00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 36-year-old woman visits her GP complaining of frequent urination. She has been...

    Incorrect

    • A 36-year-old woman visits her GP complaining of frequent urination. She has been waking up several times at night to urinate for the past two weeks and has been feeling more thirsty than usual. Her temperature is 37.3ºC. She has a history of bipolar disorder and is currently on lithium medication.

      What could be the possible cause of her polyuria?

      Your Answer: Lithium reducing ADH-dependent water reabsorption in the distal convoluted tubule

      Correct Answer: Lithium reducing ADH-dependent water reabsorption in the collecting duct

      Explanation:

      The site of action for antidiuretic hormone (ADH) is the collecting ducts. Lithium treatment for bipolar disorder can lead to diabetes insipidus, which is characterized by increased thirst (polydipsia) and increased urination (polyuria). Lithium use can cause nephrogenic diabetes insipidus, where the kidneys are unable to respond adequately to ADH. Normally, ADH induces the expression of aquaporin 2 channels in the collecting duct, which stimulates water reabsorption.

      Central diabetes insipidus occurs when there is damage to the posterior pituitary gland, resulting in insufficient production and release of ADH. However, lithium use causes nephrogenic diabetes insipidus instead of central diabetes insipidus.

      Although insulin resistance and hyperglycemia can also cause polyuria and polydipsia, as seen in diabetic ketoacidosis, the use of lithium suggests that the patient’s symptoms are due to diabetes insipidus rather than diabetes mellitus.

      Lithium inhibits the expression of aquaporin channels in the renal collecting duct, rather than the distal convoluted tubule, which causes diabetes insipidus.

      While a urinary tract infection can also present with polyuria and nocturia, the presence of lithium in the patient’s drug history and the fact that the patient also has polydipsia suggest nephrogenic diabetes insipidus. Diabetes insipidus causes increased thirst due to the excessive volume of urine produced, leading to water loss from the body. In addition, a urinary tract infection would likely cause dysuria (burning or stinging when passing urine) and lower abdominal pain.

      Understanding Antidiuretic Hormone (ADH)

      Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.

      ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.

      Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.

      Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.

    • This question is part of the following fields:

      • Endocrine System
      25.3
      Seconds
  • Question 2 - A 65-year-old woman with type 2 diabetes mellitus is being evaluated by her...

    Incorrect

    • A 65-year-old woman with type 2 diabetes mellitus is being evaluated by her diabetic nurse. Despite taking metformin for the past 6 months, her glycaemic control remains poor. To improve management, the decision is made to add sitagliptin (a dipeptidyl-peptidase 4 (DPP-4) inhibitor) to her current metformin regimen.

      What is the mechanism of action of the newly prescribed medication?

      Your Answer: Inhibition of sodium-glucose co-transporter (SGLT2)

      Correct Answer: Increased levels of glucagon-like peptide 1 (GLP-1)

      Explanation:

      DPP-4 inhibitors, like sitagliptin, work by inhibiting the breakdown of incretins such as GLP-1 and GIP. This leads to higher levels of insulin being released, as incretins increase insulin release. These inhibitors are often weight-neutral, but can occasionally cause weight loss.

      The answer Increases cell sensitivity to insulin is incorrect, as this is the mechanism of action of metformin, not DPP-4 inhibitors. Metformin increases cell sensitivity to insulin, but the exact mechanism is not fully understood.

      Similarly, Inhibition of sodium-glucose co-transporter (SGLT2) is incorrect, as this is the mechanism of action of SGLT2 inhibitors, not DPP-4 inhibitors. SGLT2 inhibitors prevent glucose absorption in the kidneys, leading to higher levels of glucose in the urine and an increased risk of urinary tract infections.

      Lastly, Increases adipogenesis is incorrect, as this is the mechanism of action of thiazolidinediones, not DPP-4 inhibitors. Thiazolidinediones stimulate adipogenesis, causing cells to become more dependent on glucose for energy.

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      73.2
      Seconds
  • Question 3 - A 4-month-old boy is being evaluated for possible hypospadias. In boys with this...

    Incorrect

    • A 4-month-old boy is being evaluated for possible hypospadias. In boys with this condition, where is the urethral opening most commonly found?

      Your Answer: On the distal dorsal surface of the penis

      Correct Answer: On the distal ventral surface of the penis

      Explanation:

      The anomaly is typically situated on the underside and frequently towards the end. Urethral openings found closer to the body are a known occurrence. Surgical removal of the foreskin may hinder the process of repairing the defect.

      Understanding Hypospadias: A Congenital Abnormality of the Penis

      Hypospadias is a congenital abnormality of the penis that affects approximately 3 out of 1,000 male infants. It is usually identified during the newborn baby check, but if missed, parents may notice an abnormal urine stream. This condition is characterized by a ventral urethral meatus, a hooded prepuce, and chordee in more severe forms. In some cases, the urethral meatus may open more proximally in the more severe variants, but 75% of the openings are distally located.

      There appears to be a significant genetic element to hypospadias, with further male children having a risk of around 5-15%. While it most commonly occurs as an isolated disorder, associated conditions include cryptorchidism (present in 10%) and inguinal hernia.

      Once hypospadias has been identified, infants should be referred to specialist services. Corrective surgery is typically performed when the child is around 12 months of age. It is essential that the child is not circumcised prior to the surgery as the foreskin may be used in the corrective procedure. In boys with very distal disease, no treatment may be needed.

      Overall, understanding hypospadias is important for parents and healthcare providers to ensure proper management and treatment for affected infants.

    • This question is part of the following fields:

      • Endocrine System
      20
      Seconds
  • Question 4 - Whilst an inpatient for a chest infection, a 65-year-old man is seen by...

    Correct

    • Whilst an inpatient for a chest infection, a 65-year-old man is seen by the hospital's diabetic specialist nurse. Despite trying various medications, his diabetic control has been generally inadequate. His latest blood test shows his HbA1c to still be above the normal range. The specialist nurse decides to initiate a new medication and advises the GP to review with a repeat blood test in a few months. The patient is cautioned about severe adverse effects, particularly Fournier gangrene.

      What is the mechanism of action of the prescribed medication?

      Your Answer: Inhibits sodium-glucose co-transporter 2

      Explanation:

      SGLT-2 inhibitors work by inhibiting the sodium-glucose co-transporter 2 (SGLT-2) in the renal proximal convoluted tubule. This class of drugs includes empagliflozin and dapagliflozin and can lead to weight loss. However, they may also cause urinary/genital infections and normoglycaemic ketoacidosis. Fournier gangrene is a known serious adverse effect of this drug class.

      Thiazolidinedione drugs, such as pioglitazone, activate peroxisome proliferator-activated receptor-gamma (PPAR gamma). This receptor complex affects various target genes, ultimately decreasing insulin resistance and causing other effects.

      Sulfonylureas, like gliclazide, block ATP-sensitive potassium channels. These drugs may cause weight gain and induce hypoglycaemia.

      GLP-1 mimetics, including exenatide, activate glucagon-like peptide 1 receptors. This relatively new class of drug can lead to weight loss but is not widely used in diabetic guidelines.

      DPP4 inhibitors, such as sitagliptin and linagliptin, work by inhibiting dipeptidyl peptidase-4 (DPP4). This ultimately leads to increased levels of incretin circulation, similar to GLP-1 mimetics.

      Understanding SGLT-2 Inhibitors

      SGLT-2 inhibitors are medications that work by blocking the reabsorption of glucose in the kidneys, leading to increased excretion of glucose in the urine. This mechanism of action helps to lower blood sugar levels in patients with type 2 diabetes mellitus. Examples of SGLT-2 inhibitors include canagliflozin, dapagliflozin, and empagliflozin.

      However, it is important to note that SGLT-2 inhibitors can also have adverse effects. Patients taking these medications may be at increased risk for urinary and genital infections due to the increased glucose in the urine. Fournier’s gangrene, a rare but serious bacterial infection of the genital area, has also been reported. Additionally, there is a risk of normoglycemic ketoacidosis, a condition where the body produces high levels of ketones even when blood sugar levels are normal. Finally, patients taking SGLT-2 inhibitors may be at increased risk for lower-limb amputations, so it is important to closely monitor the feet.

      Despite these potential risks, SGLT-2 inhibitors can also have benefits. Patients taking these medications often experience weight loss, which can be beneficial for those with type 2 diabetes mellitus. Overall, it is important for patients to discuss the potential risks and benefits of SGLT-2 inhibitors with their healthcare provider before starting treatment.

    • This question is part of the following fields:

      • Endocrine System
      67.3
      Seconds
  • Question 5 - A 62-year-old male with type 2 diabetes is urgently referred by his GP...

    Incorrect

    • A 62-year-old male with type 2 diabetes is urgently referred by his GP due to poor glycaemic control for the past three days, with home blood glucose readings around 25 mmol/L. He is currently being treated with metformin and lisinopril. Yesterday, his GP checked his U+E and found that his serum sodium was 138 mmol/L (137-144), serum potassium was 5.8 mmol/L (3.5-4.9), serum urea was 20 mmol/L (2.5-7.5), and serum creatinine was 350 µmol/L (60-110). On examination, he has a temperature of 39°C, a pulse of 108 bpm, a blood pressure of 96/60 mmHg, a respiratory rate of 32/min, and oxygen saturations of 99% on air. His cardiovascular, respiratory, and abdominal examination are otherwise normal. Further investigations reveal a plasma glucose level of 17 mmol/L (3.0-6.0) and urine analysis showing blood ++ and protein ++, but ketones are negative. What is the likely diagnosis?

      Your Answer:

      Correct Answer: Sepsis

      Explanation:

      The causes of septic shock are important to understand in order to provide appropriate treatment and improve patient outcomes. Septic shock can cause fever, hypotension, and renal failure, as well as tachypnea due to metabolic acidosis. However, it is crucial to rule out other conditions such as hyperosmolar hyperglycemic state or diabetic ketoacidosis, which have different symptoms and diagnostic criteria.

      While metformin can contribute to acidosis, it is unlikely to be the primary cause in this case. Diabetic patients may be prone to renal tubular acidosis, but this is not likely to be the cause of an acute presentation. Instead, a type IV renal tubular acidosis, characterized by hyporeninaemic hypoaldosteronism, may be a more likely association.

      Overall, it is crucial to carefully evaluate patients with septic shock and consider all possible causes of their symptoms. By ruling out other conditions and identifying the underlying cause of the acidosis, healthcare providers can provide targeted treatment and improve patient outcomes. Further research and education on septic shock and its causes can also help to improve diagnosis and treatment in the future.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 6 - Which one of the following statements is true of glucagon? ...

    Incorrect

    • Which one of the following statements is true of glucagon?

      Your Answer:

      Correct Answer: Produced in response to an increase of amino acids

      Explanation:

      Glucagon is a polypeptide protein that is synthesized by the alpha cells of the pancreatic islets of Langerhans. It is released in response to low blood sugar levels and the presence of amino acids. Glucagon is responsible for elevating the levels of glucose and ketones in the bloodstream.

      Glucagon: The Hormonal Antagonist to Insulin

      Glucagon is a hormone that is released from the alpha cells of the Islets of Langerhans in the pancreas. It has the opposite metabolic effects to insulin, resulting in increased plasma glucose levels. Glucagon functions by promoting glycogenolysis, gluconeogenesis, and lipolysis. It is regulated by various factors such as hypoglycemia, stresses like infections, burns, surgery, increased catecholamines, and sympathetic nervous system stimulation, as well as increased plasma amino acids. On the other hand, glucagon secretion decreases with hyperglycemia, insulin, somatostatin, and increased free fatty acids and keto acids.

      Glucagon is used to rapidly reverse the effects of hypoglycemia in diabetics. It is an essential hormone that plays a crucial role in maintaining glucose homeostasis in the body. Its antagonistic relationship with insulin helps to regulate blood glucose levels and prevent hyperglycemia. Understanding the regulation and function of glucagon is crucial in the management of diabetes and other metabolic disorders.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 7 - A 20-year-old man comes to the emergency department complaining of abdominal pain, vomiting,...

    Incorrect

    • A 20-year-old man comes to the emergency department complaining of abdominal pain, vomiting, polyuria, polydipsia, and confusion that have been present for the past 12 hours. During the examination, he shows mild generalized abdominal tenderness without guarding. His breathing is observed to be deep and rapid.

      The patient has a medical history of type 1 diabetes, but he confesses to being non-compliant with his insulin regimen.

      What is the probable pathophysiology behind his symptoms?

      Your Answer:

      Correct Answer: Uncontrolled lipolysis which results in an excess of free fatty acids

      Explanation:

      The cause of DKA is uncontrolled lipolysis, leading to an excess of free fatty acids that are converted to ketone bodies. This results in high levels of ketones in the urine. Hypoglycemia activates the sympathetic nervous system. Lactic acidosis is similar to DKA but lacks the presence of ketones in urine. Appendicitis can cause abdominal pain, vomiting, and urinary symptoms, but the presence of ketones in urine suggests DKA. Urinary tract infections are rare in men under 50 and typically occur with abnormal anatomy or catheterization.

      Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes mellitus, accounting for around 6% of cases. It can also occur in rare cases of extreme stress in patients with type 2 diabetes mellitus. DKA is caused by uncontrolled lipolysis, resulting in an excess of free fatty acids that are converted to ketone bodies. The most common precipitating factors of DKA are infection, missed insulin doses, and myocardial infarction. Symptoms include abdominal pain, polyuria, polydipsia, dehydration, Kussmaul respiration, and breath that smells like acetone. Diagnostic criteria include glucose levels above 11 mmol/l or known diabetes mellitus, pH below 7.3, bicarbonate below 15 mmol/l, and ketones above 3 mmol/l or urine ketones ++ on dipstick.

      Management of DKA involves fluid replacement, insulin, and correction of electrolyte disturbance. Fluid replacement is necessary as most patients with DKA are deplete around 5-8 litres. Isotonic saline is used initially, even if the patient is severely acidotic. Insulin is administered through an intravenous infusion, and correction of electrolyte disturbance is necessary. Long-acting insulin should be continued, while short-acting insulin should be stopped. Complications may occur from DKA itself or the treatment, such as gastric stasis, thromboembolism, arrhythmias, acute respiratory distress syndrome, acute kidney injury, and cerebral edema. Children and young adults are particularly vulnerable to cerebral edema following fluid resuscitation in DKA and often need 1:1 nursing to monitor neuro-observations, headache, irritability, visual disturbance, focal neurology, etc.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 8 - A 49-year-old man visits the clinic with complaints of muscle cramps and constipation...

    Incorrect

    • A 49-year-old man visits the clinic with complaints of muscle cramps and constipation that have been present for a week. He appears to be in good health otherwise. Upon conducting a serum potassium test, you discover that his levels are below the normal range. Your next step is to determine the underlying cause of his hypokalaemia. Which of the following medical conditions is commonly linked to low potassium levels?

      Your Answer:

      Correct Answer: Cushing's syndrome

      Explanation:

      Cushing’s syndrome is the correct answer as it causes excess cortisol which can exhibit mineralocorticoid activity and lead to hypokalaemia. The kidneys play a major role in maintaining potassium balance, but other factors such as insulin, catecholamines, and aldosterone also influence potassium levels. The other options listed (congenital adrenal hypoplasia, Addison’s, rhabdomyolysis, metabolic acidosis) all cause hyperkalaemia. Addison’s disease and adrenal hypoplasia result in mineralocorticoid deficiency, leading to hyperkalaemia. Acidosis and rhabdomyolysis also cause hyperkalaemia. Symptoms of hypokalaemia include fatigue, muscle weakness, myalgia, muscle cramps, constipation, hyporeflexia, and rarely paralysis.

      Causes of Cushing’s Syndrome

      Cushing’s syndrome is a condition that can be caused by both endogenous and exogenous factors. However, it is important to note that exogenous causes, such as the use of glucocorticoid therapy, are more common than endogenous ones. The condition can be classified into two categories: ACTH dependent and ACTH independent causes.

      ACTH dependent causes of Cushing’s syndrome include Cushing’s disease, which is caused by a pituitary tumor secreting ACTH and producing adrenal hyperplasia. Ectopic ACTH production, which is caused by small cell lung cancer, is another ACTH dependent cause. On the other hand, ACTH independent causes include iatrogenic factors such as steroid use, adrenal adenoma, adrenal carcinoma, Carney complex, and micronodular adrenal dysplasia.

      In some cases, a condition called Pseudo-Cushing’s can mimic Cushing’s syndrome. This is often caused by alcohol excess or severe depression and can cause false positive results in dexamethasone suppression tests or 24-hour urinary free cortisol tests. To differentiate between Cushing’s syndrome and Pseudo-Cushing’s, an insulin stress test may be used.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 9 - A 50-year-old man has a laparotomy and repair of incisional hernia. Which hormone...

    Incorrect

    • A 50-year-old man has a laparotomy and repair of incisional hernia. Which hormone is most unlikely to be released in higher amounts after the surgery?

      Your Answer:

      Correct Answer: Insulin

      Explanation:

      Reduced secretion of insulin and thyroxine is common after surgery, which can make it challenging to manage diabetes in people with insulin resistance due to the additional release of glucocorticoids.

      Surgery triggers a stress response that causes hormonal and metabolic changes in the body. This response is characterized by substrate mobilization, muscle protein loss, sodium and water retention, suppression of anabolic hormone secretion, activation of the sympathetic nervous system, and immunological and haematological changes. The hypothalamic-pituitary axis and the sympathetic nervous systems are activated, and the normal feedback mechanisms of control of hormone secretion fail. The stress response is associated with increased growth hormone, cortisol, renin, adrenocorticotrophic hormone (ACTH), aldosterone, prolactin, antidiuretic hormone, and glucagon, while insulin, testosterone, oestrogen, thyroid stimulating hormone, luteinizing hormone, and follicle stimulating hormone are decreased or remain unchanged. The metabolic effects of cortisol are enhanced, including skeletal muscle protein breakdown, stimulation of lipolysis, anti-insulin effect, mineralocorticoid effects, and anti-inflammatory effects. The stress response also affects carbohydrate, protein, lipid, salt and water metabolism, and cytokine release. Modifying the response can be achieved through opioids, spinal anaesthesia, nutrition, growth hormone, anabolic steroids, and normothermia.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 10 - A 27-year-old man who has been morbidly obese for the past six years...

    Incorrect

    • A 27-year-old man who has been morbidly obese for the past six years is being evaluated at the surgical bariatric clinic. Which hormone release would lead to an increase in appetite in this patient?

      Your Answer:

      Correct Answer: Ghrelin

      Explanation:

      Leptin is a hormone that reduces appetite, while ghrelin is a hormone that stimulates appetite. Although thyroxine can increase appetite, it is not consistent with the symptoms being described.

      The Physiology of Obesity: Leptin and Ghrelin

      Leptin is a hormone produced by adipose tissue that plays a crucial role in regulating body weight. It acts on the hypothalamus, specifically on the satiety centers, to decrease appetite and induce feelings of fullness. In cases of obesity, where there is an excess of adipose tissue, leptin levels are high. Leptin also stimulates the release of melanocyte-stimulating hormone (MSH) and corticotrophin-releasing hormone (CRH), which further contribute to the regulation of appetite. On the other hand, low levels of leptin stimulate the release of neuropeptide Y (NPY), which increases appetite.

      Ghrelin, on the other hand, is a hormone that stimulates hunger. It is mainly produced by the P/D1 cells lining the fundus of the stomach and epsilon cells of the pancreas. Ghrelin levels increase before meals, signaling the body to prepare for food intake, and decrease after meals, indicating that the body has received enough nutrients.

      In summary, the balance between leptin and ghrelin plays a crucial role in regulating appetite and body weight. In cases of obesity, there is an imbalance in this system, with high levels of leptin and potentially disrupted ghrelin signaling, leading to increased appetite and weight gain.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 11 - A 33-year-old woman with a history of asthma, gout, rheumatoid arthritis, and type...

    Incorrect

    • A 33-year-old woman with a history of asthma, gout, rheumatoid arthritis, and type II diabetes mellitus has been admitted to the respiratory ward due to breathlessness after contracting SARS-CoV-2. Despite receiving 60% oxygen via a venturi mask, her oxygen saturation remains at 91%. The doctor decides to prescribe dexamethasone. What is the expected effect of this medication?

      Your Answer:

      Correct Answer: Increased blood glucose levels

      Explanation:

      The use of corticosteroids, such as dexamethasone, can worsen diabetic control due to their anti-insulin effects. Dexamethasone, which is commonly used to manage severe SARS-CoV-2 infection, has a high glucocorticoid activity that can lead to insulin resistance and increased blood glucose levels. However, it is unlikely to cause an asthma exacerbation or a flare-up of rheumatoid arthritis or gout. While psychosis is a known side effect of dexamethasone, it is less common than an increase in blood glucose levels.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 12 - A 23-year-old male visits his GP complaining of polyuria, chronic thirst and pale-coloured...

    Incorrect

    • A 23-year-old male visits his GP complaining of polyuria, chronic thirst and pale-coloured urine that have persisted for 3 months. He had a concussion from a car accident a month before the onset of his urinary symptoms. The patient is diagnosed with cranial diabetes insipidus after undergoing several tests.

      What would the water deprivation test likely reveal in this case?

      Your Answer:

      Correct Answer: Low urine osmolality after fluid deprivation, but high after desmopressin

      Explanation:

      The correct answer is low urine osmolality after fluid deprivation, but high after desmopressin, for a patient with cranial diabetes insipidus (DI). This condition is characterized by polyuria, chronic thirst, and pale-coloured urine, and is caused by insufficient antidiuretic hormone (ADH) secretion. As a result, the kidneys are unable to concentrate urine, leading to a low urine osmolality even during water deprivation. However, the kidneys will respond to desmopressin (synthetic ADH) to produce concentrated urine.

      High urine osmolality after both fluid deprivation and desmopressin is incorrect, as it would be seen in a healthy individual or a patient with primary polydipsia, a psychogenic disorder characterized by excessive drinking despite being properly hydrated.

      Low urine osmolality after both fluid deprivation and desmopressin is incorrect, as this is typical of nephrogenic DI, a condition in which the kidneys are insensitive to ADH.

      High urine osmolality after fluid deprivation, but normal after desmopressin is incorrect, as this would not be commonly seen with any pathological state.

      Low urine osmolality after desmopressin, but high after fluid deprivation is incorrect, as this would not be commonly seen with any pathological state.

      The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 13 - A 28-year-old female with a three year history of type 1 diabetes complains...

    Incorrect

    • A 28-year-old female with a three year history of type 1 diabetes complains of sudden confusion and excessive sweating. Upon examination, her pulse is 105 bpm, respiratory rate is 16/min, and she appears disoriented. What would be the most suitable initial test to perform for this patient?

      Your Answer:

      Correct Answer: Plasma glucose concentration

      Explanation:

      Differentiating Hypoglycaemia from Diabetic Ketoacidosis in Critically Ill Patients

      When assessing a critically ill patient, it is important not to forget the E in the ABCDE algorithm. In the case of a woman presenting acutely, with a normal respiratory rate, it is more likely that she is hypoglycaemic rather than experiencing diabetic ketoacidosis (DKA). To confirm this, it is essential to check her glucose or blood sugar levels and then administer glucose as necessary.

      It is crucial to differentiate between hypoglycaemia and DKA as the treatment for each condition is vastly different. While hypoglycaemia requires immediate administration of glucose, DKA requires insulin therapy and fluid replacement. Therefore, a correct diagnosis is essential to ensure the patient receives the appropriate treatment promptly.

      In conclusion, when assessing a critically ill patient, it is vital to consider all aspects of the ABCDE algorithm, including the often-overlooked E for exposure. In cases where a patient presents acutely, with a normal respiratory rate, it is essential to differentiate between hypoglycaemia and DKA by checking glucose levels and administering glucose or insulin therapy accordingly.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 14 - A 40-year-old woman comes to her doctor complaining of sudden palpitations and occasional...

    Incorrect

    • A 40-year-old woman comes to her doctor complaining of sudden palpitations and occasional headaches without any apparent cause. She has no significant medical history and denies any stress in her personal or professional life. During the examination, she appears to be sweating and has a pale conjunctiva. Her heart rate is 120 beats per minute, regularly regular, and her blood pressure is 150/100 mmHg. The doctor suspects a phaeochromocytoma, a tumor of the adrenal medulla.

      Which test is the most likely to provide a definitive diagnosis?

      Your Answer:

      Correct Answer: Urinary free adrenaline

      Explanation:

      Extra-adrenal tumors are often located near the aortic bifurcation and can be identified through a urinary free adrenaline test, which measures the levels of adrenaline and noradrenaline produced by the adrenal medulla. Meanwhile, a 24-hour urinary free cortisol test is used to diagnose Cushing’s Disease, which is caused by excessive cortisol production from the zona fasciculata of the adrenal cortex. The aldosterone-renin ratio test is used to diagnose Conn’s Disease, which is caused by excessive aldosterone production from the zona glomerulosa of the adrenal cortex. Androgens are produced by the zona reticularis of the adrenal cortex. Addison’s Disease, a deficiency of cortisol, can be diagnosed through a short synacthen test.

      Adrenal Physiology: Medulla and Cortex

      The adrenal gland is composed of two main parts: the medulla and the cortex. The medulla is responsible for secreting the catecholamines noradrenaline and adrenaline, which are released in response to sympathetic nervous system stimulation. The chromaffin cells of the medulla are innervated by the splanchnic nerves, and the release of these hormones is triggered by the secretion of acetylcholine from preganglionic sympathetic fibers. Phaeochromocytomas, which are tumors derived from chromaffin cells, can cause excessive secretion of both adrenaline and noradrenaline.

      The adrenal cortex is divided into three distinct zones: the zona glomerulosa, zona fasciculata, and zona reticularis. Each zone is responsible for secreting different hormones. The outer zone, zona glomerulosa, secretes aldosterone, which regulates electrolyte balance and blood pressure. The middle zone, zona fasciculata, secretes glucocorticoids, which are involved in the regulation of metabolism, immune function, and stress response. The inner zone, zona reticularis, secretes androgens, which are involved in the development and maintenance of male sex characteristics.

      Most of the hormones secreted by the adrenal cortex, including glucocorticoids and aldosterone, are bound to plasma proteins in the circulation. Glucocorticoids are inactivated and excreted by the liver. Understanding the physiology of the adrenal gland is important for the diagnosis and treatment of various endocrine disorders.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 15 - What is the primary constituent of the colloid found in the thyroid gland?...

    Incorrect

    • What is the primary constituent of the colloid found in the thyroid gland?

      Your Answer:

      Correct Answer: Thyroglobulin

      Explanation:

      Thyroid Hormones and LATS in Graves Disease

      Thyroid hormones are produced by the thyroid gland and include triiodothyronine (T3) and thyroxine (T4), with T3 being the major hormone active in target cells. The synthesis and secretion of these hormones involves the active concentration of iodide by the thyroid, which is then oxidized and iodinated by peroxidase in the follicular cells. This process is stimulated by thyroid-stimulating hormone (TSH), which is released by the pituitary gland. The normal thyroid has approximately three months’ worth of reserves of thyroid hormones.

      In Graves disease, patients develop IgG antibodies to the TSH receptors on the thyroid gland. This results in chronic and long-term stimulation of the gland with the release of thyroid hormones. As a result, individuals with Graves disease typically have raised thyroid hormones and low TSH levels. It is important to check for thyroid receptor autoantibodies in individuals presenting with hyperthyroidism, as they are present in up to 85% of cases. This condition is known as LATS (long-acting thyroid stimulator) and can lead to a range of symptoms and complications if left untreated.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 16 - An 80-year-old patient, Gwyneth, is being examined by her physician for recurring dizziness...

    Incorrect

    • An 80-year-old patient, Gwyneth, is being examined by her physician for recurring dizziness upon standing up, which is interfering with her daily activities. Gwyneth is in good health and does not take any regular medications. The physician diagnoses Gwyneth with orthostatic hypotension and prescribes fludrocortisone as a treatment.

      What is the most probable side effect that Gwyneth may encounter?

      Your Answer:

      Correct Answer: Fluid retention

      Explanation:

      Corticosteroids are a class of medications commonly prescribed for various clinical uses, such as treating allergies, inflammatory conditions, auto-immunity, and endogenous steroid replacement.

      There are different types of corticosteroids, each with varying levels of glucocorticoid and mineralocorticoid activity. Glucocorticoids mimic cortisol, which is involved in carbohydrate metabolism and the stress response, while mineralocorticoids mimic aldosterone, which regulates sodium and water retention in response to low blood pressure.

      The clinical uses and side effects of corticosteroids depend on their level of glucocorticoid and mineralocorticoid activity. Fludrocortisone, for example, has minimal glucocorticoid activity and high mineralocorticoid activity.

      Therefore, fluid retention is the most associated side effect with mineralocorticoid activity, while depression, hyperglycemia, osteoporosis, and peptic ulceration are side effects associated with glucocorticoid activity.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 17 - A 29-year-old female has been diagnosed with hyperthyroidism. She is experiencing heat intolerance...

    Incorrect

    • A 29-year-old female has been diagnosed with hyperthyroidism. She is experiencing heat intolerance and is very frightened by her palpitations. The GP prescribes Carbimazole and a second medication to manage the palpitations. Which receptors are being overstimulated by the increased catecholamine effects in this patient, leading to her palpitations?

      Your Answer:

      Correct Answer: β1 receptors

      Explanation:

      The sensitivity of the body to catecholamines is heightened by thyroid hormones. When catecholamines activate the β1 receptors in the heart, it leads to an elevation in heart rate.

      Thyroid disorders are commonly encountered in clinical practice, with hypothyroidism and thyrotoxicosis being the most prevalent. Women are ten times more likely to develop these conditions than men. The thyroid gland is a bi-lobed structure located in the anterior neck and is part of a hypothalamus-pituitary-end organ system that regulates the production of thyroxine and triiodothyronine hormones. These hormones help regulate energy sources, protein synthesis, and the body’s sensitivity to other hormones. Hypothyroidism can be primary or secondary, while thyrotoxicosis is mostly primary. Autoimmunity is the leading cause of thyroid problems in the developed world.

      Thyroid disorders can present in various ways, with symptoms often being the opposite depending on whether the thyroid gland is under or overactive. For example, hypothyroidism may result in weight gain, while thyrotoxicosis leads to weight loss. Thyroid function tests are the primary investigation for diagnosing thyroid disorders. These tests primarily look at serum TSH and T4 levels, with T3 being measured in specific cases. TSH levels are more sensitive than T4 levels for monitoring patients with existing thyroid problems.

      Treatment for thyroid disorders depends on the cause. Patients with hypothyroidism are given levothyroxine to replace the underlying deficiency. Patients with thyrotoxicosis may be treated with propranolol to control symptoms such as tremors, carbimazole to reduce thyroid hormone production, or radioiodine treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 18 - A father is concerned about his 14-month-old child who has been having up...

    Incorrect

    • A father is concerned about his 14-month-old child who has been having up to 10 wet nappies a day. He recalls that his cousin had a kidney condition and wonders if it could be affecting his child. After being referred to a paediatrician, the doctor mentions the possibility of Bartter's syndrome.

      What is the root cause of Bartter's syndrome?

      Your Answer:

      Correct Answer: Mutated NKCC2 channel in the ascending loop of Henle

      Explanation:

      The cause of Bartter’s syndrome is a faulty NKCC2 channel located in the ascending loop of Henle.

      Polydipsia, polyuria, and dehydration are common symptoms of Bartter’s syndrome, which is an inherited disorder resulting from mutated NKCC2 channels.

      Gitelman syndrome is a related condition caused by a mutated NCl symporter.

      Nephrogenic and central diabetes insipidus are characterized by mutated ADH receptors and a lack of ADH production, respectively.

      Bartter’s syndrome is a genetic disorder that causes severe hypokalaemia due to a defect in the absorption of chloride at the Na+ K+ 2Cl- cotransporter in the ascending loop of Henle. This disorder is usually inherited in an autosomal recessive manner. Unlike other endocrine causes of hypokalaemia, such as Conn’s, Cushing’s, and Liddle’s syndrome, Bartter’s syndrome is associated with normotension. Loop diuretics work by inhibiting NKCC2, which is similar to the effects of Bartter’s syndrome. The symptoms of Bartter’s syndrome usually appear in childhood and include failure to thrive, polyuria, polydipsia, hypokalaemia, normotension, and weakness.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 19 - As a medical student on community care placement, I was shadowing a health...

    Incorrect

    • As a medical student on community care placement, I was shadowing a health visitor who measured the height and weight of all the children to monitor their growth. I was curious to know what drives growth during the adolescent stage (13 to 19 years old)?

      Your Answer:

      Correct Answer: Sex steroids and growth hormone

      Explanation:

      Understanding Growth and Factors Affecting It

      Growth is a significant difference between children and adults, and it occurs in three stages: infancy, childhood, and puberty. Several factors affect fetal growth, including environmental, placental, hormonal, and genetic factors. Maternal nutrition and uterine capacity are the most crucial environmental factors that affect fetal growth.

      In infancy, nutrition and insulin are the primary drivers of growth. High fetal insulin levels result from poorly controlled diabetes in the mother, leading to hypoglycemia and macrosomia in the baby. Growth hormone is not a significant factor in infancy, as babies have low amounts of receptors. Hypopituitarism and thyroid have no effect on growth in infancy.

      In childhood, growth is driven by growth hormone and thyroxine, while in puberty, growth is driven by growth hormone and sex steroids. Genetic factors are the most important determinant of final adult height.

      It is essential to monitor growth in children regularly. Infants aged 0-1 years should have at least five weight recordings, while children aged 1-2 years should have at least three weight recordings. Children older than two years should have annual weight recordings. Children below the 2nd centile for height should be reviewed by their GP, while those below the 0.4th centile for height should be reviewed by a paediatrician.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 20 - A 63-year-old male presents with a sudden onset of double vision that has...

    Incorrect

    • A 63-year-old male presents with a sudden onset of double vision that has been ongoing for eight hours. He has a medical history of hypertension, which is managed with amlodipine and atenolol, and type 2 diabetes that is controlled through diet. Upon examination, the patient displays watering of the right eye, a slight droop of the eyelid, and displacement of the eye to the right. The left eye appears to have a full range of movements, and the pupil size is the same as on the left. What is the probable cause of his symptoms?

      Your Answer:

      Correct Answer: Diabetes

      Explanation:

      Causes of Painless Partial Third Nerve Palsy

      A painless partial third nerve palsy with pupil sparing is most likely caused by diabetes mononeuropathy. This condition is thought to be due to a microangiopathy that leads to the occlusion of the vasa nervorum. On the other hand, an aneurysm of the posterior communicating artery is associated with a painful third nerve palsy, and pupillary dilatation is typical. Cerebral infarction, on the other hand, does not usually cause pain. Hypertension, which is a common condition, would normally cause signs of CVA or TIA. Lastly, cerebral vasculitis can cause symptoms of CVA/TIA, but they usually cause more global neurological symptoms.

      In summary, a painless partial third nerve palsy with pupil sparing is most likely caused by diabetes mononeuropathy. Other conditions such as aneurysm of the posterior communicating artery, cerebral infarction, hypertension, and cerebral vasculitis can also cause similar symptoms, but they have different characteristics and causes. It is important to identify the underlying cause of the condition to provide appropriate treatment and management.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 21 - A 39-year-old woman presents to the endocrine clinic after being referred by her...

    Incorrect

    • A 39-year-old woman presents to the endocrine clinic after being referred by her GP due to a blood pressure reading of 178/101 mm Hg. Upon blood tests, it is discovered that she has hypernatremia and hypokalaemia, along with an elevated aldosterone level. An inconclusive CT scan of the abdomen has been performed to determine if there is an adenoma present.

      What is the most suitable investigation to identify if one of the adrenal glands is producing an excess of hormones?

      Your Answer:

      Correct Answer: Adrenal venous sampling (AVS)

      Explanation:

      Adrenal venous sampling (AVS) is the most appropriate investigation to differentiate between unilateral adenoma and bilateral hyperplasia in primary hyperaldosteronism. This method involves catheterizing the adrenal veins and collecting blood samples from each, which can be tested for hormone levels. The affected side can then be surgically removed if necessary. Other options such as surgical removal of adrenals and immunohistochemistry, adrenal biopsy, or repeat CT scan are not as suitable or effective in this scenario.

      Primary hyperaldosteronism is a condition characterized by hypertension, hypokalaemia, and alkalosis. It was previously believed that adrenal adenoma, also known as Conn’s syndrome, was the most common cause of this condition. However, recent studies have shown that bilateral idiopathic adrenal hyperplasia is responsible for up to 70% of cases. It is important to differentiate between the two causes as it determines the appropriate treatment. Adrenal carcinoma is an extremely rare cause of primary hyperaldosteronism.

      To diagnose primary hyperaldosteronism, the 2016 Endocrine Society recommends a plasma aldosterone/renin ratio as the first-line investigation. This test should show high aldosterone levels alongside low renin levels due to negative feedback from sodium retention caused by aldosterone. If the results are positive, a high-resolution CT abdomen and adrenal vein sampling are used to differentiate between unilateral and bilateral sources of aldosterone excess. If the CT is normal, adrenal venous sampling (AVS) can be used to distinguish between unilateral adenoma and bilateral hyperplasia.

      The management of primary hyperaldosteronism depends on the underlying cause. Adrenal adenoma is treated with surgery, while bilateral adrenocortical hyperplasia is managed with an aldosterone antagonist such as spironolactone. It is important to accurately diagnose and manage primary hyperaldosteronism to prevent complications such as cardiovascular disease and stroke.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 22 - A 54-year-old man with a history of type II diabetes mellitus presents for...

    Incorrect

    • A 54-year-old man with a history of type II diabetes mellitus presents for a routine check-up. He reports no symptoms of increased urination or thirst. Laboratory results reveal an HbA1c level of 67 mmol/mol and a random plasma glucose level of 15.6 mg/l. The patient is currently taking metformin, and his physician decides to add gliclazide to his medication regimen. What is the mechanism of action of gliclazide?

      Your Answer:

      Correct Answer: Stimulates sulphonylurea-1 receptors

      Explanation:

      The primary mode of action of gliclazide, which belongs to the sulphonylurea class, is to activate the sulphonylurea-1 receptors present on pancreatic cells, thereby promoting insulin secretion. The remaining choices pertain to alternative medications for diabetes.

      Common Medications for Type 2 Diabetes

      Type 2 diabetes is a chronic condition that affects millions of people worldwide. Fortunately, there are several medications available to help manage the disease. Some of the most commonly prescribed drugs include sulphonylureas, metformin, alpha-glucosidase inhibitors (such as acarbose), glitazones, and insulin.

      Sulphonylureas are a type of medication that stimulates the pancreas to produce more insulin. This helps to lower blood sugar levels and improve glucose control. Metformin, on the other hand, works by reducing the amount of glucose produced by the liver and improving insulin sensitivity. Alpha-glucosidase inhibitors, like acarbose, slow down the digestion of carbohydrates in the small intestine, which helps to prevent spikes in blood sugar levels after meals.

      Glitazones, also known as thiazolidinediones, improve insulin sensitivity and reduce insulin resistance. They work by activating a specific receptor in the body that helps to regulate glucose metabolism. Finally, insulin is a hormone that is naturally produced by the pancreas and helps to regulate blood sugar levels. In some cases, people with type 2 diabetes may need to take insulin injections to help manage their condition.

      Overall, these medications can be very effective in helping people with type 2 diabetes to manage their blood sugar levels and prevent complications. However, it’s important to work closely with a healthcare provider to determine the best treatment plan for each individual.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 23 - A 67-year-old man has visited the doctor with concerns about his blood glucose...

    Incorrect

    • A 67-year-old man has visited the doctor with concerns about his blood glucose levels. He has type 1 diabetes and also suffers from chronic obstructive pulmonary disease (COPD). Following a recent bout of pneumonia, he has been experiencing difficulty in managing his blood sugars. You suspect that one of his newly prescribed medications may be contributing to this issue. Which medication could be causing acute problems with diabetic control?

      Your Answer:

      Correct Answer: Prednisolone

      Explanation:

      The use of corticosteroids, such as prednisolone, can have a negative impact on diabetic control due to their anti-insulin effects. This can cause an increase in glucagon levels, leading to elevated blood sugar levels. While this effect is usually temporary and should resolve on its own, higher doses of insulin may be necessary during treatment. Prednisolone is often prescribed to manage exacerbations of COPD.

      Amoxicillin, a penicillin antibiotic, can be prescribed alongside prednisolone to treat infective asthma exacerbations. Its bactericidal effects are unlikely to affect diabetes control.

      Carbocisteine is a mucolytic medication commonly used for long-term management of COPD and bronchiectasis. It helps to thin sputum in the lungs, making it easier to cough up and preventing colonization. It is not known to worsen diabetes control.

      Doxycycline, a tetracycline antibiotic, is commonly used to treat COPD exacerbations. However, it does not typically affect blood sugar control and is unlikely to be a contributing factor in this case.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 24 - What is the association between brown tumours of bone and a specific condition...

    Incorrect

    • What is the association between brown tumours of bone and a specific condition or disease?

      Your Answer:

      Correct Answer: Hyperparathyroidism

      Explanation:

      Brown tumors are bone tumors that develop due to excessive osteoclast activity, typically in cases of hyperparathyroidism. These tumors are composed of fibrous tissue, woven bone, and supporting blood vessels, but lack any matrix. They do not appear on x-rays due to their radiolucent nature. Osteoclasts consume the trabecular bone that osteoblasts produce, leading to a cycle of reparative bone deposition and resorption that can cause bone pain and involve the periosteum, resulting in an expansion beyond the typical shape of the bone. The tumors are called brown due to the deposition of haemosiderin at the site.

      Primary Hyperparathyroidism: Causes, Symptoms, and Treatment

      Primary hyperparathyroidism is a condition that is commonly seen in elderly females and is characterized by an unquenchable thirst and an inappropriately normal or raised parathyroid hormone level. It is usually caused by a solitary adenoma, hyperplasia, multiple adenoma, or carcinoma. While around 80% of patients are asymptomatic, the symptomatic features of primary hyperparathyroidism may include polydipsia, polyuria, depression, anorexia, nausea, constipation, peptic ulceration, pancreatitis, bone pain/fracture, renal stones, and hypertension.

      Primary hyperparathyroidism is associated with hypertension and multiple endocrine neoplasia, such as MEN I and II. To diagnose this condition, doctors may perform a technetium-MIBI subtraction scan or look for a characteristic X-ray finding of hyperparathyroidism called the pepperpot skull.

      The definitive management for primary hyperparathyroidism is total parathyroidectomy. However, conservative management may be offered if the calcium level is less than 0.25 mmol/L above the upper limit of normal, the patient is over 50 years old, and there is no evidence of end-organ damage. Patients who are not suitable for surgery may be treated with cinacalcet, a calcimimetic that mimics the action of calcium on tissues by allosteric activation of the calcium-sensing receptor.

      In summary, primary hyperparathyroidism is a condition that can cause various symptoms and is commonly seen in elderly females. It can be diagnosed through various tests and managed through surgery or medication.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 25 - A teenage girl and her mother come to the doctor's office with concerns...

    Incorrect

    • A teenage girl and her mother come to the doctor's office with concerns about ambiguous genitalia. After gathering information and conducting various tests, the doctor determines that the cause is congenital adrenal hyperplasia, which is linked to a deficiency in which specific enzyme?

      Your Answer:

      Correct Answer: 21-hydroxylase

      Explanation:

      Insufficient production of cortisol and compensatory adrenal hyperplasia are the consequences of 21-hydroxylase deficiency. This leads to elevated androgen production and ambiguous genitalia. However, enzymes such as 5-a reductase, aromatase, 17B-HSD, and aldosterone synthase are not involved in this disorder. Other enzymes, including 11-beta hydroxylase and 17-hydroxylase, may also be involved.

      Congenital adrenal hyperplasia is a genetic condition that affects the adrenal glands and can result in various symptoms depending on the specific enzyme deficiency. One common form is 21-hydroxylase deficiency, which can cause virilization of female genitalia, precocious puberty in males, and a salt-losing crisis in 60-70% of patients during the first few weeks of life. Another form is 11-beta hydroxylase deficiency, which can also cause virilization and precocious puberty, as well as hypertension and hypokalemia. A third form is 17-hydroxylase deficiency, which typically does not cause virilization in females but can result in intersex characteristics in boys and hypertension.

      Overall, congenital adrenal hyperplasia can have significant impacts on a person’s physical development and health, and early diagnosis and treatment are important for managing symptoms and preventing complications.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 26 - A 57-year-old man comes to the diabetes clinic for a check-up. He has...

    Incorrect

    • A 57-year-old man comes to the diabetes clinic for a check-up. He has a medical history of type 2 diabetes, which is currently managed with metformin and sitagliptin, and hypertension, for which he takes ramipril. His recent blood tests show an increase in HbA1c from 51mmol/L to 59mmol/L. He has not experienced any hypoglycaemic events and reports good adherence to his medication and blood glucose monitoring. He expresses interest in trying an additional antidiabetic medication and is prescribed tolbutamide after receiving counselling on hypoglycaemic awareness.

      What is the mechanism of action of tolbutamide?

      Your Answer:

      Correct Answer: Binds to and shuts pancreatic beta cell ATP-dependent K+ channels, causing membrane depolarisation and increased insulin exocytosis

      Explanation:

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 27 - A patient on the geriatrics ward has symptoms consistent with hypoparathyroidism. A blood...

    Incorrect

    • A patient on the geriatrics ward has symptoms consistent with hypoparathyroidism. A blood test is requested to check PTH levels, serum calcium, phosphate and vitamin D.

      Which of the following levels also need to be specifically checked?

      Your Answer:

      Correct Answer: Magnesium

      Explanation:

      The correct answer is magnesium, as it is necessary for the secretion and function of parathyroid hormone. Adequate magnesium levels are required for the hormone to have its desired effects. CRP, urea, and platelets are not relevant to this situation and do not need to be tested.

      Understanding Parathyroid Hormone and Its Effects

      Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.

      The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.

      Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 28 - A patient currently being treated for bipolar disorder with lithium is referred to...

    Incorrect

    • A patient currently being treated for bipolar disorder with lithium is referred to hospital after developing severe polyuria. She denies polydipsia.

      Blood tests reveal the following:

      Na+ 154 mmol/L (135 - 145)
      K+ 3.5 mmol/L (3.5 - 5.0)
      Bicarbonate 24 mmol/L (22 - 29)
      Urea 8 mmol/L (2.0 - 7.0)
      Creatinine 110 µmol/L (55 - 120)
      Blood glucose 7mmol/L (4 - 11)

      Based on the results, a decision is made to carry out a water deprivation test. The patient is considered to have capacity and agrees to this. As part of this test, desmopressin is given.

      Considering the most likely diagnosis, which of the following results would be most likely to be seen in a 45-year-old patient?

      Your Answer:

      Correct Answer: Low urine osmolality after fluid deprivation and low urine osmolality after desmopressin provision

      Explanation:

      The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 29 - A 35-year-old woman is referred to the endocrine clinic due to missed periods...

    Incorrect

    • A 35-year-old woman is referred to the endocrine clinic due to missed periods and lactation. She has also gained weight and experiences vaginal dryness. The endocrinologist decides to measure her prolactin levels. What hormone is responsible for suppressing the release of prolactin from the pituitary gland?

      Your Answer:

      Correct Answer: Dopamine

      Explanation:

      Dopamine consistently prevents the release of prolactin.

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 30 - A 43-year-old woman with a history of severe ulcerative colitis (UC) presents to...

    Incorrect

    • A 43-year-old woman with a history of severe ulcerative colitis (UC) presents to the emergency department with her fourth acute flare in the past 6 months. She has a past medical history of recreational drug use and depression. The patient is given IV hydrocortisone and appears to be responding well. She is discharged after a day of observation with a 7-day course of prednisolone, but the consultant is considering long-term steroid therapy due to the severity of her condition. Which of the following is associated with long-term steroid use?

      Your Answer:

      Correct Answer: Increased risk of mania

      Explanation:

      Long-term use of steroids can lead to a higher risk of psychiatric disorders such as depression, mania, psychosis, and insomnia. This risk is even greater if the patient has a history of recreational drug use or mental disorders. While proximal myopathy is a known adverse effect of long-term steroid use, distal myopathy is not commonly observed. However, some studies have reported it as a rare and uncommon adverse effect. Steroids are also known to increase appetite, leading to weight gain, making the last two options incorrect.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Endocrine System (1/4) 25%
Passmed