-
Question 1
Correct
-
Sam, a 75-year-old man, presents to the GP with a complaint of breast growth that has developed rapidly over the past 3 months. Sam insists that he has no trouble with sexual function. He has recently been diagnosed with a heart problem and is taking multiple medications for it, although he cannot recall their names. Other than that, he claims to be in good health. Upon examination, all of Sam's vital signs are within normal limits. After measuring his height and weight, his body mass index is calculated to be 24 kg/mÂČ. Each breast is approximately 10 cm in diameter, with large nipples and tenderness but no pain. Moderate cardiomegaly and a 3rd heart sound are noted during chest assessment. No abnormalities are found during an abdominal examination. Pitting edema is present up to his mid calf. Based on the history and examination, what is the most probable cause of Sam's gynaecomastia?
Your Answer: Digoxin
Explanation:Digoxin is the correct answer as it can lead to drug-induced gynaecomastia. Sam is likely taking digoxin due to his heart failure, and this medication has a side effect of causing breast tissue growth in men. This is thought to occur because digoxin has a similar structure to oestrogen and can directly stimulate oestrogen receptors.
While cirrhosis can also cause gynaecomastia, it is unlikely in this case as there are no signs or symptoms of liver disease. Cirrhosis typically causes gynaecomastia due to the liver’s reduced ability to clear oestrogens from the bloodstream.
Obesity is not the correct answer as Sam is not obese, with a BMI of 24 kg/mÂČ. However, obesity is a common cause of gynaecomastia as excess fat can be distributed to the breasts and result in increased aromatisation of androgens to oestrogens.
An oestrogen-secreting tumour is not the correct answer as there is no evidence in Sam’s history or examination to suggest he has one, although these tumours can cause gynaecomastia in men.
Understanding Gynaecomastia: Causes and Drug Triggers
Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.
Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.
Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.
In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 2
Correct
-
A 54-year-old man with a history of type II diabetes mellitus presents for a routine check-up. He reports no symptoms of increased urination or thirst. Laboratory results reveal an HbA1c level of 67 mmol/mol and a random plasma glucose level of 15.6 mg/l. The patient is currently taking metformin, and his physician decides to add gliclazide to his medication regimen. What is the mechanism of action of gliclazide?
Your Answer: Stimulates sulphonylurea-1 receptors
Explanation:The primary mode of action of gliclazide, which belongs to the sulphonylurea class, is to activate the sulphonylurea-1 receptors present on pancreatic cells, thereby promoting insulin secretion. The remaining choices pertain to alternative medications for diabetes.
Common Medications for Type 2 Diabetes
Type 2 diabetes is a chronic condition that affects millions of people worldwide. Fortunately, there are several medications available to help manage the disease. Some of the most commonly prescribed drugs include sulphonylureas, metformin, alpha-glucosidase inhibitors (such as acarbose), glitazones, and insulin.
Sulphonylureas are a type of medication that stimulates the pancreas to produce more insulin. This helps to lower blood sugar levels and improve glucose control. Metformin, on the other hand, works by reducing the amount of glucose produced by the liver and improving insulin sensitivity. Alpha-glucosidase inhibitors, like acarbose, slow down the digestion of carbohydrates in the small intestine, which helps to prevent spikes in blood sugar levels after meals.
Glitazones, also known as thiazolidinediones, improve insulin sensitivity and reduce insulin resistance. They work by activating a specific receptor in the body that helps to regulate glucose metabolism. Finally, insulin is a hormone that is naturally produced by the pancreas and helps to regulate blood sugar levels. In some cases, people with type 2 diabetes may need to take insulin injections to help manage their condition.
Overall, these medications can be very effective in helping people with type 2 diabetes to manage their blood sugar levels and prevent complications. However, it’s important to work closely with a healthcare provider to determine the best treatment plan for each individual.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 3
Correct
-
A 64-year-old man comes in for a follow-up of his type 2 diabetes. Despite being on metformin therapy, his HbA1c levels are at 62mmol/mol. To address this, you plan to initiate sitagliptin for dual hypoglycemic therapy.
What is the mechanism of action of sitagliptin?Your Answer: Decreases GLP-1 breakdown
Explanation:Sitagliptin, a DPP-4 inhibitor, reduces the breakdown of GLP-1 and GIP incretins, leading to increased levels of these hormones and potentiation of the incretin effect, which is typically reduced in diabetes.
Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 4
Correct
-
You are in charge of the care of a 23-year-old man who has come for a military medical evaluation. Based on his symptoms, you suspect that he has type 1 diabetes and has been secretly administering insulin. What clinical methods can you use to evaluate his endogenous insulin production?
Your Answer: C-peptide
Explanation:C-peptide is a reliable indicator of insulin production as it is secreted in proportion to insulin. It is often used clinically to measure endogenous insulin production.
Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 5
Incorrect
-
Which of the following is the least probable cause of hypercalcemia?
Your Answer: Sarcoidosis
Correct Answer: Coeliac disease
Explanation:Patients with coeliac disease are prone to developing hypocalcaemia as a result of calcium malabsorption by the bowel.
Understanding the Causes of Hypercalcaemia
Hypercalcaemia is a medical condition characterized by high levels of calcium in the blood. The two most common causes of hypercalcaemia are primary hyperparathyroidism and malignancy. Primary hyperparathyroidism is the most common cause in non-hospitalized patients, while malignancy is the most common cause in hospitalized patients. Malignancy-related hypercalcaemia may be due to various processes, including PTHrP from the tumor, bone metastases, and myeloma. Measuring parathyroid hormone levels is crucial in diagnosing hypercalcaemia.
Other causes of hypercalcaemia include sarcoidosis, tuberculosis, histoplasmosis, vitamin D intoxication, acromegaly, thyrotoxicosis, milk-alkali syndrome, drugs such as thiazides and calcium-containing antacids, dehydration, Addison’s disease, and Paget’s disease of the bone. Paget’s disease of the bone usually results in normal calcium levels, but hypercalcaemia may occur with prolonged immobilization.
In summary, hypercalcaemia can be caused by various medical conditions, with primary hyperparathyroidism and malignancy being the most common. It is essential to identify the underlying cause of hypercalcaemia to provide appropriate treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 6
Incorrect
-
The acute phase response to injury in elderly patients does not involve which of the following?
Your Answer: Decreased albumin
Correct Answer: Increased transferrin
Explanation:The acute phase response is characterized by various physiological changes, such as the production of acute phase proteins, decreased levels of transport proteins like albumin and transferrin, hepatic retention of cations, fever, an increase in neutrophil count, elevated muscle proteolysis, and alterations in vascular permeability.
Surgery triggers a stress response that causes hormonal and metabolic changes in the body. This response is characterized by substrate mobilization, muscle protein loss, sodium and water retention, suppression of anabolic hormone secretion, activation of the sympathetic nervous system, and immunological and haematological changes. The hypothalamic-pituitary axis and the sympathetic nervous systems are activated, and the normal feedback mechanisms of control of hormone secretion fail. The stress response is associated with increased growth hormone, cortisol, renin, adrenocorticotrophic hormone (ACTH), aldosterone, prolactin, antidiuretic hormone, and glucagon, while insulin, testosterone, oestrogen, thyroid stimulating hormone, luteinizing hormone, and follicle stimulating hormone are decreased or remain unchanged. The metabolic effects of cortisol are enhanced, including skeletal muscle protein breakdown, stimulation of lipolysis, anti-insulin effect, mineralocorticoid effects, and anti-inflammatory effects. The stress response also affects carbohydrate, protein, lipid, salt and water metabolism, and cytokine release. Modifying the response can be achieved through opioids, spinal anaesthesia, nutrition, growth hormone, anabolic steroids, and normothermia.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 7
Correct
-
A 56-year-old man visits the breast clinic with a solitary lump in the upper-right quadrant of his right breast. He has a history of non-alcoholic liver disease, hypertension, and gout, and is currently taking Bisoprolol, Naproxen, and Allopurinol. The lump is smooth and firm. Based on his medical history and current medications, what is the probable cause of his breast lump?
Your Answer: Liver disease
Explanation:Understanding Gynaecomastia: Causes and Drug Triggers
Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.
Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.
Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.
In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 8
Correct
-
A 43-year-old obese man comes to your clinic for a diabetes check-up. Despite being treated with metformin and gliclazide, his HbA1c remains elevated at 55 mmol/mol. He has previously found it difficult to follow dietary advice and lose weight. To enhance his diabetic management, you prescribe sitagliptin, a DPP-4 inhibitor. What is the mode of action of this novel medication?
Your Answer: Inhibits the breakdown of incretins
Explanation:DPP-4 inhibitors, GLP-1 agonists, SGLT-2 inhibitors, thiazolidinediones, and sulfonylureas are all medications used to treat diabetes. DPP-4 inhibitors work by inhibiting the breakdown of incretins such as GLP-1 and GIP, which are released in response to food and help to lower blood glucose levels. GLP-1 agonists directly stimulate incretin receptors, while SGLT-2 inhibitors increase the urinary secretion of glucose. Thiazolidinediones stimulate intracellular signaling molecules responsible for glucose and lipid metabolism, and sulfonylureas stimulate beta cells to secrete more insulin. However, sulfonylureas may be less effective in long-standing diabetes as many beta cells may no longer function properly.
Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 9
Incorrect
-
A woman in her early 50s complains of headaches, anxiety and weight loss. Upon examination, she displays hypertension, tachycardia and pallor. The diagnosis is phaeochromocytoma. What is the most common location for these tumors to occur?
Your Answer: Adrenal cortex
Correct Answer: Adrenal medulla
Explanation:Phaeochromocytoma is a condition characterized by uncommon tumours that secrete catecholamines in the adrenal medulla. Although they are seldom detected outside the adrenal medulla, if they do occur, they are more likely to be malignant.
Phaeochromocytoma: A Rare Tumor that Secretes Catecholamines
Phaeochromocytoma is a type of tumor that secretes catecholamines and is considered rare. It is familial in about 10% of cases and may be associated with certain syndromes such as MEN type II, neurofibromatosis, and von Hippel-Lindau syndrome. This tumor can be bilateral in 10% of cases and malignant in 10%. It can also occur outside of the adrenal gland, with the most common site being the organ of Zuckerkandl, which is adjacent to the bifurcation of the aorta.
The symptoms of phaeochromocytoma are typically episodic and include hypertension (which is present in around 90% of cases and may be sustained), headaches, palpitations, sweating, and anxiety. To diagnose this condition, a 24-hour urinary collection of metanephrines is preferred over a 24-hour urinary collection of catecholamines due to its higher sensitivity (97%).
Surgery is the definitive management for phaeochromocytoma. However, before surgery, the patient must first be stabilized with medical management, which includes an alpha-blocker (such as phenoxybenzamine) given before a beta-blocker (such as propranolol).
-
This question is part of the following fields:
- Endocrine System
-
-
Question 10
Correct
-
A 28-year-old woman comes to her outpatient appointment after being diagnosed with Grave's disease. This condition is known for having three distinct signs, in addition to thyroid eye disease. What are the other signs?
Your Answer: Thyroid acropachy & pretibial myxoedema
Explanation:Grave’s disease is commonly linked to several other conditions, including thyroid eye disease, thyroid acropachy, and pretibial myxoedema.
This autoimmune disease, known as Grave’s thyroiditis, is caused by antibodies that target the thyroid stimulating hormone (TSH) receptor, leading to prolonged stimulation.
One of the most noticeable symptoms of Grave’s disease is exophthalmos, which occurs when TSH receptor antibodies bind to receptors at the back of the eye, causing inflammation and an increase in glycosaminoglycans. This results in swelling of the eye muscles and connective tissue.
Pretibial myxoedema is a skin condition that often develops in individuals with Grave’s disease. It is characterized by localized lesions on the skin in front of the tibia, which are caused by an increase in glycosaminoglycans in the pretibial dermis.
Thyroid acropachy is another condition associated with Grave’s disease, which involves swelling of soft tissues, clubbing of the fingers, and periosteal reactions in the extremities.
Graves’ Disease: Common Features and Unique Signs
Graves’ disease is the most frequent cause of thyrotoxicosis, which is commonly observed in women aged 30-50 years. The condition presents typical features of thyrotoxicosis, such as weight loss, palpitations, and heat intolerance. However, Graves’ disease also displays specific signs that are not present in other causes of thyrotoxicosis. These include eye signs, such as exophthalmos and ophthalmoplegia, as well as pretibial myxoedema and thyroid acropachy. The latter is a triad of digital clubbing, soft tissue swelling of the hands and feet, and periosteal new bone formation.
Graves’ disease is characterized by the presence of autoantibodies, including TSH receptor stimulating antibodies in 90% of patients and anti-thyroid peroxidase antibodies in 75% of patients. Thyroid scintigraphy reveals a diffuse, homogenous, and increased uptake of radioactive iodine. These features help distinguish Graves’ disease from other causes of thyrotoxicosis and aid in its diagnosis.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 11
Correct
-
A 31-year-old woman arrives at the emergency department feeling lethargic. Her Glasgow coma scale score is 12/15 upon examination.
Her capillary blood glucose level is 1.9 mmol/L.
What is the initial hormone released naturally in this situation?Your Answer: Glucagon
Explanation:When blood glucose levels drop, the first hormone to be secreted is glucagon. This can happen due to various reasons, such as insulin or alcohol consumption. The initial response to hypoglycaemia is a decrease in insulin secretion, followed by the release of glucagon from the pancreas’ alpha cells. This prompts the liver to convert stored glycogen into glucose, thereby increasing blood glucose levels.
Later on, growth hormone and cortisol are also released in response to hypoglycaemia. If cortisol production is reduced, as in Addison’s disease, it can lead to low blood glucose levels. This concept is used in the insulin tolerance test, where cortisol levels are measured after inducing hypoglycaemia with insulin.
Incretins, on the other hand, are hormones that lower blood glucose levels, especially after meals. One such incretin is glucagon-like peptide 1 (GLP-1), which is used to treat type 2 diabetes. Exenatide is an example of an injectable GLP-1 analogue medication.
Understanding Hypoglycaemia: Causes, Features, and Management
Hypoglycaemia is a condition characterized by low blood sugar levels, which can lead to a range of symptoms and complications. There are several possible causes of hypoglycaemia, including insulinoma, liver failure, Addison’s disease, and alcohol consumption. The physiological response to hypoglycaemia involves hormonal and sympathoadrenal responses, which can result in autonomic and neuroglycopenic symptoms. While blood glucose levels and symptom severity are not always correlated, common symptoms of hypoglycaemia include sweating, shaking, hunger, anxiety, nausea, weakness, vision changes, confusion, and dizziness. In severe cases, hypoglycaemia can lead to convulsions or coma.
Managing hypoglycaemia depends on the severity of the symptoms and the setting in which it occurs. In the community, individuals with diabetes who inject insulin may be advised to consume oral glucose or a quick-acting carbohydrate such as GlucoGel or Dextrogel. A ‘HypoKit’ containing glucagon may also be prescribed for home use. In a hospital setting, treatment may involve administering a quick-acting carbohydrate or subcutaneous/intramuscular injection of glucagon for unconscious or unable to swallow patients. Alternatively, intravenous glucose solution may be given through a large vein.
Overall, understanding the causes, features, and management of hypoglycaemia is crucial for individuals with diabetes or other conditions that increase the risk of low blood sugar levels. Prompt and appropriate treatment can help prevent complications and improve outcomes.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 12
Incorrect
-
A 55-year-old male visits his GP for an insurance medical. The GP observes that the patient has rough facial features, an enlarged tongue, and greasy skin. The patient is also experiencing profuse sweating. Which hormone excess is likely to be accountable for these symptoms?
Your Answer: Thyroid stimulating hormone
Correct Answer: Growth hormone
Explanation:Acromegaly is a condition that results from an excess of growth hormone, which can cause a person to have a coarse facial appearance, a larger tongue, and excessive sweating and oily skin. This condition is often caused by a pituitary adenoma.
If a person has an excess of insulin, they may experience hypoglycemia and confusion. This can occur in cases of factitious illness, over-administration of insulin in diabetics, and insulinomas (neuroendocrine pancreatic tumors).
An excess of glucagon can cause hyperglycemia. Glucagon is secreted by alpha cells in the pancreas and is often elevated in cases of glucagonomas (neuroendocrine pancreatic tumors).
An excess of thyroid-stimulating hormone can be seen in cases of primary hypothyroidism and secondary hyperthyroidism.
Acromegaly is a condition characterized by excess growth hormone, which is usually caused by a pituitary adenoma in over 95% of cases. However, in some cases, it can be caused by ectopic GHRH or GH production by tumors, such as those found in the pancreas. The condition is associated with a number of physical features, including a coarse facial appearance, spade-like hands, and an increase in shoe size. Other features include a large tongue, prognathism, interdental spaces, excessive sweating, and oily skin, which are caused by sweat gland hypertrophy. In some cases, patients may also experience hypopituitarism, headaches, bitemporal hemianopia, and raised prolactin levels, which can lead to galactorrhea. Approximately 6% of patients with acromegaly also have MEN-1.
Complications associated with acromegaly include hypertension, diabetes (which affects over 10% of patients), cardiomyopathy, and colorectal cancer. It is important to diagnose and treat acromegaly early to prevent these complications from developing.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 13
Incorrect
-
A 53-year-old male presents to an endocrinology clinic with recurring symptoms of painful fingers and hands that seem to be enlarging. He was previously diagnosed with acromegaly eight months ago and underwent transsphenoidal surgery six months ago to remove the pituitary adenoma responsible. During examination, his facial features appear rough, and his hands are large and spade-like. You opt to manage this patient's symptoms with medication and initiate a trial of octreotide.
What physiological function is linked to this medication?Your Answer: Inhibition of adrenocorticotropic hormone (ACTH) secretion from the anterior pituitary
Correct Answer: Inhibition of glucagon secretion from the pancreas
Explanation:Somatostatin analogues, such as octreotide, are used to treat acromegaly in patients who have not responded well to surgery. Somatostatin is a hormone that has various functions, including inhibiting the secretion of growth hormone from the anterior pituitary gland and insulin and glucagon from the pancreas. Therefore, the correct answer is that somatostatin inhibits the secretion of glucagon.
The secretion of ACTH by the pancreas is regulated by a negative feedback loop involving cortisol and corticotropin-releasing hormone (CRH). When blood cortisol levels decrease, CRH is secreted from the hypothalamus, which then stimulates the secretion of ACTH from the anterior pituitary gland.
Somatostatin analogues typically do not affect the secretion of aldosterone from the pancreas, which is primarily stimulated by angiotensin-II.
Somatostatin analogues inhibit the secretion of growth hormone from the anterior pituitary gland. The hormone responsible for stimulating the secretion of growth hormone is growth hormone-releasing hormone (GHRH).
The secretion of insulin by pancreatic ÎČ-cells is inhibited by somatostatin analogues. The primary stimulus for insulin secretion is low blood glucose levels, but other substances such as arginine and leucine, acetylcholine, sulfonylurea, cholecystokinin, and incretins can also stimulate insulin release.
Somatostatin: The Inhibitor Hormone
Somatostatin, also known as growth hormone inhibiting hormone (GHIH), is a hormone produced by delta cells found in the pancreas, pylorus, and duodenum. Its main function is to inhibit the secretion of growth hormone, insulin, and glucagon. It also decreases acid and pepsin secretion, as well as pancreatic enzyme secretion. Additionally, somatostatin inhibits the trophic effects of gastrin and stimulates gastric mucous production.
Somatostatin analogs are commonly used in the management of acromegaly, a condition characterized by excessive growth hormone secretion. These analogs work by inhibiting growth hormone secretion, thereby reducing the symptoms associated with acromegaly.
The secretion of somatostatin is regulated by various factors. Its secretion increases in response to fat, bile salts, and glucose in the intestinal lumen, as well as glucagon. On the other hand, insulin decreases the secretion of somatostatin.
In summary, somatostatin plays a crucial role in regulating the secretion of various hormones and enzymes in the body. Its inhibitory effects on growth hormone, insulin, and glucagon make it an important hormone in the management of certain medical conditions.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 14
Incorrect
-
Which of the following most accurately explains how glucocorticoids work?
Your Answer: Binding of cell wall receptors and intracellular tyrosine kinase activation
Correct Answer: Binding of intracellular receptors that migrate to the nucleus to then affect gene transcription
Explanation:The effects of glucocorticoids are mediated by intracellular receptors that bind to them and are subsequently transported to the nucleus, where they modulate gene transcription.
Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 15
Incorrect
-
A 42-year-old woman has been admitted to the renal ward with acute kidney injury. Her blood test shows that her potassium levels are above normal limits. While renal failure is a known cause of hyperkalaemia, the patient mentions having an endocrine disorder in the past but cannot recall its name. This information is crucial as certain endocrine disorders can also cause potassium disturbances. Which of the following endocrine disorders is commonly associated with hyperkalaemia?
Your Answer: Conn's syndrome
Correct Answer: Addison's disease
Explanation:The correct answer is Addison’s disease, which is a condition of primary adrenal insufficiency. One of the hormones that is deficient in this disease is aldosterone, which plays a crucial role in maintaining the balance of potassium in the body. Aldosterone activates Na+/K+ ATPase pumps on the cell wall, causing the movement of potassium into the cell and increasing renal potassium secretion. Therefore, a lack of aldosterone leads to hyperkalaemia.
Phaeochromocytomas are tumours that produce catecholamines and typically arise in the adrenal medulla. They are associated with hypertension and hyperglycaemia, but not disturbances in potassium balance.
Hyperthyroidism is a condition of excess thyroid hormone and does not affect potassium balance.
Conn’s syndrome, on the other hand, is a type of primary hyperaldosteronism where there is excess aldosterone production. Aldosterone activates the Na+/K+ pump on the cell wall, causing the movement of potassium into the cell, which can lead to hypokalaemia.
Addison’s disease is the most common cause of primary hypoadrenalism in the UK, with autoimmune destruction of the adrenal glands being the main culprit, accounting for 80% of cases. This results in reduced production of cortisol and aldosterone. Symptoms of Addison’s disease include lethargy, weakness, anorexia, nausea and vomiting, weight loss, and salt-craving. Hyperpigmentation, especially in palmar creases, vitiligo, loss of pubic hair in women, hypotension, hypoglycemia, and hyponatremia and hyperkalemia may also be observed. In severe cases, a crisis may occur, leading to collapse, shock, and pyrexia.
Other primary causes of hypoadrenalism include tuberculosis, metastases (such as bronchial carcinoma), meningococcal septicaemia (Waterhouse-Friderichsen syndrome), HIV, and antiphospholipid syndrome. Secondary causes include pituitary disorders, such as tumours, irradiation, and infiltration. Exogenous glucocorticoid therapy can also lead to hypoadrenalism.
It is important to note that primary Addison’s disease is associated with hyperpigmentation, while secondary adrenal insufficiency is not.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 16
Incorrect
-
As a third year medical student working in a GP surgery, you come across a worried 54-year-old male patient who is experiencing chest discomfort. He has recently begun taking a new tablet for his high blood pressure and suspects it may be the cause of his symptoms. During your examination, you notice bilateral non-tender glandular swellings around the areolae. There are no signs of lymphadenopathy in the axillary region, and testicular examination is normal. Which medication is most likely responsible for this clinical presentation?
Your Answer: Bendroflumethiazide
Correct Answer: Spironolactone
Explanation:Spironolactone-Induced Gynaecomastia
Spironolactone is a type of diuretic that helps to increase urine production by blocking aldosterone receptors in the kidneys. However, it also has anti-androgenic properties that can lead to the development of gynaecomastia, a condition where men develop breast tissue. This is because spironolactone inhibits the production of testosterone and increases the level of free oestrogen in the blood, causing the proliferation of glandular tissue in the mammary glands.
While gynaecomastia is not commonly associated with other medications, they all have their own side effects. Aspirin, for example, can cause gastrointestinal ulceration by inhibiting COX enzymes and prostaglandin synthesis. Thiazide diuretics work by blocking the sodium chloride co-transporter in the distal convoluted tubule, which can lead to a decrease in blood volume. Loop diuretics, on the other hand, can cause severe hyponatraemia but do not affect testosterone production. Statins, which are used to lower cholesterol levels, can cause rhabdomyolysis, a serious condition where muscle tissue breaks down and releases harmful substances into the bloodstream.
In summary, while spironolactone can be an effective diuretic, it is important to be aware of its potential side effects, including gynaecomastia. Patients should always consult with their healthcare provider before starting any new medication and report any unusual symptoms or side effects.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 17
Incorrect
-
A 26-year-old male patient comes to the follow-up clinic after undergoing surgery to remove an endocrine gland. He had been experiencing symptoms such as profuse sweating, headaches, palpitations, and high blood pressure (200/120mmHg) prior to the decision for surgery. What type of cells would be revealed through histological staining of the removed organ?
Your Answer: Thyrotrope cells
Correct Answer: Chromaffin cells
Explanation:The man’s initial symptoms are consistent with a diagnosis of phaeochromocytoma, a type of neuroendocrine tumor that affects the chromaffin cells in the adrenal medulla. This condition leads to an overproduction of adrenaline and noradrenaline, resulting in an excessive sympathetic response.
Calcitonin is secreted by the parafollicular C cells in the thyroid gland.
The anterior pituitary gland contains gonadotropes, lactotropes, and thyrotropes, which secrete gonadotropins (FSH, LH), prolactin, and TSH, respectively.
Phaeochromocytoma: A Rare Tumor that Secretes Catecholamines
Phaeochromocytoma is a type of tumor that secretes catecholamines and is considered rare. It is familial in about 10% of cases and may be associated with certain syndromes such as MEN type II, neurofibromatosis, and von Hippel-Lindau syndrome. This tumor can be bilateral in 10% of cases and malignant in 10%. It can also occur outside of the adrenal gland, with the most common site being the organ of Zuckerkandl, which is adjacent to the bifurcation of the aorta.
The symptoms of phaeochromocytoma are typically episodic and include hypertension (which is present in around 90% of cases and may be sustained), headaches, palpitations, sweating, and anxiety. To diagnose this condition, a 24-hour urinary collection of metanephrines is preferred over a 24-hour urinary collection of catecholamines due to its higher sensitivity (97%).
Surgery is the definitive management for phaeochromocytoma. However, before surgery, the patient must first be stabilized with medical management, which includes an alpha-blocker (such as phenoxybenzamine) given before a beta-blocker (such as propranolol).
-
This question is part of the following fields:
- Endocrine System
-
-
Question 18
Correct
-
A 32-year-old man visits the clinic complaining of weakness and frequent muscle cramps that have been ongoing for the past two weeks. Upon examination, you observe widespread hyporeflexia. A blood test reveals hypokalaemia, but the cause has not yet been determined. Which of the following conditions is linked to hypokalaemia?
Your Answer: Conn's syndrome
Explanation:Primary hyperaldosteronism, also known as Conn’s syndrome, can lead to hypertension, hypernatraemia, and hypokalemia. This condition is caused by an excess of aldosterone, which is responsible for maintaining potassium balance by activating Na+/K+ pumps. However, in excess, aldosterone can cause the movement of potassium into cells, resulting in hypokalaemia. The kidneys play a crucial role in maintaining potassium balance, along with other factors such as insulin, catecholamines, and aldosterone. On the other hand, congenital adrenal hypoplasia, Addison’s disease, rhabdomyolysis, and metabolic acidosis are all causes of hyperkalaemia, which is an excess of potassium in the blood. Addison’s disease and adrenal hypoplasia result in mineralocorticoid deficiency, which can lead to hyperkalaemia. Acidosis can also cause hyperkalaemia by causing positively charged hydrogen ions to enter cells while positively charged potassium ions leave cells and enter the bloodstream.
Primary hyperaldosteronism is a condition characterized by hypertension, hypokalaemia, and alkalosis. It was previously believed that adrenal adenoma, also known as Conn’s syndrome, was the most common cause of this condition. However, recent studies have shown that bilateral idiopathic adrenal hyperplasia is responsible for up to 70% of cases. It is important to differentiate between the two causes as it determines the appropriate treatment. Adrenal carcinoma is an extremely rare cause of primary hyperaldosteronism.
To diagnose primary hyperaldosteronism, the 2016 Endocrine Society recommends a plasma aldosterone/renin ratio as the first-line investigation. This test should show high aldosterone levels alongside low renin levels due to negative feedback from sodium retention caused by aldosterone. If the results are positive, a high-resolution CT abdomen and adrenal vein sampling are used to differentiate between unilateral and bilateral sources of aldosterone excess. If the CT is normal, adrenal venous sampling (AVS) can be used to distinguish between unilateral adenoma and bilateral hyperplasia.
The management of primary hyperaldosteronism depends on the underlying cause. Adrenal adenoma is treated with surgery, while bilateral adrenocortical hyperplasia is managed with an aldosterone antagonist such as spironolactone. It is important to accurately diagnose and manage primary hyperaldosteronism to prevent complications such as cardiovascular disease and stroke.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 19
Incorrect
-
A 57-year-old woman presents to the physician with a recurring blistering rash on her hands. The rash has also affected her legs, inguinal creases, and the corners of her mouth at different times. She was diagnosed with type 2 diabetes mellitus three months ago and has occasional loose stools. The patient denies experiencing palpitations, abdominal pain, or vomiting, but reports having occasional watery stools.
During the physical examination, the physician observes coalescing erythematous plaques with crusting and scaling at the borders and central areas of brownish induration over the lower abdomen and in the perioral skin.
What is the most likely diagnosis for this patient?Your Answer: VIPoma
Correct Answer: Glucagonoma
Explanation:The patient is likely suffering from a glucagonoma, a rare tumor that originates from the alpha cells of the pancreas. This condition causes the excessive secretion of glucagon, resulting in hyperglycemia or diabetes mellitus. One of the characteristic symptoms of glucagonoma is necrolytic migratory erythema, a painful and itchy rash that appears on the face, groin, and limbs.
Gastrinoma, on the other hand, does not cause a blistering rash or diabetes mellitus. However, it is often associated with abdominal pain, diarrhea, and ulceration.
Somatostatinoma typically presents with abdominal pain, constipation, hyperglycemia, and steatorrhea, which are not present in this patient.
VIPoma is unlikely as it usually causes intractable diarrhea, hypokalemia, and achlorhydria.
Although zinc deficiency can cause skin lesions that resemble necrolytic migratory erythema, the patient’s recent diabetes mellitus diagnosis and lack of other symptoms make glucagonoma the more likely diagnosis.
Glucagonoma: A Rare Pancreatic Tumor
Glucagonoma is a rare type of pancreatic tumor that usually originates from the alpha cells of the pancreas. These tumors are typically small and malignant, and they can cause a range of symptoms, including diabetes mellitus, venous thrombo-embolism, and a distinctive red, blistering rash known as necrolytic migratory erythema. To diagnose glucagonoma, doctors typically look for a serum level of glucagon that is higher than 1000pg/ml, and they may also use CT scanning to visualize the tumor. Treatment options for glucagonoma include surgical resection and octreotide, a medication that can help to control the symptoms of the disease. Overall, glucagonoma is a rare but serious condition that requires prompt diagnosis and treatment to manage its symptoms and prevent complications.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 20
Correct
-
Which one of the following does not trigger insulin secretion?
Your Answer: Atenolol
Explanation:The release of insulin is prevented by beta blockers.
Factors that trigger insulin release include glucose, amino acids, vagal cholinergic stimulation, secretin/gastrin/CCK, fatty acids, and beta adrenergic drugs.
Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 21
Correct
-
A 33-year-old man arrives at the emergency department with symptoms of increased thirst and frequent urination. He had suffered a head injury a few days ago and had previously been discharged after investigations. Upon examination, he appears dehydrated and is admitted to a medical ward. The urine osmolality test results show a low level of 250 mosmol/kg after water deprivation and a high level of 655 mosmol/kg after desmopressin administration. Based on this information, where is the deficient substance typically active?
Your Answer: Collecting duct
Explanation:The site of action for antidiuretic hormone (ADH) is the collecting ducts in the kidneys. A diagnosis of cranial diabetes insipidus, which can occur after head trauma, is confirmed by low urine osmolalities. In this condition, there is a deficiency of ADH, which is synthesized in the hypothalamus but acts on the collecting ducts to promote water reabsorption. Therefore, the hypothalamus is not the site of action for ADH, despite being where it is synthesized. The Loop of Henle and proximal convoluted tubule are also not the primary sites of action for ADH. ADH is released from the posterior pituitary gland, but its action occurs in the collecting ducts.
Understanding Antidiuretic Hormone (ADH)
Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.
ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.
Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.
Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 22
Correct
-
A 34-year-old male presents with tingling in his thumb, index, and middle finger, along with complaints of excessive fatigue and snoring. Upon examination, he displays a prominent brow ridge and significant facial changes over time. Following blood tests and an MRI scan, the patient is prescribed octreotide. What is the mechanism of action of this medication?
Your Answer: Somatostatin analogue
Explanation:Acromegaly is a condition that results from excessive growth hormone production. The release of growth hormone is directly inhibited by somatostatin, which is why somatostatin analogues are used to treat acromegaly.
To answer the question, one must first recognize the symptoms of acromegaly, such as carpal tunnel syndrome, sleep apnea, and changes in facial features over time. The second part of the question involves identifying octreotide as a somatostatin analogue commonly used to treat acromegaly.
While dopamine agonists were previously used to treat acromegaly, they are no longer preferred due to the availability of more effective treatments. Dopamine antagonists have never been used to treat acromegaly. Pegvisomant is an example of a growth hormone antagonist, but antagonists for insulin growth factor-1 release have not yet been developed.
Acromegaly is a condition that can be managed through various treatment options. The first-line treatment for the majority of patients is trans-sphenoidal surgery. However, if the pituitary tumour is inoperable or surgery is unsuccessful, medication may be indicated. One such medication is a somatostatin analogue, which directly inhibits the release of growth hormone. Octreotide is an example of this medication and is effective in 50-70% of patients. Another medication is pegvisomant, which is a GH receptor antagonist that prevents dimerization of the GH receptor. It is administered once daily subcutaneously and is very effective, decreasing IGF-1 levels in 90% of patients to normal. However, it does not reduce tumour volume, so surgery is still needed if there is a mass effect. Dopamine agonists, such as bromocriptine, were the first effective medical treatment for acromegaly but are now superseded by somatostatin analogues and are only effective in a minority of patients. External irradiation may be used for older patients or following failed surgical/medical treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 23
Correct
-
A 49-year-old woman has been diagnosed with a phaeochromocytoma. What is the primary amino acid from which catecholamines are derived?
Your Answer: Tyrosine
Explanation:Tyrosine serves as the precursor for catecholamine hormones, which undergo modification by a DOPA decarboxylase enzyme to form dopamine. Subsequently, through two additional enzymatic alterations, dopamine is converted to noradrenaline and ultimately adrenaline.
Adrenal Physiology: Medulla and Cortex
The adrenal gland is composed of two main parts: the medulla and the cortex. The medulla is responsible for secreting the catecholamines noradrenaline and adrenaline, which are released in response to sympathetic nervous system stimulation. The chromaffin cells of the medulla are innervated by the splanchnic nerves, and the release of these hormones is triggered by the secretion of acetylcholine from preganglionic sympathetic fibers. Phaeochromocytomas, which are tumors derived from chromaffin cells, can cause excessive secretion of both adrenaline and noradrenaline.
The adrenal cortex is divided into three distinct zones: the zona glomerulosa, zona fasciculata, and zona reticularis. Each zone is responsible for secreting different hormones. The outer zone, zona glomerulosa, secretes aldosterone, which regulates electrolyte balance and blood pressure. The middle zone, zona fasciculata, secretes glucocorticoids, which are involved in the regulation of metabolism, immune function, and stress response. The inner zone, zona reticularis, secretes androgens, which are involved in the development and maintenance of male sex characteristics.
Most of the hormones secreted by the adrenal cortex, including glucocorticoids and aldosterone, are bound to plasma proteins in the circulation. Glucocorticoids are inactivated and excreted by the liver. Understanding the physiology of the adrenal gland is important for the diagnosis and treatment of various endocrine disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 24
Incorrect
-
Mr. Smith is a 54-year-old man who visits your GP clinic for his annual review of his type 2 diabetes. He informs you that he has been managing it through diet for a few years, but lately, he has gained some weight. His latest HbA1C reading is 9.8% (normal range 3.7-5.0%). You suggest continuous dietary advice and prescribe metformin to regulate his blood glucose levels. Which of the following statements about metformin is accurate?
Your Answer: It stimulates insulin secretion from pancreatic beta cells
Correct Answer: It decreases hepatic gluconeogenesis
Explanation:While some diabetic treatments such as insulin and sulfonylureas can lead to weight gain, metformin is not associated with this side effect. Metformin functions by enhancing insulin sensitivity and reducing hepatic gluconeogenesis, without directly impacting insulin secretion from pancreatic beta cells, thus it does not cause significant hypoglycemia. Ghrelin, a hormone that controls appetite, is not influenced by any diabetic medications.
Understanding Diabetes Mellitus: A Basic Overview
Diabetes mellitus is a chronic condition characterized by abnormally raised levels of blood glucose. It is one of the most common conditions encountered in clinical practice and represents a significant burden on the health systems of the developed world. The management of diabetes mellitus is crucial as untreated type 1 diabetes would usually result in death. Poorly treated type 1 diabetes mellitus can still result in significant morbidity and mortality. The main focus of diabetes management now is reducing the incidence of macrovascular and microvascular complications.
There are different types of diabetes mellitus, including type 1 diabetes mellitus, type 2 diabetes mellitus, prediabetes, gestational diabetes, maturity onset diabetes of the young, latent autoimmune diabetes of adults, and other types. The presentation of diabetes mellitus depends on the type, with type 1 diabetes mellitus often presenting with weight loss, polydipsia, polyuria, and diabetic ketoacidosis. On the other hand, type 2 diabetes mellitus is often picked up incidentally on routine blood tests and presents with polydipsia and polyuria.
There are four main ways to check blood glucose, including a finger-prick bedside glucose monitor, a one-off blood glucose, a HbA1c, and a glucose tolerance test. The diagnostic criteria are determined by WHO, with a fasting glucose greater than or equal to 7.0 mmol/l and random glucose greater than or equal to 11.1 mmol/l being diagnostic of diabetes mellitus. Management of diabetes mellitus involves drug therapy to normalize blood glucose levels, monitoring for and treating any complications related to diabetes, and modifying any other risk factors for other conditions such as cardiovascular disease. The first-line drug for the vast majority of patients with type 2 diabetes mellitus is metformin, with second-line drugs including sulfonylureas, gliptins, and pioglitazone. Insulin is used if oral medication is not controlling the blood glucose to a sufficient degree.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 25
Incorrect
-
A young man presents with polyuria, polydipsia and weight loss. He is subsequently diagnosed with type 1 diabetes mellitus. What is he at an increased risk of developing?
Your Answer: Addison's disease, Grave's disease, irritable bowel syndrome
Correct Answer: Addison's disease, Grave's disease, coeliac disease
Explanation:Type 1 diabetes is linked to other autoimmune disorders like Addison’s disease, Grave’s disease, and coeliac disease, due to its own autoimmune nature. The other choices are incorrect as they contain a non-autoimmune disorder.
Understanding Diabetes Mellitus: A Basic Overview
Diabetes mellitus is a chronic condition characterized by abnormally raised levels of blood glucose. It is one of the most common conditions encountered in clinical practice and represents a significant burden on the health systems of the developed world. The management of diabetes mellitus is crucial as untreated type 1 diabetes would usually result in death. Poorly treated type 1 diabetes mellitus can still result in significant morbidity and mortality. The main focus of diabetes management now is reducing the incidence of macrovascular and microvascular complications.
There are different types of diabetes mellitus, including type 1 diabetes mellitus, type 2 diabetes mellitus, prediabetes, gestational diabetes, maturity onset diabetes of the young, latent autoimmune diabetes of adults, and other types. The presentation of diabetes mellitus depends on the type, with type 1 diabetes mellitus often presenting with weight loss, polydipsia, polyuria, and diabetic ketoacidosis. On the other hand, type 2 diabetes mellitus is often picked up incidentally on routine blood tests and presents with polydipsia and polyuria.
There are four main ways to check blood glucose, including a finger-prick bedside glucose monitor, a one-off blood glucose, a HbA1c, and a glucose tolerance test. The diagnostic criteria are determined by WHO, with a fasting glucose greater than or equal to 7.0 mmol/l and random glucose greater than or equal to 11.1 mmol/l being diagnostic of diabetes mellitus. Management of diabetes mellitus involves drug therapy to normalize blood glucose levels, monitoring for and treating any complications related to diabetes, and modifying any other risk factors for other conditions such as cardiovascular disease. The first-line drug for the vast majority of patients with type 2 diabetes mellitus is metformin, with second-line drugs including sulfonylureas, gliptins, and pioglitazone. Insulin is used if oral medication is not controlling the blood glucose to a sufficient degree.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 26
Correct
-
A 50-year-old man with type 2 diabetes mellitus, who is currently on metformin, visits for his diabetic check-up. His blood sugar levels are not well-controlled and the doctor decides to prescribe gliclazide in addition to his current medication. During the consultation, the doctor discusses the potential side effects of sulfonylureas. What is a possible side effect of sulfonylureas?
Your Answer: Hypoglycaemia
Explanation:Hypoglycaemia is a significant adverse effect of sulfonylureas, including gliclazide, which stimulate insulin secretion from the pancreas. Patients taking sulfonylureas should be educated about the possibility of hypoglycaemia and instructed on how to manage it if it occurs. Acarbose commonly causes flatulence, while PPAR agonists (glitazones) can lead to fluid retention, and metformin may cause nausea and diarrhoea.
Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).
While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.
It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 27
Correct
-
Release of somatostatin from the pancreas will lead to what outcome?
Your Answer: Decrease in pancreatic exocrine secretions
Explanation:Octreotide is utilized to treat high output pancreatic fistulae by reducing exocrine pancreatic secretions, although parenteral feeding is the most effective treatment. It is also used to treat variceal bleeding and acromegaly.
Octreotide inhibits the release of growth hormone and insulin from the pancreas. Additionally, somatostatin, which is released by the hypothalamus, triggers a negative feedback response on growth hormone.
Somatostatin: The Inhibitor Hormone
Somatostatin, also known as growth hormone inhibiting hormone (GHIH), is a hormone produced by delta cells found in the pancreas, pylorus, and duodenum. Its main function is to inhibit the secretion of growth hormone, insulin, and glucagon. It also decreases acid and pepsin secretion, as well as pancreatic enzyme secretion. Additionally, somatostatin inhibits the trophic effects of gastrin and stimulates gastric mucous production.
Somatostatin analogs are commonly used in the management of acromegaly, a condition characterized by excessive growth hormone secretion. These analogs work by inhibiting growth hormone secretion, thereby reducing the symptoms associated with acromegaly.
The secretion of somatostatin is regulated by various factors. Its secretion increases in response to fat, bile salts, and glucose in the intestinal lumen, as well as glucagon. On the other hand, insulin decreases the secretion of somatostatin.
In summary, somatostatin plays a crucial role in regulating the secretion of various hormones and enzymes in the body. Its inhibitory effects on growth hormone, insulin, and glucagon make it an important hormone in the management of certain medical conditions.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 28
Incorrect
-
A 36-year-old woman visits her GP complaining of frequent urination. She has been waking up several times at night to urinate for the past two weeks and has been feeling more thirsty than usual. Her temperature is 37.3ÂșC. She has a history of bipolar disorder and is currently on lithium medication.
What could be the possible cause of her polyuria?Your Answer: Lithium causing insulin resistance and hyperglycaemia
Correct Answer: Lithium reducing ADH-dependent water reabsorption in the collecting duct
Explanation:The site of action for antidiuretic hormone (ADH) is the collecting ducts. Lithium treatment for bipolar disorder can lead to diabetes insipidus, which is characterized by increased thirst (polydipsia) and increased urination (polyuria). Lithium use can cause nephrogenic diabetes insipidus, where the kidneys are unable to respond adequately to ADH. Normally, ADH induces the expression of aquaporin 2 channels in the collecting duct, which stimulates water reabsorption.
Central diabetes insipidus occurs when there is damage to the posterior pituitary gland, resulting in insufficient production and release of ADH. However, lithium use causes nephrogenic diabetes insipidus instead of central diabetes insipidus.
Although insulin resistance and hyperglycemia can also cause polyuria and polydipsia, as seen in diabetic ketoacidosis, the use of lithium suggests that the patient’s symptoms are due to diabetes insipidus rather than diabetes mellitus.
Lithium inhibits the expression of aquaporin channels in the renal collecting duct, rather than the distal convoluted tubule, which causes diabetes insipidus.
While a urinary tract infection can also present with polyuria and nocturia, the presence of lithium in the patient’s drug history and the fact that the patient also has polydipsia suggest nephrogenic diabetes insipidus. Diabetes insipidus causes increased thirst due to the excessive volume of urine produced, leading to water loss from the body. In addition, a urinary tract infection would likely cause dysuria (burning or stinging when passing urine) and lower abdominal pain.
Understanding Antidiuretic Hormone (ADH)
Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.
ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.
Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.
Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 29
Correct
-
A man in his early 50s comes to the hospital with a fever and cough. An X-ray shows pneumonia in his left lower lobe. Upon arrival at the emergency department, his blood pressure is 83/60mmHg and his heart rate is 112/min. The doctor prescribes antibiotics and IV fluids.
What is the primary way the body reacts to a drop in blood pressure?Your Answer: Insertion of AQP-2 channels in collecting ducts
Explanation:When blood pressure drops, the body initiates several physiological responses, one of which is the activation of the renin-angiotensin aldosterone system (RAAS). This system breaks down bradykinin, a potent vasodilator, through the action of angiotensin-converting enzyme (ACE).
RAAS activation results in increased aldosterone levels, which in turn increases the number of epithelial sodium channels (ENAC) to enhance sodium reabsorption.
Another response to low blood pressure is the release of antidiuretic hormone, which promotes the insertion of aquaporin-2 channels in the collecting duct. This mechanism increases water reabsorption to help maintain fluid balance in the body.
Understanding Antidiuretic Hormone (ADH)
Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.
ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.
Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.
Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 30
Correct
-
The following results were obtained on a 57-year-old male who complains of fatigue:
Free T4 9.8 pmol/L (9.0-25.0)
TSH 50.02 mU/L (0.27-4.20)
What physical signs would you anticipate during the examination?Your Answer: Slow relaxation of tendon jerks
Explanation:Symptoms and Signs of Hypothyroidism
Hypothyroidism is a condition that is characterized by an underactive thyroid gland, which leads to a decrease in the production of thyroid hormones. This condition is associated with several symptoms and signs, including a relative bradycardia, slow relaxation of tendon jerks, pale complexion, thinning of the hair, and weight gain. In severe cases of hypothyroidism, hypothermia may also be present.
A relative bradycardia refers to a slower than normal heart rate, which is a common symptom of hypothyroidism. Additionally, slow relaxation of tendon jerks is another sign of this condition. This refers to a delay in the relaxation of muscles after a reflex is elicited. Other physical signs of hypothyroidism include a pale complexion and thinning of the hair, which can be attributed to a decrease in metabolic activity.
Weight gain is also a common symptom of hypothyroidism, as the decrease in thyroid hormone production can lead to a slower metabolism and decreased energy expenditure. In severe cases of hypothyroidism, hypothermia may also be present, which refers to a body temperature that is lower than normal.
It is important to note that while a thyroid bruit is typical of Graves’ thyrotoxicosis, it is not a common sign of hypothyroidism. Overall, the symptoms and signs of hypothyroidism can vary in severity and may require medical intervention to manage.
-
This question is part of the following fields:
- Endocrine System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)