00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - You have been requested to evaluate a patient in your general practice, who...

    Incorrect

    • You have been requested to evaluate a patient in your general practice, who has come in after discovering a new lump in her neck. The patient is in her mid-40s, has no significant medical history, and does not take any regular medications.

      Upon examination, you observe a small mass in the front of the neck that moves upwards when the patient swallows. There is no associated lymphadenopathy. You refer the patient for an ultrasound and biopsy, which reveals the presence of 'Orphan Annie eyes with psammoma bodies.'

      Based on this finding, what is the most probable diagnosis?

      Your Answer: Hashimoto's thyroiditis

      Correct Answer: Papillary thyroid cancer

      Explanation:

      The patient has a painless lump in the thyroid gland that moves on swallowing, indicating thyroid pathology. The biopsy result of Orphan Annie eyes with psammoma bodies is a characteristic finding in papillary thyroid cancer, which is a slow-growing malignancy with less likelihood of lymphadenopathy. Graves’ disease is an incorrect diagnosis as it would not present with this appearance on biopsy and would likely exhibit signs of thyrotoxicosis. A multinodular goitre also does not have this appearance and may cause a thyrotoxic state. Anaplastic carcinoma is a more aggressive thyroid malignancy that readily invades nearby tissues and has a different histological appearance with spindle cells and giant cells.

      Thyroid cancer rarely causes hyperthyroidism or hypothyroidism as it does not usually secrete thyroid hormones. The most common type of thyroid cancer is papillary carcinoma, which is often found in young females and has an excellent prognosis. Follicular carcinoma is less common, while medullary carcinoma is a cancer of the parafollicular cells that secrete calcitonin and is associated with multiple endocrine neoplasia type 2. Anaplastic carcinoma is rare and not responsive to treatment, causing pressure symptoms. Lymphoma is also rare and associated with Hashimoto’s thyroiditis.

      Management of papillary and follicular cancer involves a total thyroidectomy followed by radioiodine to kill residual cells. Yearly thyroglobulin levels are monitored to detect early recurrent disease. Papillary carcinoma usually contains a mixture of papillary and colloidal filled follicles, while follicular adenoma presents as a solitary thyroid nodule and malignancy can only be excluded on formal histological assessment. Follicular carcinoma may appear macroscopically encapsulated, but microscopically capsular invasion is seen. Medullary carcinoma is associated with raised serum calcitonin levels and familial genetic disease in up to 20% of cases. Anaplastic carcinoma is most common in elderly females and is treated by resection where possible, with palliation achieved through isthmusectomy and radiotherapy. Chemotherapy is ineffective.

    • This question is part of the following fields:

      • Endocrine System
      88.5
      Seconds
  • Question 2 - A 32-year-old man has been admitted to the emergency department with severe hypocalcaemia...

    Correct

    • A 32-year-old man has been admitted to the emergency department with severe hypocalcaemia that has not responded to calcium replacement therapy. What other serum electrolytes should be checked urgently?

      Your Answer: Magnesium

      Explanation:

      If a person has hypomagnesaemia, it can lead to hypocalcaemia and make it difficult to treat. Therefore, when dealing with hypocalcaemia, it is important to keep an eye on the levels of calcium, phosphate, and magnesium. The phosphate levels can provide insight into potential causes, as low calcium levels combined with high phosphate levels may indicate hypoparathyroidism.

      The Importance of Magnesium and Calcium in the Body

      Magnesium and calcium are essential minerals in the body. Magnesium plays a crucial role in the secretion and action of parathyroid hormone (PTH) on target tissues. However, a deficiency in magnesium can cause hypocalcaemia and make patients unresponsive to calcium and vitamin D supplementation.

      The body contains 1000 mmol of magnesium, with half stored in bones and the rest in muscle, soft tissues, and extracellular fluid. Unlike calcium, there is no specific hormonal control of magnesium. Hormones such as PTH and aldosterone affect the renal handling of magnesium.

      Magnesium and calcium also interact at a cellular level. A decrease in magnesium levels can affect the permeability of cellular membranes to calcium, leading to hyperexcitability. Therefore, it is essential to maintain adequate levels of both magnesium and calcium in the body for optimal health.

    • This question is part of the following fields:

      • Endocrine System
      41.2
      Seconds
  • Question 3 - A 30-year-old female with a two year history of type 1 diabetes presents...

    Incorrect

    • A 30-year-old female with a two year history of type 1 diabetes presents with a two day history of colicky abdominal pain and vomiting. She has been relatively anorexic and has cut down on her insulin today as she has not been able to eat that much.

      On examination she has a sweet smell to her breath, has some loss of skin turgor, has a pulse of 102 bpm regular and a blood pressure of 112/70 mmHg. Her abdomen is generally soft with some epigastric tenderness.

      BM stix analysis reveals a glucose of 19 mmol/L (3.0-6.0).

      What investigation would be the most important for this woman?

      Your Answer: Urine analysis

      Correct Answer: Blood gas analysis

      Explanation:

      Diabetic Ketoacidosis: Diagnosis and Investigations

      Diabetic ketoacidosis (DKA) is a serious complication of diabetes that can lead to life-threatening consequences. Symptoms include ketotic breath, vomiting, abdominal pain, and dehydration. To confirm the diagnosis, it is essential to prove the presence of acidosis and ketosis. The most urgent and important investigation is arterial or venous blood gas analysis, which can reveal the level of acidosis and low bicarbonate.

      Other investigations that can be helpful include a full blood count (FBC) to show haemoconcentration and a raised white cell count, and urinalysis to detect glucose and ketones. However, venous or capillary ketones are needed to confirm DKA. A plasma glucose test is also part of the investigation, but it is not as urgent as the blood gas analysis.

      An abdominal x-ray is not useful in diagnosing DKA, and a chest x-ray is only indicated if there are signs of a lower respiratory tract infection. Blood cultures are unlikely to grow anything, and amylase levels are often raised but do not provide diagnostic information in this case.

      It is important to note that DKA can occur even if the plasma glucose level is normal. Therefore, prompt diagnosis and treatment are crucial to prevent complications and improve outcomes.

    • This question is part of the following fields:

      • Endocrine System
      40.2
      Seconds
  • Question 4 - Which hormonal agent will enhance the secretion of water and electrolytes in pancreatic...

    Correct

    • Which hormonal agent will enhance the secretion of water and electrolytes in pancreatic juice?

      Your Answer: Secretin

      Explanation:

      The secretion of water and electrolytes is stimulated by secretin, while cholecystokinin stimulates the secretion of enzymes. Secretin generally leads to an increase in the volume of electrolytes and water in secretions, whereas cholecystokinin increases the enzyme content. Secretion volume is reduced by somatostatin, while aldosterone tends to preserve electrolytes.

      Pancreatic Secretions and their Regulation

      Pancreatic secretions are composed of enzymes and aqueous substances, with a pH of 8 and a volume of 1000-1500ml per day. The acinar cells secrete enzymes such as trypsinogen, procarboxylase, amylase, and elastase, while the ductal and centroacinar cells secrete sodium, bicarbonate, water, potassium, and chloride. The regulation of pancreatic secretions is mainly stimulated by CCK and ACh, which are released in response to digested material in the small bowel. Secretin, released by the S cells of the duodenum, also stimulates ductal cells and increases bicarbonate secretion.

      Trypsinogen is converted to active trypsin in the duodenum via enterokinase, and trypsin then activates the other inactive enzymes. The cephalic and gastric phases have less of an impact on regulating pancreatic secretions. Understanding the composition and regulation of pancreatic secretions is important in the diagnosis and treatment of pancreatic disorders.

    • This question is part of the following fields:

      • Endocrine System
      24.8
      Seconds
  • Question 5 - A 42-year-old woman has been admitted to the renal ward with acute kidney...

    Incorrect

    • A 42-year-old woman has been admitted to the renal ward with acute kidney injury. Her blood test shows that her potassium levels are above normal limits. While renal failure is a known cause of hyperkalaemia, the patient mentions having an endocrine disorder in the past but cannot recall its name. This information is crucial as certain endocrine disorders can also cause potassium disturbances. Which of the following endocrine disorders is commonly associated with hyperkalaemia?

      Your Answer: Phaeochromocytoma

      Correct Answer: Addison's disease

      Explanation:

      The correct answer is Addison’s disease, which is a condition of primary adrenal insufficiency. One of the hormones that is deficient in this disease is aldosterone, which plays a crucial role in maintaining the balance of potassium in the body. Aldosterone activates Na+/K+ ATPase pumps on the cell wall, causing the movement of potassium into the cell and increasing renal potassium secretion. Therefore, a lack of aldosterone leads to hyperkalaemia.

      Phaeochromocytomas are tumours that produce catecholamines and typically arise in the adrenal medulla. They are associated with hypertension and hyperglycaemia, but not disturbances in potassium balance.

      Hyperthyroidism is a condition of excess thyroid hormone and does not affect potassium balance.

      Conn’s syndrome, on the other hand, is a type of primary hyperaldosteronism where there is excess aldosterone production. Aldosterone activates the Na+/K+ pump on the cell wall, causing the movement of potassium into the cell, which can lead to hypokalaemia.

      Addison’s disease is the most common cause of primary hypoadrenalism in the UK, with autoimmune destruction of the adrenal glands being the main culprit, accounting for 80% of cases. This results in reduced production of cortisol and aldosterone. Symptoms of Addison’s disease include lethargy, weakness, anorexia, nausea and vomiting, weight loss, and salt-craving. Hyperpigmentation, especially in palmar creases, vitiligo, loss of pubic hair in women, hypotension, hypoglycemia, and hyponatremia and hyperkalemia may also be observed. In severe cases, a crisis may occur, leading to collapse, shock, and pyrexia.

      Other primary causes of hypoadrenalism include tuberculosis, metastases (such as bronchial carcinoma), meningococcal septicaemia (Waterhouse-Friderichsen syndrome), HIV, and antiphospholipid syndrome. Secondary causes include pituitary disorders, such as tumours, irradiation, and infiltration. Exogenous glucocorticoid therapy can also lead to hypoadrenalism.

      It is important to note that primary Addison’s disease is associated with hyperpigmentation, while secondary adrenal insufficiency is not.

    • This question is part of the following fields:

      • Endocrine System
      46
      Seconds
  • Question 6 - A 31-year-old woman arrives at the emergency department feeling lethargic. Her Glasgow coma...

    Incorrect

    • A 31-year-old woman arrives at the emergency department feeling lethargic. Her Glasgow coma scale score is 12/15 upon examination.

      Her capillary blood glucose level is 1.9 mmol/L.

      What is the initial hormone released naturally in this situation?

      Your Answer: Cortisol

      Correct Answer: Glucagon

      Explanation:

      When blood glucose levels drop, the first hormone to be secreted is glucagon. This can happen due to various reasons, such as insulin or alcohol consumption. The initial response to hypoglycaemia is a decrease in insulin secretion, followed by the release of glucagon from the pancreas’ alpha cells. This prompts the liver to convert stored glycogen into glucose, thereby increasing blood glucose levels.

      Later on, growth hormone and cortisol are also released in response to hypoglycaemia. If cortisol production is reduced, as in Addison’s disease, it can lead to low blood glucose levels. This concept is used in the insulin tolerance test, where cortisol levels are measured after inducing hypoglycaemia with insulin.

      Incretins, on the other hand, are hormones that lower blood glucose levels, especially after meals. One such incretin is glucagon-like peptide 1 (GLP-1), which is used to treat type 2 diabetes. Exenatide is an example of an injectable GLP-1 analogue medication.

      Understanding Hypoglycaemia: Causes, Features, and Management

      Hypoglycaemia is a condition characterized by low blood sugar levels, which can lead to a range of symptoms and complications. There are several possible causes of hypoglycaemia, including insulinoma, liver failure, Addison’s disease, and alcohol consumption. The physiological response to hypoglycaemia involves hormonal and sympathoadrenal responses, which can result in autonomic and neuroglycopenic symptoms. While blood glucose levels and symptom severity are not always correlated, common symptoms of hypoglycaemia include sweating, shaking, hunger, anxiety, nausea, weakness, vision changes, confusion, and dizziness. In severe cases, hypoglycaemia can lead to convulsions or coma.

      Managing hypoglycaemia depends on the severity of the symptoms and the setting in which it occurs. In the community, individuals with diabetes who inject insulin may be advised to consume oral glucose or a quick-acting carbohydrate such as GlucoGel or Dextrogel. A ‘HypoKit’ containing glucagon may also be prescribed for home use. In a hospital setting, treatment may involve administering a quick-acting carbohydrate or subcutaneous/intramuscular injection of glucagon for unconscious or unable to swallow patients. Alternatively, intravenous glucose solution may be given through a large vein.

      Overall, understanding the causes, features, and management of hypoglycaemia is crucial for individuals with diabetes or other conditions that increase the risk of low blood sugar levels. Prompt and appropriate treatment can help prevent complications and improve outcomes.

    • This question is part of the following fields:

      • Endocrine System
      23.2
      Seconds
  • Question 7 - A young male with a history of diabetes mellitus type 1 is admitted...

    Correct

    • A young male with a history of diabetes mellitus type 1 is admitted to the emergency department. He was previously found to be confused by his roommates in his room. As well as this, he complains of nausea and abdominal pain.

      An ECG is performed and shows tall tented T waves.

      A simple blood test reveals marked hyperglycemia. A urinalysis shows the presence of ketones ++.

      His bloods show the following:

      Hb 136 g/L Male: (135-180)
      Platelets 210 * 109/L (150 - 400)
      WBC 9.5 * 109/L (4.0 - 11.0)

      Na+ 137 mmol/L (135 - 145)
      K+ 7.1 mmol/L (3.5 - 5.0)
      Bicarbonate 31 mmol/L (22 - 29)
      Urea 8.0 mmol/L (2.0 - 7.0)
      Creatinine 155 µmol/L (55 - 120)

      He is given insulin, calcium gluconate and IV saline.

      What is the main mechanism as to why the patient's potassium level will decrease?

      Your Answer: Insulin increases sodium potassium pump

      Explanation:

      Insulin stimulates the Na+/K+ ATPase pump, leading to a decrease in serum potassium levels. This is primarily achieved through increased activity of the sodium-potassium pump, which is triggered by phosphorylation of the transmembrane subunits in response to insulin. While calcium gluconate is used to protect the heart during hyperkalaemia-induced arrhythmias, it does not affect potassium levels. Although IV fluids can improve renal function and potassium clearance, they are not the primary method for reducing potassium levels. Calcium-activated potassium channels are present throughout the body and are activated by an increase in intracellular calcium levels during action potentials.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      117.1
      Seconds
  • Question 8 - A 39-year-old, with an elevated BMI and confirmed type II diabetes is attending...

    Incorrect

    • A 39-year-old, with an elevated BMI and confirmed type II diabetes is attending a clinic for a check-up on his glucose control.

      Despite being on treatment for a few months, his latest Hb1Ac and home blood glucose readings are still high. The healthcare provider decides to start the patient on gliclazide. The patient is informed that this medication may cause hypoglycaemia as a side effect by increasing insulin production and release.

      Which pancreatic cell membrane channels does gliclazide bind to?

      Your Answer: Tyrosine kinase

      Correct Answer: ATP-dependent potassium

      Explanation:

      Gliclazide is a medication used to treat diabetes by increasing insulin release from pancreatic beta cells. It works by binding to ATP-dependent potassium channels on these cells, causing depolarization and an increase in intracellular calcium. This leads to the secretion of insulin.

      Dipeptidyl peptidase-4 (DDP) inhibitors are another type of medication used to manage diabetes. They work by increasing levels of incretin hormones such as GLP-1 and GIP, which stimulate insulin secretion and decrease blood glucose levels.

      Chloride channels are not affected by sulfonylureas, and they play a role in regulating fluid transport in various organs.

      Insulin binds to tyrosine kinase receptors on the cell membrane, which triggers a signal transduction pathway that activates enzymes and transcription factors within the cell. Sulfonylureas do not affect these receptors.

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      124
      Seconds
  • Question 9 - What is the half life of insulin in the circulation of a typical...

    Incorrect

    • What is the half life of insulin in the circulation of a typical healthy adult?

      Your Answer: Between 2 and 3 hours

      Correct Answer: Less than 30 minutes

      Explanation:

      Enzymes in the bloodstream break down insulin, resulting in a half-life of under 30 minutes. In type 2 diabetes, there may be irregularities in the insulin clearance process.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      9.1
      Seconds
  • Question 10 - An 8-year-old girl has been brought to the GP by her mother who...

    Incorrect

    • An 8-year-old girl has been brought to the GP by her mother who is worried that her daughter may be starting puberty too early. The mother reports an enlargement in nipple size, some breast development, and the appearance of light hairs on the edge of the labia majora.

      At what Tanner stage is the girl currently?

      Your Answer: IV

      Correct Answer: II

      Explanation:

      Puberty: Normal Changes in Males and Females

      Puberty is a natural process that marks the transition from childhood to adolescence. In males, the first sign of puberty is testicular growth, which typically occurs around the age of 12. Testicular volume greater than 4 ml indicates the onset of puberty. The maximum height spurt for boys occurs at the age of 14. On the other hand, in females, the first sign of puberty is breast development, which usually occurs around the age of 11.5. The height spurt for girls reaches its maximum early in puberty, at the age of 12, before menarche. Menarche, or the first menstrual period, typically occurs at the age of 13, with a range of 11-15 years. Following menarche, there is only a slight increase of about 4% in height.

      During puberty, it is normal for boys to experience gynaecomastia, or the development of breast tissue. Girls may also experience asymmetrical breast growth. Additionally, diffuse enlargement of the thyroid gland may be seen in both males and females. These changes are all part of the normal process of puberty and should not be a cause for concern.

    • This question is part of the following fields:

      • Endocrine System
      19.4
      Seconds
  • Question 11 - A 12-year-old girl, previously healthy, presents to the emergency department with symptoms of...

    Correct

    • A 12-year-old girl, previously healthy, presents to the emergency department with symptoms of nausea, vomiting, and confusion. The patient's father reports his child appearing fatigued, and having increased thirst and urinary frequency over the past few days. Upon laboratory analysis, the patient's serum glucose is found to be 25 mmol/L and urinalysis is positive for ketones. The medical team initiates fluid resuscitation and insulin therapy.

      What electrolyte changes are anticipated following the treatment of this patient?

      Your Answer: Decrease in potassium levels

      Explanation:

      The Na+/K+ ATPase pump is stimulated by insulin, leading to a decrease in serum potassium levels. This effect is particularly relevant in patients with diabetic ketoacidosis, who experience insulin deficiency and hyperkalemia. It is important to monitor serum potassium levels closely during the management of diabetic ketoacidosis to avoid the potential complications of hypokalemia. Insulin does not cause a decrease in sodium levels, and its effects on calcium and phosphate homeostasis are minimal. The resolution of ketoacidosis with insulin and fluids will result in an increase in serum bicarbonate levels back to normal range.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      26.8
      Seconds
  • Question 12 - A 55-year-old male visits his doctor complaining of a milky discharge from his...

    Incorrect

    • A 55-year-old male visits his doctor complaining of a milky discharge from his nipples. He has a history of schizophrenia and has been taking olanzapine for a while now. No recent changes have been made to his medication.

      Which compound with elevated levels is most likely causing this symptom?

      Your Answer: Prolactin, released from the posterior pituitary

      Correct Answer: Prolactin, released from the anterior pituitary

      Explanation:

      The patient is experiencing galactorrhea, which is commonly associated with hyperprolactinemia. Prolactin stimulates milk production in the mammary glands, and the patient’s hyperprolactinemia is likely due to his use of olanzapine, which acts as a dopamine antagonist. Dopamine normally inhibits prolactin secretion. The other answer choices are incorrect as they do not accurately explain the mechanism behind the patient’s presentation.

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      19.3
      Seconds
  • Question 13 - What is the primary constituent of the colloid found in the thyroid gland?...

    Incorrect

    • What is the primary constituent of the colloid found in the thyroid gland?

      Your Answer: T4

      Correct Answer: Thyroglobulin

      Explanation:

      Thyroid Hormones and LATS in Graves Disease

      Thyroid hormones are produced by the thyroid gland and include triiodothyronine (T3) and thyroxine (T4), with T3 being the major hormone active in target cells. The synthesis and secretion of these hormones involves the active concentration of iodide by the thyroid, which is then oxidized and iodinated by peroxidase in the follicular cells. This process is stimulated by thyroid-stimulating hormone (TSH), which is released by the pituitary gland. The normal thyroid has approximately three months’ worth of reserves of thyroid hormones.

      In Graves disease, patients develop IgG antibodies to the TSH receptors on the thyroid gland. This results in chronic and long-term stimulation of the gland with the release of thyroid hormones. As a result, individuals with Graves disease typically have raised thyroid hormones and low TSH levels. It is important to check for thyroid receptor autoantibodies in individuals presenting with hyperthyroidism, as they are present in up to 85% of cases. This condition is known as LATS (long-acting thyroid stimulator) and can lead to a range of symptoms and complications if left untreated.

    • This question is part of the following fields:

      • Endocrine System
      23.1
      Seconds
  • Question 14 - A 25-year-old male patient presents to the endocrine clinic with delayed-onset puberty. His...

    Incorrect

    • A 25-year-old male patient presents to the endocrine clinic with delayed-onset puberty. His history revealed a cleft palate as a child which had been repaired successfully. On direct questioning, he revealed he had anosmia but was told this was due to a minor head injury aged 5. On examination, he was 1.80 metres tall, had sparse pubic hair and small volume testes (Tanner staging grade 1).

      Blood results revealed:

      FSH 2 IU/L (1-7)
      LH 2 IU/L (1-8)
      Testosterone 240 ng/dL (280-1100)

      What is the most likely cause of this patient's condition?

      Your Answer: Turner's syndrome

      Correct Answer: Kallmann syndrome

      Explanation:

      The minor head injury is unlikely to be the cause of the patient’s anosmia. However, the combination of anosmia and cleft palate, along with the blood test results indicating hypogonadotropic hypogonadism, suggests that the patient may have Kallmann’s syndrome, which is an X-linked inherited disorder. Constitutional developmental delay is less likely due to the patient’s age and abnormal blood test results.

      Empty sella syndrome is a condition where the sella turcica, the area of the brain where the pituitary gland is located, is empty and filled with cerebrospinal fluid. Although this condition can be asymptomatic, it can also present with symptoms of hypopituitarism. However, since the patient also has anosmia and cleft palate, empty sella syndrome is less likely.

      Klinefelter’s syndrome is characterized by tall stature, gynecomastia, and small penis/testes. Blood tests would reveal elevated gonadotropins and low testosterone levels. However, since the patient’s FSH and LH levels are low, Klinefelter’s syndrome can be ruled out.

      Kallmann’s syndrome is a condition that can cause delayed puberty due to hypogonadotropic hypogonadism. It is often inherited as an X-linked recessive trait and is believed to be caused by a failure of GnRH-secreting neurons to migrate to the hypothalamus. One of the key indicators of Kallmann’s syndrome is anosmia, or a lack of smell, in boys with delayed puberty. Other features may include hypogonadism, cryptorchidism, low sex hormone levels, and normal or above-average height. Some patients may also have cleft lip/palate and visual/hearing defects.

      Management of Kallmann’s syndrome typically involves testosterone supplementation. Gonadotrophin supplementation may also be used to stimulate sperm production if fertility is desired later in life. It is important for individuals with Kallmann’s syndrome to receive appropriate medical care and monitoring to manage their symptoms and ensure optimal health outcomes.

    • This question is part of the following fields:

      • Endocrine System
      53
      Seconds
  • Question 15 - A 38-year-old woman presents to the Emergency Department with a 2-day history of...

    Incorrect

    • A 38-year-old woman presents to the Emergency Department with a 2-day history of left flank pain. She has been recently diagnosed with osteoporosis after a low-energy, femoral neck fracture.

      Her blood results show the following:

      Na+ 140 mmol/L (135 - 145)
      K+ 3.6 mmol/L (3.5 - 5.0)
      Calcium 2.9 mmol/L (2.1-2.6)
      Phosphate 0.6 mmol/L (0.8-1.4)

      Her urine dip is positive for erythrocytes making a diagnosis of renal calculi likely.

      What is the pathophysiological reason for the low serum phosphate level, given the likely underlying pathology?

      Your Answer: Decreased absorption of phosphate in the gastrointestinal tract

      Correct Answer: Decreased renal phosphate reabsorption

      Explanation:

      The decrease in renal phosphate reabsorption is caused by PTH.

      The symptoms presented are indicative of a kidney stone, which can be a sign of hyperparathyroidism. Primary hyperparathyroidism, caused by a functioning parathyroid adenoma, can result in low phosphate and high calcium levels. PTH reduces renal phosphate reabsorption, leading to increased phosphate loss in urine. Pituitary adenomas are associated with osteoporosis due to excessive PTH causing bone resorption.

      PTH activates vitamin D, which increases phosphate absorption in the gastrointestinal tract. However, the renal loss of phosphate is greater than the increase in absorption, resulting in a net loss of phosphate when PTH levels are high.

      PTH also increases renal vitamin D activation, leading to increased intestinal absorption of calcium and phosphate, as well as increased osteoclast activity. This results in elevated levels of serum calcium and phosphate.

      Hypothyroidism does not significantly affect phosphate regulation, so it would not cause low serum phosphate levels.

      Increased osteoclast activity caused by PTH leads to bone resorption and the release of calcium and phosphate into the blood. However, the renal loss of phosphate is greater than the increase in serum phosphate due to osteoclast activity, resulting in an overall decrease in serum phosphate levels.

      Understanding Parathyroid Hormone and Its Effects

      Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.

      The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.

      Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.

    • This question is part of the following fields:

      • Endocrine System
      108.8
      Seconds
  • Question 16 - A 29-year-old male attends a pre-operative assessment clinic for thyroidectomy due to failed...

    Correct

    • A 29-year-old male attends a pre-operative assessment clinic for thyroidectomy due to failed treatment with carbimazole and radio-iodine for Grave's disease. What is the potential complication that he is at a high risk of developing during this procedure?

      Your Answer: Recurrent laryngeal nerve palsy

      Explanation:

      The risk of complications during thyroidectomy is relatively low, but there are still potential risks to be aware of. One of the most common complications is damage to the recurrent laryngeal nerve, which can result in vocal cord paralysis and hoarseness. However, the vagal nerve and phrenic nerve are rarely damaged during the procedure as they are not in close proximity to the operating site. Trauma to the esophagus is also uncommon. If the parathyroid glands are inadvertently removed during the procedure, it can result in hypoparathyroidism rather than hyperparathyroidism.

      Thyroid disorders are commonly encountered in clinical practice, with hypothyroidism and thyrotoxicosis being the most prevalent. Women are ten times more likely to develop these conditions than men. The thyroid gland is a bi-lobed structure located in the anterior neck and is part of a hypothalamus-pituitary-end organ system that regulates the production of thyroxine and triiodothyronine hormones. These hormones help regulate energy sources, protein synthesis, and the body’s sensitivity to other hormones. Hypothyroidism can be primary or secondary, while thyrotoxicosis is mostly primary. Autoimmunity is the leading cause of thyroid problems in the developed world.

      Thyroid disorders can present in various ways, with symptoms often being the opposite depending on whether the thyroid gland is under or overactive. For example, hypothyroidism may result in weight gain, while thyrotoxicosis leads to weight loss. Thyroid function tests are the primary investigation for diagnosing thyroid disorders. These tests primarily look at serum TSH and T4 levels, with T3 being measured in specific cases. TSH levels are more sensitive than T4 levels for monitoring patients with existing thyroid problems.

      Treatment for thyroid disorders depends on the cause. Patients with hypothyroidism are given levothyroxine to replace the underlying deficiency. Patients with thyrotoxicosis may be treated with propranolol to control symptoms such as tremors, carbimazole to reduce thyroid hormone production, or radioiodine treatment.

    • This question is part of the following fields:

      • Endocrine System
      32.6
      Seconds
  • Question 17 - A 56-year-old woman visits her primary care physician with concerns about recent weight...

    Incorrect

    • A 56-year-old woman visits her primary care physician with concerns about recent weight gain. She reports maintaining her usual diet and exercise routine, but has noticed her face appearing rounder and the development of purplish stretch marks on her abdomen. During the exam, her heart rate is 89 beats per minute, respiratory rate is 16 breaths per minute, and blood pressure is 157/84 mmHg. Her waist circumference measures 41 inches and her body mass index is 28 kg/m2. What is one effect of the primary hormone involved in this patient's condition?

      Your Answer: Decrease gluconeogenesis

      Correct Answer: Upregulation of alpha-1-adrenoceptors on arterioles

      Explanation:

      The patient is exhibiting symptoms consistent with a state of elevated cortisol levels, known as Cushing syndrome. These symptoms include recent weight gain, a round face (moon face), abdominal striae, high blood pressure, and truncal obesity. Cushing syndrome can have various causes, including the use of glucocorticoids or an ectopic ACTH secretion.

      Elevated cortisol levels can lead to an increase in blood glucose levels, putting individuals at risk for hyperglycemia and diabetes. Cortisol can also suppress the immune system, inhibiting the production of prostaglandins, leukotrienes, and interleukin-2, and decreasing the adhesion of white blood cells. Additionally, cortisol can up-regulate alpha-1-adrenoceptors on arterioles, resulting in high blood pressure. High cortisol levels can also decrease osteoblast activity, leading to weakened bones, and reduce fibroblast activity and collagen synthesis, resulting in delayed wound healing. The abdominal striae seen in patients with high cortisol levels are typically due to decreased collagen synthesis.

      Causes of Cushing’s Syndrome

      Cushing’s syndrome is a condition that can be caused by both endogenous and exogenous factors. However, it is important to note that exogenous causes, such as the use of glucocorticoid therapy, are more common than endogenous ones. The condition can be classified into two categories: ACTH dependent and ACTH independent causes.

      ACTH dependent causes of Cushing’s syndrome include Cushing’s disease, which is caused by a pituitary tumor secreting ACTH and producing adrenal hyperplasia. Ectopic ACTH production, which is caused by small cell lung cancer, is another ACTH dependent cause. On the other hand, ACTH independent causes include iatrogenic factors such as steroid use, adrenal adenoma, adrenal carcinoma, Carney complex, and micronodular adrenal dysplasia.

      In some cases, a condition called Pseudo-Cushing’s can mimic Cushing’s syndrome. This is often caused by alcohol excess or severe depression and can cause false positive results in dexamethasone suppression tests or 24-hour urinary free cortisol tests. To differentiate between Cushing’s syndrome and Pseudo-Cushing’s, an insulin stress test may be used.

    • This question is part of the following fields:

      • Endocrine System
      49.4
      Seconds
  • Question 18 - A patient currently being treated for bipolar disorder with lithium is referred to...

    Incorrect

    • A patient currently being treated for bipolar disorder with lithium is referred to hospital after developing severe polyuria. She denies polydipsia.

      Blood tests reveal the following:

      Na+ 154 mmol/L (135 - 145)
      K+ 3.5 mmol/L (3.5 - 5.0)
      Bicarbonate 24 mmol/L (22 - 29)
      Urea 8 mmol/L (2.0 - 7.0)
      Creatinine 110 µmol/L (55 - 120)
      Blood glucose 7mmol/L (4 - 11)

      Based on the results, a decision is made to carry out a water deprivation test. The patient is considered to have capacity and agrees to this. As part of this test, desmopressin is given.

      Considering the most likely diagnosis, which of the following results would be most likely to be seen in a 45-year-old patient?

      Your Answer: High urine osmolality after fluid deprivation and low urine osmolality after desmopressin provision

      Correct Answer: Low urine osmolality after fluid deprivation and low urine osmolality after desmopressin provision

      Explanation:

      The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.

    • This question is part of the following fields:

      • Endocrine System
      201.2
      Seconds
  • Question 19 - A 28-year-old female with a three year history of type 1 diabetes complains...

    Incorrect

    • A 28-year-old female with a three year history of type 1 diabetes complains of sudden confusion and excessive sweating. Upon examination, her pulse is 105 bpm, respiratory rate is 16/min, and she appears disoriented. What would be the most suitable initial test to perform for this patient?

      Your Answer: Urine dipstick analysis

      Correct Answer: Plasma glucose concentration

      Explanation:

      Differentiating Hypoglycaemia from Diabetic Ketoacidosis in Critically Ill Patients

      When assessing a critically ill patient, it is important not to forget the E in the ABCDE algorithm. In the case of a woman presenting acutely, with a normal respiratory rate, it is more likely that she is hypoglycaemic rather than experiencing diabetic ketoacidosis (DKA). To confirm this, it is essential to check her glucose or blood sugar levels and then administer glucose as necessary.

      It is crucial to differentiate between hypoglycaemia and DKA as the treatment for each condition is vastly different. While hypoglycaemia requires immediate administration of glucose, DKA requires insulin therapy and fluid replacement. Therefore, a correct diagnosis is essential to ensure the patient receives the appropriate treatment promptly.

      In conclusion, when assessing a critically ill patient, it is vital to consider all aspects of the ABCDE algorithm, including the often-overlooked E for exposure. In cases where a patient presents acutely, with a normal respiratory rate, it is essential to differentiate between hypoglycaemia and DKA by checking glucose levels and administering glucose or insulin therapy accordingly.

    • This question is part of the following fields:

      • Endocrine System
      23.3
      Seconds
  • Question 20 - A 77-year-old man is admitted to a geriatric ward from his care home...

    Incorrect

    • A 77-year-old man is admitted to a geriatric ward from his care home with new-onset confusion and agitation secondary to a urinary tract infection. His past medical history is significant for COPD, type 2 diabetes mellitus, hypertension, and systemic lupus erythematosus.

      His regular medications include a combination inhaler, metformin, candesartan, and prednisolone.

      As a result of a prescribing error, the medical team responsible for his admission fail to administer prednisolone during his hospital stay.

      What potential adverse event does this prescribing error put the patient at risk of?

      Your Answer: Hypokalaemia

      Correct Answer: Addisonian crisis

      Explanation:

      Long-term use of systemic corticosteroids can suppress the body’s natural production of steroids. Therefore, sudden withdrawal of these steroids can lead to an Addisonian crisis, which is characterized by vomiting, hypotension, hyperkalemia, and hyponatremia. It is important to gradually taper off the steroids to avoid this crisis. Dyslipidemia, hyperkalemia, and immunosuppression are not consequences of abrupt withdrawal of steroids.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      120.3
      Seconds
  • Question 21 - A 65-year-old male, who is a known type 2 diabetic, visits his GP...

    Incorrect

    • A 65-year-old male, who is a known type 2 diabetic, visits his GP for a diabetes check-up. He is currently taking metformin and his GP has prescribed a sulphonylurea to improve his blood sugar management. What is the mode of action of this medication?

      Your Answer: Opens calcium channels on the beta cells

      Correct Answer: Closes potassium-ATP channels on the beta cells

      Explanation:

      Sulfonylureas bind to potassium-ATP channels on the cell membrane of pancreatic beta cells, mimicking the role of ATP from the outside. This results in the blocking of these channels, causing membrane depolarisation and the opening of voltage-gated calcium channels. As a result, insulin release is stimulated.

      While acute use of sulfonylureas increases insulin secretion and decreases insulin clearance in the liver, it can also cause hypoglycaemia, which is the main side effect. This can lead to the serious complication of neuroglycopenia, resulting in a lack of glucose supply to the brain, causing confusion and possible coma. Treatment for this should involve oral glucose, intramuscular glucagon, or intravenous glucose.

      Chronic exposure to sulfonylureas does not result in an acute increase in insulin release, but a decrease in plasma glucose concentration does remain. Additionally, chronic exposure to sulfonylureas leads to down-regulation of their receptors.

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      82.7
      Seconds
  • Question 22 - A 57-year-old patient presented to her doctor with a complaint of feeling down...

    Incorrect

    • A 57-year-old patient presented to her doctor with a complaint of feeling down for the past month. She works as a teacher and has had to take time off as she felt she was not able to perform well in her job. She reports feeling fatigued all the time and has no motivation to engage in her usual activities. She has also noticed some weight gain despite a decreased appetite since she last weighed herself and she observed that her face has become more round. During examination, the doctor finds a pulse of 59 beats per minute, a respiratory rate of 12 breaths per minute, and a blood pressure of 105/63 mmHg. The doctor also notes that the neck region overlying the thyroid gland is symmetrically enlarged but the patient denies any pain or tenderness when the doctor palpated her neck. What is the most likely pathological feature in this patient?

      Your Answer:

      Correct Answer: Lymphocytic infiltration of the thyroid gland and the formation of germinal centers

      Explanation:

      The patient’s symptoms and history suggest a diagnosis of hypothyroidism, which is commonly caused by Hashimoto’s thyroiditis in developed countries. This autoimmune condition is more prevalent in women and certain populations, such as the elderly and those with HLA-DR3, 4, and 5 polymorphisms. Other thyroid conditions, such as subacute thyroiditis, Riedel’s thyroiditis, multinodular goitres, and papillary carcinoma, have different characteristic features.

      Understanding Hashimoto’s Thyroiditis

      Hashimoto’s thyroiditis is a chronic autoimmune disorder that affects the thyroid gland. It is more common in women and is typically associated with hypothyroidism, although there may be a temporary period of thyrotoxicosis during the acute phase. The condition is characterized by a firm, non-tender goitre and the presence of anti-thyroid peroxidase (TPO) and anti-thyroglobulin (Tg) antibodies.

      Hashimoto’s thyroiditis is often associated with other autoimmune conditions such as coeliac disease, type 1 diabetes mellitus, and vitiligo. Additionally, there is an increased risk of developing MALT lymphoma with this condition. It is important to note that many causes of hypothyroidism may have an initial thyrotoxic phase, as shown in the Venn diagram. Understanding the features and associations of Hashimoto’s thyroiditis can aid in its diagnosis and management.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 23 - A 57-year-old woman presents for her routine check-up. She has recently been prescribed...

    Incorrect

    • A 57-year-old woman presents for her routine check-up. She has recently been prescribed insulin for management of her type 2 diabetes. While discussing her medical history, she reports experiencing numbness in her entire right foot. Upon examination, an ulcer is observed on the webbing between her fourth and fifth toes.

      What would be the most appropriate next course of action to investigate this woman's condition?

      Your Answer:

      Correct Answer: Full neurovascular examination of the lower limbs

      Explanation:

      The two main factors that contribute to diabetic foot disease are loss of sensation and peripheral arterial disease. When reviewing a diabetic patient who presents with a complication, it is crucial to recognize that those with a loss of protective sensation are at a high risk of developing diabetic foot disease. Therefore, any ulcers must be promptly managed to prevent severe infection.

      Out of the given options, the most appropriate next step in managing this patient is to conduct a full neurovascular examination of their lower limbs. While checking the HbA1C levels is important, it is not the immediate concern for this patient. Similarly, examining foot sensation using a 10g monofilament is a crucial step, but it is only a part of a comprehensive neurovascular examination. Measuring C-peptide is not relevant to the current situation.

      Diabetic foot disease is a significant complication of diabetes mellitus that requires regular screening. In 2015, NICE published guidelines on diabetic foot disease. The disease is caused by two main factors: neuropathy, which results in a loss of protective sensation, and peripheral arterial disease, which can cause macro and microvascular ischaemia. Symptoms of diabetic foot disease include loss of sensation, absent foot pulses, reduced ankle-brachial pressure index (ABPI), intermittent claudication, calluses, ulceration, Charcot’s arthropathy, cellulitis, osteomyelitis, and gangrene.

      All patients with diabetes should be screened for diabetic foot disease at least once a year. Screening for ischaemia involves palpating for both the dorsalis pedis pulse and posterial tibial artery pulse, while screening for neuropathy involves using a 10 g monofilament on various parts of the sole of the foot. NICE recommends that patients be risk-stratified into low, moderate, and high-risk categories based on factors such as deformity, previous ulceration or amputation, renal replacement therapy, and the presence of calluses or neuropathy. Patients who are moderate or high-risk should be regularly followed up by their local diabetic foot centre.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 24 - A 65-year-old woman with type 2 diabetes mellitus is being evaluated by her...

    Incorrect

    • A 65-year-old woman with type 2 diabetes mellitus is being evaluated by her diabetic nurse. Despite taking metformin for the past 6 months, her glycaemic control remains poor. To improve management, the decision is made to add sitagliptin (a dipeptidyl-peptidase 4 (DPP-4) inhibitor) to her current metformin regimen.

      What is the mechanism of action of the newly prescribed medication?

      Your Answer:

      Correct Answer: Increased levels of glucagon-like peptide 1 (GLP-1)

      Explanation:

      DPP-4 inhibitors, like sitagliptin, work by inhibiting the breakdown of incretins such as GLP-1 and GIP. This leads to higher levels of insulin being released, as incretins increase insulin release. These inhibitors are often weight-neutral, but can occasionally cause weight loss.

      The answer Increases cell sensitivity to insulin is incorrect, as this is the mechanism of action of metformin, not DPP-4 inhibitors. Metformin increases cell sensitivity to insulin, but the exact mechanism is not fully understood.

      Similarly, Inhibition of sodium-glucose co-transporter (SGLT2) is incorrect, as this is the mechanism of action of SGLT2 inhibitors, not DPP-4 inhibitors. SGLT2 inhibitors prevent glucose absorption in the kidneys, leading to higher levels of glucose in the urine and an increased risk of urinary tract infections.

      Lastly, Increases adipogenesis is incorrect, as this is the mechanism of action of thiazolidinediones, not DPP-4 inhibitors. Thiazolidinediones stimulate adipogenesis, causing cells to become more dependent on glucose for energy.

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 25 - A 34-year-old male presents with tingling in his thumb, index, and middle finger,...

    Incorrect

    • A 34-year-old male presents with tingling in his thumb, index, and middle finger, along with complaints of excessive fatigue and snoring. Upon examination, he displays a prominent brow ridge and significant facial changes over time. Following blood tests and an MRI scan, the patient is prescribed octreotide. What is the mechanism of action of this medication?

      Your Answer:

      Correct Answer: Somatostatin analogue

      Explanation:

      Acromegaly is a condition that results from excessive growth hormone production. The release of growth hormone is directly inhibited by somatostatin, which is why somatostatin analogues are used to treat acromegaly.

      To answer the question, one must first recognize the symptoms of acromegaly, such as carpal tunnel syndrome, sleep apnea, and changes in facial features over time. The second part of the question involves identifying octreotide as a somatostatin analogue commonly used to treat acromegaly.

      While dopamine agonists were previously used to treat acromegaly, they are no longer preferred due to the availability of more effective treatments. Dopamine antagonists have never been used to treat acromegaly. Pegvisomant is an example of a growth hormone antagonist, but antagonists for insulin growth factor-1 release have not yet been developed.

      Acromegaly is a condition that can be managed through various treatment options. The first-line treatment for the majority of patients is trans-sphenoidal surgery. However, if the pituitary tumour is inoperable or surgery is unsuccessful, medication may be indicated. One such medication is a somatostatin analogue, which directly inhibits the release of growth hormone. Octreotide is an example of this medication and is effective in 50-70% of patients. Another medication is pegvisomant, which is a GH receptor antagonist that prevents dimerization of the GH receptor. It is administered once daily subcutaneously and is very effective, decreasing IGF-1 levels in 90% of patients to normal. However, it does not reduce tumour volume, so surgery is still needed if there is a mass effect. Dopamine agonists, such as bromocriptine, were the first effective medical treatment for acromegaly but are now superseded by somatostatin analogues and are only effective in a minority of patients. External irradiation may be used for older patients or following failed surgical/medical treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 26 - Which of the following explains the mechanism by which PTH increases serum calcium...

    Incorrect

    • Which of the following explains the mechanism by which PTH increases serum calcium levels?

      Your Answer:

      Correct Answer: Activation of vitamin D to increase absorption of calcium from the small intestine.

      Explanation:

      The activity of the 1-α-hydroxylase enzyme, which converts 25-hydroxycholecalciferol to 1,25-dihydroxycholecalciferol (the active form of vitamin D), is increased by PTH. Osteoblasts mediate the effects of PTH on osteoclasts, as osteoclasts do not have a PTH receptor.

      Understanding Parathyroid Hormone and Its Effects

      Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.

      The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.

      Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 27 - A 65-year-old woman with hypocalcaemia has elevated parathyroid hormone levels. Is it a...

    Incorrect

    • A 65-year-old woman with hypocalcaemia has elevated parathyroid hormone levels. Is it a typical physiological response to increase calcium levels? In the kidney, where does parathyroid hormone act to enhance calcium reabsorption?

      Your Answer:

      Correct Answer: Distal convoluted tubule

      Explanation:

      Understanding Parathyroid Hormone and Its Effects

      Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.

      The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.

      Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 28 - A man in his early 50s comes to the hospital with a fever...

    Incorrect

    • A man in his early 50s comes to the hospital with a fever and cough. An X-ray shows pneumonia in his left lower lobe. Upon arrival at the emergency department, his blood pressure is 83/60mmHg and his heart rate is 112/min. The doctor prescribes antibiotics and IV fluids.

      What is the primary way the body reacts to a drop in blood pressure?

      Your Answer:

      Correct Answer: Insertion of AQP-2 channels in collecting ducts

      Explanation:

      When blood pressure drops, the body initiates several physiological responses, one of which is the activation of the renin-angiotensin aldosterone system (RAAS). This system breaks down bradykinin, a potent vasodilator, through the action of angiotensin-converting enzyme (ACE).

      RAAS activation results in increased aldosterone levels, which in turn increases the number of epithelial sodium channels (ENAC) to enhance sodium reabsorption.

      Another response to low blood pressure is the release of antidiuretic hormone, which promotes the insertion of aquaporin-2 channels in the collecting duct. This mechanism increases water reabsorption to help maintain fluid balance in the body.

      Understanding Antidiuretic Hormone (ADH)

      Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.

      ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.

      Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.

      Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 29 - A 39-year-old woman presents to the endocrine clinic after being referred by her...

    Incorrect

    • A 39-year-old woman presents to the endocrine clinic after being referred by her GP due to a blood pressure reading of 178/101 mm Hg. Upon blood tests, it is discovered that she has hypernatremia and hypokalaemia, along with an elevated aldosterone level. An inconclusive CT scan of the abdomen has been performed to determine if there is an adenoma present.

      What is the most suitable investigation to identify if one of the adrenal glands is producing an excess of hormones?

      Your Answer:

      Correct Answer: Adrenal venous sampling (AVS)

      Explanation:

      Adrenal venous sampling (AVS) is the most appropriate investigation to differentiate between unilateral adenoma and bilateral hyperplasia in primary hyperaldosteronism. This method involves catheterizing the adrenal veins and collecting blood samples from each, which can be tested for hormone levels. The affected side can then be surgically removed if necessary. Other options such as surgical removal of adrenals and immunohistochemistry, adrenal biopsy, or repeat CT scan are not as suitable or effective in this scenario.

      Primary hyperaldosteronism is a condition characterized by hypertension, hypokalaemia, and alkalosis. It was previously believed that adrenal adenoma, also known as Conn’s syndrome, was the most common cause of this condition. However, recent studies have shown that bilateral idiopathic adrenal hyperplasia is responsible for up to 70% of cases. It is important to differentiate between the two causes as it determines the appropriate treatment. Adrenal carcinoma is an extremely rare cause of primary hyperaldosteronism.

      To diagnose primary hyperaldosteronism, the 2016 Endocrine Society recommends a plasma aldosterone/renin ratio as the first-line investigation. This test should show high aldosterone levels alongside low renin levels due to negative feedback from sodium retention caused by aldosterone. If the results are positive, a high-resolution CT abdomen and adrenal vein sampling are used to differentiate between unilateral and bilateral sources of aldosterone excess. If the CT is normal, adrenal venous sampling (AVS) can be used to distinguish between unilateral adenoma and bilateral hyperplasia.

      The management of primary hyperaldosteronism depends on the underlying cause. Adrenal adenoma is treated with surgery, while bilateral adrenocortical hyperplasia is managed with an aldosterone antagonist such as spironolactone. It is important to accurately diagnose and manage primary hyperaldosteronism to prevent complications such as cardiovascular disease and stroke.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 30 - A 54-year-old female visits her doctor complaining of chronic thirst, polyuria, and nocturia...

    Incorrect

    • A 54-year-old female visits her doctor complaining of chronic thirst, polyuria, and nocturia that have persisted for 2 months. She has a medical history of polycystic kidney disease that has led to chronic kidney disease (CKD). Her most recent eGFR result was 28 mL/min/1.73m². Following a series of tests, she is diagnosed with nephrogenic diabetes insipidus. What would the water deprivation test likely reveal in this patient's case?

      Your Answer:

      Correct Answer: Low urine osmolality after both fluid deprivation and desmopressin

      Explanation:

      The correct answer is low urine osmolality after both fluid deprivation and desmopressin. This is indicative of nephrogenic diabetes insipidus, a condition where the kidneys are insensitive to antidiuretic hormone (ADH), resulting in an inability to concentrate urine. This leads to low urine osmolality even during water deprivation and no response to desmopressin. High urine osmolality after both fluid deprivation and desmopressin would be seen in a healthy individual or primary polydipsia, while low urine osmolality after desmopressin but high after fluid deprivation is not commonly seen in any pathological state. Similarly, low urine osmolality after fluid deprivation but high after desmopressin is typically seen in cranial DI, which is not the best answer as the patient has no risk factors for this condition.

      The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Endocrine System (5/21) 24%
Passmed