00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - As a doctor on a 4-month placement in intensive care, you admit a...

    Correct

    • As a doctor on a 4-month placement in intensive care, you admit a 32-year-old man following a closed head injury sustained in a road traffic accident. The patient has no past medical history and initially presents with a Glasgow coma score of 14/15 and no focal neurological deficit. Invasive monitoring is undertaken, and his heart rate, blood pressure, and intracranial pressure are normal. He is started on maintenance intravenous fluids.

      However, a few hours later, the patient becomes agitated and confused, and his Glasgow coma score drops to 11/15. His observations reveal a regular heart rate of 101 beats per minute, a blood pressure of 161/89 mmHg, and an intracranial pressure of 18 mmHg. Which pathophysiological changes could explain his clinical deterioration and hypertension?

      Your Answer: Rise in intracranial pressure causing fall in cerebral perfusion pressure

      Explanation:

      When intracranial pressure (ICP) rises rapidly, it can lead to a decrease in cerebral perfusion pressure (CPP). This can occur in individuals with head injuries, as seen in the scenario where a patient’s Glasgow coma score dropped from 14/15 to 11/15 and they became agitated. The patient’s ICP also increased to 18 mmHg, likely due to brain swelling or a hematoma. The decrease in CPP can cause hypoperfusion and hypoxia in normal brain tissue, leading to neurological deterioration. CPP is calculated by subtracting ICP from mean arterial pressure. As a result of the decrease in CPP, the body may respond by increasing mean arterial pressure, resulting in hypertension in the patient.

      Understanding Cerebral Perfusion Pressure

      Cerebral perfusion pressure (CPP) refers to the pressure gradient that drives blood flow to the brain. It is a crucial factor in maintaining optimal cerebral perfusion, which is tightly regulated by the body. Any sudden increase in CPP can lead to a rise in intracranial pressure (ICP), while a decrease in CPP can result in cerebral ischemia. To calculate CPP, one can subtract the ICP from the mean arterial pressure.

      In cases of trauma, it is essential to carefully monitor and control CPP. This may require invasive methods to measure both ICP and mean arterial pressure (MAP). By doing so, healthcare professionals can ensure that the brain receives adequate blood flow and oxygenation, which is vital for optimal brain function. Understanding CPP is crucial in managing traumatic brain injuries and other conditions that affect cerebral perfusion.

    • This question is part of the following fields:

      • Neurological System
      88.7
      Seconds
  • Question 2 - A woman in her 30s has suffered a stab wound to her back,...

    Incorrect

    • A woman in her 30s has suffered a stab wound to her back, resulting in a complete severance of the right side of her spinal cord at the T12 vertebrae. What are the expected symptoms of a hemisection of the spinal cord in this case?

      Your Answer: Ipsilaterally - weakness, loss of touch and proprioception

      Contralaterally - loss of pain and temperature sensation

      Correct Answer:

      Explanation:

      The symptoms mentioned are indicative of Brown-Sequard syndrome. This condition would lead to a loss of pain and temperature sensation on the opposite side of the lesion, along with weakness, loss of touch, and proprioception on the same side of the lesion. This occurs because the fibers supplying the latter three functions have not yet crossed over.

      Understanding Brown-Sequard Syndrome

      Brown-Sequard syndrome is a condition that occurs when there is a lateral hemisection of the spinal cord. This condition is characterized by a combination of symptoms that affect the body’s ability to sense and move. Individuals with Brown-Sequard syndrome experience weakness on the same side of the body as the lesion, as well as a loss of proprioception and vibration sensation on that side. On the opposite side of the body, there is a loss of pain and temperature sensation.

      It is important to note that the severity of Brown-Sequard syndrome can vary depending on the location and extent of the spinal cord injury. Some individuals may experience only mild symptoms, while others may have more severe impairments. Treatment for Brown-Sequard syndrome typically involves a combination of physical therapy, medication, and other supportive measures to help manage symptoms and improve overall quality of life.

    • This question is part of the following fields:

      • Neurological System
      50.3
      Seconds
  • Question 3 - A 10-month-old girl arrives at the emergency department with cough and nasal congestion....

    Correct

    • A 10-month-old girl arrives at the emergency department with cough and nasal congestion. The triage nurse records a temperature of 38.2ºC. Which area of the brain is accountable for the observed physiological anomaly in this infant?

      Your Answer: Hypothalamus

      Explanation:

      The hypothalamus is responsible for regulating body temperature, as it controls thermoregulation. It responds to pyrogens produced during infections, which induce the synthesis of prostaglandins that bind to receptors in the hypothalamus and raise body temperature. The cerebellum, limbic system, and pineal gland are not involved in temperature control.

      The hypothalamus is a part of the brain that plays a crucial role in maintaining the body’s internal balance, or homeostasis. It is located in the diencephalon and is responsible for regulating various bodily functions. The hypothalamus is composed of several nuclei, each with its own specific function. The anterior nucleus, for example, is involved in cooling the body by stimulating the parasympathetic nervous system. The lateral nucleus, on the other hand, is responsible for stimulating appetite, while lesions in this area can lead to anorexia. The posterior nucleus is involved in heating the body and stimulating the sympathetic nervous system, and damage to this area can result in poikilothermia. Other nuclei include the septal nucleus, which regulates sexual desire, the suprachiasmatic nucleus, which regulates circadian rhythm, and the ventromedial nucleus, which is responsible for satiety. Lesions in the paraventricular nucleus can lead to diabetes insipidus, while lesions in the dorsomedial nucleus can result in savage behavior.

    • This question is part of the following fields:

      • Neurological System
      10.1
      Seconds
  • Question 4 - A 25-year-old man slips and falls at a nightclub, resulting in a shard...

    Incorrect

    • A 25-year-old man slips and falls at a nightclub, resulting in a shard of glass penetrating his skin at the level of the medial epicondyle. Which of the following outcomes is the least probable?

      Your Answer: Atrophy of the first dorsal interosseous muscle

      Correct Answer: Claw like appearance of the hand

      Explanation:

      When the ulnar nerve is injured in the mid to distal forearm, it can result in a claw hand. This means that the 4th and 5th interphalangeal joints will flex while the metacarpophalangeal joints will extend. The severity of the clawing can be increased if the flexor digitorum profundus is not affected. However, if the ulnar nerve lesion is more proximal, the clinical picture will be milder due to the simultaneous paralysis of the ulnar half of the flexor digitorum profundus. This is known as the ‘ulnar paradox’. In this case, the hand may not have a claw-like appearance that is typically seen in more distal injuries. The ulnar nerve also supplies the first dorsal interosseous muscle, which will be affected by the injury.

      The ulnar nerve originates from the medial cord of the brachial plexus, specifically from the C8 and T1 nerve roots. It provides motor innervation to various muscles in the hand, including the medial two lumbricals, adductor pollicis, interossei, hypothenar muscles (abductor digiti minimi, flexor digiti minimi), and flexor carpi ulnaris. Sensory innervation is also provided to the medial 1 1/2 fingers on both the palmar and dorsal aspects. The nerve travels through the posteromedial aspect of the upper arm and enters the palm of the hand via Guyon’s canal, which is located superficial to the flexor retinaculum and lateral to the pisiform bone.

      The ulnar nerve has several branches that supply different muscles and areas of the hand. The muscular branch provides innervation to the flexor carpi ulnaris and the medial half of the flexor digitorum profundus. The palmar cutaneous branch arises near the middle of the forearm and supplies the skin on the medial part of the palm, while the dorsal cutaneous branch supplies the dorsal surface of the medial part of the hand. The superficial branch provides cutaneous fibers to the anterior surfaces of the medial one and one-half digits, and the deep branch supplies the hypothenar muscles, all the interosseous muscles, the third and fourth lumbricals, the adductor pollicis, and the medial head of the flexor pollicis brevis.

      Damage to the ulnar nerve at the wrist can result in a claw hand deformity, where there is hyperextension of the metacarpophalangeal joints and flexion at the distal and proximal interphalangeal joints of the 4th and 5th digits. There may also be wasting and paralysis of intrinsic hand muscles (except for the lateral two lumbricals), hypothenar muscles, and sensory loss to the medial 1 1/2 fingers on both the palmar and dorsal aspects. Damage to the nerve at the elbow can result in similar symptoms, but with the addition of radial deviation of the wrist. It is important to diagnose and treat ulnar nerve damage promptly to prevent long-term complications.

    • This question is part of the following fields:

      • Neurological System
      32.9
      Seconds
  • Question 5 - A 36-year-old man comes to the emergency department with a complaint of severe...

    Correct

    • A 36-year-old man comes to the emergency department with a complaint of severe headaches upon waking up for the past three days. He has also been experiencing blurred vision for the past three weeks, and has been feeling increasingly nauseated and has vomited four times in the past 24 hours. Upon ophthalmoscopy, bilateral papilloedema is observed. A CT head scan reveals dilation of the lateral, third, and fourth ventricles, with a lesion obstructing the flow of cerebrospinal fluid (CSF) from the fourth ventricle into the cisterna magna. What is the usual pathway for CSF to flow from the fourth ventricle directly into the cisterna magna?

      Your Answer: Median aperture (foramen of Magendie)

      Explanation:

      The correct answer is the foramen of Magendie, also known as the median aperture.

      The interventricular foramina connect the two lateral ventricles to the third ventricle, which is located in the midline between the thalami of the two hemispheres. The third ventricle communicates with the fourth ventricle via the cerebral aqueduct of Sylvius.

      CSF flows from the third ventricle into the fourth ventricle through the cerebral aqueduct. From the fourth ventricle, CSF exits through one of four openings: the foramen of Magendie, which drains CSF into the cisterna magna; the foramina of Luschka, which drain CSF into the cerebellopontine angle cistern; the central canal at the obex, which runs through the center of the spinal cord.

      The superior sagittal sinus is a large venous sinus located along the midline of the superior cranial cavity. Arachnoid villi project from the subarachnoid space into the superior sagittal sinus to allow for the absorption of CSF.

      A patient presenting with symptoms and signs of raised intracranial pressure may have a variety of underlying causes, including mass lesions and neoplasms. In this case, a mass is obstructing the normal flow of CSF from the fourth ventricle, leading to increased pressure in all four ventricles.

      Cerebrospinal Fluid: Circulation and Composition

      Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.

      The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.

      The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      21.5
      Seconds
  • Question 6 - A 72-year-old male visits his doctor with complaints of decreased and blurry vision....

    Incorrect

    • A 72-year-old male visits his doctor with complaints of decreased and blurry vision. Upon examination with a slit lamp, a nuclear sclerotic cataract is detected in his right eye. The patient has been diagnosed with type 2 diabetes mellitus for 12 years and is currently on insulin therapy.

      What is the primary factor that increases the risk of developing this condition?

      Your Answer: Type 2 diabetes mellitus

      Correct Answer: Ageing

      Explanation:

      Ageing is the most significant risk factor for cataracts, although the other factors also contribute to the development of this condition.

      Understanding Cataracts

      A cataract is a common eye condition that occurs when the lens of the eye becomes cloudy, making it difficult for light to reach the retina and causing reduced or blurred vision. Cataracts are more common in women and increase in incidence with age, affecting 30% of individuals aged 65 and over. The most common cause of cataracts is the normal ageing process, but other possible causes include smoking, alcohol consumption, trauma, diabetes mellitus, long-term corticosteroids, radiation exposure, myotonic dystrophy, and metabolic disorders such as hypocalcaemia.

      Patients with cataracts typically experience a gradual onset of reduced vision, faded colour vision, glare, and halos around lights. Signs of cataracts include a defect in the red reflex, which is the reddish-orange reflection seen through an ophthalmoscope when a light is shone on the retina. Diagnosis is made through ophthalmoscopy and slit-lamp examination, which reveal a visible cataract.

      In the early stages, age-related cataracts can be managed conservatively with stronger glasses or contact lenses and brighter lighting. However, surgery is the only effective treatment for cataracts, involving the removal of the cloudy lens and replacement with an artificial one. Referral for surgery should be based on the presence of visual impairment, impact on quality of life, patient choice, and the risks and benefits of surgery. Complications following surgery may include posterior capsule opacification, retinal detachment, posterior capsule rupture, and endophthalmitis. Despite these risks, cataract surgery has a high success rate, with 85-90% of patients achieving corrected vision of 6/12 or better on a Snellen chart postoperatively.

    • This question is part of the following fields:

      • Neurological System
      28.8
      Seconds
  • Question 7 - A 75-year-old woman presents to the respiratory clinic with an 8-week history of...

    Incorrect

    • A 75-year-old woman presents to the respiratory clinic with an 8-week history of progressive dyspnoea and dry cough with occasional haemoptysis. She has been a heavy smoker for the past 30 years, smoking 50 cigarettes per day.

      During the examination, reduced air entry is noted in the right upper lung field. The patient appears cachectic with a BMI of 18kg/m². A chest x-ray is ordered, which reveals a rounded opacity in the apical region of the right lung.

      What are the most indicative ocular signs of this diagnosis?

      Your Answer: Partial ptosis and dilated pupil

      Correct Answer: Partial ptosis and constricted pupil

      Explanation:

      The patient’s presentation of partial ptosis and constricted pupil is consistent with Horner’s syndrome. This is likely due to a Pancoast tumor in the apical region of the right lung, which can compress the sympathetic chain and cause a lack of sympathetic innervation. This results in partial ptosis, pupillary constriction, and anhidrosis. Complete ptosis and dilated pupil would be seen in traumatic oculomotor nerve palsy, while exophthalmos and dilated pupil are associated with Grave’s eye disease. Lid lag and normal pupil size are commonly seen in hyperthyroidism, but should not be confused with ptosis and Horner’s syndrome.

      Horner’s syndrome is a condition characterized by several features, including a small pupil (miosis), drooping of the upper eyelid (ptosis), a sunken eye (enophthalmos), and loss of sweating on one side of the face (anhidrosis). The cause of Horner’s syndrome can be determined by examining additional symptoms. For example, congenital Horner’s syndrome may be identified by a difference in iris color (heterochromia), while anhidrosis may be present in central or preganglionic lesions. Pharmacologic tests, such as the use of apraclonidine drops, can also be helpful in confirming the diagnosis and identifying the location of the lesion. Central lesions may be caused by conditions such as stroke or multiple sclerosis, while postganglionic lesions may be due to factors like carotid artery dissection or cluster headaches. It is important to note that the appearance of enophthalmos in Horner’s syndrome is actually due to a narrow palpebral aperture rather than true enophthalmos.

    • This question is part of the following fields:

      • Neurological System
      36.9
      Seconds
  • Question 8 - A 55-year-old man with a history of diabetes visits his ophthalmologist for his...

    Incorrect

    • A 55-year-old man with a history of diabetes visits his ophthalmologist for his yearly diabetic retinopathy screening. During the examination, the physician observes venous beading. What other clinical manifestation would be present due to the same underlying pathophysiology?

      Your Answer: Floaters

      Correct Answer: Cotton wool spots

      Explanation:

      Cotton wool spots found in diabetic retinopathy are indicative of retinal infarction resulting from ischemic disruption. Venous beading, on the other hand, is characterized by irregular constriction and dilation of venules in the retina due to retinal ischemia. It is important to note that cupping of the optic disc is not associated with diabetic retinopathy but rather with open-angle glaucoma. Similarly, lipid exudates are not a feature of diabetic retinopathy as they occur at the border between thickened and non-thickened retina, resulting in extravasated lipoprotein.

      Understanding Diabetic Retinopathy

      Diabetic retinopathy is a leading cause of blindness in adults aged 35-65 years-old. The condition is caused by hyperglycaemia, which leads to abnormal metabolism in the retinal vessel walls, causing damage to endothelial cells and pericytes. This damage leads to increased vascular permeability, which causes exudates seen on fundoscopy. Pericyte dysfunction predisposes to the formation of microaneurysms, while neovascularization is caused by the production of growth factors in response to retinal ischaemia.

      Patients with diabetic retinopathy are typically classified into those with non-proliferative diabetic retinopathy (NPDR), proliferative retinopathy (PDR), and maculopathy. NPDR is further classified into mild, moderate, and severe, depending on the presence of microaneurysms, blot haemorrhages, hard exudates, cotton wool spots, venous beading/looping, and intraretinal microvascular abnormalities. PDR is characterized by retinal neovascularization, which may lead to vitreous haemorrhage, and fibrous tissue forming anterior to the retinal disc. Maculopathy is based on location rather than severity and is more common in Type II DM.

      Management of diabetic retinopathy involves optimizing glycaemic control, blood pressure, and hyperlipidemia, as well as regular review by ophthalmology. For maculopathy, intravitreal vascular endothelial growth factor (VEGF) inhibitors are used if there is a change in visual acuity. Non-proliferative retinopathy is managed through regular observation, while severe/very severe cases may require panretinal laser photocoagulation. Proliferative retinopathy is treated with panretinal laser photocoagulation, intravitreal VEGF inhibitors, and vitreoretinal surgery in severe or vitreous haemorrhage cases. Examples of VEGF inhibitors include ranibizumab, which has a strong evidence base for slowing the progression of proliferative diabetic retinopathy and improving visual acuity.

    • This question is part of the following fields:

      • Neurological System
      14.5
      Seconds
  • Question 9 - A 31-year-old woman is seeking advice at the family planning clinic as she...

    Incorrect

    • A 31-year-old woman is seeking advice at the family planning clinic as she plans to start a family soon. She has been researching medications that may harm her baby's growth during pregnancy, especially those that can cause cleft palate and heart defects. Her concerns stem from her friend's experience with her baby being born with these conditions. Can you identify the drug that is linked to cleft palate and congenital heart disease?

      Your Answer: Warfarin

      Correct Answer: Phenytoin

      Explanation:

      Phenytoin is linked to the development of cleft palate and congenital heart disease, making it a known teratogenic substance.

      Insulin and acetaminophen are considered safe for use during pregnancy and are not known to have any harmful effects on the developing fetus.

      Warfarin, on the other hand, is known to be teratogenic and may cause defects in the hands, nose, and eyes, as well as growth retardation. However, it is not associated with cleft palate or congenital heart disease.

      Tetracyclines can cause discoloration of the teeth and bone defects due to their deposition in these tissues.

      Understanding the Adverse Effects of Phenytoin

      Phenytoin is a medication commonly used to manage seizures. Its mechanism of action involves binding to sodium channels, which increases their refractory period. However, the drug is associated with a large number of adverse effects that can be categorized as acute, chronic, idiosyncratic, and teratogenic.

      Acute adverse effects of phenytoin include dizziness, diplopia, nystagmus, slurred speech, ataxia, confusion, and seizures. Chronic adverse effects may include gingival hyperplasia, hirsutism, coarsening of facial features, drowsiness, megaloblastic anemia, peripheral neuropathy, enhanced vitamin D metabolism causing osteomalacia, lymphadenopathy, and dyskinesia.

      Idiosyncratic adverse effects of phenytoin may include fever, rashes, including severe reactions such as toxic epidermal necrolysis, hepatitis, Dupuytren’s contracture, aplastic anemia, and drug-induced lupus. Finally, teratogenic adverse effects of phenytoin are associated with cleft palate and congenital heart disease.

      It is important to note that phenytoin is also an inducer of the P450 system. While routine monitoring of phenytoin levels is not necessary, trough levels should be checked immediately before a dose if there is a need for adjustment of the phenytoin dose, suspected toxicity, or detection of non-adherence to the prescribed medication.

    • This question is part of the following fields:

      • Neurological System
      24.7
      Seconds
  • Question 10 - A young man comes to the clinic with difficulty forming meaningful sentences following...

    Correct

    • A young man comes to the clinic with difficulty forming meaningful sentences following treatment for a right middle cerebral artery infarction. He struggles to complete his sentences and frequently pauses while speaking. However, his comprehension of spoken language remains intact. The physician suspects a neurological origin. Which area of his brain is likely affected?

      Your Answer: Broca's area

      Explanation:

      The individual in question is experiencing Broca’s aphasia, which results in impaired language production but preserved comprehension. Wernicke’s aphasia, on the other hand, would result in impaired comprehension but preserved language production. Both Broca’s and Wernicke’s aphasia are typically caused by a stroke and affect areas in the left hemisphere, not involving the occipital lobe. Therefore, the options that suggest specific anatomical landmarks are incorrect.

      Types of Aphasia: Understanding the Different Forms of Language Impairment

      Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.

      Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.

      Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.

      Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.

    • This question is part of the following fields:

      • Neurological System
      20.5
      Seconds
  • Question 11 - A 57-year-old man with a long-standing history of type 2 diabetes and hypertension...

    Incorrect

    • A 57-year-old man with a long-standing history of type 2 diabetes and hypertension visited his physician for a routine check-up. Due to his prolonged diabetes history, the physician referred the man for an eye examination to detect any diabetes-related conditions. The ophthalmology clinic report revealed a slight increase in the intraocular pressure. Although the man reported no vision problems, the physician recommended starting treatment with a medication to reduce the risk of future vision damage, warning the patient that the drug may darken his eye color. What is the drug's mechanism of action prescribed by the doctor?

      Your Answer: Decrease formation of aqueous humor by decreasing blood flow

      Correct Answer: Improves uveoscleral outflow

      Explanation:

      Latanoprost is a medication used to treat glaucoma by increasing the outflow of aqueous humor. Diabetic patients are at risk of various eye-related complications, including glaucoma. Chronic closed-angle glaucoma is common in diabetic patients due to the proliferation of blood vessels in the iris, which blocks the drainage pathway of aqueous humor. Treatment is necessary to reduce intraocular pressure and prevent damage to the optic nerve. Acetazolamide works by reducing intraocular pressure, while carbachol and pilocarpine activate muscarinic cholinergic receptors to open the trabecular meshwork pathway. Epinephrine administration produces alpha-1-agonist effects. Prostaglandin analogs such as latanoprost, bimatoprost, and travoprost are the only medications used to reduce intraocular pressure that cause darkening of the iris, but they do not affect the formation of aqueous humor.

      Primary open-angle glaucoma is a type of optic neuropathy that is associated with increased intraocular pressure (IOP). It is classified based on whether the peripheral iris is covering the trabecular meshwork, which is important in the drainage of aqueous humour from the anterior chamber of the eye. In open-angle glaucoma, the iris is clear of the meshwork, but the trabecular network offers increased resistance to aqueous outflow, causing increased IOP. This condition affects 0.5% of people over the age of 40 and its prevalence increases with age up to 10% over the age of 80 years. Both males and females are equally affected. The main causes of primary open-angle glaucoma are increasing age and genetics, with first-degree relatives of an open-angle glaucoma patient having a 16% chance of developing the disease.

      Primary open-angle glaucoma is characterised by a slow rise in intraocular pressure, which is symptomless for a long period. It is typically detected following an ocular pressure measurement during a routine examination by an optometrist. Signs of the condition include increased intraocular pressure, visual field defect, and pathological cupping of the optic disc. Case finding and provisional diagnosis are done by an optometrist, and referral to an ophthalmologist is done via the GP. Final diagnosis is made through investigations such as automated perimetry to assess visual field, slit lamp examination with pupil dilatation to assess optic nerve and fundus for a baseline, applanation tonometry to measure IOP, central corneal thickness measurement, and gonioscopy to assess peripheral anterior chamber configuration and depth. The risk of future visual impairment is assessed using risk factors such as IOP, central corneal thickness (CCT), family history, and life expectancy.

      The majority of patients with primary open-angle glaucoma are managed with eye drops that aim to lower intraocular pressure and prevent progressive loss of visual field. According to NICE guidelines, the first line of treatment is a prostaglandin analogue (PGA) eyedrop, followed by a beta-blocker, carbonic anhydrase inhibitor, or sympathomimetic eyedrop as a second line of treatment. Surgery or laser treatment can be tried in more advanced cases. Reassessment is important to exclude progression and visual field loss and needs to be done more frequently if IOP is uncontrolled, the patient is high risk, or there

    • This question is part of the following fields:

      • Neurological System
      34.4
      Seconds
  • Question 12 - A 38-year-old man visits his doctor with worries of having spinal muscular atrophy,...

    Correct

    • A 38-year-old man visits his doctor with worries of having spinal muscular atrophy, as his father has been diagnosed with the condition. He asks for a physical examination.

      What physical exam finding is indicative of the characteristic pattern observed in this disorder?

      Your Answer: Reduced reflexes

      Explanation:

      Lower motor neuron lesions, such as spinal muscular atrophy, result in reduced reflexes and tone. Babinski’s sign is negative in these cases. Increased reflexes and tone are indicative of an upper motor neuron cause of symptoms, which may be seen in conditions such as stroke or Parkinson’s disease. Therefore, normal reflexes and tone are also incorrect findings in lower motor neuron lesions.

      The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.

      One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.

    • This question is part of the following fields:

      • Neurological System
      40.4
      Seconds
  • Question 13 - A 57-year-old woman with a history of polycystic kidney disease visits her doctor...

    Incorrect

    • A 57-year-old woman with a history of polycystic kidney disease visits her doctor complaining of a drooping eyelid. Upon examination, her left eye displays unilateral ptosis and a downward and outward gaze, with a dilated left pupil. The patient is referred to the neuroradiology department for cerebral angiography, which reveals an aneurysm compressing the oculomotor nerve as it passes through two arteries. What are the names of these two arteries that the oculomotor nerve runs through?

      Your Answer: Posterior cerebral and vertebral arteries

      Correct Answer: Posterior cerebral and superior cerebellar arteries

      Explanation:

      The oculomotor nerve commonly becomes compressed by aneurysms arising from the posterior cerebral and superior cerebellar arteries as it exits the midbrain, passing between these vessels.

      When a patient presents with ptosis, pupillary dilation, and downward and outward gaze, this is classified as a ‘surgical’ cause of oculomotor nerve palsy. In contrast, ‘medical’ causes of oculomotor nerve palsy, such as diabetic neuropathy, typically spare the pupil (at least initially) because the parasympathetic fibers are located on the periphery of the oculomotor nerve trunk and are therefore the first to be affected by compression, resulting in a fixed and dilated pupil.

      While a posterior communicating artery aneurysm is a classic cause of oculomotor nerve compression, it is not the correct answer to the above question.

      All other combinations are incorrect.

      Disorders of the Oculomotor System: Nerve Path and Palsy Features

      The oculomotor system is responsible for controlling eye movements and pupil size. Disorders of this system can result in various nerve path and palsy features. The oculomotor nerve has a large nucleus at the midbrain and its fibers pass through the red nucleus and the pyramidal tract, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience ptosis, eye down and out, and an inability to move the eye superiorly, inferiorly, or medially. The pupil may also become fixed and dilated.

      The trochlear nerve has the longest intracranial course and is the only nerve to exit the dorsal aspect of the brainstem. Its nucleus is located at the midbrain and it passes between the posterior cerebral and superior cerebellar arteries, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience vertical diplopia (diplopia on descending the stairs) and an inability to look down and in.

      The abducens nerve has its nucleus in the mid pons and is responsible for the convergence of eyes in primary position. When this nerve is affected, patients may experience lateral diplopia towards the side of the lesion and the eye may deviate medially. Understanding the nerve path and palsy features of the oculomotor system can aid in the diagnosis and treatment of disorders affecting this important system.

    • This question is part of the following fields:

      • Neurological System
      55.7
      Seconds
  • Question 14 - A 6-year-old boy arrives at the Emergency Department accompanied by his mother, reporting...

    Incorrect

    • A 6-year-old boy arrives at the Emergency Department accompanied by his mother, reporting a deteriorating headache, vomiting, and muscle weakness that has been developing over the past few months. Upon examination, you observe ataxia and unilateral muscle weakness. The child is otherwise healthy, with no significant medical history, and is apyrexial. Imaging tests reveal a medulla oblongata brainstem tumor.

      From which embryonic component does the affected structure originate?

      Your Answer: Mesencephalon

      Correct Answer: Myelencephalon

      Explanation:

      The myelencephalon gives rise to the medulla oblongata and the inferior part of the fourth ventricle. The telencephalon gives rise to the cerebral cortex, lateral ventricles, and basal ganglia. The diencephalon gives rise to the thalamus, hypothalamus, optic nerves, and third ventricle. The metencephalon gives rise to the pons, cerebellum, and the superior part of the fourth ventricle. The mesencephalon gives rise to the midbrain and cerebral aqueduct.

      Embryonic Development of the Nervous System

      The nervous system develops from the embryonic neural tube, which gives rise to the brain and spinal cord. The neural tube is divided into five regions, each of which gives rise to specific structures in the nervous system. The telencephalon gives rise to the cerebral cortex, lateral ventricles, and basal ganglia. The diencephalon gives rise to the thalamus, hypothalamus, optic nerves, and third ventricle. The mesencephalon gives rise to the midbrain and cerebral aqueduct. The metencephalon gives rise to the pons, cerebellum, and superior part of the fourth ventricle. The myelencephalon gives rise to the medulla and inferior part of the fourth ventricle.

      The neural tube is also divided into two plates: the alar plate and the basal plate. The alar plate gives rise to sensory neurons, while the basal plate gives rise to motor neurons. This division of the neural tube into different regions and plates is crucial for the proper development and function of the nervous system. Understanding the embryonic development of the nervous system is important for understanding the origins of neurological disorders and for developing new treatments for these disorders.

    • This question is part of the following fields:

      • Neurological System
      26.4
      Seconds
  • Question 15 - An 78-year-old man visits his GP complaining of difficulty rotating his head to...

    Correct

    • An 78-year-old man visits his GP complaining of difficulty rotating his head to the right side. The patient had a cervical lymph node excision biopsy recently due to an enlarged lymph node. During the examination, the GP observes weakened elevation of the right shoulder. The GP suspects iatrogenic damage to the accessory nerve. What is the name of the foramen through which the affected nerve exits the skull?

      Your Answer: Jugular foramen

      Explanation:

      The accessory nerve, responsible for innervating the sternocleidomastoid and trapezius muscles, passes through the jugular foramen along with the glossopharyngeal and vagus nerves. The mandibular nerve, which provides both motor and sensory functions to the chin, lower lip, teeth, gums, and tongue, passes through the foramen ovale. The maxillary nerve, responsible for providing innervation to the mid-third of the face, passes through the foramen rotundum. The hypoglossal nerve, which supplies motor innervation to the tongue, passes through the hypoglossal canal. Finally, the facial and vestibulocochlear nerves pass through the internal acoustic meatus, with the vestibulocochlear nerve splitting into vestibular and cochlear roots and the facial nerve splitting into five branches within the parotid gland.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      31.6
      Seconds
  • Question 16 - When conducting minor surgery on the scalp, which region is considered a hazardous...

    Incorrect

    • When conducting minor surgery on the scalp, which region is considered a hazardous area in terms of infection spreading to the central nervous system (CNS)?

      Your Answer: Pericranium

      Correct Answer: Loose areolar tissue

      Explanation:

      The risk of infection spreading easily makes this area highly dangerous. The emissary veins that drain this region could facilitate the spread of sepsis to the cranial cavity.

      Patients with head injuries should be managed according to ATLS principles and extracranial injuries should be managed alongside cranial trauma. Different types of traumatic brain injury include extradural hematoma, subdural hematoma, and subarachnoid hemorrhage. Primary brain injury may be focal or diffuse, while secondary brain injury occurs when cerebral edema, ischemia, infection, tonsillar or tentorial herniation exacerbates the original injury. Management may include IV mannitol/furosemide, decompressive craniotomy, and ICP monitoring. Pupillary findings can provide information on the location and severity of the injury.

    • This question is part of the following fields:

      • Neurological System
      17.1
      Seconds
  • Question 17 - A 50-year-old woman visits her doctor with concerns about her vision. She reports...

    Incorrect

    • A 50-year-old woman visits her doctor with concerns about her vision. She reports experiencing double vision and had a recent fall while descending the stairs at her home. She denies experiencing any eye pain.

      Which cranial nerve is most likely responsible for her symptoms?

      Your Answer: Vestibulocochlear nerve

      Correct Answer: Trochlear nerve

      Explanation:

      If you experience worsened vision while descending stairs, it may be indicative of 4th nerve palsy, which is characterized by vertical diplopia. This is because the 4th nerve is responsible for downward eye movement.

      Understanding Fourth Nerve Palsy

      Fourth nerve palsy is a condition that affects the superior oblique muscle, which is responsible for depressing the eye and moving it inward. One of the main features of this condition is vertical diplopia, which is double vision that occurs when looking straight ahead. This is often noticed when reading a book or going downstairs. Another symptom is subjective tilting of objects, also known as torsional diplopia. Patients may also develop a head tilt, which they may or may not be aware of. When looking straight ahead, the affected eye appears to deviate upwards and is rotated outwards. Understanding the symptoms of fourth nerve palsy can help individuals seek appropriate treatment and management for this condition.

    • This question is part of the following fields:

      • Neurological System
      10.7
      Seconds
  • Question 18 - A 39-year-old male patient is presented to the neurology outpatient department by his...

    Correct

    • A 39-year-old male patient is presented to the neurology outpatient department by his GP due to recurring episodes of déjà vu. Apart from this, he has no significant medical history.

      During the examination, the patient suddenly starts smacking his lips for about a minute. After the event, he experiences temporary difficulty in expressing himself fluently, which resolves on its own.

      Based on the symptoms, which area of the brain is likely to be affected?

      Your Answer: Temporal lobe

      Explanation:

      Temporal lobe seizures can be identified by the presence of lip smacking and postictal dysphasia. These symptoms, along with a recurrent sense of déjà vu, suggest that the seizure is localized in the temporal lobe. Seizures in other parts of the brain, such as the frontal, occipital, or parietal lobes, typically present with different symptoms. Generalized seizures affecting the entire brain result in loss of consciousness and generalized tonic-clonic seizures.

      Localising Features of Focal Seizures in Epilepsy

      Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.

      On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.

    • This question is part of the following fields:

      • Neurological System
      28.4
      Seconds
  • Question 19 - A 40-year-old woman underwent axillary node clearance for breast cancer. After the surgery,...

    Incorrect

    • A 40-year-old woman underwent axillary node clearance for breast cancer. After the surgery, she complains of shoulder weakness. Specifically, she cannot push herself forward from a wall using her right arm, and her scapula protrudes medially from the chest wall. What nerve injury is most probable?

      Your Answer: Spinal accessory nerve

      Correct Answer: Long thoracic nerve

      Explanation:

      The cause of the patient’s winged scapula is damage to the long thoracic nerve, which innervates the serratus anterior muscle. This damage occurred during surgery and affects the nerve roots C5, C6, and C7. The serratus anterior muscle is responsible for protracting the scapula during a punching motion. It is important to note that lateral winging of the scapula may indicate weakness in the trapezius muscle, which is innervated by the spinal accessory nerve.

      The Long Thoracic Nerve and its Role in Scapular Winging

      The long thoracic nerve is derived from the ventral rami of C5, C6, and C7, which are located close to their emergence from intervertebral foramina. It runs downward and passes either anterior or posterior to the middle scalene muscle before reaching the upper tip of the serratus anterior muscle. From there, it descends on the outer surface of this muscle, giving branches into it.

      One of the most common symptoms of long thoracic nerve injury is scapular winging, which occurs when the serratus anterior muscle is weakened or paralyzed. This can happen due to a variety of reasons, including trauma, surgery, or nerve damage. In addition to long thoracic nerve injury, scapular winging can also be caused by spinal accessory nerve injury (which denervates the trapezius) or a dorsal scapular nerve injury.

      Overall, the long thoracic nerve plays an important role in the function of the serratus anterior muscle and the stability of the scapula. Understanding its anatomy and function can help healthcare professionals diagnose and treat conditions that affect the nerve and its associated muscles.

    • This question is part of the following fields:

      • Neurological System
      15.5
      Seconds
  • Question 20 - A patient who suffered from head trauma at a young age has difficulty...

    Incorrect

    • A patient who suffered from head trauma at a young age has difficulty with eating and occasionally chokes on her food. The doctor explains that this may be due to the trauma affecting her reflexes.

      Which cranial nerve is responsible for transmitting the afferent signal for this reflex?

      Your Answer: Hypoglossal

      Correct Answer: Glossopharyngeal

      Explanation:

      The loss of the gag reflex is due to a problem with the glossopharyngeal nerve (CN IX), which is responsible for providing sensation to the pharynx and initiating the reflex. This reflex is important for preventing choking when eating large food substances or eating too quickly.

      The facial nerve (CN VII) is not responsible for the gag reflex, but rather for motor innervation of facial expression muscles and some salivary glands. It is involved in the corneal reflex, which closes the eyelids when blinking.

      The hypoglossal nerve (CN XII) is responsible for motor innervation of the tongue, which is important for eating, but it does not provide afferent signals for reflexes.

      The ophthalmic nerve (CN V1) is not involved in the gag reflex, but it is responsible for providing sensation to the eye and is involved in the corneal reflex.

      The vagus nerve (CN X) is involved in the gag reflex, but it is responsible for the efferent response, innervating the muscles of the pharynx, rather than the afferent sensation that initiates the reflex.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      18.3
      Seconds
  • Question 21 - The blood-brain barrier is not easily penetrated by which of the following substances?...

    Incorrect

    • The blood-brain barrier is not easily penetrated by which of the following substances?

      Your Answer: Barbituates

      Correct Answer: Hydrogen ions

      Explanation:

      The blood brain barrier restricts the passage of highly dissociated compounds.

      Cerebrospinal Fluid: Circulation and Composition

      Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.

      The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.

      The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      6.1
      Seconds
  • Question 22 - A 75-year-old man is brought to the emergency department by his wife. She...

    Incorrect

    • A 75-year-old man is brought to the emergency department by his wife. She reports that he woke up with numbness in his left arm and leg. During your examination, you observe nystagmus and suspect that he may have lateral medullary syndrome. What other feature is most likely to be present on his examination?

      Your Answer: Contralateral homonymous hemianopia with macular sparing

      Correct Answer: Ipsilateral dysphagia

      Explanation:

      Lateral medullary syndrome can lead to difficulty swallowing on the same side as the lesion, along with limb sensory loss and nystagmus. This condition is caused by a blockage in the posterior inferior cerebellar artery. However, it does not typically cause ipsilateral deafness or CN III palsy, which are associated with other types of brain lesions. Contralateral homonymous hemianopia with macular sparing and visual agnosia are also not typically seen in lateral medullary syndrome. Ipsilateral facial paralysis can occur in lateral pontine syndrome, but not in lateral medullary syndrome.

      Understanding Lateral Medullary Syndrome

      Lateral medullary syndrome, also referred to as Wallenberg’s syndrome, is a condition that arises when the posterior inferior cerebellar artery becomes blocked. This condition is characterized by a range of symptoms that affect both the cerebellum and brainstem. Cerebellar features of the syndrome include ataxia and nystagmus, while brainstem features include dysphagia, facial numbness, and cranial nerve palsy such as Horner’s. Additionally, patients may experience contralateral limb sensory loss. Understanding the symptoms of lateral medullary syndrome is crucial for prompt diagnosis and treatment.

    • This question is part of the following fields:

      • Neurological System
      36.2
      Seconds
  • Question 23 - Can you rephrase this inquiry and adjust the age a bit while maintaining...

    Incorrect

    • Can you rephrase this inquiry and adjust the age a bit while maintaining the same paragraph format?

      Your Answer: Peroneus longus

      Correct Answer: Flexor digitorum brevis

      Explanation:

      The tibial nerve supplies the flexor digitorum.

      The common peroneal nerve originates from the dorsal divisions of the sacral plexus, specifically from L4, L5, S1, and S2. This nerve provides sensation to the skin and fascia of the anterolateral surface of the leg and dorsum of the foot, as well as innervating the muscles of the anterior and peroneal compartments of the leg, extensor digitorum brevis, and the knee, ankle, and foot joints. It is located laterally within the sciatic nerve and passes through the lateral and proximal part of the popliteal fossa, under the cover of biceps femoris and its tendon, to reach the posterior aspect of the fibular head. The common peroneal nerve divides into the deep and superficial peroneal nerves at the point where it winds around the lateral surface of the neck of the fibula in the body of peroneus longus, approximately 2 cm distal to the apex of the head of the fibula. It is palpable posterior to the head of the fibula. The nerve has several branches, including the nerve to the short head of biceps, articular branch (knee), lateral cutaneous nerve of the calf, and superficial and deep peroneal nerves at the neck of the fibula.

    • This question is part of the following fields:

      • Neurological System
      19.6
      Seconds
  • Question 24 - A 55-year-old man presents with a 3-month history of a progressive headache that...

    Incorrect

    • A 55-year-old man presents with a 3-month history of a progressive headache that is worse in the morning, nausea and reduced appetite. He reports that he has been bumping into hanging objects more frequently.

      During the examination of his cranial nerves, a left superior homonymous quadrantanopia is detected. However, his visual acuity is normal.

      Given the ophthalmological finding, where is the suspected location of the space-occupying lesion? An urgent MRI brain has been scheduled.

      Your Answer: Right parietal lobe

      Correct Answer: Right temporal lobe

      Explanation:

      Lesions in the temporal lobe inferior optic radiations are responsible for causing superior homonymous quadrantanopias.

      When the contralateral inferior parts of the posterior visual pathway, specifically the inferior optic radiation (Meyer loop) of the temporal lobe, are damaged, it results in homonymous superior quadrantanopia.

      Patients with this condition may experience difficulty navigating through their blind quadrant-field, such as bumping into objects located above their head or on the upper portion of their computer or television screen. They may also exhibit symptoms of the underlying cause, such as a brain tumor. Additionally, the non-dominant right temporal lobe is responsible for learning and remembering non-verbal information, which may also be affected.

      Despite the visual field defect, patients typically report normal visual acuity since only half a macula is required for it.

      Other visual field defects associated with different areas of the brain include right inferior homonymous quadrantanopia with left parietal lobe damage, right superior homonymous quadrantanopia with left temporal lobe damage, left homonymous hemianopia with macular sparing with right occipital lobe damage, and left inferior homonymous quadrantanopia with right parietal lobe damage.

      Understanding Visual Field Defects

      Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.

      When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.

      Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.

      Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.

    • This question is part of the following fields:

      • Neurological System
      42.2
      Seconds
  • Question 25 - A 46-year-old homeless man is admitted to the emergency department due to intoxication....

    Incorrect

    • A 46-year-old homeless man is admitted to the emergency department due to intoxication. He reports experiencing progressive weakness in his lower limbs, as well as tingling and numbness in his hands. Additionally, he has been having issues with his memory and vision. Upon examination, there is generalised weakness and reduced proprioception and vibration sensation in the distal limbs, worse in the hands than the feet. Romberg's test is negative, but Babinski is positive. The patient's knee reflexes are brisk, and ankle jerks are absent. Based on this presentation, which spinal pathways are affected?

      Your Answer: Dorsal column & anterior spinothalamic tract

      Correct Answer: Dorsal column & lateral corticospinal tracts

      Explanation:

      Subacute combined degeneration of the spinal cord (SACD) is characterized by the patchy loss of myelin, primarily affecting the ascending dorsal columns and descending lateral corticospinal tracts. This results in a range of symptoms, including progressive weakness, tingling, numbness, and upper motor neuron signs in the lower limbs. Vision changes and cognitive decline may also occur.

      While the dorsal column is affected in SACD, the ascending anterior spinothalamic tract, which carries crude touch and pressure information, is typically not involved. Muscle weakness due to lateral corticospinal tract involvement is a hallmark of SACD.

      The anterior spinocerebellar tract, which carries unconscious proprioceptive and cutaneous information from the lower body, is not typically affected in SACD. Similarly, the lateral spinothalamic tract, which carries pain and temperature information, is not commonly involved.

      The reticulospinal and vestibulospinal tracts, which are primarily involved in locomotion, postural control, and changes in head orientation, are also not commonly affected in SACD.

      Subacute Combined Degeneration of Spinal Cord

      Subacute combined degeneration of spinal cord is a condition that occurs due to a deficiency of vitamin B12. The dorsal columns and lateral corticospinal tracts are affected, leading to the loss of joint position and vibration sense. The first symptoms are usually distal paraesthesia, followed by the development of upper motor neuron signs in the legs, such as extensor plantars, brisk knee reflexes, and absent ankle jerks. If left untreated, stiffness and weakness may persist.

      This condition is a serious concern and requires prompt medical attention. It is important to maintain a healthy diet that includes sufficient amounts of vitamin B12 to prevent the development of subacute combined degeneration of spinal cord.

    • This question is part of the following fields:

      • Neurological System
      67.4
      Seconds
  • Question 26 - A 79-year-old man presents with chronic feeding difficulties. He had a stroke 3...

    Incorrect

    • A 79-year-old man presents with chronic feeding difficulties. He had a stroke 3 years ago, and a neurology report indicates that the ischaemia affected his right mid-pontine region. Upon examination, you observe atrophy of the right temporalis and masseter muscles. He is able to swallow water without any signs of aspiration. Which cranial nerve is most likely affected by this stroke?

      Your Answer: CN VII

      Correct Answer: CN V

      Explanation:

      When a patient complains of difficulty with eating, it is crucial to determine whether the issue is related to a problem with swallowing or with the muscles used for chewing.

      The correct answer is CN V. This nerve, also known as the trigeminal nerve, controls the muscles involved in chewing. Damage to this nerve, which can occur due to various reasons including stroke, can result in weakness or paralysis of these muscles on the same side of the face. In this case, the patient’s stroke occurred two years ago, and he likely has some wasting of the mastication muscles due to disuse atrophy. As a result, he may have difficulty chewing food, but his ability to swallow is likely unaffected.

      The other options are incorrect. CN IV, also known as the trochlear nerve, controls a muscle involved in eye movement and is not involved in eating. CN VII, or the facial nerve, controls facial movements but not the muscles of mastication. Damage to this nerve can result in facial weakness, but it would not affect the ability to chew. CN X, or the vagus nerve, is important for swallowing, but the stem indicates that the patient’s swallow is functional, making it less likely that this nerve is involved in his eating difficulties.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      23.9
      Seconds
  • Question 27 - Which one of the following is not a typical feature of neuropraxia? ...

    Incorrect

    • Which one of the following is not a typical feature of neuropraxia?

      Your Answer: Absence of axonal degeneration proximal to the site of injury

      Correct Answer: Axonal degeneration distal to the site of injury

      Explanation:

      Neuropraxia typically results in full recovery within 6-8 weeks after nerve injury, and Wallerian degeneration is not a common occurrence. Additionally, autonomic function is typically maintained.

      Nerve injuries can be classified into three types: neuropraxia, axonotmesis, and neurotmesis. Neuropraxia occurs when the nerve is intact but its electrical conduction is affected. However, full recovery is possible, and autonomic function is preserved. Wallerian degeneration, which is the degeneration of axons distal to the site of injury, does not occur. Axonotmesis, on the other hand, happens when the axon is damaged, but the myelin sheath is preserved, and the connective tissue framework is not affected. Wallerian degeneration occurs in this type of injury. Lastly, neurotmesis is the most severe type of nerve injury, where there is a disruption of the axon, myelin sheath, and surrounding connective tissue. Wallerian degeneration also occurs in this type of injury.

      Wallerian degeneration typically begins 24-36 hours following the injury. Axons are excitable before degeneration occurs, and the myelin sheath degenerates and is phagocytosed by tissue macrophages. Neuronal repair may only occur physiologically where nerves are in direct contact. However, nerve regeneration may be hampered when a large defect is present, and it may not occur at all or result in the formation of a neuroma. If nerve regrowth occurs, it typically happens at a rate of 1mm per day.

    • This question is part of the following fields:

      • Neurological System
      24.4
      Seconds
  • Question 28 - A 48-year-old man is referred to a neurology clinic due to experiencing uncontrolled...

    Incorrect

    • A 48-year-old man is referred to a neurology clinic due to experiencing uncontrolled movements of his limbs. The probable diagnosis is Huntington's disease, which results in the deterioration of the basal ganglia.

      Which neurotransmitters are expected to be primarily impacted, leading to the manifestation of the man's symptoms?

      Your Answer: GABA and NA

      Correct Answer: ACh and GABA

      Explanation:

      The neurons responsible for producing ACh and GABA are primarily affected by the degeneration of the basal ganglia in Huntington’s disease, which plays a crucial role in regulating voluntary movement.

      Huntington’s disease is a genetic disorder that causes progressive and incurable neurodegeneration. It is inherited in an autosomal dominant manner and is caused by a trinucleotide repeat expansion of CAG in the huntingtin gene on chromosome 4. This can result in the phenomenon of anticipation, where the disease presents at an earlier age in successive generations. The disease leads to the degeneration of cholinergic and GABAergic neurons in the striatum of the basal ganglia, which can cause a range of symptoms.

      Typically, symptoms of Huntington’s disease develop after the age of 35 and can include chorea, personality changes such as irritability, apathy, and depression, intellectual impairment, dystonia, and saccadic eye movements. Unfortunately, there is currently no cure for Huntington’s disease, and it usually results in death around 20 years after the initial symptoms develop.

    • This question is part of the following fields:

      • Neurological System
      12.4
      Seconds
  • Question 29 - A 67-year-old man visits his GP complaining of alterations in his vision. In...

    Correct

    • A 67-year-old man visits his GP complaining of alterations in his vision. In addition to decreased sharpness, he describes object distortion, difficulty discerning colors, and occasional flashes of light. He has a history of smoking (40-pack-year) and a high BMI. Based on these symptoms, what is the most probable diagnosis?

      Your Answer: Age-related macular degeneration

      Explanation:

      Age-related macular degeneration (AMD) is characterized by a decrease in visual acuity, altered perception of colors and shades, and photopsia (flashing lights). The risk of developing AMD is higher in individuals who are older and have a history of smoking.

      As a natural part of the aging process, presbyopia can cause difficulty with near vision. Smoking increases the likelihood of developing cataracts, which can result in poor visual acuity and reduced contrast sensitivity. However, symptoms such as distortion and flashing lights are not typically associated with cataracts. Similarly, retinal detachment is unlikely given the patient’s risk factors and lack of distortion and perception issues. Since there is no mention of diabetes mellitus in the patient’s history, diabetic retinopathy is not a plausible explanation.

      Age-related macular degeneration (ARMD) is a common cause of blindness in the UK, characterized by degeneration of the central retina (macula) and the formation of drusen. The risk of ARMD increases with age, smoking, family history, and conditions associated with an increased risk of ischaemic cardiovascular disease. ARMD is classified into dry and wet forms, with the latter carrying the worst prognosis. Clinical features include subacute onset of visual loss, difficulties in dark adaptation, and visual hallucinations. Signs include distortion of line perception, the presence of drusen, and well-demarcated red patches in wet ARMD. Investigations include slit-lamp microscopy, colour fundus photography, fluorescein angiography, indocyanine green angiography, and ocular coherence tomography. Treatment options include a combination of zinc with anti-oxidant vitamins for dry ARMD and anti-VEGF agents for wet ARMD. Laser photocoagulation is also an option, but anti-VEGF therapies are usually preferred.

    • This question is part of the following fields:

      • Neurological System
      19.2
      Seconds
  • Question 30 - A 52-year-old man comes to the clinic complaining of feeling unsteady when walking...

    Correct

    • A 52-year-old man comes to the clinic complaining of feeling unsteady when walking for the past 4 days. He has also experienced tripping over his feet multiple times in the last few months, particularly with his left foot. Upon examination, there are no changes in tone, sensation, power, or reflexes, but there is a lack of coordination in his left lower limb and dysdiadochokinesis in his left upper limb. You refer him urgently to a neurologist and request an immediate MRI head scan. The scan reveals a mass in the left cerebellar hemisphere that is invading the fourth ventricle, causing asymmetry of the cisterna magna and impaired drainage of the fourth ventricle. What is the mechanism that allows cerebrospinal fluid to flow from the fourth ventricle into the cisterna magna?

      Your Answer: Median aperture (foramen of Magendie)

      Explanation:

      The correct answer is the median aperture, also known as the foramen of Magendie. This aperture allows cerebrospinal fluid (CSF) to drain from the fourth ventricle into the subarachnoid space.

      The third ventricle is located in the midline between the thalami of the two hemispheres and communicates with the lateral ventricles via the interventricular foramina. The fourth ventricle receives CSF from the third ventricle through the cerebral aqueduct of Sylvius.

      CSF leaves the fourth ventricle through one of four openings: the median aperture, which drains into the cisterna magna; either of the two lateral apertures, which drain into the cerebellopontine angle cistern; or the central canal at the obex, which runs through the center of the spinal cord.

      The patient in the question has presented with left-sided cerebellar signs, including lack of coordination in the left foot and dysdiadochokinesis on the same side. These symptoms suggest a left-sided cerebellar lesion, which was confirmed on imaging. Other cerebellar signs include gait ataxia, scanning speech, and intention tremors.

      Cerebrospinal Fluid: Circulation and Composition

      Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.

      The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.

      The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      19.2
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurological System (9/30) 30%
Passmed