like multiple sclerosis, cerebral palsy, and spinal cord injuries. It works by acting as an agonist of GABA receptors in the central nervous system, which includes both the brain and spinal cord. Essentially, this means that baclofen helps to enhance the effects of a neurotransmitter called GABA, which can help to reduce the activity of certain neurons and ultimately lead to a reduction in muscle spasticity. Overall, baclofen is an important medication for individuals with these conditions, as it can help to improve their quality of life and reduce the impact of muscle spasticity on their daily activities.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 89 - A 25-year-old individual visits a maxillofacial clinic complaining of facial pain that has...

    Incorrect

    • A 25-year-old individual visits a maxillofacial clinic complaining of facial pain that has persisted for 3 months after sustaining a basal skull fracture in a car accident. According to neuroimaging reports, where is the lesion most likely located, indicating damage to the maxillary nerve as it traverses the sphenoid bone?

      Your Answer:

      Correct Answer: Foramen rotundum

      Explanation:

      The correct location for the passage of the maxillary nerve is the foramen rotundum. In the case of a basal skull fracture involving the sphenoid bone, the lesion is most likely located in the foramen rotundum. The foramen ovale is not the correct location as it is where the mandibular nerve passes through. The foramen spinosum is also not the correct location as it transmits the middle meningeal artery and vein, not the maxillary nerve. The hypoglossal canal is also not the correct location as it transmits the twelfth cranial nerve, not the maxillary nerve.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 90 - A 94-year-old male, previously diagnosed with Parkinson's disease, passed away due to aspirational...

    Incorrect

    • A 94-year-old male, previously diagnosed with Parkinson's disease, passed away due to aspirational pneumonia and underwent a post-mortem examination. As part of the examination, a histological analysis of the basal ganglia was conducted. What types of inclusion bodies are anticipated to be observed?

      Your Answer:

      Correct Answer: Lewy bodies

      Explanation:

      Lewy bodies are commonly associated with Parkinson’s disease, but they can also be present in other conditions. These bodies are characterized by the presence of neuromelanin pigment and are typically found in the remaining Dopaminergic neurons in the substantia nigra pars compacta (SNc). They can be identified through staining for various proteins, including a-synuclein and ubiquitin. While their exact function is not yet fully understood, it is believed that Lewy bodies may play a role in managing proteins that are not properly broken down due to protein dysfunction.

      Parkinson’s disease is a progressive neurodegenerative disorder that occurs due to the degeneration of dopaminergic neurons in the substantia nigra. This leads to a classic triad of symptoms, including bradykinesia, tremor, and rigidity, which are typically asymmetrical. The disease is more common in men and is usually diagnosed around the age of 65. Bradykinesia is characterized by a poverty of movement, shuffling steps, and difficulty initiating movement. Tremors are most noticeable at rest and typically occur in the thumb and index finger. Rigidity can be either lead pipe or cogwheel, and other features include mask-like facies, flexed posture, and drooling of saliva. Psychiatric features such as depression, dementia, and sleep disturbances may also occur. Diagnosis is usually clinical, but if there is difficulty differentiating between essential tremor and Parkinson’s disease, 123I‑FP‑CIT single photon emission computed tomography (SPECT) may be considered.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 91 - A 45-year-old male patient presents with choreiform movements that he is unable to...

    Incorrect

    • A 45-year-old male patient presents with choreiform movements that he is unable to control or cease. During the consultation, you inquire about his family history and discover that his father experienced similar symptoms at a slightly later age. Based on this information, what genetic phenomenon is likely to have taken place between the patient and his father?

      Your Answer:

      Correct Answer: Anticipation

      Explanation:

      Anticipation may be observed in Huntington’s disease due to its nature as a trinucleotide repeat disorder. The disease is caused by an autosomal dominant gene with CAG repeats in exon 1 of the Huntingtin gene. The number of CAG repeats is indicative of the severity of the disease, with individuals having 36 to 39 repeats potentially developing symptoms, while those with 40 or more repeats almost always develop the disorder. HD can occur in individuals with 36 to 120 CAG repeats.

      Anticipation is observed as the number of CAG repeats increases between generations. Offspring of individuals with 27 to 35 CAG repeats are at risk of developing HD, even though the parent does not suffer from the disease. Additionally, higher numbers of CAG repeats tend to cause HD to manifest at earlier ages, resulting in younger generations being affected by the disease.

      Huntington’s disease is a genetic disorder that causes progressive and incurable neurodegeneration. It is inherited in an autosomal dominant manner and is caused by a trinucleotide repeat expansion of CAG in the huntingtin gene on chromosome 4. This can result in the phenomenon of anticipation, where the disease presents at an earlier age in successive generations. The disease leads to the degeneration of cholinergic and GABAergic neurons in the striatum of the basal ganglia, which can cause a range of symptoms.

      Typically, symptoms of Huntington’s disease develop after the age of 35 and can include chorea, personality changes such as irritability, apathy, and depression, intellectual impairment, dystonia, and saccadic eye movements. Unfortunately, there is currently no cure for Huntington’s disease, and it usually results in death around 20 years after the initial symptoms develop.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 92 - A 14-month-old infant is undergoing investigation by community paediatrics for developmental delay. The...

    Incorrect

    • A 14-month-old infant is undergoing investigation by community paediatrics for developmental delay. The mother has observed that the child has poor balance, cannot take steps alone, and walks on tiptoes with support. The infant was delivered via c-section at 28 weeks gestation and weighed 1400 grams at birth.

      During the assessment, the infant exhibits hyperreflexia, increased tone in the lower limbs, and sustained clonus in both ankles. The suspected diagnosis is cerebral palsy.

      What type of cerebral palsy is likely to be present in this infant based on the observed symptoms?

      Your Answer:

      Correct Answer: Spastic cerebral palsy

      Explanation:

      Understanding Cerebral Palsy

      Cerebral palsy is a condition that affects movement and posture due to damage to the motor pathways in the developing brain. It is the most common cause of major motor impairment and affects 2 in 1,000 live births. The causes of cerebral palsy can be antenatal, intrapartum, or postnatal. Antenatal causes include cerebral malformation and congenital infections such as rubella, toxoplasmosis, and CMV. Intrapartum causes include birth asphyxia or trauma, while postnatal causes include intraventricular hemorrhage, meningitis, and head trauma.

      Children with cerebral palsy may exhibit abnormal tone in early infancy, delayed motor milestones, abnormal gait, and feeding difficulties. They may also have associated non-motor problems such as learning difficulties, epilepsy, squints, and hearing impairment. Cerebral palsy can be classified into spastic, dyskinetic, ataxic, or mixed types.

      Managing cerebral palsy requires a multidisciplinary approach. Treatments for spasticity include oral diazepam, oral and intrathecal baclofen, botulinum toxin type A, orthopedic surgery, and selective dorsal rhizotomy. Anticonvulsants and analgesia may also be required. Understanding cerebral palsy and its management is crucial in providing appropriate care and support for individuals with this condition.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 93 - Samantha is a 65-year-old alcoholic who has come to her doctor with worries...

    Incorrect

    • Samantha is a 65-year-old alcoholic who has come to her doctor with worries about the feeling in her legs. She is experiencing decreased light-touch sensation and proprioception in both legs. Her blood work reveals a deficiency in vitamin B12.

      What signs are most probable for you to observe in Samantha?

      Your Answer:

      Correct Answer: Positive Babinski sign

      Explanation:

      The presence of a positive Babinski sign may indicate subacute degeneration of the spinal cord, which is typically caused by a deficiency in vitamin B12. This condition primarily affects the dorsal columns of the spinal cord, which are responsible for fine-touch, proprioception, and vibration sensation. In addition to the Babinski sign, patients may also experience spastic paresis. However, hypotonia is not typically observed, as this is a characteristic of lower motor neuron lesions. It is also important to note that temperature sensation is not affected by subacute degeneration of the spinal cord, as this function is mediated by the spinothalamic tract.

      Subacute Combined Degeneration of Spinal Cord

      Subacute combined degeneration of spinal cord is a condition that occurs due to a deficiency of vitamin B12. The dorsal columns and lateral corticospinal tracts are affected, leading to the loss of joint position and vibration sense. The first symptoms are usually distal paraesthesia, followed by the development of upper motor neuron signs in the legs, such as extensor plantars, brisk knee reflexes, and absent ankle jerks. If left untreated, stiffness and weakness may persist.

      This condition is a serious concern and requires prompt medical attention. It is important to maintain a healthy diet that includes sufficient amounts of vitamin B12 to prevent the development of subacute combined degeneration of spinal cord.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 94 - A 50-year-old woman complains of increasing diplopia that worsens as the day progresses....

    Incorrect

    • A 50-year-old woman complains of increasing diplopia that worsens as the day progresses. She has been experiencing double vision for a few weeks now, and notes that it is more pronounced in the evenings and absent in the mornings. Upon further inquiry, the patient reports that her diplopia improves after resting her eyes.

      What is the most probable diagnosis?

      Your Answer:

      Correct Answer: Myasthenia gravis

      Explanation:

      The main characteristic of myasthenia gravis is muscle weakness that worsens with use and improves with rest, without causing pain. This condition often affects the oculomotor nerve and is more prevalent in women. Diagnosis is typically confirmed through single fibre electromyography, which has a high level of sensitivity.

      While migraines can also cause double vision, they usually come with additional symptoms such as pain and nausea. A classic migraine may include a visual aura or sensitivity to light. Additionally, the patient’s age of 45 is older than the typical age of onset for migraines.

      Diabetic neuropathy can also lead to double vision, but it typically presents with a loss of sensation in the hands and feet. There is no indication that this patient has diabetes.

      Multiple sclerosis often first presents with vision problems affecting the optic nerve. Optic neuritis, for example, can cause pain, central scotoma, and colour vision loss.

      Myasthenia gravis is an autoimmune disorder that results in muscle weakness and fatigue, particularly in the eyes, face, neck, and limbs. It is more common in women and is associated with thymomas and other autoimmune disorders. Diagnosis is made through electromyography and testing for antibodies to acetylcholine receptors. Treatment includes acetylcholinesterase inhibitors and immunosuppression, and in severe cases, plasmapheresis or intravenous immunoglobulins may be necessary.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 95 - Which one of the following structures does not pass through the foramen ovale?...

    Incorrect

    • Which one of the following structures does not pass through the foramen ovale?

      Your Answer:

      Correct Answer: Maxillary nerve

      Explanation:

      OVALE is a mnemonic that stands for Otic ganglion, V3 (Mandibular nerve: 3rd branch of trigeminal), Accessory meningeal artery, Lesser petrosal nerve, and Emissary veins.

      Foramina of the Base of the Skull

      The base of the skull contains several openings called foramina, which allow for the passage of nerves, blood vessels, and other structures. The foramen ovale, located in the sphenoid bone, contains the mandibular nerve, otic ganglion, accessory meningeal artery, and emissary veins. The foramen spinosum, also in the sphenoid bone, contains the middle meningeal artery and meningeal branch of the mandibular nerve. The foramen rotundum, also in the sphenoid bone, contains the maxillary nerve.

      The foramen lacerum, located in the sphenoid bone, is initially occluded by a cartilaginous plug and contains the internal carotid artery, nerve and artery of the pterygoid canal, and the base of the medial pterygoid plate. The jugular foramen, located in the temporal bone, contains the inferior petrosal sinus, glossopharyngeal, vagus, and accessory nerves, sigmoid sinus, and meningeal branches from the occipital and ascending pharyngeal arteries.

      The foramen magnum, located in the occipital bone, contains the anterior and posterior spinal arteries, vertebral arteries, and medulla oblongata. The stylomastoid foramen, located in the temporal bone, contains the stylomastoid artery and facial nerve. Finally, the superior orbital fissure, located in the sphenoid bone, contains the oculomotor nerve, recurrent meningeal artery, trochlear nerve, lacrimal, frontal, and nasociliary branches of the ophthalmic nerve, and abducens nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 96 - A 25-year-old man receives a blow to the side of his head with...

    Incorrect

    • A 25-year-old man receives a blow to the side of his head with a baseball bat during a brawl. He is initially alert but later loses consciousness and passes away. An autopsy reveals the presence of an extradural hematoma. Which vessel is most likely responsible for this condition?

      Your Answer:

      Correct Answer: Maxillary artery

      Explanation:

      The most probable origin of the extradural haematoma in this scenario is the middle meningeal artery, which is a branch of the maxillary artery. It should be noted that the question specifically asks for the vessel that gives rise to the middle meningeal artery, and not the middle cerebral artery.

      The Middle Meningeal Artery: Anatomy and Clinical Significance

      The middle meningeal artery is a branch of the maxillary artery, which is one of the two terminal branches of the external carotid artery. It is the largest of the three arteries that supply the meninges, the outermost layer of the brain. The artery runs through the foramen spinosum and supplies the dura mater. It is located beneath the pterion, where the skull is thin, making it vulnerable to injury. Rupture of the artery can lead to an Extradural hematoma.

      In the dry cranium, the middle meningeal artery creates a deep indentation in the calvarium. It is intimately associated with the auriculotemporal nerve, which wraps around the artery. This makes the two structures easily identifiable in the dissection of human cadavers and also easily damaged in surgery.

      Overall, understanding the anatomy and clinical significance of the middle meningeal artery is important for medical professionals, particularly those involved in neurosurgery.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 97 - In what area is a lumbar puncture typically conducted? ...

    Incorrect

    • In what area is a lumbar puncture typically conducted?

      Your Answer:

      Correct Answer: Subarachnoid space

      Explanation:

      To obtain samples of CSF, a needle is typically inserted between the third and fourth lumbar vertebrae, with the tip placed in the subarachnoid space. It is important to note that the spinal cord ends at L1 and is not at risk of harm during this procedure. However, if there is clinical evidence of increased intracranial pressure, lumbar puncture should not be performed.

      Cerebrospinal Fluid: Circulation and Composition

      Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.

      The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.

      The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 98 - Which muscle is innervated by the cervical branch of the facial nerve? ...

    Incorrect

    • Which muscle is innervated by the cervical branch of the facial nerve?

      Your Answer:

      Correct Answer: Platysma

      Explanation:

      Platysma is innervated by the cervical branch of the facial nerve.

      The facial nerve is responsible for supplying the muscles of facial expression, the digastric muscle, and various glandular structures. It also contains a few afferent fibers that originate in the genicular ganglion and are involved in taste. Bilateral facial nerve palsy can be caused by conditions such as sarcoidosis, Guillain-Barre syndrome, Lyme disease, and bilateral acoustic neuromas. Unilateral facial nerve palsy can be caused by these conditions as well as lower motor neuron issues like Bell’s palsy and upper motor neuron issues like stroke.

      The upper motor neuron lesion typically spares the upper face, specifically the forehead, while a lower motor neuron lesion affects all facial muscles. The facial nerve’s path includes the subarachnoid path, where it originates in the pons and passes through the petrous temporal bone into the internal auditory meatus with the vestibulocochlear nerve. The facial canal path passes superior to the vestibule of the inner ear and contains the geniculate ganglion at the medial aspect of the middle ear. The stylomastoid foramen is where the nerve passes through the tympanic cavity anteriorly and the mastoid antrum posteriorly, and it also includes the posterior auricular nerve and branch to the posterior belly of the digastric and stylohyoid muscle.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 99 - A 31-year-old man visits an ophthalmology clinic with a complaint of experiencing double...

    Incorrect

    • A 31-year-old man visits an ophthalmology clinic with a complaint of experiencing double vision while descending stairs. He reports a recent mountain biking accident that required him to seek emergency medical attention. Although he has recuperated, he mentions that he sustained a severe frontal head injury after colliding with a tree.

      During the examination, his left eye is raised and deviated medially, and he experiences vertical diplopia when looking up and down.

      Which cranial nerve is most likely affected in this individual?

      Your Answer:

      Correct Answer: Trochlear nerve

      Explanation:

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 100 - A 25-year-old man arrives at the emergency department after experiencing a 3-minute tonic-clonic...

    Incorrect

    • A 25-year-old man arrives at the emergency department after experiencing a 3-minute tonic-clonic seizure observed by his friend. He has had 2 similar episodes before. The neurology team evaluates him and starts him on carbamazepine.

      What is the mechanism of action of carbamazepine in suppressing seizure activity?

      Your Answer:

      Correct Answer: Inhibition of voltage-gated sodium channels

      Explanation:

      The inhibition of Na channels and suppression of excitation are caused by sodium valproate and carbamazepine.

      Treatment Options for Epilepsy

      Epilepsy is a neurological disorder that affects millions of people worldwide. Treatment for epilepsy typically involves the use of antiepileptic drugs (AEDs) to control seizures. The decision to start AEDs is usually made after a second seizure, but there are certain circumstances where treatment may be initiated after the first seizure. These include the presence of a neurological deficit, structural abnormalities on brain imaging, unequivocal epileptic activity on EEG, or if the patient or their family considers the risk of having another seizure to be unacceptable.

      It is important to note that there are specific drug treatments for different types of seizures. For generalized tonic-clonic seizures, males are typically prescribed sodium valproate, while females may be given lamotrigine or levetiracetam. For focal seizures, first-line treatment options include lamotrigine or levetiracetam, with carbamazepine, oxcarbazepine, or zonisamide used as second-line options. Ethosuximide is the first-line treatment for absence seizures, with sodium valproate or lamotrigine/levetiracetam used as second-line options. For myoclonic seizures, males are usually given sodium valproate, while females may be prescribed levetiracetam. Finally, for tonic or atonic seizures, males are typically given sodium valproate, while females may be prescribed lamotrigine.

      It is important to work closely with a healthcare provider to determine the best treatment plan for each individual with epilepsy. Additionally, it is important to be aware of potential risks associated with certain AEDs, such as the use of sodium valproate during pregnancy, which has been linked to neurodevelopmental delays in children.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 101 - A 55-year-old man comes to his physician complaining of severe morning headaches. The...

    Incorrect

    • A 55-year-old man comes to his physician complaining of severe morning headaches. The doctor conducts a neurological evaluation to detect any neurological impairments. During the assessment, the patient exhibits normal responses for all tests except for the absence of corneal reflex.

      Which cranial nerve is impacted?

      Your Answer:

      Correct Answer: Trigeminal nerve

      Explanation:

      The loss of corneal reflex is associated with the trigeminal nerve, specifically the ophthalmic branch. This reflex tests the sensation of the eyeball when cotton wool is used to touch it, causing the eye to blink in response. The glossopharyngeal nerve is not associated with the eye but is involved in the gag reflex. The optic nerve is responsible for vision and does not provide physical sensation to the eyeball. The oculomotor nerve is primarily a motor nerve and only provides sensory information in response to bright light. The trochlear nerve is purely motor and has no sensory innervations.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 102 - A 35-year-old female patient with a history of relapsing-remitting multiple sclerosis presents with...

    Incorrect

    • A 35-year-old female patient with a history of relapsing-remitting multiple sclerosis presents with new-onset double vision. She reports that in the last week, she has noticed double vision when trying to focus on objects on the left side of her visual field. She reports no double vision when looking to the right.

      During examination, asking the patient to track the examiner's finger and look to the left (i.e. left horizontal conjugate gaze) elicits double vision, with the patient reporting that images appear 'side by side.' Additionally, there is a failure of the right eye to adduct past the midline, and nystagmus is noted in the left eye. Asking the patient to look to the right elicits no symptoms or abnormal findings. Asking the patient to converge her eyes on a nearby, midline object elicits no abnormalities, and the patient can abduct both eyes.

      Which part of the nervous system is most likely responsible for this patient's symptoms?

      Your Answer:

      Correct Answer: Paramedian area of midbrain and pons

      Explanation:

      The medial longitudinal fasciculus is a pathway located in the paramedian area of the midbrain and pons that coordinates horizontal conjugate gaze by connecting the abducens nerve nucleus (CN VI) with the contralateral oculomotor nerve nucleus (CN III). Lesions in the MLF can result in internuclear ophthalmoplegia (INO), which is commonly caused by demyelinating disorders like multiple sclerosis. Bilateral INO is often associated with multiple sclerosis.

      The other options listed in the vignette can also cause visual disturbances, but they are not the cause of the patient’s INO. Lesions in the occipital lobe can cause contralateral homonymous, macular-sparing quadrantanopia or hemianopia. Lateral medullary lesions (Wallenberg syndrome) can cause an ipsilateral Horner’s syndrome marked by ptosis, miosis, and anhidrosis. Optic neuritis, which is common in multiple sclerosis, can cause blurred vision, colour desaturation, and eye pain, but it would not result in binocular diplopia that improves on covering the unaffected eye. Lesions affecting the oculomotor nerve nucleus would also affect the ipsilateral eye’s ability to abduct on horizontal conjugate gaze, but the test of convergence can help distinguish this from an MLF lesion.

      Understanding Internuclear Ophthalmoplegia

      Internuclear ophthalmoplegia is a condition that affects the horizontal movement of the eyes. It is caused by a lesion in the medial longitudinal fasciculus (MLF), which is responsible for interconnecting the IIIrd, IVth, and VIth cranial nuclei. This area is located in the paramedian region of the midbrain and pons. The main feature of this condition is impaired adduction of the eye on the same side as the lesion, along with horizontal nystagmus of the abducting eye on the opposite side.

      The most common causes of internuclear ophthalmoplegia are multiple sclerosis and vascular disease. It is important to note that this condition can also be a sign of other underlying neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 103 - Which statement is false about the foramina of the skull? ...

    Incorrect

    • Which statement is false about the foramina of the skull?

      Your Answer:

      Correct Answer: The foramen spinosum is at the base of the medial pterygoid plate.

      Explanation:

      Foramina of the Base of the Skull

      The base of the skull contains several openings called foramina, which allow for the passage of nerves, blood vessels, and other structures. The foramen ovale, located in the sphenoid bone, contains the mandibular nerve, otic ganglion, accessory meningeal artery, and emissary veins. The foramen spinosum, also in the sphenoid bone, contains the middle meningeal artery and meningeal branch of the mandibular nerve. The foramen rotundum, also in the sphenoid bone, contains the maxillary nerve.

      The foramen lacerum, located in the sphenoid bone, is initially occluded by a cartilaginous plug and contains the internal carotid artery, nerve and artery of the pterygoid canal, and the base of the medial pterygoid plate. The jugular foramen, located in the temporal bone, contains the inferior petrosal sinus, glossopharyngeal, vagus, and accessory nerves, sigmoid sinus, and meningeal branches from the occipital and ascending pharyngeal arteries.

      The foramen magnum, located in the occipital bone, contains the anterior and posterior spinal arteries, vertebral arteries, and medulla oblongata. The stylomastoid foramen, located in the temporal bone, contains the stylomastoid artery and facial nerve. Finally, the superior orbital fissure, located in the sphenoid bone, contains the oculomotor nerve, recurrent meningeal artery, trochlear nerve, lacrimal, frontal, and nasociliary branches of the ophthalmic nerve, and abducens nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 104 - A 67-year-old man visits his GP complaining of alterations in his vision. In...

    Incorrect

    • A 67-year-old man visits his GP complaining of alterations in his vision. In addition to decreased sharpness, he describes object distortion, difficulty discerning colors, and occasional flashes of light. He has a history of smoking (40-pack-year) and a high BMI. Based on these symptoms, what is the most probable diagnosis?

      Your Answer:

      Correct Answer: Age-related macular degeneration

      Explanation:

      Age-related macular degeneration (AMD) is characterized by a decrease in visual acuity, altered perception of colors and shades, and photopsia (flashing lights). The risk of developing AMD is higher in individuals who are older and have a history of smoking.

      As a natural part of the aging process, presbyopia can cause difficulty with near vision. Smoking increases the likelihood of developing cataracts, which can result in poor visual acuity and reduced contrast sensitivity. However, symptoms such as distortion and flashing lights are not typically associated with cataracts. Similarly, retinal detachment is unlikely given the patient’s risk factors and lack of distortion and perception issues. Since there is no mention of diabetes mellitus in the patient’s history, diabetic retinopathy is not a plausible explanation.

      Age-related macular degeneration (ARMD) is a common cause of blindness in the UK, characterized by degeneration of the central retina (macula) and the formation of drusen. The risk of ARMD increases with age, smoking, family history, and conditions associated with an increased risk of ischaemic cardiovascular disease. ARMD is classified into dry and wet forms, with the latter carrying the worst prognosis. Clinical features include subacute onset of visual loss, difficulties in dark adaptation, and visual hallucinations. Signs include distortion of line perception, the presence of drusen, and well-demarcated red patches in wet ARMD. Investigations include slit-lamp microscopy, colour fundus photography, fluorescein angiography, indocyanine green angiography, and ocular coherence tomography. Treatment options include a combination of zinc with anti-oxidant vitamins for dry ARMD and anti-VEGF agents for wet ARMD. Laser photocoagulation is also an option, but anti-VEGF therapies are usually preferred.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 105 - A 49-year-old female patient complains of weakness and paraesthesias in her left hand...

    Incorrect

    • A 49-year-old female patient complains of weakness and paraesthesias in her left hand and visits her GP. During the examination, the doctor observes reduced power in the hypothenar and intrinsic muscles, along with decreased sensation on the medial palm and medial two and a half digits. However, the sensation to the dorsum of the hand remains unaffected, and wrist flexion is normal. Based on these findings, where is the most probable location of the ulnar nerve lesion?

      Your Answer:

      Correct Answer: Guyon's canal

      Explanation:

      Distal ulnar nerve compression can occur at Guyon’s canal, which is located adjacent to the carpal tunnel. The ulnar nerve passes through this canal as a mixed motor/sensory bundle and then splits into various branches in the palm. In this patient’s case, her symptoms suggest compression at Guyon’s canal, possibly due to a ganglion cyst or hamate fracture. It is important to note that the carpal tunnel transmits the median nerve, not the ulnar nerve, and compression at the more proximal cubital tunnel would affect all branches of the ulnar nerve, including those responsible for sensation to the back of the hand and wrist flexion. Additionally, lesions in the purely sensory branches of the ulnar nerve would not cause the motor symptoms experienced by this patient.

      The ulnar nerve originates from the medial cord of the brachial plexus, specifically from the C8 and T1 nerve roots. It provides motor innervation to various muscles in the hand, including the medial two lumbricals, adductor pollicis, interossei, hypothenar muscles (abductor digiti minimi, flexor digiti minimi), and flexor carpi ulnaris. Sensory innervation is also provided to the medial 1 1/2 fingers on both the palmar and dorsal aspects. The nerve travels through the posteromedial aspect of the upper arm and enters the palm of the hand via Guyon’s canal, which is located superficial to the flexor retinaculum and lateral to the pisiform bone.

      The ulnar nerve has several branches that supply different muscles and areas of the hand. The muscular branch provides innervation to the flexor carpi ulnaris and the medial half of the flexor digitorum profundus. The palmar cutaneous branch arises near the middle of the forearm and supplies the skin on the medial part of the palm, while the dorsal cutaneous branch supplies the dorsal surface of the medial part of the hand. The superficial branch provides cutaneous fibers to the anterior surfaces of the medial one and one-half digits, and the deep branch supplies the hypothenar muscles, all the interosseous muscles, the third and fourth lumbricals, the adductor pollicis, and the medial head of the flexor pollicis brevis.

      Damage to the ulnar nerve at the wrist can result in a claw hand deformity, where there is hyperextension of the metacarpophalangeal joints and flexion at the distal and proximal interphalangeal joints of the 4th and 5th digits. There may also be wasting and paralysis of intrinsic hand muscles (except for the lateral two lumbricals), hypothenar muscles, and sensory loss to the medial 1 1/2 fingers on both the palmar and dorsal aspects. Damage to the nerve at the elbow can result in similar symptoms, but with the addition of radial deviation of the wrist. It is important to diagnose and treat ulnar nerve damage promptly to prevent long-term complications.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 106 - The posterior interosseous nerve is a branch of which of the following? ...

    Incorrect

    • The posterior interosseous nerve is a branch of which of the following?

      Your Answer:

      Correct Answer: Median nerve

      Explanation:

      The anterior interosseous nerve is a branch of the median nerve that supplies the deep muscles on the front of the forearm, excluding the ulnar half of the flexor digitorum profundus. It runs alongside the anterior interosseous artery along the anterior of the interosseous membrane of the forearm, between the flexor pollicis longus and flexor digitorum profundus. The nerve supplies the whole of the flexor pollicis longus and the radial half of the flexor digitorum profundus, and ends below in the pronator quadratus and wrist joint. The anterior interosseous nerve innervates 2.5 muscles, namely the flexor pollicis longus, pronator quadratus, and the radial half of the flexor digitorum profundus. These muscles are located in the deep level of the anterior compartment of the forearm.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 107 - Does the external branch of the superior laryngeal nerve innervate the cricothyroid muscle?...

    Incorrect

    • Does the external branch of the superior laryngeal nerve innervate the cricothyroid muscle?

      Your Answer:

      Correct Answer: Cricothyroid

      Explanation:

      The intrinsic muscles of the larynx, with the exception of the cricothyroid muscle, are innervated by the innervation. The cricothyroid muscle is innervated by the external branch of the superior laryngeal nerve.

      The Recurrent Laryngeal Nerve: Anatomy and Function

      The recurrent laryngeal nerve is a branch of the vagus nerve that plays a crucial role in the innervation of the larynx. It has a complex path that differs slightly between the left and right sides of the body. On the right side, it arises anterior to the subclavian artery and ascends obliquely next to the trachea, behind the common carotid artery. It may be located either anterior or posterior to the inferior thyroid artery. On the left side, it arises left to the arch of the aorta, winds below the aorta, and ascends along the side of the trachea.

      Both branches pass in a groove between the trachea and oesophagus before entering the larynx behind the articulation between the thyroid cartilage and cricoid. Once inside the larynx, the recurrent laryngeal nerve is distributed to the intrinsic larynx muscles (excluding cricothyroid). It also branches to the cardiac plexus and the mucous membrane and muscular coat of the oesophagus and trachea.

      Damage to the recurrent laryngeal nerve, such as during thyroid surgery, can result in hoarseness. Therefore, understanding the anatomy and function of this nerve is crucial for medical professionals who perform procedures in the neck and throat area.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 108 - A 25-year-old man is intoxicated and falls, resulting in a transected median nerve...

    Incorrect

    • A 25-year-old man is intoxicated and falls, resulting in a transected median nerve by a shard of glass at the proximal border of the flexor retinaculum. Fortunately, his tendons remain unharmed. Which of the following features is unlikely to be present?

      Your Answer:

      Correct Answer: Loss of sensation on the dorsal aspect of the thenar eminence

      Explanation:

      If the median nerve is damaged before reaching the flexor retinaculum, it can lead to the loss of certain muscles, including the abductor pollicis brevis, flexor pollicis brevis, opponens pollicis, and the first and second lumbricals. When the patient is asked to slowly close their hand, there may be a delay in the movement of the index and middle fingers due to the impaired lumbrical muscle function. However, there are only minor sensory changes and no impact on the dorsal aspect of the thenar eminence. The abductor pollicis longus muscle, which is innervated by the posterior interosseous nerve, will still contribute to thumb abduction, but it may be weaker than before the injury.

      Anatomy and Function of the Median Nerve

      The median nerve is a nerve that originates from the lateral and medial cords of the brachial plexus. It descends lateral to the brachial artery and passes deep to the bicipital aponeurosis and the median cubital vein at the elbow. The nerve then passes between the two heads of the pronator teres muscle and runs on the deep surface of flexor digitorum superficialis. Near the wrist, it becomes superficial between the tendons of flexor digitorum superficialis and flexor carpi radialis, passing deep to the flexor retinaculum to enter the palm.

      The median nerve has several branches that supply the upper arm, forearm, and hand. These branches include the pronator teres, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, flexor pollicis longus, and palmar cutaneous branch. The nerve also provides motor supply to the lateral two lumbricals, opponens pollicis, abductor pollicis brevis, and flexor pollicis brevis muscles, as well as sensory supply to the palmar aspect of the lateral 2 ½ fingers.

      Damage to the median nerve can occur at the wrist or elbow, resulting in various symptoms such as paralysis and wasting of thenar eminence muscles, weakness of wrist flexion, and sensory loss to the palmar aspect of the fingers. Additionally, damage to the anterior interosseous nerve, a branch of the median nerve, can result in loss of pronation of the forearm and weakness of long flexors of the thumb and index finger. Understanding the anatomy and function of the median nerve is important in diagnosing and treating conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 109 - A 19-year-old man is involved in a fight and sustains a stab wound...

    Incorrect

    • A 19-year-old man is involved in a fight and sustains a stab wound to his axilla. The axillary artery is lacerated and repaired, but the upper trunk of the brachial plexus is left unrepaired by the surgeon. Which muscle is the least likely to be affected by this injury?

      Your Answer:

      Correct Answer: Palmar interossei

      Explanation:

      The ulnar nerve supplies the palmar interossei and is situated inferiorly, making it less susceptible to injury.

      Understanding the Brachial Plexus and Cutaneous Sensation of the Upper Limb

      The brachial plexus is a network of nerves that originates from the anterior rami of C5 to T1. It is divided into five sections: roots, trunks, divisions, cords, and branches. To remember these sections, a common mnemonic used is Real Teenagers Drink Cold Beer.

      The roots of the brachial plexus are located in the posterior triangle and pass between the scalenus anterior and medius muscles. The trunks are located posterior to the middle third of the clavicle, with the upper and middle trunks related superiorly to the subclavian artery. The lower trunk passes over the first rib posterior to the subclavian artery. The divisions of the brachial plexus are located at the apex of the axilla, while the cords are related to the axillary artery.

      The branches of the brachial plexus provide cutaneous sensation to the upper limb. This includes the radial nerve, which provides sensation to the posterior arm, forearm, and hand; the median nerve, which provides sensation to the palmar aspect of the thumb, index, middle, and half of the ring finger; and the ulnar nerve, which provides sensation to the palmar and dorsal aspects of the fifth finger and half of the ring finger.

      Understanding the brachial plexus and its branches is important in diagnosing and treating conditions that affect the upper limb, such as nerve injuries and neuropathies. It also helps in understanding the cutaneous sensation of the upper limb and how it relates to the different nerves of the brachial plexus.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 110 - A 38-year-old woman comes to see her GP complaining of increasing fatigue, especially...

    Incorrect

    • A 38-year-old woman comes to see her GP complaining of increasing fatigue, especially towards the end of the day. During the consultation, she mentions having difficulty swallowing and experiencing two instances of almost choking on her dinner. Her husband has also noticed that her speech becomes quieter in the evenings, almost like a whisper.

      Upon examination in the morning, there are no significant findings except for some bilateral eyelid twitching after looking at the floor briefly.

      What is the likely diagnosis, and what is the mechanism of action of the first-line treatment?

      Your Answer:

      Correct Answer: Increases the amount of acetylcholine reaching the postsynaptic receptors

      Explanation:

      Pyridostigmine is a medication that inhibits the breakdown of acetylcholine in the neuromuscular junction, leading to an increase in the amount of acetylcholine that reaches the postsynaptic receptors. This temporary improvement in symptoms is particularly beneficial for individuals with myasthenia gravis, who experience increased fatigue following exercise, quiet speech, and difficulty swallowing. Pyridostigmine is considered a first-line treatment for MG, as it directly affects the acetylcholinesterase inhibitors and not the postsynaptic receptors.

      Myasthenia gravis is an autoimmune disorder that results in muscle weakness and fatigue, particularly in the eyes, face, neck, and limbs. It is more common in women and is associated with thymomas and other autoimmune disorders. Diagnosis is made through electromyography and testing for antibodies to acetylcholine receptors. Treatment includes acetylcholinesterase inhibitors and immunosuppression, and in severe cases, plasmapheresis or intravenous immunoglobulins may be necessary.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 111 - Sarah is a 31-year-old woman presenting with diplopia. She has a history of...

    Incorrect

    • Sarah is a 31-year-old woman presenting with diplopia. She has a history of type 1 diabetes and multiple sclerosis. Over the past 3 days, she has been experiencing double vision, particularly when looking to the right.

      Sarah denies any associated double vision when looking vertically. She has not noticed any difficulty in moving her eyelids, increased sensitivity to light, or redness in her eye.

      During examination, both eyelids display normal strength. With the left eye closed, the right eye displays a full range of movement. However, with the right eye closed, the left eye fails to adduct when looking towards the right. Nystagmus on the right eye is noted when the patient is asked to look to the right with both eyes. On convergence, both eyes can adduct towards the midline. The pupillary exam is normal with both pupils reacting appropriately to light.

      What is the underlying pathology responsible for Sarah's diplopia?

      Your Answer:

      Correct Answer: Lesion on the left paramedian area of the midbrain and pons

      Explanation:

      The medial longitudinal fasciculus is located in the midbrain and pons and is responsible for conjugate gaze. Lesions in this area can cause internuclear ophthalmoplegia, which affects adduction but not convergence. A 3rd nerve palsy affects multiple muscles and can involve the pupil, while abducens nerve lesions affect abduction. Lesions in the midbrain and superior pons contain the centres of vision.

      Understanding Internuclear Ophthalmoplegia

      Internuclear ophthalmoplegia is a condition that affects the horizontal movement of the eyes. It is caused by a lesion in the medial longitudinal fasciculus (MLF), which is responsible for interconnecting the IIIrd, IVth, and VIth cranial nuclei. This area is located in the paramedian region of the midbrain and pons. The main feature of this condition is impaired adduction of the eye on the same side as the lesion, along with horizontal nystagmus of the abducting eye on the opposite side.

      The most common causes of internuclear ophthalmoplegia are multiple sclerosis and vascular disease. It is important to note that this condition can also be a sign of other underlying neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 112 - A 62-year-old man comes to the emergency department with recent involuntary movements. During...

    Incorrect

    • A 62-year-old man comes to the emergency department with recent involuntary movements. During the examination, it is observed that he has unmanageable thrashing movements of his left arm and leg, which cannot be diverted. A CT scan reveals a fresh acute infarct.

      What part of the brain has been impacted by this infarct, causing these symptoms?

      Your Answer:

      Correct Answer: Subthalamic nucleus

      Explanation:

      Lesions of the subthalamic nucleus (STN) within the basal ganglia can result in a hemiballismus, characterized by uncontrollable thrashing movements. The STN plays a role in unconscious motor control by providing excitatory input to the globus pallidus internus (GPi), which then acts in an inhibitory way on motor outflow from the cortex. When the STN is damaged, there is less activity within the GPi and relative hyperactivity of the motor cortex, leading to excessive movements.

      In contrast, lesions of the caudate nucleus within the basal ganglia can cause behavioral changes and agitation. The caudate processes motor information from the cortex and provides an excitatory input to the globus pallidus externus (GPe), which then has an excitatory input to the STN. Lesions of the caudate result in motor hyperactivity, but this manifests as a restless state rather than uncontrolled movements. The caudate also plays a role in the neural circuits underlying goal-directed behaviors, and lesions can result in personality and behavioral changes.

      Lesions of the medial pons can cause hemiplegia and hemisensory loss or locked-in syndrome, depending on the level of disruption to the motor and sensory pathways. Lesions above the level of the trigeminal and facial motor nuclei can result in a full locked-in syndrome, while lesions below these nuclei result in hemiplegia and hemisensory loss but with preservation of facial sensation and movement.

      Lesions of the substantia nigra result in Parkinsonism, as the dopaminergic neurons of the substantia nigra have an inhibitory effect on the outflow of the striatum. This prevents motor information from leaving the cortex, resulting in the bradykinesia characteristic of Parkinsonism.

      Thalamic lesions most commonly cause hemisensory loss, as the thalamus acts as a sensory gateway that allows processing of sensory information before relaying it to the relevant primary cortex. Lesions disrupt this pathway and prevent information from reaching the cortex.

      Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.

      In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 113 - A 10-month-old girl arrives at the emergency department with cough and nasal congestion....

    Incorrect

    • A 10-month-old girl arrives at the emergency department with cough and nasal congestion. The triage nurse records a temperature of 38.2ºC. Which area of the brain is accountable for the observed physiological anomaly in this infant?

      Your Answer:

      Correct Answer: Hypothalamus

      Explanation:

      The hypothalamus is responsible for regulating body temperature, as it controls thermoregulation. It responds to pyrogens produced during infections, which induce the synthesis of prostaglandins that bind to receptors in the hypothalamus and raise body temperature. The cerebellum, limbic system, and pineal gland are not involved in temperature control.

      The hypothalamus is a part of the brain that plays a crucial role in maintaining the body’s internal balance, or homeostasis. It is located in the diencephalon and is responsible for regulating various bodily functions. The hypothalamus is composed of several nuclei, each with its own specific function. The anterior nucleus, for example, is involved in cooling the body by stimulating the parasympathetic nervous system. The lateral nucleus, on the other hand, is responsible for stimulating appetite, while lesions in this area can lead to anorexia. The posterior nucleus is involved in heating the body and stimulating the sympathetic nervous system, and damage to this area can result in poikilothermia. Other nuclei include the septal nucleus, which regulates sexual desire, the suprachiasmatic nucleus, which regulates circadian rhythm, and the ventromedial nucleus, which is responsible for satiety. Lesions in the paraventricular nucleus can lead to diabetes insipidus, while lesions in the dorsomedial nucleus can result in savage behavior.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 114 - A 35-year-old man suffers a hemisection of the spinal cord at the level...

    Incorrect

    • A 35-year-old man suffers a hemisection of the spinal cord at the level T5 due to a stabbing in his back. You conduct an evaluation of the patient's sensory function, including temperature, vibration, and fine touch, as well as muscle strength. What signs would you anticipate observing?

      Your Answer:

      Correct Answer: Contralateral loss of temperature, ipsilateral loss of fine touch and vibration, ipsilateral spastic paresis

      Explanation:

      The spinothalamic tract carries sensory fibers for pain and temperature and decussates at the same level as the nerve root entering the spinal cord. As a result, contralateral temperature loss occurs. The dorsal column medial lemniscus carries sensory fibers for fine touch, vibration, and unconscious proprioception. It decussates at the medulla, leading to ipsilateral loss of fine touch and vibration. The corticospinal tract is a descending tract that has already decussated at the medulla and is responsible for inhibiting muscle movement. If affected in the spinal cord, it causes an upper motor neuron lesion on the ipsilateral side.

      The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.

      One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 115 - A 28-year-old woman is receiving chemotherapy for ovarian cancer. She experiences severe nausea...

    Incorrect

    • A 28-year-old woman is receiving chemotherapy for ovarian cancer. She experiences severe nausea and vomiting in the initial days after each chemotherapy session.

      To alleviate her symptoms, she is prescribed ondansetron to be taken after chemotherapy.

      What is the mode of action of ondansetron?

      Your Answer:

      Correct Answer: Serotonin antagonist

      Explanation:

      Ondansetron belongs to the class of drugs known as serotonin antagonists, which are commonly used as antiemetics to treat nausea caused by chemotoxic agents. These drugs act on the chemoreceptor trigger zone (CTZ) in the medulla oblongata, where serotonin (5-HT3) is an agonist. Antihistamines, antimuscarinics, and dopamine antagonists are other classes of antiemetics that act on different pathways and are used for different causes of nausea. Glucocorticoids, such as dexamethasone, can also be used as antiemetics due to their anti-inflammatory properties and effectiveness in treating nausea caused by intracerebral factors.

      Understanding 5-HT3 Antagonists

      5-HT3 antagonists are a type of medication used to treat nausea, particularly in patients undergoing chemotherapy. These drugs work by targeting the chemoreceptor trigger zone in the medulla oblongata, which is responsible for triggering nausea and vomiting. Examples of 5-HT3 antagonists include ondansetron and palonosetron, with the latter being a second-generation drug that has the advantage of having a reduced effect on the QT interval.

      While 5-HT3 antagonists are generally well-tolerated, they can have some adverse effects. One of the most significant concerns is the potential for a prolonged QT interval, which can increase the risk of arrhythmias and other cardiac complications. Additionally, constipation is a common side effect of these medications. Overall, 5-HT3 antagonists are an important tool in the management of chemotherapy-induced nausea, but their use should be carefully monitored to minimize the risk of adverse effects.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 116 - Which one of the following structures is not closely related to the carotid...

    Incorrect

    • Which one of the following structures is not closely related to the carotid sheath?

      Your Answer:

      Correct Answer: Anterior belly of digastric muscle

      Explanation:

      The carotid sheath is connected to sternohyoid and sternothyroid at its lower end. The superior belly of omohyoid crosses the sheath at the cricoid cartilage level. The sternocleidomastoid muscle covers the sheath above this level. The vessels pass beneath the posterior belly of digastric and stylohyoid above the hyoid bone. The hypoglossal nerve crosses the sheath diagonally at the hyoid bone level.

      The common carotid artery is a major blood vessel that supplies the head and neck with oxygenated blood. It has two branches, the left and right common carotid arteries, which arise from different locations. The left common carotid artery originates from the arch of the aorta, while the right common carotid artery arises from the brachiocephalic trunk. Both arteries terminate at the upper border of the thyroid cartilage by dividing into the internal and external carotid arteries.

      The left common carotid artery runs superolaterally to the sternoclavicular joint and is in contact with various structures in the thorax, including the trachea, left recurrent laryngeal nerve, and left margin of the esophagus. In the neck, it passes deep to the sternocleidomastoid muscle and enters the carotid sheath with the vagus nerve and internal jugular vein. The right common carotid artery has a similar path to the cervical portion of the left common carotid artery, but with fewer closely related structures.

      Overall, the common carotid artery is an important blood vessel with complex anatomical relationships in both the thorax and neck. Understanding its path and relations is crucial for medical professionals to diagnose and treat various conditions related to this artery.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 117 - A 60-year-old man visits an after-hours medical facility in the late evening with...

    Incorrect

    • A 60-year-old man visits an after-hours medical facility in the late evening with a complaint of a severe headache that is focused around his left eye. He mentions experiencing haloes in his vision and difficulty seeing clearly. The patient has a medical history of hypertension and diabetes. During the examination, the sclera appears red, and the cornea is hazy with a dilated pupil.

      What condition is the most probable diagnosis?

      Your Answer:

      Correct Answer: Acute closed-angle glaucoma

      Explanation:

      The patient’s symptoms are consistent with acute closed-angle glaucoma, which is an urgent ophthalmological emergency. They are experiencing a headache with unilateral eye pain, reduced vision, visual haloes, a red and congested eye with a cloudy cornea, and a dilated, unresponsive pupil. These symptoms may be triggered by darkness or dilating eye drops. Treatment should involve laying the patient flat to relieve angle pressure, administering pilocarpine eye drops to constrict the pupil, acetazolamide orally to reduce aqueous humour production, and providing analgesia. Referral to secondary care is necessary.

      It is important to differentiate this condition from other potential causes of the patient’s symptoms. Central retinal vein occlusion, for example, would cause sudden painless loss of vision and severe retinal haemorrhages on fundoscopy. Migraines typically involve a visual or somatosensory aura followed by a unilateral throbbing headache, nausea, vomiting, and photophobia. Subarachnoid haemorrhages present with a sudden, severe headache, rather than a gradually worsening one accompanied by eye signs. Temporal arteritis may cause pain when chewing, difficulty brushing hair, and thickened temporal arteries visible on examination. However, the presence of a dilated, fixed pupil with conjunctival injection should steer the clinician away from a diagnosis of migraine.

      Acute angle closure glaucoma (AACG) is a type of glaucoma where there is a rise in intraocular pressure (IOP) due to a blockage in the outflow of aqueous humor. This condition is more likely to occur in individuals with hypermetropia, pupillary dilation, and lens growth associated with aging. Symptoms of AACG include severe pain, decreased visual acuity, a hard and red eye, haloes around lights, and a semi-dilated non-reacting pupil. AACG is an emergency and requires urgent referral to an ophthalmologist. The initial medical treatment involves a combination of eye drops, such as a direct parasympathomimetic, a beta-blocker, and an alpha-2 agonist, as well as intravenous acetazolamide to reduce aqueous secretions. Definitive management involves laser peripheral iridotomy, which creates a tiny hole in the peripheral iris to allow aqueous humor to flow to the angle.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 118 - During a ward round on the stroke ward, you notice a patient in...

    Incorrect

    • During a ward round on the stroke ward, you notice a patient in their 60s responds to questions with unrelated words and phrases. His speech is technically good and fluent but the sentences make no sense. He does not appear to be aware of this and struggles to understand questions when written down.

      Where is the location of the lesion producing this sign?

      Your Answer:

      Correct Answer: Superior temporal gyrus

      Explanation:

      Wernicke’s aphasia is caused by damage to the superior temporal gyrus, resulting in fluent speech but poor comprehension and characteristic ‘word salad’. Patients with this type of aphasia are often unaware of their errors.

      Conduction aphasia, on the other hand, is caused by damage to the arcuate fasciculus, which connects Wernicke’s and Broca’s areas. This results in fluent speech with poor repetition, but patients are usually aware of their errors.

      A lesion of the corpus callosum can cause more widespread problems with motor and sensory deficits due to impaired communication between the hemispheres.

      Broca’s area, located in the inferior frontal gyrus, is responsible for expressive aphasia, where speech is non-fluent but comprehension is intact.

      It’s important to note that true aphasia does not involve any motor deficits, so damage to the primary motor cortex would not be the cause.

      Types of Aphasia: Understanding the Different Forms of Language Impairment

      Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.

      Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.

      Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.

      Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 119 - A 45-year-old female presents to the neurology clinic with diplopia and headache. Upon...

    Incorrect

    • A 45-year-old female presents to the neurology clinic with diplopia and headache. Upon examination, her visual acuity is 6/6, and there is pupillary dilatation. An MRI of her head reveals a post-communicating artery aneurysm. What cranial nerve palsy is probable in this patient?

      Your Answer:

      Correct Answer: Third nerve palsy

      Explanation:

      A third nerve palsy may be caused by an aneurysm in the posterior communicating artery.

      Understanding Third Nerve Palsy: Causes and Features

      Third nerve palsy is a neurological condition that affects the third cranial nerve, which controls the movement of the eye and eyelid. The condition is characterized by the eye being deviated ‘down and out’, ptosis, and a dilated pupil. In some cases, it may be referred to as a ‘surgical’ third nerve palsy due to the dilation of the pupil.

      There are several possible causes of third nerve palsy, including diabetes mellitus, vasculitis (such as temporal arteritis or SLE), uncal herniation through tentorium if raised ICP, posterior communicating artery aneurysm, and cavernous sinus thrombosis. In some cases, it may also be a false localizing sign. Weber’s syndrome, which is characterized by an ipsilateral third nerve palsy with contralateral hemiplegia, is caused by midbrain strokes. Other possible causes include amyloid and multiple sclerosis.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 120 - A 32-year-old woman is scheduled for an open carpal tunnel decompression. As part...

    Incorrect

    • A 32-year-old woman is scheduled for an open carpal tunnel decompression. As part of the consent process, the surgeon discusses the potential risks of the procedure, including the possibility of damaging important structures.

      What is accurate regarding the risks linked to open carpal tunnel decompression?

      Your Answer:

      Correct Answer: Ulnar nerve is at a risk of damage during open carpal tunnel decompression

      Explanation:

      The ulnar nerve is at risk of damage during open carpal tunnel decompression, making the second answer incorrect. The extensor digitorum tendon is not encountered during a carpal tunnel release as it is found dorsal to the radius and ulna. There is no known association between carpal tunnel decompression and the risk of rheumatoid arthritis or osteoporosis.

      The ulnar nerve originates from the medial cord of the brachial plexus, specifically from the C8 and T1 nerve roots. It provides motor innervation to various muscles in the hand, including the medial two lumbricals, adductor pollicis, interossei, hypothenar muscles (abductor digiti minimi, flexor digiti minimi), and flexor carpi ulnaris. Sensory innervation is also provided to the medial 1 1/2 fingers on both the palmar and dorsal aspects. The nerve travels through the posteromedial aspect of the upper arm and enters the palm of the hand via Guyon’s canal, which is located superficial to the flexor retinaculum and lateral to the pisiform bone.

      The ulnar nerve has several branches that supply different muscles and areas of the hand. The muscular branch provides innervation to the flexor carpi ulnaris and the medial half of the flexor digitorum profundus. The palmar cutaneous branch arises near the middle of the forearm and supplies the skin on the medial part of the palm, while the dorsal cutaneous branch supplies the dorsal surface of the medial part of the hand. The superficial branch provides cutaneous fibers to the anterior surfaces of the medial one and one-half digits, and the deep branch supplies the hypothenar muscles, all the interosseous muscles, the third and fourth lumbricals, the adductor pollicis, and the medial head of the flexor pollicis brevis.

      Damage to the ulnar nerve at the wrist can result in a claw hand deformity, where there is hyperextension of the metacarpophalangeal joints and flexion at the distal and proximal interphalangeal joints of the 4th and 5th digits. There may also be wasting and paralysis of intrinsic hand muscles (except for the lateral two lumbricals), hypothenar muscles, and sensory loss to the medial 1 1/2 fingers on both the palmar and dorsal aspects. Damage to the nerve at the elbow can result in similar symptoms, but with the addition of radial deviation of the wrist. It is important to diagnose and treat ulnar nerve damage promptly to prevent long-term complications.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 121 - An 80-year-old man comes to the neurology clinic accompanied by his daughter. She...

    Incorrect

    • An 80-year-old man comes to the neurology clinic accompanied by his daughter. She reports that his speech has been progressively harder to comprehend for the last six months. During the examination, you observe that his eyes twitch repeatedly, particularly when he gazes upwards. Based on these findings, where in his brain is the lesion most likely located?

      Your Answer:

      Correct Answer: Cerebellar vermis

      Explanation:

      Upbeat nystagmus can be caused by a lesion in the cerebellar vermis, which can result in uncontrolled repetitive eye movements that worsen when looking upwards. Other symptoms of cerebellar lesions may include slurred speech. Downbeat nystagmus, on the other hand, can be caused by a lesion in the foramen magnum, which is often seen in Arnold Chiari malformation. Parkinson’s disease, which is characterized by bradykinesia, tremors, and rigidity, can be caused by a lesion in the substantia nigra of the basal ganglia. Lesions in the temporal lobe can result in superior homonymous quadrantanopia, which is characterized by loss of vision in the same upper quadrant of each eye, as well as changes in speech such as word substitutions and neologisms. Finally, lesions in the hypothalamus can lead to Wernicke and Korsakoff syndrome, which can cause ataxia, nystagmus, ophthalmoplegia, confabulation, and amnesia.

      Understanding Nystagmus and its Causes

      Nystagmus is a condition characterized by involuntary eye movements that can occur in different directions. Upbeat nystagmus, for instance, is associated with lesions in the cerebellar vermis, while downbeat nystagmus is linked to foramen magnum lesions and Arnold-Chiari malformation.

      Upbeat nystagmus causes the eyes to move upwards and then jerk downwards, while downbeat nystagmus causes the eyes to move downwards and then jerk upwards. These movements can affect vision and balance, leading to symptoms such as dizziness, vertigo, and difficulty reading or focusing on objects.

      It is important to note that not all forms of nystagmus are pathological. Horizontal optokinetic nystagmus, for example, is a normal physiological response to visual stimuli. This type of nystagmus occurs when the eyes track a moving object, such as a passing car or a scrolling text on a screen.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 122 - You are reviewing a child's notes in the clinic and see that they...

    Incorrect

    • You are reviewing a child's notes in the clinic and see that they have recently been seen by an ophthalmologist. Their ocular examination was normal, although they were noted to have significant hyperopia (farsightedness) and would benefit from spectacles. The child's parent mentioned that they do not fully understand why their child requires glasses. You draw them a diagram to explain the cause of their long-sightedness.

      Where is the point that light rays converge in this child?

      Your Answer:

      Correct Answer: Behind the retina

      Explanation:

      Hyperopia, also known as hypermetropia, is a condition where the eye’s visual axis is too short, causing the image to be focused behind the retina. This is typically caused by an imbalance between the length of the eye and the power of the cornea and lens system.

      In a healthy eye, light is first focused by the cornea and then by the crystalline lens, resulting in a clear image on the retina. However, in hyperopia, the light is refracted to a point of focus behind the retina, leading to blurred vision.

      Myopia, on the other hand, is a common refractive error where light rays converge in front of the retina due to the cornea and lens system being too powerful for the length of the eye.

      In cases where light rays converge on the crystalline lens capsule, it may indicate severe corneal disruption, such as ocular trauma or keratoconus. This would not be considered a refractive error.

      To correct hyperopia, corrective lenses are needed to refract the light before it enters the eye. A convex lens is typically used to correct the refractive error in a hyperopic eye.

      A gradual decline in vision is a prevalent issue among the elderly population, leading them to seek guidance from healthcare providers. This condition can be attributed to various causes, including cataracts and age-related macular degeneration. Both of these conditions can cause a gradual loss of vision over time, making it difficult for individuals to perform daily activities such as reading, driving, and recognizing faces. As a result, it is essential for individuals experiencing a decline in vision to seek medical attention promptly to receive appropriate treatment and prevent further deterioration.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 123 - An 81-year-old patient has presented to their physician with episodes of syncope and...

    Incorrect

    • An 81-year-old patient has presented to their physician with episodes of syncope and lightheadedness triggered by activities such as shaving or wearing a shirt with a collar. The patient also reports a change in their sense of taste. During the examination, the physician feels the patient's carotid pulse, which triggers another lightheaded episode. The patient's vital signs are taken immediately, revealing a heart rate of 36 bpm, blood pressure of 60/42 mmHg, sats of 96%, and a temperature of 36.7ºC. The physician suspects carotid sinus syndrome and wonders which cranial nerve is responsible for the hypersensitive response in this scenario.

      Your Answer:

      Correct Answer: Glossopharyngeal nerve (CN IX)

      Explanation:

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 124 - A young physician encounters two patients with ulnar nerve palsy in rapid succession....

    Incorrect

    • A young physician encounters two patients with ulnar nerve palsy in rapid succession. The initial patient has a wrist injury and displays a severe hand deformity resembling a claw. The subsequent patient has an elbow injury and exhibits a similar, albeit less severe, deformity. What is the reason for the counterintuitive observation that the presentation is milder at the site of injury closer to the body?

      Your Answer:

      Correct Answer: Denervation of flexor digitorum profundus muscle

      Explanation:

      Injuries to the proximal ulnar nerve result in the loss of function of the flexor digitorum profundus muscle, leading to a decrease in finger flexion and a reduction in the claw-like appearance seen in more distal injuries. This process does not involve the flexor digitorum superficialis muscle or any protective action from surrounding muscles.

      The ulnar nerve originates from the medial cord of the brachial plexus, specifically from the C8 and T1 nerve roots. It provides motor innervation to various muscles in the hand, including the medial two lumbricals, adductor pollicis, interossei, hypothenar muscles (abductor digiti minimi, flexor digiti minimi), and flexor carpi ulnaris. Sensory innervation is also provided to the medial 1 1/2 fingers on both the palmar and dorsal aspects. The nerve travels through the posteromedial aspect of the upper arm and enters the palm of the hand via Guyon’s canal, which is located superficial to the flexor retinaculum and lateral to the pisiform bone.

      The ulnar nerve has several branches that supply different muscles and areas of the hand. The muscular branch provides innervation to the flexor carpi ulnaris and the medial half of the flexor digitorum profundus. The palmar cutaneous branch arises near the middle of the forearm and supplies the skin on the medial part of the palm, while the dorsal cutaneous branch supplies the dorsal surface of the medial part of the hand. The superficial branch provides cutaneous fibers to the anterior surfaces of the medial one and one-half digits, and the deep branch supplies the hypothenar muscles, all the interosseous muscles, the third and fourth lumbricals, the adductor pollicis, and the medial head of the flexor pollicis brevis.

      Damage to the ulnar nerve at the wrist can result in a claw hand deformity, where there is hyperextension of the metacarpophalangeal joints and flexion at the distal and proximal interphalangeal joints of the 4th and 5th digits. There may also be wasting and paralysis of intrinsic hand muscles (except for the lateral two lumbricals), hypothenar muscles, and sensory loss to the medial 1 1/2 fingers on both the palmar and dorsal aspects. Damage to the nerve at the elbow can result in similar symptoms, but with the addition of radial deviation of the wrist. It is important to diagnose and treat ulnar nerve damage promptly to prevent long-term complications.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 125 - A 6-year-old boy has been experiencing recurring headaches. During his evaluation, an MRI...

    Incorrect

    • A 6-year-old boy has been experiencing recurring headaches. During his evaluation, an MRI scan of his brain was conducted, revealing an enlargement of the lateral and third ventricles. What is the probable location of the obstruction?

      Your Answer:

      Correct Answer: Aqueduct of Sylvius

      Explanation:

      The Aqueduct of Sylvius is the pathway through which the CSF moves from the 3rd to the 4th ventricle.

      Cerebrospinal Fluid: Circulation and Composition

      Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.

      The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.

      The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 126 - Samantha is a 75-year-old woman who is currently recovering in hospital following a...

    Incorrect

    • Samantha is a 75-year-old woman who is currently recovering in hospital following a stroke. Her MRI scan report says there is evidence of ischaemic damage to the superior optic radiation within the right temporal lobe.

      What type of visual impairment is Samantha likely experiencing?

      Your Answer:

      Correct Answer: Right superior homonymous quadrantanopia

      Explanation:

      Lesions in the temporal lobe inferior optic radiations are responsible for superior homonymous quadrantanopias.

      If the left temporal lobe is damaged, the resulting visual field defect would be in the right side. Specific damage to the inferior optic radiation would cause a superior homonymous quadrantanopia.

      Damage to the right inferior optic radiation would lead to a left superior homonymous quadrantanopia.

      A right inferior homonymous quadrantanopia would occur if the left superior optic radiation is damaged.

      If the left occipital lobe is damaged, a right homonymous hemianopia would result.

      Understanding Visual Field Defects

      Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.

      When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.

      Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.

      Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 127 - A 79-year-old woman is observed four days after experiencing an ischaemic stroke, treated...

    Incorrect

    • A 79-year-old woman is observed four days after experiencing an ischaemic stroke, treated with antiplatelet therapy. During evaluation, she is instructed to repeat the sentence 'touch your nose with your finger' and then perform the action. She successfully touches her nose with her finger, but her verbal response is incoherent and non-fluent. What type of aphasia is she displaying?

      Your Answer:

      Correct Answer: Broca's

      Explanation:

      This individual is experiencing Broca’s dysphasia, which is characterized by non-fluent speech, normal comprehension, and impaired repetition. This is likely due to a recent neurological insult that has resulted in higher cognitive dysfunction, specifically aphasia. Broca’s area, located in the posterior inferior frontal gyrus of the dominant hemisphere, is responsible for generating compressible words and is typically supplied by the superior division of the left MCA. Conductive aphasia, on the other hand, involves normal, fluent speech but poor repetition and is caused by a stroke involving the connection between different areas of the brain.

      Types of Aphasia: Understanding the Different Forms of Language Impairment

      Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.

      Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.

      Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.

      Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 128 - During a routine physical exam, a patient in their mid-40s was found to...

    Incorrect

    • During a routine physical exam, a patient in their mid-40s was found to have one eye drifting towards the midline when instructed to look straight. Subsequent MRI scans revealed a tumor pressing on one of the skull's foramina. Which foramen of the skull is likely affected by the tumor?

      Your Answer:

      Correct Answer: Superior orbital fissure

      Explanation:

      The correct answer is that the abducens nerve passes through the superior orbital fissure. This is supported by the patient’s symptoms, which suggest damage to the abducens nerve that innervates the lateral rectus muscle responsible for abducting the eye. The other options are incorrect as they do not innervate the eye or are located in anatomically less appropriate positions. It is important to understand the functions of the nerves and their corresponding foramina to correctly answer this question.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 129 - A 19-year-old man is trimming some bushes when a tiny piece of foliage...

    Incorrect

    • A 19-year-old man is trimming some bushes when a tiny piece of foliage gets into his eye, causing it to water. Which component is accountable for transmitting parasympathetic nerve signals to the lacrimal apparatus?

      Your Answer:

      Correct Answer: Pterygopalatine ganglion

      Explanation:

      The pterygopalatine ganglion serves as a pathway for the parasympathetic fibers that reach the lacrimal apparatus.

      The Lacrimation Reflex

      The lacrimation reflex is a response to conjunctival irritation or emotional events. When the conjunctiva is irritated, it sends signals via the ophthalmic nerve to the superior salivary center. From there, efferent signals pass via the greater petrosal nerve (parasympathetic preganglionic fibers) and the deep petrosal nerve (postganglionic sympathetic fibers) to the lacrimal apparatus. The parasympathetic fibers relay in the pterygopalatine ganglion, while the sympathetic fibers do not synapse.

      This reflex is important for maintaining the health of the eye by keeping it moist and protecting it from foreign particles. It is also responsible for the tears that are shed during emotional events, such as crying. The lacrimal gland, which produces tears, is innervated by the secretomotor parasympathetic fibers from the pterygopalatine ganglion. The nasolacrimal duct, which carries tears from the eye to the nose, opens anteriorly in the inferior meatus of the nose. Overall, the lacrimal system plays a crucial role in maintaining the health and function of the eye.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 130 - A 70-year-old man comes to the Parkinson clinic for a levodopa review. In...

    Incorrect

    • A 70-year-old man comes to the Parkinson clinic for a levodopa review. In Parkinson's disease, which region of the basal ganglia is most affected?

      Your Answer:

      Correct Answer: Substantia nigra pars compacta

      Explanation:

      Parkinson’s disease primarily affects the basal ganglia, which is responsible for movement. Within the basal ganglia, the substantia nigra is a crucial component that plays a significant role in movement and reward. The dopaminergic neurons in the substantia nigra, which contain high levels of neuromelanin, function through the indirect pathway to facilitate movement. However, these neurons are the ones most impacted by Parkinson’s disease. The substantia nigra gets its name from its dark appearance, which is due to the abundance of neuromelanin in its neurons.

      Parkinson’s disease is a progressive neurodegenerative disorder that occurs due to the degeneration of dopaminergic neurons in the substantia nigra. This leads to a classic triad of symptoms, including bradykinesia, tremor, and rigidity, which are typically asymmetrical. The disease is more common in men and is usually diagnosed around the age of 65. Bradykinesia is characterized by a poverty of movement, shuffling steps, and difficulty initiating movement. Tremors are most noticeable at rest and typically occur in the thumb and index finger. Rigidity can be either lead pipe or cogwheel, and other features include mask-like facies, flexed posture, and drooling of saliva. Psychiatric features such as depression, dementia, and sleep disturbances may also occur. Diagnosis is usually clinical, but if there is difficulty differentiating between essential tremor and Parkinson’s disease, 123I‑FP‑CIT single photon emission computed tomography (SPECT) may be considered.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 131 - A 40-year-old woman underwent axillary node clearance for breast cancer. After the surgery,...

    Incorrect

    • A 40-year-old woman underwent axillary node clearance for breast cancer. After the surgery, she complains of shoulder weakness. Specifically, she cannot push herself forward from a wall using her right arm, and her scapula protrudes medially from the chest wall. What nerve injury is most probable?

      Your Answer:

      Correct Answer: Long thoracic nerve

      Explanation:

      The cause of the patient’s winged scapula is damage to the long thoracic nerve, which innervates the serratus anterior muscle. This damage occurred during surgery and affects the nerve roots C5, C6, and C7. The serratus anterior muscle is responsible for protracting the scapula during a punching motion. It is important to note that lateral winging of the scapula may indicate weakness in the trapezius muscle, which is innervated by the spinal accessory nerve.

      The Long Thoracic Nerve and its Role in Scapular Winging

      The long thoracic nerve is derived from the ventral rami of C5, C6, and C7, which are located close to their emergence from intervertebral foramina. It runs downward and passes either anterior or posterior to the middle scalene muscle before reaching the upper tip of the serratus anterior muscle. From there, it descends on the outer surface of this muscle, giving branches into it.

      One of the most common symptoms of long thoracic nerve injury is scapular winging, which occurs when the serratus anterior muscle is weakened or paralyzed. This can happen due to a variety of reasons, including trauma, surgery, or nerve damage. In addition to long thoracic nerve injury, scapular winging can also be caused by spinal accessory nerve injury (which denervates the trapezius) or a dorsal scapular nerve injury.

      Overall, the long thoracic nerve plays an important role in the function of the serratus anterior muscle and the stability of the scapula. Understanding its anatomy and function can help healthcare professionals diagnose and treat conditions that affect the nerve and its associated muscles.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 132 - As a medical student on wards in the endocrinology department, you come across...

    Incorrect

    • As a medical student on wards in the endocrinology department, you come across a patient suffering from syndrome of inappropriate antidiuretic hormone secretion. During the ward round, the consultant leading the team decides to test your knowledge and asks about the normal release of antidiuretic hormone (ADH) in the brain.

      Can you explain the pathway that leads to the release of this hormone causing the patient's condition?

      Your Answer:

      Correct Answer: ADH is released from the posterior pituitary gland via neural cells which extend from the hypothalamus

      Explanation:

      The posterior pituitary gland is formed by neural cells’ axons that extend directly from the hypothalamus.

      In contrast to the anterior pituitary gland, which has separate hormone-secreting cells controlled by hormonal stimulation, the posterior pituitary gland only contains neural cells that extend from the hypothalamus. Therefore, the hormones (ADH and oxytocin) released from the posterior pituitary gland are released from the axons of cells extending from the hypothalamus.

      All anterior pituitary hormone release is controlled through hormonal stimulation from the hypothalamus.

      The adrenal medulla directly releases epinephrine, norepinephrine, and small amounts of dopamine from sympathetic neural cells.

      The pituitary gland is a small gland located within the sella turcica in the sphenoid bone of the middle cranial fossa. It weighs approximately 0.5g and is covered by a dural fold. The gland is attached to the hypothalamus by the infundibulum and receives hormonal stimuli from the hypothalamus through the hypothalamo-pituitary portal system. The anterior pituitary, which develops from a depression in the wall of the pharynx known as Rathkes pouch, secretes hormones such as ACTH, TSH, FSH, LH, GH, and prolactin. GH and prolactin are secreted by acidophilic cells, while ACTH, TSH, FSH, and LH are secreted by basophilic cells. On the other hand, the posterior pituitary, which is derived from neuroectoderm, secretes ADH and oxytocin. Both hormones are produced in the hypothalamus before being transported by the hypothalamo-hypophyseal portal system.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 133 - A 22-year-old individual is brought to the medical team on call due to...

    Incorrect

    • A 22-year-old individual is brought to the medical team on call due to fever, neck stiffness, and altered Glasgow coma scale. The medical team suspects acute bacterial meningitis.

      What would be the most suitable antibiotic option for this patient?

      Your Answer:

      Correct Answer: Cefotaxime

      Explanation:

      Empirical Antibiotic Treatment for Acute Bacterial Meningitis

      Patients aged 16-50 years presenting with acute bacterial meningitis are most likely infected with Neisseria meningitidis or Streptococcus pneumoniae. The most appropriate empirical antibiotic choice for this age group is cefotaxime alone. However, if the patient has been outside the UK recently or has had multiple courses of antibiotics in the last 3 months, vancomycin may be added due to the increase in penicillin-resistant pneumococci worldwide.

      For infants over 3 months old up to adults of 50 years old, cefotaxime is the preferred antibiotic. If the patient is under 3 months or over 50 years old, amoxicillin is added to cover for Listeria monocytogenes meningitis, although this is rare. Ceftriaxone can be used instead of cefotaxime.

      Once the results of culture and sensitivity are available, the antibiotic choice can be modified for optimal treatment. Benzylpenicillin is usually first line, but it is not an option in this case. It is important to choose the appropriate antibiotic treatment to ensure the best possible outcome for the patient.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 134 - A 6-month-old infant was born by a vaginal breech delivery. During examination, it...

    Incorrect

    • A 6-month-old infant was born by a vaginal breech delivery. During examination, it was observed that the left arm was held by the side and rotated medially. Additionally, the left elbow was extended with a pronated forearm and a flexed wrist. Which nerve roots are most likely affected?

      Your Answer:

      Correct Answer: C5, C6

      Explanation:

      If a baby is delivered in a breech position, it can lead to Erb-Duchenne paralysis. This occurs when the baby’s arm experiences too much pressure or pulling during delivery, causing damage to the brachial plexus. The most commonly affected area is the junction of the C5 and C6 nerve roots (known as Erb’s point), resulting in the characteristic Waiter’s tip posture where the affected arm is held at the side, rotated inward, with an extended elbow, pronated forearm, and flexed wrist. The suprascapular nerve, musculocutaneous nerve, and axillary nerve are typically involved in this type of paralysis.

      Brachial Plexus Injuries: Erb-Duchenne and Klumpke’s Paralysis

      Erb-Duchenne paralysis is a type of brachial plexus injury that results from damage to the C5 and C6 roots. This can occur during a breech presentation, where the baby’s head and neck are pulled to the side during delivery. Symptoms of Erb-Duchenne paralysis include weakness or paralysis of the arm, shoulder, and hand, as well as a winged scapula.

      On the other hand, Klumpke’s paralysis is caused by damage to the T1 root of the brachial plexus. This type of injury typically occurs due to traction, such as when a baby’s arm is pulled during delivery. Klumpke’s paralysis can result in a loss of intrinsic hand muscles, which can affect fine motor skills and grip strength.

      It is important to note that brachial plexus injuries can have long-term effects on a person’s mobility and quality of life. Treatment options may include physical therapy, surgery, or a combination of both. Early intervention is key to improving outcomes and minimizing the impact of these injuries.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 135 - A 65-year-old man visits his GP complaining of vision changes, including deteriorating visual...

    Incorrect

    • A 65-year-old man visits his GP complaining of vision changes, including deteriorating visual acuity, colour perception, and distorted images. After conducting tests, the diagnosis of dry age-related macular degeneration (Dry-AMD) is confirmed. What retinal sign is typical of Dry-AMD?

      Your Answer:

      Correct Answer: Drusen

      Explanation:

      Drusen, which are yellow deposits on the retina visible during fundoscopy, can indicate the severity of dry-AMD based on their distribution and quantity. Wet-AMD is more commonly associated with retinal hemorrhages and neovascularization. While painless vision loss can be caused by papilledema, this condition is typically linked to disorders that directly impact the optic disc.

      Age-related macular degeneration (ARMD) is a common cause of blindness in the UK, characterized by degeneration of the central retina (macula) and the formation of drusen. The risk of ARMD increases with age, smoking, family history, and conditions associated with an increased risk of ischaemic cardiovascular disease. ARMD is classified into dry and wet forms, with the latter carrying the worst prognosis. Clinical features include subacute onset of visual loss, difficulties in dark adaptation, and visual hallucinations. Signs include distortion of line perception, the presence of drusen, and well-demarcated red patches in wet ARMD. Investigations include slit-lamp microscopy, colour fundus photography, fluorescein angiography, indocyanine green angiography, and ocular coherence tomography. Treatment options include a combination of zinc with anti-oxidant vitamins for dry ARMD and anti-VEGF agents for wet ARMD. Laser photocoagulation is also an option, but anti-VEGF therapies are usually preferred.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 136 - A 73-year-old male visits the GP following a recent fall. He reports experiencing...

    Incorrect

    • A 73-year-old male visits the GP following a recent fall. He reports experiencing decreased sensation in his penis. During the clinical examination, you observe reduced sensation in his scrotum and the inner part of his buttocks. You suspect that the fall may have resulted in a sacral spinal cord injury.

      What dermatomes are responsible for the loss of sensation in this case?

      Your Answer:

      Correct Answer: S2, S3

      Explanation:

      The patient is experiencing sensory loss in their genitalia due to damage to the S2 and S3 nerve roots, which has resulted in the loss of the corresponding dermatomes. The T4 and T5 dermatomes are located in the upper extremities, while the C3 and C4 dermatomes are also in the upper extremities. If the S1 nerve root were damaged, it would cause sensory loss in the lateral foot and small toe due to the loss of the S1 dermatome.

      Understanding Dermatomes: Major Landmarks and Mnemonics

      Dermatomes are areas of skin that are innervated by a single spinal nerve. Understanding dermatomes is important in diagnosing and treating various neurological conditions. The major dermatome landmarks are listed in the table above, along with helpful mnemonics to aid in memorization.

      Starting at the top of the body, the C2 dermatome covers the posterior half of the skull, resembling a cap. Moving down to C3, it covers the area of a high turtleneck shirt, while C4 covers the area of a low-collar shirt. The C5 dermatome runs along the ventral axial line of the upper limb, while C6 covers the thumb and index finger. To remember this, make a 6 with your left hand by touching the tip of your thumb and index finger together.

      Moving down to the middle finger and palm of the hand, the C7 dermatome is located here, while the C8 dermatome covers the ring and little finger. The T4 dermatome is located at the nipples, while T5 covers the inframammary fold. The T6 dermatome is located at the xiphoid process, and T10 covers the umbilicus. To remember this, think of BellybuT-TEN.

      The L1 dermatome covers the inguinal ligament, while L4 covers the knee caps. To remember this, think of being Down on aLL fours with the number 4 representing the knee caps. The L5 dermatome covers the big toe and dorsum of the foot (except the lateral aspect), while the S1 dermatome covers the lateral foot and small toe. To remember this, think of S1 as the smallest one. Finally, the S2 and S3 dermatomes cover the genitalia.

      Understanding dermatomes and their landmarks can aid in diagnosing and treating various neurological conditions. The mnemonics provided can help in memorizing these important landmarks.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 137 - A 26-year-old female patient is being evaluated by her GP a couple of...

    Incorrect

    • A 26-year-old female patient is being evaluated by her GP a couple of weeks after recuperating from an incident. Although most of her injuries have healed, she still cannot utilize the muscles of mastication on the left side of her face. Which cranial nerve is likely to be accountable for this?

      Your Answer:

      Correct Answer: Left trigeminal motor nerve (CN V)

      Explanation:

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 138 - As a junior doctor in a GP surgery, you are requested to examine...

    Incorrect

    • As a junior doctor in a GP surgery, you are requested to examine an 82-year-old man who has reported a tremor in his left hand. What additional symptoms could indicate the presence of Parkinson's disease?

      Your Answer:

      Correct Answer: Bradykinesia and rigidity

      Explanation:

      Parkinson’s disease is characterized by three main symptoms: tremor at rest, bradykinesia, and rigidity. Nystagmus is not a typical feature of Parkinson’s disease, while chorea is more commonly associated with Huntington’s disease. Although ataxia may be present in Parkinson’s disease, it is more frequently seen in cases of cerebellar lesions.

      Parkinson’s disease is a progressive neurodegenerative disorder that occurs due to the degeneration of dopaminergic neurons in the substantia nigra. This leads to a classic triad of symptoms, including bradykinesia, tremor, and rigidity, which are typically asymmetrical. The disease is more common in men and is usually diagnosed around the age of 65. Bradykinesia is characterized by a poverty of movement, shuffling steps, and difficulty initiating movement. Tremors are most noticeable at rest and typically occur in the thumb and index finger. Rigidity can be either lead pipe or cogwheel, and other features include mask-like facies, flexed posture, and drooling of saliva. Psychiatric features such as depression, dementia, and sleep disturbances may also occur. Diagnosis is usually clinical, but if there is difficulty differentiating between essential tremor and Parkinson’s disease, 123I‑FP‑CIT single photon emission computed tomography (SPECT) may be considered.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 139 - A 62-year-old male is brought to the emergency room by the police. He...

    Incorrect

    • A 62-year-old male is brought to the emergency room by the police. He has a two-day history of increasing confusion, sweats, and aggression. He resides in a homeless hostel and has a history of alcohol abuse. However, he claims to have stopped drinking since being at the hostel in the last week.

      Upon examination, he appears markedly agitated, sweaty, and confused. He reports seeing things on the wall. Additionally, he exhibits slightly hyperreflexia and flexor plantar responses. What is the likely diagnosis?

      Your Answer:

      Correct Answer: Delirium tremens

      Explanation:

      The causes of septic shock are important to understand in order to provide appropriate treatment and improve patient outcomes. Septic shock can cause fever, hypotension, and renal failure, as well as tachypnea due to metabolic acidosis. However, it is crucial to rule out other conditions such as hyperosmolar hyperglycemic state or diabetic ketoacidosis, which have different symptoms and diagnostic criteria.

      While metformin can contribute to acidosis, it is unlikely to be the primary cause in this case. Diabetic patients may be prone to renal tubular acidosis, but this is not likely to be the cause of an acute presentation. Instead, a type IV renal tubular acidosis, characterized by hyporeninaemic hypoaldosteronism, may be a more likely association.

      Overall, it is crucial to carefully evaluate patients with septic shock and consider all possible causes of their symptoms. By ruling out other conditions and identifying the underlying cause of the acidosis, healthcare providers can provide targeted treatment and improve patient outcomes. Further research and education on septic shock and its causes can also help to improve diagnosis and treatment in the future.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 140 - A 45-year-old male patient complains of weakness and numbness in his right hand...

    Incorrect

    • A 45-year-old male patient complains of weakness and numbness in his right hand following a recent forearm injury. During the examination, it is observed that the ring and little fingers on his right hand are extended at the metacarpophalangeal joint and flexed at the interphalangeal joint. The patient also experiences a loss of sensation in the area of the right ring and little fingers, and Froment's sign is positive. Which nerve is likely to be damaged in this case?

      Your Answer:

      Correct Answer: Ulnar nerve

      Explanation:

      The metacarpophalangeal and interphalangeal joints exhibit a distinct presentation when the intrinsic muscles of the hand (specifically the lumbricals) are weakened. This condition is known as ‘ulnar claw hand’ since the ulnar nerve supplies the nerve impulses to the intrinsic muscles of the hand. Additionally, this nerve provides sensation to the medial two and a half fingers on both the palmar and dorsal surfaces. Trauma to the elbow can expose the ulnar nerve at this location.

      The ulnar nerve originates from the medial cord of the brachial plexus, specifically from the C8 and T1 nerve roots. It provides motor innervation to various muscles in the hand, including the medial two lumbricals, adductor pollicis, interossei, hypothenar muscles (abductor digiti minimi, flexor digiti minimi), and flexor carpi ulnaris. Sensory innervation is also provided to the medial 1 1/2 fingers on both the palmar and dorsal aspects. The nerve travels through the posteromedial aspect of the upper arm and enters the palm of the hand via Guyon’s canal, which is located superficial to the flexor retinaculum and lateral to the pisiform bone.

      The ulnar nerve has several branches that supply different muscles and areas of the hand. The muscular branch provides innervation to the flexor carpi ulnaris and the medial half of the flexor digitorum profundus. The palmar cutaneous branch arises near the middle of the forearm and supplies the skin on the medial part of the palm, while the dorsal cutaneous branch supplies the dorsal surface of the medial part of the hand. The superficial branch provides cutaneous fibers to the anterior surfaces of the medial one and one-half digits, and the deep branch supplies the hypothenar muscles, all the interosseous muscles, the third and fourth lumbricals, the adductor pollicis, and the medial head of the flexor pollicis brevis.

      Damage to the ulnar nerve at the wrist can result in a claw hand deformity, where there is hyperextension of the metacarpophalangeal joints and flexion at the distal and proximal interphalangeal joints of the 4th and 5th digits. There may also be wasting and paralysis of intrinsic hand muscles (except for the lateral two lumbricals), hypothenar muscles, and sensory loss to the medial 1 1/2 fingers on both the palmar and dorsal aspects. Damage to the nerve at the elbow can result in similar symptoms, but with the addition of radial deviation of the wrist. It is important to diagnose and treat ulnar nerve damage promptly to prevent long-term complications.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 141 - A 79-year-old woman is brought to the clinic by her son. Her memory...

    Incorrect

    • A 79-year-old woman is brought to the clinic by her son. Her memory has been declining for the past few months, and she has been experiencing frequent episodes of urinary incontinence. Additionally, she has been walking with a broad, shuffling gait. A CT head scan reveals bilateral enlargement of the lateral ventricles. You suspect normal pressure hydrocephalus, a condition caused by decreased absorption of cerebrospinal fluid (CSF). What structures are responsible for the absorption of CSF? You refer the patient to a neurologist for further evaluation.

      Your Answer:

      Correct Answer: Arachnoid villi

      Explanation:

      The arachnoid villi are responsible for absorbing cerebrospinal fluid into the venous sinuses of the brain. On the other hand, the choroid plexus produces and releases cerebrospinal fluid. The inferior colliculus is involved in the auditory pathway, while the corpus callosum allows communication between the left and right hemispheres of the brain. The pia mater is the innermost layer of the meninges and is impermeable to fluid. Normal pressure hydrocephalus is a condition that presents with gait abnormality, urinary incontinence, and dementia, and is characterized by dilation of the ventricular system on imaging.

      Cerebrospinal Fluid: Circulation and Composition

      Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.

      The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.

      The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 142 - A 43-year-old female comes to the ENT clinic with a history of constant...

    Incorrect

    • A 43-year-old female comes to the ENT clinic with a history of constant vertigo and right-sided deafness for the past year. She has no significant medical history. Upon conducting an audiogram, it is discovered that her right ear has reduced hearing to both bone and air conduction. During a cranial nerve exam, an absent corneal reflex is observed on the right side, and she has poor balance. Otoscopy of both ears is normal. What is the probable underlying pathology responsible for this patient's symptoms and signs?

      Your Answer:

      Correct Answer: Vestibular schwannoma (acoustic neuroma)

      Explanation:

      If a patient presents with loss of the corneal reflex, the likely diagnosis is vestibular schwannoma (acoustic neuroma). This is a noncancerous tumor that affects the vestibular portion of the 8th cranial nerve, leading to sensorineural deafness, tinnitus, and vertigo. As the tumor grows, it can also press on other cranial nerves. Loss of the corneal reflex is a classic sign of early trigeminal (cranial nerve 5) involvement, which is unlikely in any of the other listed conditions.

      Meniere’s disease is not the correct answer. This is a disorder of the middle ear that causes episodic vertigo, sensorineural hearing loss, and a sensation of aural fullness or pressure.

      Otosclerosis is also incorrect. This is an inherited condition that causes conductive deafness and tinnitus, typically presenting in patients aged 20-40 years.

      Vestibular mononeuritis is not the correct answer either. This condition is caused by inflammation of the vestibular nerve following a recent viral infection and presents with vertigo, but hearing is not affected.

      Vestibular schwannomas, also known as acoustic neuromas, make up about 5% of intracranial tumors and 90% of cerebellopontine angle tumors. These tumors typically present with a combination of vertigo, hearing loss, tinnitus, and an absent corneal reflex. The specific symptoms can be predicted based on which cranial nerves are affected. For example, cranial nerve VIII involvement can cause vertigo, unilateral sensorineural hearing loss, and unilateral tinnitus. Bilateral vestibular schwannomas are associated with neurofibromatosis type 2.

      If a vestibular schwannoma is suspected, it is important to refer the patient to an ear, nose, and throat specialist urgently. However, it is worth noting that these tumors are often benign and slow-growing, so observation may be appropriate initially. The diagnosis is typically confirmed with an MRI of the cerebellopontine angle, and audiometry is also important as most patients will have some degree of hearing loss. Treatment options include surgery, radiotherapy, or continued observation.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 143 - Transection of the radial nerve at the level of the axilla will result...

    Incorrect

    • Transection of the radial nerve at the level of the axilla will result in which of the following symptoms?

      Your Answer:

      Correct Answer: Loss of extension of the interphalangeal joints.

      Explanation:

      These could potentially prolong due to the presence of preserved lumbrical muscle activity.

      The Radial Nerve: Anatomy, Innervation, and Patterns of Damage

      The radial nerve is a continuation of the posterior cord of the brachial plexus, with root values ranging from C5 to T1. It travels through the axilla, posterior to the axillary artery, and enters the arm between the brachial artery and the long head of triceps. From there, it spirals around the posterior surface of the humerus in the groove for the radial nerve before piercing the intermuscular septum and descending in front of the lateral epicondyle. At the lateral epicondyle, it divides into a superficial and deep terminal branch, with the deep branch crossing the supinator to become the posterior interosseous nerve.

      The radial nerve innervates several muscles, including triceps, anconeus, brachioradialis, and extensor carpi radialis. The posterior interosseous branch innervates supinator, extensor carpi ulnaris, extensor digitorum, and other muscles. Denervation of these muscles can lead to weakness or paralysis, with effects ranging from minor effects on shoulder stability to loss of elbow extension and weakening of supination of prone hand and elbow flexion in mid prone position.

      Damage to the radial nerve can result in wrist drop and sensory loss to a small area between the dorsal aspect of the 1st and 2nd metacarpals. Axillary damage can also cause paralysis of triceps. Understanding the anatomy, innervation, and patterns of damage of the radial nerve is important for diagnosing and treating conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 144 - A 29-year-old male arrives at the emergency department after being involved in a...

    Incorrect

    • A 29-year-old male arrives at the emergency department after being involved in a car accident. During the neurological examination, a decreased sense of smell is observed, indicating possible damage to the olfactory nerve. What bone does the olfactory bulb pass through?

      Your Answer:

      Correct Answer: Ethmoid

      Explanation:

      The olfactory nerve is responsible solely for the sense of smell and its receptors are located in the nasal mucosa. It travels through the cribriform plate of the ethmoid bone to reach the olfactory bulb.

      The sphenoid bone is located too far back and the nasal bone only forms the outer edge of the nose, with no nerves passing through it.

      The lacrimal bone creates the inner wall of the eye socket, while the temporal bone is situated at the skull’s lateral and inferior borders.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 145 - A 29-year-old Caucasian female presented to her primary care physician complaining of left...

    Incorrect

    • A 29-year-old Caucasian female presented to her primary care physician complaining of left eye pain that has been bothering her for the past week. She also reported experiencing tingling sensations in her upper limbs and two episodes of weakness in her right arm that lasted for a few days before resolving. She noted that the weakness and tingling were exacerbated after taking a hot bath. What is the origin of the cells primarily impacted in this woman's condition?

      Your Answer:

      Correct Answer: Neural tube neuroepithelia

      Explanation:

      Multiple sclerosis is a neurodegenerative disorder caused by the loss of oligodendrocytes, which produce myelin in the central nervous system. These cells are derived from the neural tube neuroepithelial cells, not from mesenchymal cells, which develop into other tissue cells such as bone marrow, adipose tissue, and muscle cells. The neural crest cells give rise to the neurons of the peripheral nervous system and myelin-producing Schwann cells, while the mesoderm only gives rise to microglia during nervous system development. The notochord plays a role in inducing the overlying ectoderm to develop into the neuroectoderm and neural plate, and gives rise to the nucleus pulposus of the intervertebral disc. Ultimately, the oligodendrocytes are embryological derivatives of the neural tube neuroepithelia, which develop from the ectoderm overlying the notochord.

      Embryonic Development of the Nervous System

      The nervous system develops from the embryonic neural tube, which gives rise to the brain and spinal cord. The neural tube is divided into five regions, each of which gives rise to specific structures in the nervous system. The telencephalon gives rise to the cerebral cortex, lateral ventricles, and basal ganglia. The diencephalon gives rise to the thalamus, hypothalamus, optic nerves, and third ventricle. The mesencephalon gives rise to the midbrain and cerebral aqueduct. The metencephalon gives rise to the pons, cerebellum, and superior part of the fourth ventricle. The myelencephalon gives rise to the medulla and inferior part of the fourth ventricle.

      The neural tube is also divided into two plates: the alar plate and the basal plate. The alar plate gives rise to sensory neurons, while the basal plate gives rise to motor neurons. This division of the neural tube into different regions and plates is crucial for the proper development and function of the nervous system. Understanding the embryonic development of the nervous system is important for understanding the origins of neurological disorders and for developing new treatments for these disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 146 - A 60-year-old carpenter comes to your clinic complaining of back pain. He reports...

    Incorrect

    • A 60-year-old carpenter comes to your clinic complaining of back pain. He reports that this started a few weeks ago after lifting heavy wood. He experiences a sharp pain that travels from his lower back down the lateral aspect of his left thigh. Despite resting his leg, the pain persists. You suspect that he may have a herniated disc that is compressing his sciatic nerve and want to perform an examination to confirm the presence of sciatic nerve lesion features.

      What is the most probable feature that you will discover during the examination?

      Your Answer:

      Correct Answer: Right sided foot drop

      Explanation:

      Foot drop is a possible consequence of sciatic nerve damage. The patient in question may have a herniated disc caused by heavy lifting, which is compressing their sciatic nerve and leading to weakness in the foot dorsiflexors.

      If a person experiences pain when they abduct their hip, it could be due to damage to the superior gluteal nerve.

      Damage to the femoral nerve can cause pain when extending the knee, as well as pain when flexing the thigh.

      Femoral nerve damage can also result in loss of sensation over the medial aspect of the thigh, as well as the anterior aspect of the thigh and lower leg.

      Damage to the lateral cutaneous nerve of the thigh can cause loss of sensation over the posterior surface of the thigh, as well as the lateral surface of the thigh.

      Understanding Foot Drop: Causes and Examination

      Foot drop is a condition that occurs when the foot dorsiflexors become weak. This can be caused by various factors, including a common peroneal nerve lesion, L5 radiculopathy, sciatic nerve lesion, superficial or deep peroneal nerve lesion, or central nerve lesions. However, the most common cause is a common peroneal nerve lesion, which is often due to compression at the neck of the fibula. This can be triggered by certain positions, prolonged confinement, recent weight loss, Baker’s cysts, or plaster casts to the lower leg.

      To diagnose foot drop, a thorough examination is necessary. If the patient has an isolated peroneal neuropathy, there will be weakness of foot dorsiflexion and eversion, and reflexes will be normal. Weakness of hip abduction is suggestive of an L5 radiculopathy. Bilateral symptoms, fasciculations, or other abnormal neurological findings are indications for specialist referral.

      If foot drop is diagnosed, conservative management is appropriate. Patients should avoid leg crossing, squatting, and kneeling. Symptoms typically improve over 2-3 months.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 147 - A 75-year-old woman is involved in a car accident resulting in a complex...

    Incorrect

    • A 75-year-old woman is involved in a car accident resulting in a complex fracture of the distal part of her humerus and damage to the radial nerve. Which movement is likely to be the most affected?

      Your Answer:

      Correct Answer: Wrist extension

      Explanation:

      Elbow extension will remain unaffected as the triceps are not impacted. However, the most noticeable consequence will be the loss of wrist extension.

      The Radial Nerve: Anatomy, Innervation, and Patterns of Damage

      The radial nerve is a continuation of the posterior cord of the brachial plexus, with root values ranging from C5 to T1. It travels through the axilla, posterior to the axillary artery, and enters the arm between the brachial artery and the long head of triceps. From there, it spirals around the posterior surface of the humerus in the groove for the radial nerve before piercing the intermuscular septum and descending in front of the lateral epicondyle. At the lateral epicondyle, it divides into a superficial and deep terminal branch, with the deep branch crossing the supinator to become the posterior interosseous nerve.

      The radial nerve innervates several muscles, including triceps, anconeus, brachioradialis, and extensor carpi radialis. The posterior interosseous branch innervates supinator, extensor carpi ulnaris, extensor digitorum, and other muscles. Denervation of these muscles can lead to weakness or paralysis, with effects ranging from minor effects on shoulder stability to loss of elbow extension and weakening of supination of prone hand and elbow flexion in mid prone position.

      Damage to the radial nerve can result in wrist drop and sensory loss to a small area between the dorsal aspect of the 1st and 2nd metacarpals. Axillary damage can also cause paralysis of triceps. Understanding the anatomy, innervation, and patterns of damage of the radial nerve is important for diagnosing and treating conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 148 - A 28-year-old primigravida arrives at the emergency department with concerns about persistent fatigue...

    Incorrect

    • A 28-year-old primigravida arrives at the emergency department with concerns about persistent fatigue and muscle pains, despite being 15 weeks pregnant. She initially assumed the symptoms would resolve on their own, but has now developed a high fever. After undergoing several tests, serology reveals the presence of toxoplasmosis antibodies. Subsequent PCR testing confirms intrauterine toxoplasmosis.

      What is the increased risk for the baby in this scenario?

      Your Answer:

      Correct Answer: Cataracts

      Explanation:

      TORCH infections are one of the causes of neonatal cataracts, along with genetic syndromes like Down’s and Marfan’s. If not detected during pregnancy, neonatal cataracts can be identified by an absent red reflex in the newborn. Toxoplasmosis, if left untreated, can lead to visual defects such as cataracts and retinitis, as well as calcifications and hydrocephalus.

      Macrosomia, a condition where the baby is born with a higher than average birth weight, is associated with risk factors such as maternal obesity, previous diabetes diagnosis, and maternal age over 35. In contrast, TORCH infections are linked to intrauterine growth restriction.

      Neonatal lupus can develop if the mother has systemic lupus erythematosus, but it is not related to TORCH infections. Erythema toxicum neonatorum, a common and harmless rash that can appear in the days following birth, is not associated with TORCH infections.

      Understanding Cataracts

      A cataract is a common eye condition that occurs when the lens of the eye becomes cloudy, making it difficult for light to reach the retina and causing reduced or blurred vision. Cataracts are more common in women and increase in incidence with age, affecting 30% of individuals aged 65 and over. The most common cause of cataracts is the normal ageing process, but other possible causes include smoking, alcohol consumption, trauma, diabetes mellitus, long-term corticosteroids, radiation exposure, myotonic dystrophy, and metabolic disorders such as hypocalcaemia.

      Patients with cataracts typically experience a gradual onset of reduced vision, faded colour vision, glare, and halos around lights. Signs of cataracts include a defect in the red reflex, which is the reddish-orange reflection seen through an ophthalmoscope when a light is shone on the retina. Diagnosis is made through ophthalmoscopy and slit-lamp examination, which reveal a visible cataract.

      In the early stages, age-related cataracts can be managed conservatively with stronger glasses or contact lenses and brighter lighting. However, surgery is the only effective treatment for cataracts, involving the removal of the cloudy lens and replacement with an artificial one. Referral for surgery should be based on the presence of visual impairment, impact on quality of life, patient choice, and the risks and benefits of surgery. Complications following surgery may include posterior capsule opacification, retinal detachment, posterior capsule rupture, and endophthalmitis. Despite these risks, cataract surgery has a high success rate, with 85-90% of patients achieving corrected vision of 6/12 or better on a Snellen chart postoperatively.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 149 - A 65-year-old man presents to the clinic for a follow-up after experiencing a...

    Incorrect

    • A 65-year-old man presents to the clinic for a follow-up after experiencing a stroke two weeks ago. His strength is 5/5 in all four limbs and his deep muscle reflexes are normal. He has no visual deficits, but he is having difficulty answering questions correctly and his speech is filled with newly invented words, although it is fluent. Additionally, he is unable to read correctly. Which blood vessel is most likely involved in his stroke?

      Your Answer:

      Correct Answer: Inferior division of the left middle cerebral artery

      Explanation:

      The correct answer is that Wernicke’s area is supplied by the inferior division of the left middle cerebral artery. This type of stroke can result in Wernicke’s aphasia, which is characterized by poor comprehension but normal fluency of speech. Wernicke’s area is located in the temporal gyrus and is specifically supplied by the inferior division of the left middle cerebral artery.

      The other options provided are incorrect. A stroke in the basilar artery can result in the locked-in syndrome, which causes paralysis of the entire body except for eye movement. A stroke in the left anterior cerebral artery can cause behavioral changes, contralateral weakness, and contralateral sensory deficits. A stroke in the right posterior cerebral artery can cause visual deficits.

      Types of Aphasia: Understanding the Different Forms of Language Impairment

      Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.

      Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.

      Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.

      Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 150 - A 45-year-old obese woman has recently been diagnosed with idiopathic intracranial hypertension and...

    Incorrect

    • A 45-year-old obese woman has recently been diagnosed with idiopathic intracranial hypertension and is experiencing blurred vision. Her blood tests are normal, and a CT scan of her head shows no signs of bleeding, tumors, or hydrocephalus. During a lumbar puncture, her opening pressure is measured at 30cmH2O. Her vision continues to deteriorate, and she is transferred to a neurosurgical center where her intracranial pressure is measured at 40mmHg. What is the cerebral perfusion pressure of this patient?

      Your Answer:

      Correct Answer: 53

      Explanation:

      The calculation for cerebral perfusion pressure involves subtracting the intracranial pressure from the mean arterial pressure, resulting in a value of 53mmHg.

      Understanding Raised Intracranial Pressure

      As the brain and ventricles are enclosed by a rigid skull, any additional volume such as haematoma, tumour, or excessive cerebrospinal fluid (CSF) can lead to a rise in intracranial pressure (ICP). The normal ICP in adults in the supine position is 7-15 mmHg. Cerebral perfusion pressure (CPP) is the net pressure gradient causing cerebral blood flow to the brain, and it is calculated by subtracting ICP from mean arterial pressure.

      Raised intracranial pressure can be caused by various factors such as idiopathic intracranial hypertension, traumatic head injuries, infection, meningitis, tumours, and hydrocephalus. Its features include headache, vomiting, reduced levels of consciousness, papilloedema, and Cushing’s triad, which is characterized by widening pulse pressure, bradycardia, and irregular breathing.

      To investigate raised intracranial pressure, neuroimaging such as CT or MRI is key to determine the underlying cause. Invasive ICP monitoring can also be done by placing a catheter into the lateral ventricles of the brain to monitor the pressure, collect CSF samples, and drain small amounts of CSF to reduce the pressure. A cut-off of > 20 mmHg is often used to determine if further treatment is needed to reduce the ICP.

      Management of raised intracranial pressure involves investigating and treating the underlying cause, head elevation to 30º, IV mannitol as an osmotic diuretic, controlled hyperventilation to reduce pCO2 and vasoconstriction of the cerebral arteries, and removal of CSF through techniques such as drain from intraventricular monitor, repeated lumbar puncture, or ventriculoperitoneal shunt for hydrocephalus.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 151 - A 23-year-old man gets into a brawl and is stabbed in the back...

    Incorrect

    • A 23-year-old man gets into a brawl and is stabbed in the back of his right leg, with the knife piercing through the popliteal fossa. As a result, he suffers damage to his tibial nerve. Which muscle is the least likely to be affected by this injury?

      Your Answer:

      Correct Answer: Peroneus tertius

      Explanation:

      The Tibial Nerve: Muscles Innervated and Termination

      The tibial nerve is a branch of the sciatic nerve that begins at the upper border of the popliteal fossa. It has root values of L4, L5, S1, S2, and S3. This nerve innervates several muscles, including the popliteus, gastrocnemius, soleus, plantaris, tibialis posterior, flexor hallucis longus, and flexor digitorum brevis. These muscles are responsible for various movements in the lower leg and foot, such as plantar flexion, inversion, and flexion of the toes.

      The tibial nerve terminates by dividing into the medial and lateral plantar nerves. These nerves continue to innervate muscles in the foot, such as the abductor hallucis, flexor digitorum brevis, and quadratus plantae. The tibial nerve plays a crucial role in the movement and function of the lower leg and foot, and any damage or injury to this nerve can result in significant impairments in mobility and sensation.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 152 - An unconscious 18-year-old male has been airlifted to the hospital following a dirt...

    Incorrect

    • An unconscious 18-year-old male has been airlifted to the hospital following a dirt bike accident. The trauma team quickly takes him to the CT scanner where they notice signs of increased intracranial pressure. To manage this, they decide to administer a diuretic that is freely filtered through the renal tubules but not reabsorbed. Which diuretic would be appropriate in this situation? The team is awaiting the opinion of the neurosurgical team.

      Your Answer:

      Correct Answer: Mannitol (osmotic diuretic)

      Explanation:

      Patients with head injuries should be managed according to ATLS principles and extracranial injuries should be managed alongside cranial trauma. Different types of traumatic brain injury include extradural hematoma, subdural hematoma, and subarachnoid hemorrhage. Primary brain injury may be focal or diffuse, while secondary brain injury occurs when cerebral edema, ischemia, infection, tonsillar or tentorial herniation exacerbates the original injury. Management may include IV mannitol/furosemide, decompressive craniotomy, and ICP monitoring. Pupillary findings can provide information on the location and severity of the injury.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 153 - A 74-year-old man arrives at the emergency department with slurred speech and a...

    Incorrect

    • A 74-year-old man arrives at the emergency department with slurred speech and a drooping left side of his face. During cranial nerve examination, he is unable to smile on the left side but can close both eyes, raise both eyebrows symmetrically, and wrinkle his forehead. What is the location of the lesion responsible for this facial nerve palsy?

      Your Answer:

      Correct Answer: Right upper motor neuron

      Explanation:

      When there is weakness on one side of the face but the forehead remains unaffected (meaning the person can still raise their eyebrows and wrinkle their forehead), it is likely caused by an upper motor neuron lesion in the facial nerve on the opposite side of the weakness. This type of lesion is often the result of a stroke, brain tumor, or brain bleed. It is important to note that lower motor neuron lesions, such as those found in Bell’s palsy, do not spare the forehead and only affect one side of the face. A left upper motor neuron lesion would cause weakness on the right side of the face with forehead sparing. Damage to the zygomatic branch of the facial nerve does not result in forehead sparing.

      The facial nerve is responsible for supplying the muscles of facial expression, the digastric muscle, and various glandular structures. It also contains a few afferent fibers that originate in the genicular ganglion and are involved in taste. Bilateral facial nerve palsy can be caused by conditions such as sarcoidosis, Guillain-Barre syndrome, Lyme disease, and bilateral acoustic neuromas. Unilateral facial nerve palsy can be caused by these conditions as well as lower motor neuron issues like Bell’s palsy and upper motor neuron issues like stroke.

      The upper motor neuron lesion typically spares the upper face, specifically the forehead, while a lower motor neuron lesion affects all facial muscles. The facial nerve’s path includes the subarachnoid path, where it originates in the pons and passes through the petrous temporal bone into the internal auditory meatus with the vestibulocochlear nerve. The facial canal path passes superior to the vestibule of the inner ear and contains the geniculate ganglion at the medial aspect of the middle ear. The stylomastoid foramen is where the nerve passes through the tympanic cavity anteriorly and the mastoid antrum posteriorly, and it also includes the posterior auricular nerve and branch to the posterior belly of the digastric and stylohyoid muscle.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 154 - A 40-year-old male visits his doctor with concerns about his family history. His...

    Incorrect

    • A 40-year-old male visits his doctor with concerns about his family history. His father and paternal grandmother both developed Alzheimer's disease at the age of 68 and 75 respectively. Which allele is associated with an elevated risk, but not a guaranteed factor, for the onset of the disease?

      Your Answer:

      Correct Answer: E4

      Explanation:

      The primary genetic determinant of sporadic Alzheimer’s disease risk is the presence of polymorphic alleles in the APOE gene. Those who carry the ε4 allele are at the greatest risk.

      Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.

      The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.

      Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 155 - A 67-year-old male presents with a 3-week history of deteriorating vision in his...

    Incorrect

    • A 67-year-old male presents with a 3-week history of deteriorating vision in his left eye. During examination of the cranial nerves, it is observed that the left pupil is more constricted than the right. The patient experiences slight ptosis of the left eyelid. The patient reports dryness on the left side of the face with decreased sweating. There are no reports of reduced sweating elsewhere. The patient has no known medical history and lives independently with his family. He drinks 6 units per week and has a smoking history of 35 pack-years. Based on the neurological symptoms and history, where is the lesion most likely located?

      Your Answer:

      Correct Answer: Sympathetic chain

      Explanation:

      Horner’s syndrome is a condition that can be categorized into three types based on the location of the lesion. The first type is a central lesion that can occur anywhere from the hypothalamus to the synapse at T1. The second type is a preganglionic lesion that occurs between the synapse in the spinal cord to the superior cervical ganglion. The third type is a postganglionic lesion that occurs above the superior cervical ganglion.

      The level of anhidrosis, or lack of sweating, can help determine the location of the lesion. Anhidrosis is only seen in the first and second types of lesions. In first-type lesions, it affects the entire sympathetic region, while in second-type lesions, it only affects the face after the ganglion.

      In this case, the patient has anhidrosis of the face, suggesting a second-type lesion. The patient’s smoking history increases the likelihood of a Pancoast’s tumor, which compresses the sympathetic chain.

      Lesions in the medulla can present more dramatically, with more cranial nerve abnormalities and peripheral neurological signs. Lesions in the nerve fibers after the superior cervical ganglion typically present with ptosis and meiosis but without anhidrosis. Carotid artery dissection is a common cause of these types of lesions. Lesions in the cervical spine or hypothalamus would result in a more extensive disruption of peripheral neurology.

      Horner’s syndrome is a condition characterized by several features, including a small pupil (miosis), drooping of the upper eyelid (ptosis), a sunken eye (enophthalmos), and loss of sweating on one side of the face (anhidrosis). The cause of Horner’s syndrome can be determined by examining additional symptoms. For example, congenital Horner’s syndrome may be identified by a difference in iris color (heterochromia), while anhidrosis may be present in central or preganglionic lesions. Pharmacologic tests, such as the use of apraclonidine drops, can also be helpful in confirming the diagnosis and identifying the location of the lesion. Central lesions may be caused by conditions such as stroke or multiple sclerosis, while postganglionic lesions may be due to factors like carotid artery dissection or cluster headaches. It is important to note that the appearance of enophthalmos in Horner’s syndrome is actually due to a narrow palpebral aperture rather than true enophthalmos.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 156 - A 28-year-old woman has been brought to the emergency department via ambulance after...

    Incorrect

    • A 28-year-old woman has been brought to the emergency department via ambulance after being discovered unconscious in a nearby park, with a heroin-filled needle found nearby.

      During the examination, the patient's heart rate is recorded at 44/min, BP at 110/60 mmHg, and respiratory rate at 10. Upon checking her pupils, they are observed to be pinpoint.

      Which three G protein-coupled receptors are affected by the drug responsible for this?

      Your Answer:

      Correct Answer: Delta, mu and kappa

      Explanation:

      The three clinically relevant opioid receptors in the body are delta, mu, and kappa. These receptors are all G protein-coupled receptors and are responsible for the pharmacological actions of opioids. Based on the examination findings of bradycardia, bradypnoea, and pinpoint pupils, it is likely that the woman has experienced an opioid overdose. The answer GABA-A, delta and mu is not appropriate as the GABA-A receptor is a ligand-gated ion channel receptor for the inhibitory neurotransmitter GABA. Similarly, GABA-A, kappa and mu is not appropriate for the same reason. GABA-B, D-2 and kappa is also not appropriate as the GABA-B receptor is a G-protein-coupled receptor for the inhibitory neurotransmitter GABA, and the D-2 receptor is a G protein-coupled receptor for dopamine.

      Understanding Opioids: Types, Receptors, and Clinical Uses

      Opioids are a class of chemical compounds that act upon opioid receptors located within the central nervous system (CNS). These receptors are G-protein coupled receptors that have numerous actions throughout the body. There are three clinically relevant groups of opioid receptors: mu (µ), kappa (κ), and delta (δ) receptors. Endogenous opioids, such as endorphins, dynorphins, and enkephalins, are produced by specific cells within the CNS and their actions depend on whether µ-receptors or δ-receptors and κ-receptors are their main target.

      Drugs targeted at opioid receptors are the largest group of analgesic drugs and form the second and third steps of the WHO pain ladder of managing analgesia. The choice of which opioid drug to use depends on the patient’s needs and the clinical scenario. The first step of the pain ladder involves non-opioids such as paracetamol and non-steroidal anti-inflammatory drugs. The second step involves weak opioids such as codeine and tramadol, while the third step involves strong opioids such as morphine, oxycodone, methadone, and fentanyl.

      The strength, routes of administration, common uses, and significant side effects of these opioid drugs vary. Weak opioids have moderate analgesic effects without exposing the patient to as many serious adverse effects associated with strong opioids. Strong opioids have powerful analgesic effects but are also more liable to cause opioid-related side effects such as sedation, respiratory depression, constipation, urinary retention, and addiction. The sedative effects of opioids are also useful in anesthesia with potent drugs used as part of induction of a general anesthetic.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 157 - A 22-year-old man is discovered unresponsive in his apartment after intentionally overdosing on...

    Incorrect

    • A 22-year-old man is discovered unresponsive in his apartment after intentionally overdosing on barbiturates. He is rushed to the hospital with sirens blaring.

      Upon being transported, he awakens and is evaluated with a Glasgow Coma Scale (GCS) score of 11 (E3V3M5).

      What is the primary type of ion channel that this medication targets to produce its sedative properties?

      Your Answer:

      Correct Answer: Chloride

      Explanation:

      Barbiturates prolong the opening of chloride channels

      Barbiturates are strong sedatives that have been used in the past as anesthetics and anti-epileptic drugs. They work in the central nervous system by binding to a subunit of the GABA receptor, which opens chloride channels. This results in an influx of chloride ions and hyperpolarization of the neuronal resting potential.

      The passage of calcium, magnesium, potassium, and sodium ions through channels, both actively and passively, is crucial for neuronal and peripheral function and is also targeted by other pharmacological agents.

      Barbiturates are commonly used in the treatment of anxiety and seizures, as well as for inducing anesthesia. They work by enhancing the action of GABAA, a neurotransmitter that helps to calm the brain. Specifically, barbiturates increase the duration of chloride channel opening, which allows more chloride ions to enter the neuron and further inhibit its activity. This is in contrast to benzodiazepines, which increase the frequency of chloride channel opening. A helpful mnemonic to remember this difference is Frequently Bend – During Barbeque or Barbiturates increase duration & Benzodiazepines increase frequency. Overall, barbiturates are an important class of drugs that can help to manage a variety of conditions by modulating the activity of GABAA in the brain.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 158 - A 25-year-old man is having an inguinal hernia repair done with local anaesthesia....

    Incorrect

    • A 25-year-old man is having an inguinal hernia repair done with local anaesthesia. During the surgery, the surgeon comes across a bleeding site and uses diathermy to manage it. After a minute or so, the patient reports feeling a burning pain from the heat at the surgical site. Which type of nerve fibers are responsible for transmitting this signal?

      Your Answer:

      Correct Answer: C fibres

      Explanation:

      Mechanothermal stimuli are transmitted slowly through C fibres, while A α fibres transmit motor proprioception information, A β fibres transmit touch and pressure information, and B fibres are responsible for autonomic functions.

      Neurons and Synaptic Signalling

      Neurons are the building blocks of the nervous system and are made up of dendrites, a cell body, and axons. They can be classified by their anatomical structure, axon width, and function. Neurons communicate with each other at synapses, which consist of a presynaptic membrane, synaptic gap, and postsynaptic membrane. Neurotransmitters are small chemical messengers that diffuse across the synaptic gap and activate receptors on the postsynaptic membrane. Different neurotransmitters have different effects, with some causing excitation and others causing inhibition. The deactivation of neurotransmitters varies, with some being degraded by enzymes and others being reuptaken by cells. Understanding the mechanisms of neuronal communication is crucial for understanding the functioning of the nervous system.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 159 - A 32-year-old man is given morphine after an appendicectomy and subsequently experiences constipation....

    Incorrect

    • A 32-year-old man is given morphine after an appendicectomy and subsequently experiences constipation. What is the most likely explanation for this occurrence?

      Your Answer:

      Correct Answer: Stimulation of µ receptors

      Explanation:

      Morphine treatment often leads to constipation, which is a prevalent side effect. This is due to the activation of µ receptors.

      Morphine is a potent painkiller that belongs to the opiate class of drugs. It works by binding to the four types of opioid receptors in the central nervous system and gastrointestinal tract, resulting in its therapeutic effects. However, it can also cause unwanted side effects such as nausea, constipation, respiratory depression, and addiction if used for a prolonged period.

      Morphine can be taken orally or injected intravenously, and its effects can be reversed with naloxone. Despite its effectiveness in managing pain, it is important to use morphine with caution and under the guidance of a healthcare professional to minimize the risk of adverse effects.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 160 - A 70-year-old male on the geriatric ward has been awakened by a headache....

    Incorrect

    • A 70-year-old male on the geriatric ward has been awakened by a headache. Later in the morning, he began to vomit. He has a history of prostate cancer, a stroke 3 years ago, and high blood pressure. During the examination, papilloedema was observed on fundoscopy.

      What is the strongest association with this ophthalmic finding?

      Your Answer:

      Correct Answer: Bilateral optic disc swelling

      Explanation:

      Papilloedema is almost always present in both eyes.

      Understanding Papilloedema

      Papilloedema is a condition characterized by swelling of the optic disc due to increased pressure within the skull. This condition typically affects both eyes. During a fundoscopy, several signs may be observed, including venous engorgement, loss of venous pulsation, blurring of the optic disc margin, elevation of the optic disc, loss of the optic cup, and Paton’s lines.

      There are several potential causes of papilloedema, including space-occupying lesions such as tumors or vascular abnormalities, malignant hypertension, idiopathic intracranial hypertension, hydrocephalus, and hypercapnia. In rare cases, papilloedema may be caused by hypoparathyroidism and hypocalcaemia or vitamin A toxicity.

      It is important to diagnose and treat papilloedema promptly, as it can lead to permanent vision loss if left untreated. Treatment typically involves addressing the underlying cause of the increased intracranial pressure, such as surgery to remove a tumor or medication to manage hypertension.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 161 - Mary, a 65-year-old female, arrives at the emergency department after experiencing a stroke....

    Incorrect

    • Mary, a 65-year-old female, arrives at the emergency department after experiencing a stroke. She has decreased sensation and mobility in her left upper and lower extremities.

      During the examination, the emergency department physician conducts a comprehensive neurological assessment of Mary's upper and lower limbs. Among the various indications, the doctor observes hyperreflexia of the left ankle reflex.

      Which nerve roots are responsible for this reflex?

      Your Answer:

      Correct Answer: S1, S2

      Explanation:

      The ankle reflex is a test that checks the function of the S1 and S2 nerve roots by tapping the Achilles tendon with a tendon hammer. This reflex is often delayed in individuals with L5 and S1 disk prolapses.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 162 - A 44-year-old man visits the urology clinic with a complaint of erectile dysfunction....

    Incorrect

    • A 44-year-old man visits the urology clinic with a complaint of erectile dysfunction. What happens when there is an increase in parasympathetic stimulation in the penis?

      Your Answer:

      Correct Answer: Erection

      Explanation:

      To remember the process of erection, use the memory aid P for parasympathetic points, S for sympathetic shoots. This means that parasympathetic stimulation leads to an erection, while sympathetic stimulation causes ejaculation, detumescence, and vasospasm of the pudendal artery. Additionally, it causes the smooth muscle in the epididymis and vas to contract to convey the ejaculate.

      Understanding Penile Erection and Priapism

      Penile erection is a complex physiological process that involves the autonomic and somatic nervous systems. The sympathetic nerves, originating from T11-L2, and parasympathetic nerves, originating from S2-4, join to form the pelvic plexus. Parasympathetic discharge causes erection, while sympathetic discharge causes ejaculation and detumescence. Somatic nerves are supplied by dorsal penile and pudendal nerves, and efferent signals are relayed from Onufs nucleus (S2-4) to innervate ischiocavernosus and bulbocavernosus muscles. Autonomic discharge to the penis triggers the veno-occlusive mechanism, which leads to the flow of arterial blood into the penile sinusoidal spaces. During the detumescence phase, arteriolar constriction reduces arterial inflow and allows venous return to normalize.

      Priapism is a prolonged, unwanted erection lasting more than four hours in the absence of sexual desire. It is classified into low flow priapism, high flow priapism, and recurrent priapism. Low flow priapism is the most common type and is due to veno-occlusion, resulting in high intracavernosal pressures. It is often painful and requires emergency treatment if present for more than four hours. High flow priapism is due to unregulated arterial blood flow and usually presents as a semi-rigid, painless erection. Recurrent priapism is typically seen in sickle cell disease, most commonly of the high flow type. Causes of priapism include intracavernosal drug therapies, blood disorders such as leukemia and sickle cell disease, neurogenic disorders such as spinal cord transection, and trauma to the penis resulting in arterio-venous malformations. Management includes ice packs/cold showers, aspiration of blood from corpora or intracavernosal alpha adrenergic agonists for low flow priapism. Delayed therapy of low flow priapism may result in erectile dysfunction.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 163 - A 35-year-old woman presents with a 2-day history of vision difficulty. She is...

    Incorrect

    • A 35-year-old woman presents with a 2-day history of vision difficulty. She is experiencing peripheral vision loss and feels nauseous and dizzy when attempting to look towards the sides. Two months ago, she had a tingling sensation in her left foot. During physical examination, there is a limitation in adduction of both eyes and nystagmus with lateral gaze. An MRI of the brain is scheduled.

      Based on the current clinical presentation and likely diagnosis, what is the expected location of lesions on the MRI scan?

      Your Answer:

      Correct Answer: Paramedian area of midbrain & pons

      Explanation:

      The medial longitudinal fasciculus is located in the midbrain and pons and connects cranial nerves III, IV, and VI to facilitate eye movements. Multiple sclerosis can affect this area, causing episodic neurological symptoms and bilateral internuclear ophthalmoplegia, which is characterized by the inability to adduct the affected eye and results in nystagmus and double vision.

      The oculomotor nucleus, located in the midbrain, controls the movement of several eye muscles. A lesion here can cause the eye to point downward and outward, resulting in diplopia and difficulty accommodating.

      The trochlear nerve nucleus, also located in the midbrain, controls the superior oblique muscle. A lesion here can cause diplopia, especially on downward gaze, and a characteristic head tilt towards the unaffected side.

      The abducens nerve nucleus, located in the pons, controls the lateral rectus muscle. A lesion here can cause the affected eye to be unable to abduct, resulting in nystagmus and diplopia.

      The facial nerve nucleus, located in the pons, controls the muscles of the face. A lesion here can cause facial muscle palsies.

      Understanding Internuclear Ophthalmoplegia

      Internuclear ophthalmoplegia is a condition that affects the horizontal movement of the eyes. It is caused by a lesion in the medial longitudinal fasciculus (MLF), which is responsible for interconnecting the IIIrd, IVth, and VIth cranial nuclei. This area is located in the paramedian region of the midbrain and pons. The main feature of this condition is impaired adduction of the eye on the same side as the lesion, along with horizontal nystagmus of the abducting eye on the opposite side.

      The most common causes of internuclear ophthalmoplegia are multiple sclerosis and vascular disease. It is important to note that this condition can also be a sign of other underlying neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 164 - A 50-year-old male comes to the emergency department complaining of left sided vision...

    Incorrect

    • A 50-year-old male comes to the emergency department complaining of left sided vision loss, headache and scalp tenderness. During the examination, he has a fever of 38.5°C, jaw claudication and a relative afferent pupillary defect is observed. The medical team suspects giant cell arteritis and initiates high dose prednisone treatment.

      What structural abnormality is responsible for the relative afferent pupillary defect?

      Your Answer:

      Correct Answer: Ischaemic optic neuropathy

      Explanation:

      A relative afferent pupillary defect is a sign that there may be an optic nerve lesion or a severe retinal disease. In cases of giant cell arteritis (GCA), an inflammatory process of the blood vessels in the head can lead to ischaemic optic neuropathy, which can cause a RAPD. However, blindness, corneal opacity, and photophobia alone are not enough to cause a RAPD. While optic neuritis can also result in a RAPD, this is not typically seen in GCA and may instead indicate a first presentation of multiple sclerosis.

      A relative afferent pupillary defect, also known as the Marcus-Gunn pupil, can be identified through the swinging light test. This condition is caused by a lesion that is located anterior to the optic chiasm, which can be found in the optic nerve or retina. When light is shone on the affected eye, it appears to dilate while the normal eye remains unchanged.

      The causes of a relative afferent pupillary defect can vary. For instance, it may be caused by a detachment of the retina or optic neuritis, which is often associated with multiple sclerosis. The pupillary light reflex pathway involves the afferent pathway, which starts from the retina and goes through the optic nerve, lateral geniculate body, and midbrain. The efferent pathway, on the other hand, starts from the Edinger-Westphal nucleus in the midbrain and goes through the oculomotor nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 165 - A 45-year-old patient, Maria, arrives at the emergency department (ED) with complaints of...

    Incorrect

    • A 45-year-old patient, Maria, arrives at the emergency department (ED) with complaints of right-sided facial weakness upon waking up. Maria's right eyebrow and the right corner of her mouth are drooped. Additionally, Maria is experiencing difficulty tolerating the noise in the ED, stating that everything sounds excessively loud.

      What reflex is expected to be absent based on the most probable diagnosis?

      Your Answer:

      Correct Answer: Corneal reflex

      Explanation:

      The corneal reflex is a reflex where the eye blinks in response to corneal stimulation. The afferent limb is the ophthalmic branch of the trigeminal nerve, while the efferent limb is the facial nerve. This reflex is correctly identified in the scenario.

      However, the most likely diagnosis for Iole’s symptoms is Bell’s palsy, which is a palsy of the facial nerve (CN VII) that presents with unilateral facial weakness, forehead involvement, and hyperacusis. The gag reflex, jaw jerk reflex, and pupillary light reflex are not relevant to this scenario.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 166 - A 24-year-old gymnast comes to see you with complaints of left wrist pain...

    Incorrect

    • A 24-year-old gymnast comes to see you with complaints of left wrist pain that worsens with weight bearing. She reports that this has been going on for the past month since she began intense training for her gymnastics competition. During your physical examination, you observe swelling around her left wrist and note that the pain is exacerbated by hyperextension. You suspect that this may be due to impingement of the extensor retinaculum caused by continuous pressure on wrist extension during gymnastics.

      To which bone is this structure attached?

      Your Answer:

      Correct Answer: Triquetral

      Explanation:

      The extensor retinaculum is a thickened fascia that secures the tendons of the extensor muscles in place. It connects to the triquetral and pisiform bones on the medial side and the end of the radius on the lateral side.

      The radius bone is situated laterally to the ulna bone and articulates with the humerus proximally and the ulna distally.

      The trapezium bone is a carpal bone located beneath the thumb joint, forming the carpometacarpal joint.

      The capitate bone is the largest carpal bone in the hand and is positioned at the center of the distal row of carpal bones.

      The scaphoid bone is located in the two rows of carpal bones and is frequently fractured during a fall on an outstretched hand.

      The Extensor Retinaculum and its Related Structures

      The extensor retinaculum is a thick layer of deep fascia that runs across the back of the wrist, holding the long extensor tendons in place. It attaches to the pisiform and triquetral bones medially and the end of the radius laterally. The retinaculum has six compartments that contain the extensor muscle tendons, each with its own synovial sheath.

      Several structures are related to the extensor retinaculum. Superficial to the retinaculum are the basilic and cephalic veins, the dorsal cutaneous branch of the ulnar nerve, and the superficial branch of the radial nerve. Deep to the retinaculum are the tendons of the extensor carpi ulnaris, extensor digiti minimi, extensor digitorum, extensor indicis, extensor pollicis longus, extensor carpi radialis longus, extensor carpi radialis brevis, abductor pollicis longus, and extensor pollicis brevis.

      The radial artery also passes between the lateral collateral ligament of the wrist joint and the tendons of the abductor pollicis longus and extensor pollicis brevis. Understanding the topography of these structures is important for diagnosing and treating wrist injuries and conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 167 - A 40-year-old male comes to the emergency department complaining of a severe headache...

    Incorrect

    • A 40-year-old male comes to the emergency department complaining of a severe headache that started today. He reports that the pain is situated at the back of his head and worsens when he coughs and bends forward. He has vomited twice and is experiencing some blurred vision. An MRI scan is ordered, which reveals a downward herniation of the cerebellar tonsils.

      What brain structure has the cerebellar tonsils herniated into, based on the most probable diagnosis?

      Your Answer:

      Correct Answer: Foramen magnum

      Explanation:

      Arnold-Chiari malformation refers to the cerebellar tonsils herniating downwards through the foramen magnum. This condition has four types, with type one being the most prevalent.

      The fourth ventricle is situated in front of the cerebellum and serves as a pathway for cerebrospinal fluid (CSF) from the cerebral aqueduct.

      The thalamus is a central structure located between the midbrain and cerebral cortex. It comprises various nuclei that transmit sensory and motor signals to the cerebral cortex.

      The cerebral aqueduct is positioned between the third and fourth ventricle and facilitates the flow of CSF.

      The hypothalamus is a subdivision of the diencephalon that primarily regulates homeostasis.

      Understanding Arnold-Chiari Malformation

      Arnold-Chiari malformation is a condition where the cerebellar tonsils are pushed downwards through the foramen magnum. This can occur either due to a congenital defect or as a result of trauma. The condition can lead to non-communicating hydrocephalus, which is caused by the obstruction of cerebrospinal fluid outflow. Patients with Arnold-Chiari malformation may experience headaches and syringomyelia, which is a condition where fluid-filled cysts form in the spinal cord.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 168 - A 15-year-old boy comes to see his GP accompanied by his mother who...

    Incorrect

    • A 15-year-old boy comes to see his GP accompanied by his mother who is worried about his facial expressions. The boy has been experiencing difficulty using the muscles in his face for the past month. He also reports weakness in his arms, but no pain.

      During the examination, the GP observes that the boy's facial muscles are weak, he struggles to puff out his cheeks, and has difficulty raising his arms in the classroom. Additionally, the boy has abnormally large gastrocnemius muscles and his scapulae are 'winged'.

      Which nerve is responsible for innervating the muscle that prevents the scapulae from forming a 'winged' position?

      Your Answer:

      Correct Answer: Long thoracic nerve

      Explanation:

      The Serratus Anterior Muscle and its Innervation

      The serratus anterior muscle is a muscle that originates from the first to eighth ribs and inserts along the entire medial border of the scapulae. Its main function is to protract the scapula, allowing for anteversion of the upper limb. This muscle is innervated by the long thoracic nerve, which receives innervation from roots C5-C7 of the brachial plexus.

      Based on the patient’s clinical history, it is likely that they are suffering from muscular dystrophy, specifically facioscapulohumeral muscular dystrophy. The long thoracic nerve is solely responsible for innervating the serratus anterior muscle, making it a key factor in the diagnosis of this condition.

      Other nerves of the brachial plexus include the axillary nerve, which mainly innervates the deltoid muscles and provides sensory innervation to the skin covering the deltoid muscle. The upper and lower subscapular nerves are branches of the posterior cord of the brachial plexus and provide motor innervation to the subscapularis muscle. The thoracodorsal nerve is also a branch of the posterior cord of the brachial plexus and provides motor innervation to the latissimus dorsi.

      the innervation of the serratus anterior muscle and its relationship to other nerves of the brachial plexus is important in diagnosing and treating conditions that affect this muscle.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 169 - A 10-year-old boy has been referred to a pediatric neurologist due to a...

    Incorrect

    • A 10-year-old boy has been referred to a pediatric neurologist due to a persistent headache for the past two months. Initially, his mother thought it was due to school stress, but the boy has also been experiencing accidents while riding his bike. He has reported an inability to see his friends when they ride next to him. The boy was born via C-section and has had normal development and is doing well in school. Upon examination, the doctor discovered a visual defect where the boy cannot perceive the two temporal visual fields. If this boy undergoes surgery for his condition, which part of his hypothalamus would be affected, causing weight gain after surgery?

      Your Answer:

      Correct Answer: Ventromedial area of the hypothalamus

      Explanation:

      The child displayed symptoms consistent with a craniopharyngioma, a common brain tumor in children that can be mistaken for a pituitary adenoma due to the presence of bitemporal hemianopia. Craniopharyngiomas originate from the Rathke’s pouch and often invade the pituitary and hypothalamus, particularly the ventromedial area.

      1: The ventromedial area of the hypothalamus, along with the paraventricular nucleus, is responsible for synthesizing antidiuretic hormone and oxytocin, which are then stored and released from the posterior hypothalamus.
      2: The posterior hypothalamus generates heat to maintain core body temperature.
      3: The anterior hypothalamus dissipates heat to cool down the body and prevent a rise in temperature that could harm the body’s internal environment.
      4: If the ventromedial area of the hypothalamus is removed during surgery to treat a craniopharyngioma, the patient may experience uninhibited hunger and significant weight gain, as this area controls the satiety center.
      5: The supraoptic nucleus, along with the aforementioned ventromedial area, is responsible for synthesizing antidiuretic hormone and oxytocin, which are stored and released from the posterior hypothalamus.

      Understanding Visual Field Defects

      Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.

      When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.

      Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.

      Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 170 - A 35-year-old man is brought to the emergency department with suspected spinal trauma...

    Incorrect

    • A 35-year-old man is brought to the emergency department with suspected spinal trauma following a car accident. He presents with back pain and pain in his right leg. Initial vital signs reveal a blood pressure of 125/83 mmHg and a heart rate of 83bpm. Upon examination, there is bruising on his chest and an obvious deformity in his right leg. Later that day, he suddenly experiences a severe headache and appears flushed, sweating profusely. His vital signs now show a blood pressure of 162/97mmHg and a heart rate of 51. What is the level of his injury?

      Your Answer:

      Correct Answer: T5

      Explanation:

      Autonomic dysreflexia can occur if the spinal cord injury is at or above the T5 level. This condition is characterized by symptoms such as headache, sweating, hypertension, and bradycardia, which can be triggered by any afferent sympathetic signal, such as urinary retention or faecal impaction. A spinal injury at the level of L1 or S1 is too low to cause autonomic dysreflexia, but may affect bladder and bowel control and the use of the hip and legs.

      Autonomic dysreflexia is a condition that occurs in patients who have suffered a spinal cord injury at or above the T6 spinal level. It is caused by a reflex response triggered by various stimuli, such as faecal impaction or urinary retention, which sends signals through the thoracolumbar outflow. However, due to the spinal cord lesion, the usual parasympathetic response is prevented, leading to an unbalanced physiological response. This response is characterized by extreme hypertension, flushing, and sweating above the level of the cord lesion, as well as agitation. If left untreated, severe consequences such as haemorrhagic stroke can occur. The management of autonomic dysreflexia involves removing or controlling the stimulus and treating any life-threatening hypertension and/or bradycardia.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 171 - During an inguinal hernia repair, the surgeon identifies a small nerve while mobilizing...

    Incorrect

    • During an inguinal hernia repair, the surgeon identifies a small nerve while mobilizing the cord structures at the level of the superficial inguinal ring. Which nerve is this most likely to be if the patient is in their 60s?

      Your Answer:

      Correct Answer: Ilioinguinal

      Explanation:

      Neuropathic pain after inguinal hernia surgery may be caused by the entrapment of the ilioinguinal nerve. This nerve travels through the superficial inguinal ring and is commonly encountered during hernia surgery. The iliohypogastric nerve, on the other hand, passes through the aponeurosis of the external oblique muscle above the superficial inguinal ring.

      The Ilioinguinal Nerve: Anatomy and Function

      The ilioinguinal nerve is a nerve that arises from the first lumbar ventral ramus along with the iliohypogastric nerve. It passes through the psoas major and quadratus lumborum muscles before piercing the internal oblique muscle and passing deep to the aponeurosis of the external oblique muscle. The nerve then enters the inguinal canal and passes through the superficial inguinal ring to reach the skin.

      The ilioinguinal nerve supplies the muscles of the abdominal wall through which it passes. It also provides sensory innervation to the skin and fascia over the pubic symphysis, the superomedial part of the femoral triangle, the surface of the scrotum, and the root and dorsum of the penis or labia majora in females.

      Understanding the anatomy and function of the ilioinguinal nerve is important for medical professionals, as damage to this nerve can result in pain and sensory deficits in the areas it innervates. Additionally, knowledge of the ilioinguinal nerve is relevant in surgical procedures involving the inguinal region.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 172 - A 65-year-old man arrives at the emergency department with a sudden onset of...

    Incorrect

    • A 65-year-old man arrives at the emergency department with a sudden onset of aphasia lasting for 15 minutes. His partner mentions a similar incident occurred a month ago, but he did not seek medical attention as it resolved on its own.

      Upon point of care testing, his capillary blood glucose level is 6.5 mmol/L (3.9 - 7.1). An urgent CT scan of his brain is conducted, which reveals no signs of acute infarct. However, upon returning from the scan, he regains full speech and denies experiencing any other neurological symptoms.

      What aspect of the episode suggests a diagnosis of transient ischaemic attack?

      Your Answer:

      Correct Answer: There was no evidence of acute infarction on CT imaging, and the episode was brief

      Explanation:

      The definition of a TIA has been updated to focus on tissue-based factors rather than time-based ones. It is now defined as a brief episode of neurological dysfunction caused by focal brain, spinal cord, or retinal ischemia, without acute infarction. The new guidelines emphasize the importance of focal neurology and negative brain imaging in diagnosing a TIA, which typically lasts less than an hour. This is a departure from the previous definition, which focused on symptoms resolving within 24 hours and led to delays in diagnosis and treatment. Patients may have a history of stereotyped episodes preceding a TIA. Focal neurology is a hallmark of TIA, which can affect motor, sensory, aphasic, or visual areas of the brain. In cases where isolated aphasia lasts only 30 minutes and brain imaging shows no infarction, the patient has had a TIA rather than a stroke.

      A transient ischaemic attack (TIA) is a brief period of neurological deficit caused by a vascular issue, lasting less than an hour. The original definition of a TIA was based on time, but it is now recognized that even short periods of ischaemia can result in pathological changes to the brain. Therefore, a new ’tissue-based’ definition is now used. The clinical features of a TIA are similar to those of a stroke, but the symptoms resolve within an hour. Possible features include unilateral weakness or sensory loss, aphasia or dysarthria, ataxia, vertigo, or loss of balance, visual problems, sudden transient loss of vision in one eye (amaurosis fugax), diplopia, and homonymous hemianopia.

      NICE recommends immediate antithrombotic therapy, giving aspirin 300 mg immediately unless the patient has a bleeding disorder or is taking an anticoagulant. If aspirin is contraindicated, management should be discussed urgently with the specialist team. Specialist review is necessary if the patient has had more than one TIA or has a suspected cardioembolic source or severe carotid stenosis. Urgent assessment within 24 hours by a specialist stroke physician is required if the patient has had a suspected TIA in the last 7 days. Referral for specialist assessment should be made as soon as possible within 7 days if the patient has had a suspected TIA more than a week previously. The person should be advised not to drive until they have been seen by a specialist.

      Neuroimaging should be done on the same day as specialist assessment if possible. MRI is preferred to determine the territory of ischaemia or to detect haemorrhage or alternative pathologies. Carotid imaging is necessary as atherosclerosis in the carotid artery may be a source of emboli in some patients. All patients should have an urgent carotid doppler unless they are not a candidate for carotid endarterectomy.

      Antithrombotic therapy is recommended, with clopidogrel being the first-line treatment. Aspirin + dipyridamole should be given to patients who cannot tolerate clopidogrel. Carotid artery endarterectomy should only be considered if the patient has suffered a stroke or TIA in the carotid territory and is not severely disabled. It should only be recommended if carotid stenosis is greater

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 173 - A 54-year-old woman comes to her GP complaining of a gradual increase in...

    Incorrect

    • A 54-year-old woman comes to her GP complaining of a gradual increase in numbness and tingling in her right hand's ring and little fingers. She works as a librarian and denies any physical strain or injury. There is no significant medical history or family history of similar symptoms.

      The woman reports that her symptoms are causing her to take frequent breaks from work and is worried about losing her job.

      What is the primary pathology most commonly associated with her symptoms?

      Your Answer:

      Correct Answer: Nerve entrapment of the medial epicondyle

      Explanation:

      The correct answer is nerve entrapment of the medial epicondyle. The ulnar nerve provides sensory innervation to the palmar and dorsal aspects of the 4th and 5th digits, and it travels posterior to the medial epicondyle through the ulnar tunnel. Medial epicondylitis, an over-use injury of the flexor-pronator muscles, can cause ulnar nerve damage.

      The other answer choices are incorrect. The radial nerve supplies dorsal sensation to the thumb and wrist extension, while the ulnar nerve arises from C8-T1 of the brachial plexus. Fracture of the humeral shaft is associated with radial nerve damage, not ulnar nerve damage.

      The ulnar nerve originates from the medial cord of the brachial plexus, specifically from the C8 and T1 nerve roots. It provides motor innervation to various muscles in the hand, including the medial two lumbricals, adductor pollicis, interossei, hypothenar muscles (abductor digiti minimi, flexor digiti minimi), and flexor carpi ulnaris. Sensory innervation is also provided to the medial 1 1/2 fingers on both the palmar and dorsal aspects. The nerve travels through the posteromedial aspect of the upper arm and enters the palm of the hand via Guyon’s canal, which is located superficial to the flexor retinaculum and lateral to the pisiform bone.

      The ulnar nerve has several branches that supply different muscles and areas of the hand. The muscular branch provides innervation to the flexor carpi ulnaris and the medial half of the flexor digitorum profundus. The palmar cutaneous branch arises near the middle of the forearm and supplies the skin on the medial part of the palm, while the dorsal cutaneous branch supplies the dorsal surface of the medial part of the hand. The superficial branch provides cutaneous fibers to the anterior surfaces of the medial one and one-half digits, and the deep branch supplies the hypothenar muscles, all the interosseous muscles, the third and fourth lumbricals, the adductor pollicis, and the medial head of the flexor pollicis brevis.

      Damage to the ulnar nerve at the wrist can result in a claw hand deformity, where there is hyperextension of the metacarpophalangeal joints and flexion at the distal and proximal interphalangeal joints of the 4th and 5th digits. There may also be wasting and paralysis of intrinsic hand muscles (except for the lateral two lumbricals), hypothenar muscles, and sensory loss to the medial 1 1/2 fingers on both the palmar and dorsal aspects. Damage to the nerve at the elbow can result in similar symptoms, but with the addition of radial deviation of the wrist. It is important to diagnose and treat ulnar nerve damage promptly to prevent long-term complications.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 174 - A 49-year-old male presents to the ENT clinic with a 9-month history of...

    Incorrect

    • A 49-year-old male presents to the ENT clinic with a 9-month history of constant right-sided deafness and a sensation of feeling off-balance. He has no significant medical history. Upon examination, an audiogram reveals reduced hearing to both bone and air conduction on the right side. A cranial nerve exam shows an absent corneal reflex on the right side and poor balance. Otoscopy of both ears is unremarkable. What is the probable underlying pathology responsible for this patient's symptoms and signs?

      Your Answer:

      Correct Answer: Vestibular schwannoma (acoustic neuroma)

      Explanation:

      Vestibular schwannomas, also known as acoustic neuromas, make up about 5% of intracranial tumors and 90% of cerebellopontine angle tumors. These tumors typically present with a combination of vertigo, hearing loss, tinnitus, and an absent corneal reflex. The specific symptoms can be predicted based on which cranial nerves are affected. For example, cranial nerve VIII involvement can cause vertigo, unilateral sensorineural hearing loss, and unilateral tinnitus. Bilateral vestibular schwannomas are associated with neurofibromatosis type 2.

      If a vestibular schwannoma is suspected, it is important to refer the patient to an ear, nose, and throat specialist urgently. However, it is worth noting that these tumors are often benign and slow-growing, so observation may be appropriate initially. The diagnosis is typically confirmed with an MRI of the cerebellopontine angle, and audiometry is also important as most patients will have some degree of hearing loss. Treatment options include surgery, radiotherapy, or continued observation.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 175 - A 42-year-old with Sjögren's syndrome visits his doctor with a complaint of severe...

    Incorrect

    • A 42-year-old with Sjögren's syndrome visits his doctor with a complaint of severe dry mouth, causing him to wake up frequently at night to drink water and affecting his work performance. He has a history of trabeculectomy for glaucoma. The doctor prescribes Salagen (pilocarpine) 5 mg.

      What is a known side effect of this medication?

      Your Answer:

      Correct Answer: Blurred vision

      Explanation:

      Pilocarpine, a cholinergic parasympathomimetic agent, is known to cause blurred vision as an adverse effect. This medication stimulates muscarinic receptors, leading to increased secretion by exocrine glands and contraction of the iris sphincter and ciliary muscles when applied topically to the eyes. It is important to note that hypohidrosis, tachycardia, photophobia, and mydriasis are adverse effects of muscarinic receptor antagonists like atropine and are not associated with pilocarpine.

      Acute angle closure glaucoma (AACG) is a type of glaucoma where there is a rise in intraocular pressure (IOP) due to a blockage in the outflow of aqueous humor. This condition is more likely to occur in individuals with hypermetropia, pupillary dilation, and lens growth associated with aging. Symptoms of AACG include severe pain, decreased visual acuity, a hard and red eye, haloes around lights, and a semi-dilated non-reacting pupil. AACG is an emergency and requires urgent referral to an ophthalmologist. The initial medical treatment involves a combination of eye drops, such as a direct parasympathomimetic, a beta-blocker, and an alpha-2 agonist, as well as intravenous acetazolamide to reduce aqueous secretions. Definitive management involves laser peripheral iridotomy, which creates a tiny hole in the peripheral iris to allow aqueous humor to flow to the angle.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 176 - A 55-year-old male comes to the GP complaining of recent changes in his...

    Incorrect

    • A 55-year-old male comes to the GP complaining of recent changes in his vision. He became aware of this while reading a book. He denies any ocular discomfort, redness, or vision loss. During the eye examination, you observe that his right eye is elevated and turned outward.

      What other symptom is commonly linked to the probable diagnosis?

      Your Answer:

      Correct Answer: Vertical diplopia

      Explanation:

      Fourth nerve palsy is characterized by vertical diplopia, which is often noticed when reading or going downstairs. The trochlear nerve lesion causes the affected eye to appear upward and rotate out when looking straight ahead. On the other hand, third nerve palsy causes ptosis, where the upper eyelid droops, and the affected eye is in a ‘down and out’ position. Exophthalmos, or bulging of the eye, is a symptom of Grave’s disease, a type of thyrotoxicosis. Other symptoms of Grave’s disease include ophthalmoplegia, thyroid acropachy, and pretibial myxoedema. Mydriasis, or pupil dilation, can be caused by third nerve palsy, drugs like cocaine, and a phaeochromocytoma.

      Understanding Fourth Nerve Palsy

      Fourth nerve palsy is a condition that affects the superior oblique muscle, which is responsible for depressing the eye and moving it inward. One of the main features of this condition is vertical diplopia, which is double vision that occurs when looking straight ahead. This is often noticed when reading a book or going downstairs. Another symptom is subjective tilting of objects, also known as torsional diplopia. Patients may also develop a head tilt, which they may or may not be aware of. When looking straight ahead, the affected eye appears to deviate upwards and is rotated outwards. Understanding the symptoms of fourth nerve palsy can help individuals seek appropriate treatment and management for this condition.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 177 - A 35-year-old man visits his doctor with complaints of blurry vision that has...

    Incorrect

    • A 35-year-old man visits his doctor with complaints of blurry vision that has been ongoing for the past two months. The blurriness initially started in his right eye but has now spread to his left eye as well. He denies experiencing any pain or discharge from his eyes but admits to occasionally seeing specks and flashes in his vision.

      During the physical examination, the doctor notices needle injection scars on the patient's forearm. After some reluctance, the patient admits to having a history of heroin use. Upon fundoscopy, the doctor observes white lesions surrounded by areas of hemorrhagic necrotic areas in the patient's retina.

      Which organism is most likely responsible for causing this patient's eye condition?

      Your Answer:

      Correct Answer: Cytomegalovirus

      Explanation:

      Understanding Chorioretinitis and Its Causes

      Chorioretinitis is a medical condition that affects the retina and choroid, which are the two layers of tissue at the back of the eye. This condition is characterized by inflammation and damage to these tissues, which can lead to vision loss and other complications. There are several possible causes of chorioretinitis, including syphilis, cytomegalovirus, toxoplasmosis, sarcoidosis, and tuberculosis.

      Syphilis is a sexually transmitted infection caused by the bacterium Treponema pallidum. It can affect various parts of the body, including the eyes, and can lead to chorioretinitis if left untreated. Cytomegalovirus is a common virus that can cause chorioretinitis in people with weakened immune systems, such as those with HIV/AIDS. Toxoplasmosis is a parasitic infection that can be contracted from contaminated food or water, and can also cause chorioretinitis.

      Sarcoidosis is a condition that causes inflammation in various parts of the body, including the eyes. It can lead to chorioretinitis as well as other eye problems such as uveitis and optic neuritis. Tuberculosis is a bacterial infection that can affect the lungs and other parts of the body, including the eyes. It can cause chorioretinitis as well as other eye problems such as iritis and scleritis.

      In summary, chorioretinitis is a serious eye condition that can lead to vision loss and other complications. It can be caused by various infections and inflammatory conditions, including syphilis, cytomegalovirus, toxoplasmosis, sarcoidosis, and tuberculosis. Early diagnosis and treatment are essential for preventing further damage and preserving vision.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 178 - In which of the following cranial bones does the foramen spinosum lie? ...

    Incorrect

    • In which of the following cranial bones does the foramen spinosum lie?

      Your Answer:

      Correct Answer: Sphenoid bone

      Explanation:

      The sphenoid bone contains the foramen spinosum, through which the middle meningeal artery and vein pass.

      Foramina of the Base of the Skull

      The base of the skull contains several openings called foramina, which allow for the passage of nerves, blood vessels, and other structures. The foramen ovale, located in the sphenoid bone, contains the mandibular nerve, otic ganglion, accessory meningeal artery, and emissary veins. The foramen spinosum, also in the sphenoid bone, contains the middle meningeal artery and meningeal branch of the mandibular nerve. The foramen rotundum, also in the sphenoid bone, contains the maxillary nerve.

      The foramen lacerum, located in the sphenoid bone, is initially occluded by a cartilaginous plug and contains the internal carotid artery, nerve and artery of the pterygoid canal, and the base of the medial pterygoid plate. The jugular foramen, located in the temporal bone, contains the inferior petrosal sinus, glossopharyngeal, vagus, and accessory nerves, sigmoid sinus, and meningeal branches from the occipital and ascending pharyngeal arteries.

      The foramen magnum, located in the occipital bone, contains the anterior and posterior spinal arteries, vertebral arteries, and medulla oblongata. The stylomastoid foramen, located in the temporal bone, contains the stylomastoid artery and facial nerve. Finally, the superior orbital fissure, located in the sphenoid bone, contains the oculomotor nerve, recurrent meningeal artery, trochlear nerve, lacrimal, frontal, and nasociliary branches of the ophthalmic nerve, and abducent nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 179 - Sarah, a 65-year-old woman, undergoes a routine MRI scan of her head due...

    Incorrect

    • Sarah, a 65-year-old woman, undergoes a routine MRI scan of her head due to persistent headaches. The scan reveals a small lesion situated on the right side of the cerebellum. Although Sarah does not exhibit any neurological symptoms at present, she is worried about the potential development of symptoms if the lesion is left untreated.

      What part of the body is most likely to experience symptoms in Sarah's situation?

      Your Answer:

      Correct Answer: Left side of his body

      Explanation:

      If Mark has a unilateral cerebellar lesion, he is likely to experience symptoms on the same side of his body as the lesion, which would be the left side in this case. The signs associated with cerebellar lesions include dysdiadochokinesia & dysmetria, ataxia, nystagmus, intention tremor, slurred speech, and hypotonia, and they would be more pronounced on the affected side of the body. As the lesion grows and affects both hemispheres, both sides of the body may become affected, but initially, left-sided symptoms are more likely. It is unlikely that Mark would develop right-sided symptoms, as this would be contralateral to the lesion. The location of the lesion within each hemisphere determines whether the upper or lower parts of the body are more affected.

      Cerebellar syndrome is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. When there is damage or injury to one side of the cerebellum, it can cause symptoms on the same side of the body. These symptoms can be remembered using the mnemonic DANISH, which stands for Dysdiadochokinesia, Dysmetria, Ataxia, Nystagmus, Intention tremour, Slurred staccato speech, and Hypotonia.

      There are several possible causes of cerebellar syndrome, including genetic conditions like Friedreich’s ataxia and ataxia telangiectasia, neoplastic growths like cerebellar haemangioma, strokes, alcohol use, multiple sclerosis, hypothyroidism, and certain medications or toxins like phenytoin or lead poisoning. In some cases, cerebellar syndrome may be a paraneoplastic condition, meaning it is a secondary effect of an underlying cancer like lung cancer. It is important to identify the underlying cause of cerebellar syndrome in order to provide appropriate treatment and management.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 180 - A 55-year-old male with a history of cirrhosis presents to the neurology clinic...

    Incorrect

    • A 55-year-old male with a history of cirrhosis presents to the neurology clinic with his spouse. The spouse reports observing rapid, involuntary jerky movements in the patient's body, which you suspect to be chorea. What is the most probable cause of this?

      Your Answer:

      Correct Answer: Wilson's disease

      Explanation:

      Wilson’s disease can cause chorea, which is characterised by involuntary, rapid, jerky movements that move from one area of the body to the next. Parkinson’s disease, hypothyroidism, and cerebellar syndrome have different symptoms and are not associated with chorea.

      Chorea: Involuntary Jerky Movements

      Chorea is a medical condition characterized by involuntary, rapid, and jerky movements that can occur in any part of the body. Athetosis, on the other hand, refers to slower and sinuous movements of the limbs. Both conditions are caused by damage to the basal ganglia, particularly the caudate nucleus.

      There are various underlying causes of chorea, including genetic disorders such as Huntington’s disease and Wilson’s disease, autoimmune diseases like systemic lupus erythematosus (SLE) and anti-phospholipid syndrome, and rheumatic fever, which can lead to Sydenham’s chorea. Certain medications like oral contraceptive pills, L-dopa, and antipsychotics can also trigger chorea. Other possible causes include neuroacanthocytosis, pregnancy-related chorea gravidarum, thyrotoxicosis, polycythemia rubra vera, and carbon monoxide poisoning.

      In summary, chorea is a medical condition that causes involuntary, jerky movements in the body. It can be caused by various factors, including genetic disorders, autoimmune diseases, medications, and other medical conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 181 - An 80-year-old man arrives at the emergency department with sudden difficulty in speech,...

    Incorrect

    • An 80-year-old man arrives at the emergency department with sudden difficulty in speech, but is otherwise asymptomatic. Upon taking his medical history, it is noted that he is having trouble generating fluent speech, although the meaning of his speech is preserved and appropriate to the questions he is being asked. His Glasgow coma score is 15/15 and cranial nerves examination is unremarkable. Additionally, he has power 5/5 in all four limbs, and his tone, sensation, coordination, and reflexes are normal. A CT head scan reveals an ischaemic stroke in the left lateral aspect of the frontal lobe. Which vessel occlusion is responsible for his symptoms?

      Your Answer:

      Correct Answer: Superior left middle cerebral artery

      Explanation:

      Broca’s area is located in the left inferior frontal gyrus and is supplied by the superior division of the left middle cerebral artery. If this artery becomes occluded, it can result in an acute onset of expressive aphasia, which is the type of aphasia that this man is experiencing.

      It is important to note that Wernicke’s area is supplied by the inferior left middle cerebral artery, and occlusion of this branch would result in receptive aphasia instead of expressive aphasia.

      The external carotid arteries supply blood to the face and neck, not the brain.

      Occlusion of an internal carotid artery typically causes amaurosis fugax and does not supply blood to Broca’s area, so it would not result in expressive aphasia.

      The anterior cerebral arteries supply the antero-medial areas of each hemisphere of the brain, but they do not have a temporal branch and do not supply Broca’s area, which is located on the temporal aspect of the frontal lobe.

      Types of Aphasia: Understanding the Different Forms of Language Impairment

      Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.

      Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.

      Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.

      Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 182 - A 65-year-old patient reports to their physician with a complaint of taste loss....

    Incorrect

    • A 65-year-old patient reports to their physician with a complaint of taste loss. After taking a thorough medical history, the doctor notes no recent infections. However, the patient does mention being able to taste normally when only using the tip of their tongue, such as when licking ice cream.

      Which cranial nerve is impacted in this situation?

      Your Answer:

      Correct Answer: Glossopharyngeal nerve

      Explanation:

      The loss of taste in the posterior third of the tongue is due to a problem with the glossopharyngeal nerve (CN IX). This is because the patient can taste when licking the ice cream, indicating that the anterior two-thirds of the tongue are functioning normally. The facial nerve also provides taste sensation, but only to the anterior two-thirds of the tongue, so it is not responsible for the loss of taste in the posterior third. The hypoglossal nerve is not involved in taste sensation, but rather in motor innervation of the tongue. The olfactory nerve innervates the nose, not the tongue, and there is no indication of a problem with the patient’s sense of smell.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 183 - A 45-year-old female patient attends a neurology follow-up consultation. Her medical records indicate...

    Incorrect

    • A 45-year-old female patient attends a neurology follow-up consultation. Her medical records indicate impairment to a cranial nerve that arises from the anterior olive of the medulla oblongata.

      What is the most probable area of impact in this patient as a result of the nerve damage?

      Your Answer:

      Correct Answer: Deviation of the tongue

      Explanation:

      The hypoglossal nerve arises anterior to the olive of the medulla oblongata and is responsible for innervating the muscles of the tongue. CN IX, X, and XI, on the other hand, emerge posterior to the olive. Hypoglossal nerve palsy can cause ipsilateral tongue deviation towards the side of the lesion.

      It is important to note that the lateral rectus muscle is supplied by CN VI, which emerges from the junction of the pons and medulla. The glossopharyngeal nerve (CN IX) is responsible for the sensory/afferent pathway of the gag reflex, while the vagus nerve (CN X) regulates the autonomic function of the cardiac muscle. Both CN IX and CN X arise posterior to the olive.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 184 - A 14-year-old boy arrives at the emergency department with his mother. He has...

    Incorrect

    • A 14-year-old boy arrives at the emergency department with his mother. He has been experiencing severe headaches upon waking for the past two mornings. The pain subsides when he gets out of bed, but he has been feeling nauseated and has vomited three times this morning. There is no history of trauma. Upon ophthalmoscopy, bilateral papilloedema is observed. A CT head scan reveals a mass invading the fourth ventricle. Although the mass is reducing the diameter of the median aperture, it does not completely block it. What is the space into which cerebrospinal fluid (CSF) flows from the fourth ventricle through the median aperture (foramen of Magendie)?

      Your Answer:

      Correct Answer: Cisterna magna

      Explanation:

      The correct answer is the cisterna magna, which is a subarachnoid cistern located between the cerebellum and medulla. The fourth ventricle receives CSF from the third ventricle via the cerebral aqueduct (of Sylvius) and CSF can leave the fourth ventricle through one of four openings, including the median aperture (foramen of Magendie) that drains CSF into the cisterna magna. CSF is circulated throughout the subarachnoid space, but it is not present in the extradural or subdural spaces. The third ventricle communicates with the lateral ventricles anteriorly via the interventricular foramina and with the fourth ventricle posteriorly via the cerebral aqueduct (of Sylvius). The superior sagittal sinus is a large venous sinus that allows the absorption of CSF. A patient with symptoms and signs suggestive of raised ICP may have various causes, including mass lesions and neoplasms.

      Cerebrospinal Fluid: Circulation and Composition

      Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.

      The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.

      The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 185 - A 89-year-old diabetic man with known vascular dementia is reporting a loss of...

    Incorrect

    • A 89-year-old diabetic man with known vascular dementia is reporting a loss of sensation on the left side of his body to his caregivers.

      During his cranial nerve examination, no abnormalities were found. However, upon neurological examination of his upper and lower limbs, there is a significant sensory loss to light touch, vibration, and pain on the right side. Additionally, he is unable to detect changes in temperature and his joint position sense is impaired on the right side. A CT head scan reveals an infarction in the region of the lateral thalamus on the left side.

      Which specific lateral thalamic nucleus has been affected by this stroke?

      Your Answer:

      Correct Answer: Ventral posterior

      Explanation:

      Injury to the lateral section of the ventral posterior nucleus located in the thalamus can impact the perception of bodily sensations such as touch, pain, proprioception, pressure, and vibration.

      The Thalamus: Relay Station for Motor and Sensory Signals

      The thalamus is a structure located between the midbrain and cerebral cortex that serves as a relay station for motor and sensory signals. Its main function is to transmit these signals to the cerebral cortex, which is responsible for processing and interpreting them. The thalamus is composed of different nuclei, each with a specific function. The lateral geniculate nucleus relays visual signals, while the medial geniculate nucleus transmits auditory signals. The medial portion of the ventral posterior nucleus (VML) is responsible for facial sensation, while the ventral anterior/lateral nuclei relay motor signals. Finally, the lateral portion of the ventral posterior nucleus is responsible for body sensation, including touch, pain, proprioception, pressure, and vibration. Overall, the thalamus plays a crucial role in the transmission of sensory and motor information to the brain, allowing us to perceive and interact with the world around us.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 186 - A 30-year-old woman presents with an absent corneal reflex on cranial nerve examination....

    Incorrect

    • A 30-year-old woman presents with an absent corneal reflex on cranial nerve examination. The examining neurologist suspects a lesion affecting either the afferent or efferent limb of this reflex. Which two cranial nerves should be considered as potential culprits?

      Your Answer:

      Correct Answer: Trigeminal and facial nerve

      Explanation:

      The trigeminal nerve’s ophthalmic branch serves as the input or arriving limb in the corneal reflex, while the facial nerve acts as the output or exiting limb.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 187 - A 16-year-old male comes to the emergency department with a shoulder injury following...

    Incorrect

    • A 16-year-old male comes to the emergency department with a shoulder injury following a football tackle.

      During the examination, it is discovered that he has a dislocated shoulder, weakness in elbow flexion, weakness in supination, and a loss of sensation on the lateral side of his forearm.

      Which nerve is most likely to have been damaged?

      Your Answer:

      Correct Answer: Musculocutaneous nerve

      Explanation:

      When the musculocutaneous nerve is injured, it can cause weakness in elbow flexion and supination, as well as sensory loss on the outer side of the forearm. Other nerves in the arm have different functions, such as the median nerve which controls many of the flexor muscles in the forearm and provides sensation to the palm and fingers, the radial nerve which controls the triceps and extensor muscles in the back of the forearm and provides sensation to the back of the arm and hand, and the axillary nerve which controls the deltoid and teres minor muscles and provides sensation to the lower part of the deltoid muscle. The musculocutaneous nerve also has a branch that provides sensation to the outer part of the forearm.

      Understanding the Brachial Plexus and Cutaneous Sensation of the Upper Limb

      The brachial plexus is a network of nerves that originates from the anterior rami of C5 to T1. It is divided into five sections: roots, trunks, divisions, cords, and branches. To remember these sections, a common mnemonic used is Real Teenagers Drink Cold Beer.

      The roots of the brachial plexus are located in the posterior triangle and pass between the scalenus anterior and medius muscles. The trunks are located posterior to the middle third of the clavicle, with the upper and middle trunks related superiorly to the subclavian artery. The lower trunk passes over the first rib posterior to the subclavian artery. The divisions of the brachial plexus are located at the apex of the axilla, while the cords are related to the axillary artery.

      The branches of the brachial plexus provide cutaneous sensation to the upper limb. This includes the radial nerve, which provides sensation to the posterior arm, forearm, and hand; the median nerve, which provides sensation to the palmar aspect of the thumb, index, middle, and half of the ring finger; and the ulnar nerve, which provides sensation to the palmar and dorsal aspects of the fifth finger and half of the ring finger.

      Understanding the brachial plexus and its branches is important in diagnosing and treating conditions that affect the upper limb, such as nerve injuries and neuropathies. It also helps in understanding the cutaneous sensation of the upper limb and how it relates to the different nerves of the brachial plexus.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 188 - A 30-year-old woman visits the doctor's office complaining of nausea and vomiting. Upon...

    Incorrect

    • A 30-year-old woman visits the doctor's office complaining of nausea and vomiting. Upon taking a pregnancy test, it is discovered that she is indeed pregnant. Can you identify the location of the chemoreceptor trigger zone?

      Your Answer:

      Correct Answer: Area postrema (medulla)

      Explanation:

      The vomiting process is initiated by the chemoreceptor trigger zone, which receives signals from various sources such as the gastrointestinal tract, hormones, and drugs. This zone is located in the area postrema, which is situated on the floor of the 4th ventricle in the medulla. It is noteworthy that the area postrema is located outside the blood-brain barrier. The nucleus of tractus solitarius, which is also located in the medulla, contains autonomic centres that play a role in the vomiting reflex. This nucleus receives signals from the chemoreceptor trigger zone. The vomiting centres in the brain receive inputs from different areas, including the gastrointestinal tract and the vestibular system of the inner ear.

      Vomiting is the involuntary act of expelling the contents of the stomach and sometimes the intestines. This is caused by a reverse peristalsis and abdominal contraction. The vomiting center is located in the medulla oblongata and is activated by receptors in various parts of the body. These include the labyrinthine receptors in the ear, which can cause motion sickness, the over distention receptors in the duodenum and stomach, the trigger zone in the central nervous system, which can be affected by drugs such as opiates, and the touch receptors in the throat. Overall, vomiting is a reflex action that is triggered by various stimuli and is controlled by the vomiting center in the brainstem.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 189 - A 25 year old male arrives at the Emergency Department after being struck...

    Incorrect

    • A 25 year old male arrives at the Emergency Department after being struck in the back of the head with a baseball bat. He reports a headache and has a laceration on his occiput. He is alert and oriented, following commands and able to provide a detailed description of the incident.

      What is his Glasgow coma scale (GCS)?

      Your Answer:

      Correct Answer: 15

      Explanation:

      The GCS score for this patient is 654, which stands for Motor (6 points), Verbal (5 points), and Eye opening (4 points). This scoring system is used to evaluate a patient’s level of consciousness by assessing their response to voice, eye movements, and motor function.

      GCS is frequently used in patients with head injuries to monitor changes in their neurological status, which may indicate swelling or bleeding.

      In this case, the patient’s eyes are open (4 out of 4), she is fully oriented in time, place, and person (5 out of 5), and she is able to follow commands (6 out of 6).

      Understanding the Glasgow Coma Scale for Adults

      The Glasgow Coma Scale (GCS) is a tool used to assess the level of consciousness in adults who have suffered a brain injury or other neurological condition. It is based on three components: motor response, verbal response, and eye opening. Each component is scored on a scale from 1 to 6, with a higher score indicating a better level of consciousness.

      The motor response component assesses the patient’s ability to move in response to stimuli. A score of 6 indicates that the patient is able to obey commands, while a score of 1 indicates no movement at all.

      The verbal response component assesses the patient’s ability to communicate. A score of 5 indicates that the patient is fully oriented, while a score of 1 indicates no verbal response at all.

      The eye opening component assesses the patient’s ability to open their eyes. A score of 4 indicates that the patient is able to open their eyes spontaneously, while a score of 1 indicates no eye opening at all.

      The GCS score is expressed as a combination of the scores from each component, with the motor response score listed first, followed by the verbal response score, and then the eye opening score. For example, a GCS score of 13, M5 V4 E4 at 21:30 would indicate that the patient had a motor response score of 5, a verbal response score of 4, and an eye opening score of 4 at 9:30 pm.

      Overall, the Glasgow Coma Scale is a useful tool for healthcare professionals to assess the level of consciousness in adults with neurological conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 190 - A 51-year-old man arrives at the emergency department with complaints of tunnel vision...

    Incorrect

    • A 51-year-old man arrives at the emergency department with complaints of tunnel vision that started this morning. He has been experiencing occasional headaches for the past 8 weeks and has been taking paracetamol to manage the pain. Apart from these symptoms, he reports no other issues. During the cranial nerve examination, bitemporal hemianopia is observed, with no other abnormalities detected. What is the most probable location of injury in the optic pathway?

      Your Answer:

      Correct Answer: Optic chiasm

      Explanation:

      The optic chiasm is the correct location for a bitemporal hemianopia visual field defect. This is because the fibres supplying the temporal images from the medial half of the retinas cross over at this site. Pituitary masses are commonly associated with this type of visual field defect, although they may present differently in real-world cases. Headaches are also a common symptom of pituitary masses. Other visual field defects may present in different locations and have different causes.

      Understanding Visual Field Defects

      Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.

      When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.

      Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.

      Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 191 - A patient in their 50s presents with acute onset of slurred speech and...

    Incorrect

    • A patient in their 50s presents with acute onset of slurred speech and weakness on the left side of their body. During examination, you observe weakness in their left arm and face. Despite the slurred speech, the patient is able to comprehend and respond to your questions. Which of the following sites is the most probable location of the lesion causing dysarthria?

      Your Answer:

      Correct Answer: Corticobulbar tract

      Explanation:

      The corticobulbar tract is responsible for motor innervation to the cranial nerves, including the hypoglossal nerve that controls the tongue. A lesion in this tract can cause dysarthria, which is the inability to articulate speech. Other cranial nerve signs, such as facial paralysis and difficulty swallowing, may also occur.

      Wernicke’s area is involved in language comprehension and understanding, and lesions in this area can result in receptive dysphasia. Patients with receptive dysphasia may speak fluently but their sentences may not make sense.

      The primary sensory cortex, located in the parietal lobe, receives sensory innervation. Lesions in this area can cause loss of sensation, proprioception, fine touch, and vibration sense on the contralateral side.

      Broca’s area, found in the frontal lobe, is associated with expressive dysphasia. This type of dysphasia is characterized by difficulty producing language, resulting in labored and non-fluent speech.

      The occipital lobe, responsible for visual processing, can be affected by lesions that cause homonymous hemianopia, agnosias, and cortical blindness.

      Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.

      In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 192 - A 75-year-old woman has experienced a TIA during her hospital stay. An ultrasound...

    Incorrect

    • A 75-year-old woman has experienced a TIA during her hospital stay. An ultrasound revealed an 80% blockage in one of her carotid arteries, leading to a carotid endarterectomy. After the procedure, the doctor examines the patient and notices that when asked to stick out her tongue, it deviates towards the left side.

      Which cranial nerve has been affected in this scenario?

      Your Answer:

      Correct Answer: Right hypoglossal nerve

      Explanation:

      When the hypoglossal nerve is damaged, the tongue deviates towards the side of the lesion. This is because the genioglossus muscle, which normally pushes the tongue to the opposite side, is weakened. In the case of a carotid endarterectomy, the hypoglossal nerve may be damaged as it passes through the hypoglossal canal and down the neck. A good memory aid is the tongue never lies as it points towards the side of the lesion. The correct answer in this case is the right hypoglossal nerve, as the patient’s tongue deviates towards the right. Lesions of the left glossopharyngeal nerve, right glossopharyngeal nerve, left hypoglossal nerve, and left trigeminal nerve would result in different symptoms and are therefore incorrect answers.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 193 - A 58-year-old man has arrived at the emergency department via ambulance following a...

    Incorrect

    • A 58-year-old man has arrived at the emergency department via ambulance following a sudden onset of symptoms during lunch with his daughter. He reports feeling extremely dizzy and nauseous, and has since lost hearing in his left ear and the ability to move the left side of his face. An urgent CT scan reveals a thrombus blocking an artery in his brain. Which artery is most likely affected by the thrombus?

      Your Answer:

      Correct Answer: Anterior inferior cerebellar artery

      Explanation:

      The correct answer is the anterior inferior cerebellar artery, as sudden onset vertigo and vomiting, ipsilateral facial paralysis, and deafness are all symptoms of lesions in this area.

      The middle cerebral artery is an incorrect answer, as lesions in this area cause contralateral hemiparesis and sensory loss, contralateral homonymous hemianopia, and aphasia.

      The posterior cerebral artery is also an incorrect answer, as lesions in this area cause contralateral homonymous hemianopia with macular sparing and visual agnosia.

      Similarly, the posterior inferior cerebellar artery is an incorrect answer, as lesions in this area cause ipsilateral facial pain and temperature loss, contralateral limb/torso pain and temperature loss, ataxia, and nystagmus.

      Stroke can affect different parts of the brain depending on which artery is affected. If the anterior cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the lower extremities being more affected than the upper. If the middle cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the upper extremities being more affected than the lower. They may also experience vision loss and difficulty with language. If the posterior cerebral artery is affected, the person may experience vision loss and difficulty recognizing objects.

      Lacunar strokes are a type of stroke that are strongly associated with hypertension. They typically present with isolated weakness or loss of sensation on one side of the body, or weakness with difficulty coordinating movements. They often occur in the basal ganglia, thalamus, or internal capsule.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 194 - A 3-year-old is brought to a paediatrician for evaluation of an insatiable appetite...

    Incorrect

    • A 3-year-old is brought to a paediatrician for evaluation of an insatiable appetite and aggressive behaviour. During the physical examination, the child is found to have almond-shaped eyes and a thin upper lip. The diagnosis of Prader-Willi syndrome is made, which is a genetic disorder that is believed to impact the development of the hypothalamus.

      What is the embryonic origin of the hypothalamus?

      Your Answer:

      Correct Answer: Diencephalon

      Explanation:

      The hypothalamus originates from the diencephalon, not the dicephalon. The telencephalon gives rise to other parts of the brain, while the mesencephalon, metencephalon, and myelencephalon give rise to different structures.

      Embryonic Development of the Nervous System

      The nervous system develops from the embryonic neural tube, which gives rise to the brain and spinal cord. The neural tube is divided into five regions, each of which gives rise to specific structures in the nervous system. The telencephalon gives rise to the cerebral cortex, lateral ventricles, and basal ganglia. The diencephalon gives rise to the thalamus, hypothalamus, optic nerves, and third ventricle. The mesencephalon gives rise to the midbrain and cerebral aqueduct. The metencephalon gives rise to the pons, cerebellum, and superior part of the fourth ventricle. The myelencephalon gives rise to the medulla and inferior part of the fourth ventricle.

      The neural tube is also divided into two plates: the alar plate and the basal plate. The alar plate gives rise to sensory neurons, while the basal plate gives rise to motor neurons. This division of the neural tube into different regions and plates is crucial for the proper development and function of the nervous system. Understanding the embryonic development of the nervous system is important for understanding the origins of neurological disorders and for developing new treatments for these disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 195 - A 25-year-old woman is seeking your assistance in getting a referral to a...

    Incorrect

    • A 25-year-old woman is seeking your assistance in getting a referral to a clinical geneticist. She has a family history of Huntington's disease, with her grandfather having died from the condition and her father recently being diagnosed. She wants to learn more about the disease and its genetic inheritance. Which of the following statements is accurate?

      Your Answer:

      Correct Answer: Huntington's disease is caused by a defect on chromosome 4

      Explanation:

      The cause of Huntington’s disease is a flaw in the huntingtin gene located on chromosome 4, resulting in a degenerative and irreversible neurological disorder. It is inherited in an autosomal dominant pattern and affects both genders equally.

      Huntington’s disease is a genetic disorder that causes progressive and incurable neurodegeneration. It is inherited in an autosomal dominant manner and is caused by a trinucleotide repeat expansion of CAG in the huntingtin gene on chromosome 4. This can result in the phenomenon of anticipation, where the disease presents at an earlier age in successive generations. The disease leads to the degeneration of cholinergic and GABAergic neurons in the striatum of the basal ganglia, which can cause a range of symptoms.

      Typically, symptoms of Huntington’s disease develop after the age of 35 and can include chorea, personality changes such as irritability, apathy, and depression, intellectual impairment, dystonia, and saccadic eye movements. Unfortunately, there is currently no cure for Huntington’s disease, and it usually results in death around 20 years after the initial symptoms develop.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 196 - A 85-year-old man is brought to the emergency department after collapsing at home....

    Incorrect

    • A 85-year-old man is brought to the emergency department after collapsing at home. He has a history of hypertension and poorly controlled type 2 diabetes. During examination, he complains of right-sided facial pain and left-sided arm pain, and mentions that the room appears to be spinning. The patient also has reduced temperature sensation on the right side of his face and the left side of his body, an ataxic gait, and vomits during the examination. Which artery is the most likely to be affected?

      Your Answer:

      Correct Answer: Posterior inferior cerebellar artery

      Explanation:

      The correct diagnosis for a patient presenting with sudden onset vertigo and vomiting, dysphagia, ipsilateral facial pain and temperature loss, contralateral limb pain and temperature loss, and ataxia is posterior inferior cerebellar artery. This constellation of symptoms is consistent with lateral medullary syndrome, also known as Wallenberg syndrome, which is caused by ischemia of the lateral medulla. This condition is associated with involvement of the trigeminal nucleus, lateral spinothalamic tract, cerebellum, and nucleus ambiguus, resulting in the aforementioned symptoms.

      The anterior spinal artery, basilar artery, middle cerebral artery, and posterior cerebral artery are not associated with lateral medullary syndrome and would present with different symptoms.

      Stroke can affect different parts of the brain depending on which artery is affected. If the anterior cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the lower extremities being more affected than the upper. If the middle cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the upper extremities being more affected than the lower. They may also experience vision loss and difficulty with language. If the posterior cerebral artery is affected, the person may experience vision loss and difficulty recognizing objects.

      Lacunar strokes are a type of stroke that are strongly associated with hypertension. They typically present with isolated weakness or loss of sensation on one side of the body, or weakness with difficulty coordinating movements. They often occur in the basal ganglia, thalamus, or internal capsule.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 197 - As a third year medical student in an outpatient department with a dermatology...

    Incorrect

    • As a third year medical student in an outpatient department with a dermatology consultant, you are evaluating a 27-year-old patient who is unresponsive to current hyperhidrosis treatment. The consultant suggests starting botox injections to prevent sweating. Can you explain the mechanism of action of botulinum toxin at the neuromuscular junction?

      Your Answer:

      Correct Answer: Inhibits vesicles containing acetylcholine binding to presynaptic membrane

      Explanation:

      Botulinum Toxin and its Mechanism of Action

      Botulinum toxin is becoming increasingly popular in the medical field for treating various conditions such as cervical dystonia and achalasia. The toxin works by binding to the presynaptic cleft on the neurotransmitter and forming a complex with the attached receptor. This complex then invaginates the plasma membrane of the presynaptic cleft around the attached toxin. Once inside the cell, the toxin cleaves an important cytoplasmic protein that is required for efficient binding of the vesicles containing acetylcholine to the presynaptic membrane. This prevents the release of acetylcholine across the neurotransmitter.

      It is important to note that the blockage of Ca2+ channels on the presynaptic membrane occurs in Lambert-Eaton syndrome, which is associated with small cell carcinoma of the lung and is a paraneoplastic syndrome. However, this is not related to the mechanism of action of botulinum toxin.

      The effects of botox typically last for two to six months. Once complete denervation has occurred, the synapse produces new axonal terminals which bind to the motor end plate in a process called neurofibrillary sprouting. This allows for interrupted release of acetylcholine. Overall, botulinum toxin is a powerful tool in the medical field for treating various conditions by preventing the release of acetylcholine across the neurotransmitter.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 198 - Samantha, a 75-year-old female, arrives at the emergency department after falling down a...

    Incorrect

    • Samantha, a 75-year-old female, arrives at the emergency department after falling down a flight of stairs. She reports experiencing discomfort in her right upper arm.

      Upon examination, the physician orders an X-ray which reveals a mid shaft humeral fracture on the right.

      What is the most probable symptom associated with this type of fracture?

      Your Answer:

      Correct Answer: Wrist drop

      Explanation:

      A mid shaft humeral fracture can result in wrist drop, which is a clinical sign indicating damage to the radial nerve. The radial nerve controls the muscles responsible for extending the wrist, and when it is damaged, the wrist remains in a flexed position. Other clinical signs associated with nerve or vascular damage include the hand of benediction (median nerve), ulnar claw (ulnar nerve), and Volkmann’s contracture (brachial artery).

      The Radial Nerve: Anatomy, Innervation, and Patterns of Damage

      The radial nerve is a continuation of the posterior cord of the brachial plexus, with root values ranging from C5 to T1. It travels through the axilla, posterior to the axillary artery, and enters the arm between the brachial artery and the long head of triceps. From there, it spirals around the posterior surface of the humerus in the groove for the radial nerve before piercing the intermuscular septum and descending in front of the lateral epicondyle. At the lateral epicondyle, it divides into a superficial and deep terminal branch, with the deep branch crossing the supinator to become the posterior interosseous nerve.

      The radial nerve innervates several muscles, including triceps, anconeus, brachioradialis, and extensor carpi radialis. The posterior interosseous branch innervates supinator, extensor carpi ulnaris, extensor digitorum, and other muscles. Denervation of these muscles can lead to weakness or paralysis, with effects ranging from minor effects on shoulder stability to loss of elbow extension and weakening of supination of prone hand and elbow flexion in mid prone position.

      Damage to the radial nerve can result in wrist drop and sensory loss to a small area between the dorsal aspect of the 1st and 2nd metacarpals. Axillary damage can also cause paralysis of triceps. Understanding the anatomy, innervation, and patterns of damage of the radial nerve is important for diagnosing and treating conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 199 - A 55-year-old man comes in with hyperacousia on one side. What is the...

    Incorrect

    • A 55-year-old man comes in with hyperacousia on one side. What is the most probable location of the nerve lesion?

      Your Answer:

      Correct Answer: Facial

      Explanation:

      If the nerve in the bony canal is damaged, it can lead to a loss of innervation to the stapedius muscle, which can result in sounds not being properly muted.

      The Facial Nerve: Functions and Pathways

      The facial nerve is a crucial nerve that supplies the structures of the second embryonic branchial arch. It is primarily responsible for controlling the muscles of facial expression, the digastric muscle, and various glandular structures. Additionally, it contains a few afferent fibers that originate in the cells of its genicular ganglion and are involved in taste sensation.

      The facial nerve has four main functions, which can be remembered by the mnemonic face, ear, taste, tear. It supplies the muscles of facial expression, the nerve to the stapedius muscle in the ear, taste sensation to the anterior two-thirds of the tongue, and parasympathetic fibers to the lacrimal and salivary glands.

      The facial nerve’s path begins in the pons, where its motor and sensory components originate. It then passes through the petrous temporal bone into the internal auditory meatus, where it combines with the vestibulocochlear nerve. From there, it enters the facial canal, which passes superior to the vestibule of the inner ear and contains the geniculate ganglion. The canal then widens at the medial aspect of the middle ear and gives rise to three branches: the greater petrosal nerve, the nerve to the stapedius, and the chorda tympani.

      Finally, the facial nerve exits the skull through the stylomastoid foramen, passing through the tympanic cavity anteriorly and the mastoid antrum posteriorly. It then enters the parotid gland and divides into five branches: the temporal, zygomatic, buccal, marginal mandibular, and cervical branches. Understanding the functions and pathways of the facial nerve is essential for diagnosing and treating various neurological and otolaryngological conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 200 - A 65-year-old man presents to the emergency department with a sudden onset of...

    Incorrect

    • A 65-year-old man presents to the emergency department with a sudden onset of weakness and sensory loss on the right side of his body that started 2 hours ago. He reports difficulty walking due to more pronounced leg weakness than arm weakness, but denies any changes in vision or speech. The patient has a medical history of type 2 diabetes and hypertension and is currently taking metformin and ramipril for these conditions.

      Imaging is immediately performed, and treatment for his condition is initiated.

      What is the likely location of the lesion based on the given information?

      Your Answer:

      Correct Answer: Left anterior cerebral artery

      Explanation:

      The correct answer is the left anterior cerebral artery. The patient is experiencing a stroke on the right side of their body, with the lower extremity being more affected than the upper. This indicates that the anterior cerebral artery is affected, specifically on the left side as the symptoms are affecting the right side of the body.

      The other options are incorrect. If the middle cerebral artery was affected, the upper extremities would be more affected than the lower. If the right anterior cerebral artery was affected, the left side of the brain would be affected. If the right middle cerebral artery was affected, there would be more weakness in the upper extremities and the left side of the body would be affected.

      Stroke can affect different parts of the brain depending on which artery is affected. If the anterior cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the lower extremities being more affected than the upper. If the middle cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the upper extremities being more affected than the lower. They may also experience vision loss and difficulty with language. If the posterior cerebral artery is affected, the person may experience vision loss and difficulty recognizing objects.

      Lacunar strokes are a type of stroke that are strongly associated with hypertension. They typically present with isolated weakness or loss of sensation on one side of the body, or weakness with difficulty coordinating movements. They often occur in the basal ganglia, thalamus, or internal capsule.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurological System (1/1) 100%
Passmed