-
Question 1
Incorrect
-
What is a good dietary source of vitamin A?
Your Answer: Red meat
Correct Answer: Liver
Explanation:The Importance of Vitamin A in Our Body
Vitamin A is an essential nutrient that can be found in various sources such as liver, fish liver oils, dark green leafy vegetables, carrots, and mangoes. It can also be added to certain foods like cereals and margarines. This nutrient plays a crucial role in our body as it is required for vision, growth and development of tissues, regulation of gene transcription, and synthesis of hydrophobic glycoproteins and parts of the protein kinase enzyme pathways.
One of the primary functions of vitamin A is to support our vision. It is a component of rhodopsin, a pigment that is necessary for the rod cells of the retina. Without vitamin A, our eyesight can be compromised, leading to various eye problems. Additionally, vitamin A is also essential for the growth and development of many types of tissues in our body. It helps in maintaining healthy skin, teeth, and bones.
Moreover, vitamin A is involved in regulating gene transcription, which is the process of converting DNA into RNA. This nutrient also plays a role in the synthesis of hydrophobic glycoproteins and parts of the protein kinase enzyme pathways. These processes are essential for the proper functioning of our body.
In conclusion, vitamin A is a vital nutrient that our body needs to function correctly. It is essential for our vision, growth and development of tissues, regulation of gene transcription, and synthesis of hydrophobic glycoproteins and parts of the protein kinase enzyme pathways. Therefore, it is crucial to include vitamin A-rich foods in our diet or take supplements if necessary.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 2
Correct
-
What significance do leucine, lysine, and phenylalanine hold?
Your Answer: They are essential amino acids
Explanation:Essential Amino Acids and their Importance in the Diet
There are approximately 20 essential amino acids that are crucial for human health. These amino acids are considered essential because the body cannot produce them on its own and they must be obtained through the diet. While some of these essential amino acids can be used to create other non-essential amino acids, they are still necessary for overall health and wellbeing.
Some examples of essential amino acids include histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. However, the amount of these essential amino acids can vary depending on the type of dietary protein consumed. Additionally, cooking or preserving proteins can alter the amino acid composition, making them less effective for the body.
In summary, essential amino acids play a vital role in maintaining human health and must be obtained through the diet. the importance of these amino acids and their sources can help individuals make informed decisions about their dietary choices.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 3
Incorrect
-
You encounter a patient in the Emergency department who has been in a severe car accident. You need to insert a venous cannula for aggressive fluid resuscitation. Applying the Hagen-Poiseuille equation, you select a cannula with appropriate dimensions for maximum flow into the vein.
As per this law, which of the following statements is correct?Your Answer: Flow is not affected by the viscosity of the fluid
Correct Answer: Flow will be faster through a shorter cannula
Explanation:Poiseuille’s Equation and Fluid Flow in Cylinders
Poiseuille’s equation is used to describe the flow of non-pulsatile laminar fluids through a cylinder. The equation states that the flow rate is directly proportional to the pressure driving the fluid and the fourth power of the radius. Additionally, it is inversely proportional to the viscosity of the fluid and the length of the tube. This means that a short, wide cannula with pressure on the bag will deliver fluids more rapidly than a long, narrow one.
It is important to note that even small changes in the radius of a tube can greatly affect the flow rate. This is because the fourth power of the radius is used in the equation. Therefore, any changes in the radius will have a significant impact on the flow rate. Poiseuille’s equation is crucial in determining the optimal conditions for fluid delivery in medical settings.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 4
Correct
-
What is the estimated percentage of oxygen in the blood that is attached to haemoglobin?
Your Answer: 100%
Explanation:Calculation of Oxygen in Blood
The majority of oxygen in the blood is bound to haemoglobin, with the exact amount varying based on the oxygen saturation and haemoglobin level. To calculate the amount of oxygen per litre of blood, the formula (13.9 × Hb × sats/100) + (PaO2 × 0.03) can be used. For example, an average man with an Hb of 14, saturations of 98% on room air, and a PaO2 of 12 would have 191 ml of oxygen per litre of blood. It is important to note that only 0.36 ml of this oxygen is dissolved in the blood.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 5
Incorrect
-
What RNA base pairs with adenine when synthesizing a complementary RNA strand from DNA, using RNA polymerase to split the helix at specific points?
Your Answer:
Correct Answer: Uracil
Explanation:Differences between DNA and RNA
DNA and RNA differ in several ways. The primary sugar in DNA is deoxyribose, while in RNA it is ribose. Additionally, DNA is double stranded, while RNA is single stranded. This single stranded structure with un-paired bases allows for transcription to occur when the DNA bases are freed. Each base has a specific pairing, with guanine always binding to cytosine and adenine always binding to thymine in the DNA strand. During transcription, the same complementary RNA bases assemble with the DNA bases, except for thymine, which is not an RNA base. Instead, uracil serves as the RNA pyrimidine base equivalent of thymine. Finally, lysine is an amino acid coded for by the RNA base triplet AAA, where A represents adenine.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 6
Incorrect
-
A premature baby is born and the anaesthetists are struggling to ventilate the lungs because of insufficient surfactant. How does Laplace's law explain the force pushing inwards on the walls of the alveolus caused by surface tension between two static fluids, such as air and water in the alveolus?
Your Answer:
Correct Answer: Inversely proportional to the radius of the alveolus
Explanation:The Relationship between Alveolar Size and Surface Tension in Respiratory Physiology
In respiratory physiology, the alveolus is often represented as a perfect sphere to apply Laplace’s law. According to this law, there is an inverse relationship between the size of the alveolus and the surface tension. This means that smaller alveoli experience greater force than larger alveoli for a given surface tension, and they will collapse first. This phenomenon explains why, when two balloons are attached together by their ends, the smaller balloon will empty into the bigger balloon.
In the lungs, this same principle applies to lung units, causing atelectasis and collapse when surfactant is not present. Surfactant is a substance that reduces surface tension, making it easier to expand the alveoli and preventing smaller alveoli from collapsing. Therefore, surfactant plays a crucial role in maintaining the proper functioning of the lungs and preventing respiratory distress. the relationship between alveolar size and surface tension is essential in respiratory physiology and can help in the development of treatments for lung diseases.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 7
Incorrect
-
A premature baby is born and the anaesthetists are struggling to ventilate the lungs because of insufficient surfactant. How does Laplace's law explain the force pushing inwards on the walls of the alveolus caused by surface tension between two static fluids, such as air and water in the alveolus?
Your Answer:
Correct Answer: Inversely proportional to the radius of the alveolus
Explanation:The Relationship between Alveolar Size and Surface Tension in Respiratory Physiology
In respiratory physiology, the alveolus is often represented as a perfect sphere to apply Laplace’s law. According to this law, there is an inverse relationship between the size of the alveolus and the surface tension. This means that smaller alveoli experience greater force than larger alveoli for a given surface tension, causing them to collapse first. This phenomenon is similar to what happens when two balloons of different sizes are attached together, with the smaller balloon emptying into the larger one.
In the lungs, this collapse of smaller alveoli can lead to atelectasis and collapse if surfactant is not present. Surfactant is a substance that reduces surface tension, making it easier to expand the alveoli and preventing smaller alveoli from collapsing. this relationship between alveolar size and surface tension is crucial in respiratory physiology, as it helps explain the importance of surfactant in maintaining proper lung function.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 8
Incorrect
-
What are the typical clinical manifestations of a deficiency in vitamin B6 (pyridoxine)?
Your Answer:
Correct Answer: Sensory neuropathy
Explanation:The Importance of Pyridoxine in the Body
Pyridoxine is a group of B-vitamins that are crucial in various bodily functions. They act as essential cofactors in many reactions, particularly in the metabolism of amino acids and neurotransmitters. Pyridoxine also plays a role in regulating gene transcription and controlling steroid hormones.
The body can produce pyridoxine through bacterial flora in the gut, and it is also present in many dietary sources. However, overheating certain foods can destroy pyridoxine, and some medications can alter its metabolism. Pyridoxine is also used therapeutically to prevent neuropathy in the treatment of tuberculosis.
Deficiency in pyridoxine can lead to sensory neuropathy, skin changes, and damage to mucous membranes. On the other hand, deficiency in vitamin C can cause gingivitis and increased bleeding, while vitamin K deficiency can also lead to bleeding. Sleep disturbance is rarely attributed to vitamin B3 (niacin) deficiency.
In summary, pyridoxine is a vital nutrient that plays a crucial role in various bodily functions. Its deficiency can lead to various health problems, highlighting the importance of maintaining adequate levels of this vitamin in the body.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 9
Incorrect
-
A 29-year-old woman visits your clinic with concerns about a possible pregnancy.
Can you explain the mechanism behind a urinary pregnancy test?Your Answer:
Correct Answer: ELISA
Explanation:Techniques in Biochemistry
Over-the-counter urine pregnancy tests use ELISA to detect beta-HCG in a woman’s urine. The test stick contains antibodies that react with beta-HCG, producing a color change that confirms pregnancy. The urinary pregnancy test is a solid-phase ELISA, where the antibody is immobilized on a specialized filter paper. The fluid travels laterally across the paper to bind with the antibody, and if beta-HCG is present, the line turns blue. Electrophoresis characterizes the electrical charge and size of substances, while PCR identifies specific sequences of DNA or RNA. Radioimmunoassay uses radioactivity to identify specific proteins. Enzymatic degradation breaks down large proteins into smaller subunits for which target antibodies may already exist. This method is used to characterize large proteins for which the structure has not yet been described.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 10
Incorrect
-
Which food is a rich source of vitamin D in the diet?
Your Answer:
Correct Answer: Oily fish
Explanation:Sources of Vitamin D
Vitamin D is a type of fat-soluble vitamin that can be found in certain foods such as cheese, butter, eggs, and oily fish. However, vegetable sources of vitamin D are limited, although some foods are fortified with this vitamin. For instance, 100 grams of sundried shiitake mushrooms contain 1600 IU of vitamin D, while one egg contains 20 IU. Wild salmon is also a good source of vitamin D, with 100 grams containing 800 IU, while farmed salmon contains 200 IU.
Aside from food sources, sunlight is also a good source of vitamin D. Exposure of arms and legs to sunlight for 10-15 minutes can provide 3000 IU of vitamin D. However, it is difficult to obtain the daily requirement of 25-50 IU of vitamin D through sunlight alone, especially for people living in temperate climates. As a result, many people may have insufficient vitamin D levels. It is important to ensure that we get enough vitamin D through a combination of food sources and sunlight exposure.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 11
Incorrect
-
What is the primary function of riboflavin in the B vitamin group?
Your Answer:
Correct Answer: Mopping up free radicals
Explanation:The Role of Riboflavin in the Body
Riboflavin, also known as vitamin B2, is a B-vitamin that plays a crucial role in the body. One of its functions is to act as an antioxidant, mopping up free radicals that can cause damage to cells. However, if the metabolites formed during this process are not excreted promptly, the free radicals can be generated again. Riboflavin is also involved in the production of blue-light sensitive pigments in the eye, which help establish the circadian rhythm. This function is not related to visual acuity.
Riboflavin is found in a variety of foods, including milk and offal. Deficiency of this vitamin is rare, but when it does occur, it can cause non-specific effects on the skin and mucous membranes. There is no evidence of clear long-lasting damage from riboflavin deficiency. Overall, riboflavin is an important nutrient that plays a vital role in maintaining good health.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 12
Incorrect
-
A 50-year-old male comes to the clinic complaining of abdominal swelling, nausea, and mild jaundice. He has a history of regular alcohol consumption, drinking two 330ml bottles of lager per day (3% ABV) and a 75cl bottle of 12% ABV wine per week.
What is the approximate number of units of alcohol this man consumes per week? Round to the nearest unit.Your Answer:
Correct Answer: 23 units
Explanation:Calculating Units of Alcohol
To calculate the number of units of alcohol in a drink, you need to multiply the percentage of alcohol (ABV) by the volume in millilitres and then divide by 1000. However, there are potential pitfalls to watch out for when answering questions about units of alcohol. For example, if the consumption is presented as a daily amount, you need to multiply by 7 to get the weekly amount. Additionally, if the volume is presented in centilitres, you need to convert it to millilitres before performing the calculation.
For instance, let’s say you want to calculate the units of alcohol in a bottle of lager. If the ABV is 3% and the volume is 330ml, the calculation would be 3% x 330ml divided by 1000, which equals 0.99 units rounded up to 1 unit. If the person drinks two bottles a day, that’s 2 units per day or 14 units per week. Similarly, if the person drinks one bottle of wine per week, and the ABV is 12% and the volume is 750ml, the calculation would be 12% x 750ml divided by 1000, which equals 9 units per bottle.
It’s important to be aware of potential pitfalls when calculating units of alcohol, such as checking the units of volume and adjusting for duration. By this simple calculation, you can be prepared for any question that may come up in an exam setting. The UK recommendations for alcohol consumption are no more than 14 units per week for both sexes. While calculating units of alcohol may seem daunting, with practice and preparation, you can confidently tackle any question that comes your way.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 13
Incorrect
-
What are the primary constituents of the cytoskeleton in eukaryotic cells?
Your Answer:
Correct Answer: Microfilaments, intermediate filaments and microtubules
Explanation:The Eukaryotic Cytoskeleton: A Structural Support System
The eukaryotic cytoskeleton is a network of structures that provide structural support to the cell. It helps the cell maintain its shape, protects it from external pressure, and performs intracellular transport. The cytoskeleton is made up of three major structures: microfilaments, intermediate filaments, and microtubules. Microfilaments are thin double helices made up of actin and are involved in pressure resistance and cell motility. Intermediate filaments have a more complex structure and maintain cell shape while bearing tension. Microtubules are hollow cylinders made up of alpha and beta tubulin proteins and are involved in intracellular transport, cell movement, and form the mitotic spindle during cytokinesis.
Cilia, flagella, and lamellipodia are structures that are not part of the cell’s cytoskeleton but are made up of components of it and perform unique functions such as cell movement and extracellular sensing. Kinesin and dynein are motor proteins that support microtubule function. Microfilaments and alpha/beta microtubules are incorrect because they leave out intermediate filaments. Tubulin and actin are proteins of microtubules and microfilaments, respectively, but myosin is a motility protein involved in muscle contraction. The eukaryotic cytoskeleton is an essential component of the cell that provides structural support and enables various cellular functions.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 14
Incorrect
-
What role does vitamin K play in the body?
Your Answer:
Correct Answer: Activation of clotting factors II, VII, IX, X
Explanation:The Roles of Vitamin K in the Body
Vitamin K plays several important roles in the body. One of its main functions is to modify clotting factors II, VII, IX, and X through a process called carboxylation. This modification allows calcium to bind to the factors, which is necessary for them to participate in the clotting pathway. This principle is used in full blood counts to prevent clotting by adding EDTA, which chelates the calcium. Vitamin K also modifies osteocalcin and matrix proteins in bone, as well as nephrocalcin in the kidney, in a similar way.
In addition to its role in blood clotting and bone health, vitamin K is also important for nervous tissue development and growth. However, vitamin K antagonists such as warfarin are sometimes used as anticoagulants to prevent blood clots. It is important to follow guidelines and instructions carefully when using these medications. Overall, vitamin K plays a crucial role in maintaining the health and function of various systems in the body.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 15
Incorrect
-
What is the primary reason for malnutrition?
Your Answer:
Correct Answer: Inadequate intake of calories in any form
Explanation:Malnutrition
Malnutrition refers to a state where the dietary intake is insufficient to maintain a healthy state and stable weight. It can be caused by over- or under-nutrition, but it is commonly used to describe under-nutrition. Malnutrition can be defined as a state of nutrition where a deficiency, excess, or imbalance of energy, protein, and other nutrients causes measurable adverse effects on tissue, function, and clinical outcome. Protein malnutrition is the most severe form of malnutrition, causing significant mortality and clinical effects such as kwashiorkor. Carbohydrate malnutrition is less common as carbohydrate sources are widely grown and cheap. Fat malnutrition rarely results in problems if there is adequate dietary protein and carbohydrate. Deficiencies of fat-soluble vitamins can result in various clinical effects. Body size can give some indication of nutritional status, but many obese patients may have nutritional deficiencies due to their faddy diets.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 16
Incorrect
-
What occurs in eukaryotic prometaphase?
Your Answer:
Correct Answer: The nuclear membrane and the nucleoli disintegrate and kinetochores appear
Explanation:The Significance of Prometaphase in Cell Division
Prometaphase is a crucial phase in cell division that marks the transition from prophase to metaphase. Although it is often considered as a part of these two phases, it has distinct events that make it an individual phase. During prometaphase, the nuclear membrane disintegrates, and the nucleoli are no longer visible. Additionally, each chromosome forms two kinetochores near the centromere, which serve as attachment points for spindle fibers. These fibers connect to the opposite poles of the cell, forming travelling lines that will separate the sister chromatids during anaphase.
Prophase is characterized by chromatin condensation, while DNA and centrosome duplication occur during interphase. Chromosome alignment takes place during metaphase, and the sister chromatids separate during anaphase. Prometaphase, therefore, plays a crucial role in preparing the chromosomes for separation during anaphase. Its distinct events make it an essential phase in cell division, and its proper execution is necessary for successful cell division.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 17
Incorrect
-
In which part of the cell are the electron transport chain carriers situated?
Your Answer:
Correct Answer: Mitochondrial cristae
Explanation:The Electron Transport Chain in Mitochondria
The electron transport chain (ETC) is a crucial process in cellular aerobic respiration that occurs in the mitochondrial cristae. These are folded membranes inside the organelle. During respiration, NADH and FADH produced from other parts of the process, such as glycolysis, transfer electrons from electron donors to electron acceptors through redox reactions. This electron transfer is coupled with proton transfer across the mitochondrial membrane, creating an electrochemical proton gradient. This gradient induces the production of ATP, which is used as an energy currency by the cell.
ATP is produced through a mechanism called chemiosmotic phosphorylation. The structure of the mitochondrion is essential for this process to occur. The cristae provide a large surface area for the ETC to take place, and the mitochondrial membrane is impermeable to protons, allowing for the creation of the proton gradient. The inner membrane also contains ATP synthase, the enzyme responsible for producing ATP through chemiosmotic phosphorylation.
In summary, the electron transport chain in mitochondria is a complex process that involves the transfer of electrons and protons across the mitochondrial membrane to create a proton gradient. This gradient is then used to produce ATP through chemiosmotic phosphorylation. The structure of the mitochondrion is crucial for this process to occur efficiently.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 18
Incorrect
-
What type of molecule does haemoglobin belong to?
Your Answer:
Correct Answer: Quaternary protein structure
Explanation:The Structure and Functions of Proteins
Proteins are complex molecules that can vary in structure from single amino acids to large, folded molecules. Amino acids are joined together by peptide bonds to form dipeptides and polypeptides. More complex molecules can also have disulphide bonds and ionic bonds. The primary structure of a protein is a simple amino acid chain, while the secondary structure is a specific shape such as a helix or pleated sheet. The tertiary structure is a more globular shape, arranged by ionic, hydrogen, and disulphide bonds, and hydrophobic interactions. The quaternary structure is a complex protein containing several polypeptide chains held together by interactions.
Proteins have multiple roles within the human body, including as hormones, food substrates, enzymes, receptor molecules, muscles, cell membrane constituents, carrier molecules in blood, and determinants of oncotic/osmotic pressures. However, proteins can be easily damaged by denaturation, which is the loss of the specific three-dimensional shape of a molecule. Denaturation can be caused by heat, salts, heavy metals, solvents, detergents, and extremes of pH.
In summary, proteins are essential molecules with a diverse range of structures and functions within the human body. their structure and potential for denaturation is crucial for maintaining their proper function.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 19
Incorrect
-
What controls the specific stages of the cell cycle?
Your Answer:
Correct Answer: Cyclins and cyclin-dependent kinases
Explanation:Regulation of the Cell Cycle by Cyclins and Cyclin-Dependent Kinases
The cell cycle is controlled by the activity of proteins known as cyclins and phosphorylating enzymes called cyclin-dependent kinases (CDKs). Cyclins and CDKs combine to form an activated heterodimer, where cyclins act as the regulatory subunits and CDKs act as the catalytic subunits. Neither of these molecules is active on their own. When a cyclin binds to a CDK, the CDK phosphorylates other target proteins, either activating or deactivating them. This coordination leads to the entry into the next phase of the cell cycle. The specific proteins that are activated depend on the different combinations of cyclin-CDK. Additionally, CDKs are always present in cells, while cyclins are produced at specific points in the cell cycle in response to other signaling pathways.
In summary, the cell cycle is regulated by the interaction between cyclins and CDKs. This interaction leads to the phosphorylation of target proteins, which ultimately controls the progression of the cell cycle.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 20
Incorrect
-
To what type of cell can mesenchymal stem cells transform?
Your Answer:
Correct Answer: Osteoblasts
Explanation:Mesenchymal Cells: The Stem Cells of the Human Skeleton
Mesenchymal cells are the primary stem cells of the human skeleton. These multipotent cells originate in the bone marrow and have the ability to differentiate into various cell types. Osteoblasts, responsible for bone formation, chondrocytes, which give rise to cartilage, and adipocytes, specialized in storing energy as fat, are some of the cells that mesenchymal cells can produce. Muscle cells, or myocytes, arise from muscle satellite cells, while skin cells come from epithelial stem cells. Neurons mostly arise from neural stem cells, although some may come from astrocytes. White blood cells, on the other hand, come from hematopoietic stem cells. Mesenchymal cells play a crucial role in the maintenance and repair of the human skeleton, making them an essential area of study in regenerative medicine.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 21
Incorrect
-
A 40-year-old male complains of a painful and swollen right calf. The possibility of deep vein thrombosis (DVT) is being considered. What tests should be conducted to confirm the diagnosis?
Your Answer:
Correct Answer: Dopplers of the leg veins
Explanation:Diagnostic Methods for Deep Vein Thrombosis
When it comes to diagnosing deep vein thrombosis (DVT), there are several methods available. The most common ones are Doppler studies and venography. Doppler studies use B mode ultrasonography to examine the venous system, while venography involves injecting a contrast dye into the veins and taking X-rays. CT scans are not typically used for DVT diagnosis because they require contrast and expose the patient to radiation. D-Dimer concentrations can help rule out DVT if they are negative, but they cannot diagnose it. MRI scans are useful for examining soft tissues and bones, but they are not the best option for visualizing the vasculature. Finally, oxygen saturation of the limbs is not a reliable diagnostic method because tissue perfusion can be the same even if there is arterial disease. Overall, Doppler studies and venography are the most effective methods for diagnosing DVT.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 22
Incorrect
-
A 10-year-old patient presents with recurrent skin cancer and is diagnosed with xeroderma pigmentosum. What is the defective biochemical mechanism in this disease?
Your Answer:
Correct Answer: DNA excision repair
Explanation:Xeroderma Pigmentosum and DNA Repair
Deoxyribonucleic acid (DNA) found in the skin cells can absorb ultraviolet (UV) light, which can cause the formation of pyrimidine dimers. These dimers are removed through a process called excision repair, where the damaged DNA is cut out and replaced with new DNA. However, if this process fails, it can lead to mutations in genes that suppress tumors or promote their growth, potentially leading to cancer.
Xeroderma pigmentosum is a genetic disorder that is inherited in an autosomal recessive pattern. This means that an individual must inherit two copies of the mutated gene, one from each parent, to develop the disorder. Generally, disorders that affect metabolism or DNA replication on a cellular or genetic level are inherited in an autosomal recessive pattern. On the other hand, genetic disorders that affect larger structural components are usually inherited in an autosomal dominant pattern. While there are exceptions to these rules, they can serve as a helpful guide for exam preparation.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 23
Incorrect
-
A 65-year-old patient with suspected spinal cord compression has been admitted to the neurosurgical team for an urgent MRI of the spine. Which particle's magnetic properties does magnetic resonance imaging rely predominantly upon?
Your Answer:
Correct Answer: Hydrogen ion (proton)
Explanation:How MRI Scanners Use Hydrogen Ions to Create Images
MRI scanners use the magnetic properties of hydrogen ions, also known as protons, to create images of the human body. These protons have nuclear spin, which means they have magnetic vectors that can be aligned in an electromagnet. The scanner bombards the protons with radiofrequency radiation, causing them to release energy when they return to their resting state. This energy release is recorded and used to construct the MRI image.
While other nuclei, such as carbon 13, also have nuclear spin and could be used in MRI imaging, hydrogen ions are much more abundant in human tissues. This makes them the preferred choice for creating images of the body. The process of aligning the magnetic vectors of the protons and then recording their energy release is repeated many times to create a detailed image of the body’s internal structures.
Overall, MRI scanners use the magnetic properties of hydrogen ions to create detailed images of the human body. This non-invasive imaging technique has revolutionized medical diagnosis and treatment, allowing doctors to see inside the body without the need for surgery.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 24
Incorrect
-
What is the cause of the symptoms of weakness, dermatitis, diarrhoea and dementia in pellagra?
Your Answer:
Correct Answer: Deficiency of the vitamin niacin
Explanation:Niacin Deficiency and Other Genetic Diseases
Niacin, a vitamin present in two forms – nicotinamide and nicotinic acid, is found in a variety of plant and animal foodstuffs. However, in some cases, the form of the vitamin is not easily absorbed by the human body, leading to deficiency. This deficiency is common in areas where maize is the primary dietary carbohydrate. Additionally, niacin can be produced by the body from the amino acid tryptophan. Diseases that affect the availability of tryptophan, such as Hartnup disease and carcinoid syndrome, can also result in niacin deficiency.
Pellagra is a condition that arises from niacin deficiency. It initially presents with non-specific symptoms such as nausea, fatigue, and reduced appetite, followed by pigmented dermatitis in sun-exposed areas, gastrointestinal disturbance, mood disturbance, and dementia in severe cases.
Apart from niacin deficiency, genetic diseases affecting collagen synthesis, such as Ehlers Danlos, present with symptoms of fragile stretchy skin and joint hypermobility. Genetic diseases affecting haemoglobin, such as sickle cell anaemia, present with symptoms of pain, hepatosplenomegaly, shortness of breath, and anaemia. Deficiencies in B12 and folate can also lead to macrocytic anaemia, paresthesia, and lethargy.
In conclusion, the causes and symptoms of niacin deficiency and other genetic diseases is crucial for early diagnosis and effective treatment. A balanced diet and regular medical check-ups can help prevent and manage these conditions.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 25
Incorrect
-
Which form of vitamin D is the most active in the human body?
Your Answer:
Correct Answer: 1, 25 (OH) 2 vitamin D
Explanation:The Process of Vitamin D Production and Activation
Vitamin D comes in two forms, D2 and D3. D3 can be produced in the skin through a reaction that requires UV light, while D2 cannot. Both forms can also be obtained through diet, with some foods now being supplemented with Vitamin D. However, the production of Vitamin D3 in the skin can be affected by various factors such as seasons, latitude, clothing, sun block, and skin tone, making it difficult for individuals to get adequate levels of Vitamin D through sunlight alone, especially in the UK during winter.
Once absorbed into the lymph, Vitamin D2 and D3 circulate in the bloodstream and reach the liver. Here, the liver enzyme 25-hydroxylase adds an OH group to the Vitamin D molecule, resulting in 25(OH) Vitamin D. The compound then travels to the kidney, where the enzyme 1-alpha hydroxylase adds another OH group, creating the active form of Vitamin D, 1,25 (OH)2Vitamin D. When there is enough of this active form, an inactive metabolite called 24,25 (OH)2Vitamin D is produced instead. this process is important in ensuring adequate Vitamin D levels for overall health and well-being.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 26
Incorrect
-
What is the primary means of transportation for vitamin D in the human body?
Your Answer:
Correct Answer: In blood, bound to the group specific component
Explanation:The Role of UV Light and Vitamin D in Calcium and Phosphate Regulation
In order for the body to produce Vitamin D3, UV light at a specific wavelength is required to convert cholesterol in the skin. Vitamin D2 and D3 are then transported in the bloodstream bound to the Vitamin-D Binding Protein and undergo further modifications in the liver and kidney to become the active form, 1,25 (OH)2Vitamin D. This active form plays a crucial role in regulating calcium and phosphate concentrations in the body.
1,25 (OH)2Vitamin D increases calcium absorption in the duodenum and inhibits the secretion and synthesis of PTH, which helps to maintain calcium concentrations. It also increases phosphate absorption in the jejunum and ileum, which is important for maintaining phosphate concentrations. Additionally, 1,25 (OH)2Vitamin D promotes bone turnover by stimulating both osteoblast and osteoclast activity.
Overall, the production and activation of Vitamin D through UV light and dietary sources is essential for proper calcium and phosphate regulation in the body.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 27
Incorrect
-
What is the final product of glycolysis besides ATP?
Your Answer:
Correct Answer: Pyruvate
Explanation:Glycolysis: The Energy-Producing Reaction
Glycolysis is a crucial energy-producing reaction that converts glucose into pyruvate while releasing energy to create ATP and NADH+. It is one of the three major carbohydrate reactions, along with the citric acid cycle and the electron transport chain. The reaction involves ten enzymatic steps that provide entry points to glycolysis, allowing for a variety of starting points. The most common starting point is glucose or glycogen, which produces glucose-6-phosphate.
Glycolysis occurs in two phases: the preparatory (or investment) phase and the pay-off phase. In the preparatory phase, ATP is consumed to start the reaction, while in the pay-off phase, ATP is produced. Glycolysis can be either aerobic or anaerobic, but it does not require nor consume oxygen.
Although other molecules are involved in glycolysis at some stage, none of them form its end product. Lactic acid is associated with anaerobic glycolysis. glycolysis is essential for how the body produces energy from carbohydrates.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 28
Incorrect
-
What is the statement of Henry's law?
Your Answer:
Correct Answer: The concentration of a gas when dissolved in liquid is proportional to its partial pressure
Explanation:Gas Laws
Gas laws are a set of scientific principles that describe the behavior of gases under different conditions. One of these laws is Avogadro’s law, which states that equal volumes of gases at a standardized temperature and pressure contain the same number of molecules. Another law is Boyle’s law, which explains that gases expand when the temperature is increased. Charles’ law, on the other hand, states that the pressure of a gas is inversely proportional to its volume at a standardized temperature. Lastly, Graham’s law explains that the rate of diffusion of a gas is in inverse proportion to its weight. The specific gas laws that you need to know may vary depending on your syllabus, but you should be able to recognize and apply them if given the formulae. It is unlikely that you will be expected to know the correct formula.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 29
Incorrect
-
A couple in their late 20s comes to your clinic seeking advice regarding the possibility of their children inheriting cystic fibrosis. The husband has a confirmed diagnosis of the condition, but the carrier status of the wife is unknown.
What is the likelihood of any of their offspring being affected by cystic fibrosis?Your Answer:
Correct Answer: 2.50%
Explanation:Cystic Fibrosis Inheritance
Cystic fibrosis (CF) is a genetic disorder that affects the chloride ion channels, leading to the thickening of respiratory and other secretions. It is an autosomal recessive condition, which means that a person must inherit two copies of the defective gene, one from each parent, to develop the disease. The most common defective allele is carried by approximately 1 in 20 people.
If a man with CF has children with a woman who does not carry the recessive gene, then none of their children will be affected by the disease. However, they will all be carriers of the CF gene. On the other hand, if the woman is a carrier of the CF gene, there is a 50% chance that each child will inherit one copy of the defective gene from each parent and be affected by the disease. The remaining 50% of the children will inherit one copy of the defective gene and one normal gene, making them carriers of the CF gene but not affected by the disease.
In summary, the probability of any child being affected by CF is 2.5% if one parent has the defective gene and the other does not. It is important for individuals who are carriers of the CF gene to be aware of their status and seek genetic counseling before planning to have children.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 30
Incorrect
-
A couple in their late 30s come to the clinic seeking information about the risk of their three children inheriting Huntington's disease. The husband has recently been diagnosed with the disease, while the wife is not affected. What is the likelihood, expressed as a percentage, that their children will inherit the disease?
Your Answer:
Correct Answer: 50%
Explanation:Huntington’s Disease
Huntington’s disease is a genetic disorder that typically appears later in life and is characterized by symptoms such as chorea, cognitive decline, and personality changes. It is an autosomal dominant disease, meaning that there is a 50% chance of passing it on to offspring. If the gene is inherited from an unaffected parent, the child will not be affected. This is different from autosomal recessive inheritance, where both parents must pass on the gene for it to affect their children.
The disease is caused by an increase in the length of a repeating trinucleotide sequence (CAG) in the Huntington protein. This sequence can change in length through generations, and longer sequences are associated with earlier onset of symptoms (genetic anticipation). Since Huntington’s disease usually presents itself after people have already started their families, there are many issues associated with genetic testing.
-
This question is part of the following fields:
- Basic Sciences
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)