00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 72-year-old man is admitted to the renal ward with acute kidney injury...

    Correct

    • A 72-year-old man is admitted to the renal ward with acute kidney injury following 3 days of diarrhoea and vomiting. Laboratory results reveal that his potassium levels are below normal limits, likely due to his gastrointestinal symptoms. You review his medications to ensure that none are exacerbating the situation and discover that he is taking diuretics for heart failure management. Which of the following diuretics is linked to hypokalaemia?

      Your Answer: Bumetanide

      Explanation:

      Hypokalaemia may be caused by loop diuretics such as bumetanide. It is important to note that spironolactone, triamterene, eplerenone, and amiloride are potassium-sparing diuretics and are more likely to cause hyperkalaemia. In this case, the patient has been admitted to the hospital with acute kidney injury (AKI) due to diarrhoea and vomiting, which are also possible causes of hypokalaemia. It is important to manage all of these factors. Symptoms of hypokalaemia include fatigue, muscle weakness, myalgia, muscle cramps, constipation, hyporeflexia, and in rare cases, paralysis.

      Loop Diuretics: Mechanism of Action and Clinical Applications

      Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.

      Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.

    • This question is part of the following fields:

      • Cardiovascular System
      193.6
      Seconds
  • Question 2 - A 28-year-old man arrives at the emergency department complaining of chest pain. The...

    Incorrect

    • A 28-year-old man arrives at the emergency department complaining of chest pain. The ECG strip shows an irregularly irregular tachycardia that is not in sinus rhythm.

      Where is the site of this pathology?

      Your Answer: Isolated discordance of the AV node

      Correct Answer: Discordance of electrical activity from the myocytes surrounding the pulmonary veins

      Explanation:

      Atrial fibrillation occurs when irregular electrical activity from the myocytes surrounding the pulmonary veins overwhelms the regular impulses from the sinus node. This leads to discordance of electrical activity in the atria, causing the irregularly irregular tachycardia characteristic of AF. It is important to note that AF is not caused by an absence of electrical activity in the atria or bundle of His.

      Atrial fibrillation (AF) is a heart condition that requires prompt management. The management of AF depends on the patient’s haemodynamic stability and the duration of the AF. For haemodynamically unstable patients, electrical cardioversion is recommended. For haemodynamically stable patients, rate control is the first-line treatment strategy, except in certain cases. Medications such as beta-blockers, calcium channel blockers, and digoxin are commonly used to control the heart rate. Rhythm control is another treatment option that involves the use of medications such as beta-blockers, dronedarone, and amiodarone. Catheter ablation is recommended for patients who have not responded to or wish to avoid antiarrhythmic medication. The procedure involves the use of radiofrequency or cryotherapy to ablate the faulty electrical pathways that cause AF. Anticoagulation is necessary before and during the procedure to reduce the risk of stroke. The success rate of catheter ablation varies, with around 50% of patients experiencing an early recurrence of AF within three months. However, after three years, around 55% of patients who have undergone a single procedure remain in sinus rhythm.

    • This question is part of the following fields:

      • Cardiovascular System
      53.9
      Seconds
  • Question 3 - A 63-year-old woman comes to a vascular clinic complaining of varicosities in the...

    Correct

    • A 63-year-old woman comes to a vascular clinic complaining of varicosities in the area supplied by the short saphenous vein.

      Into which vessel does this vein directly empty?

      Your Answer: Popliteal vein

      Explanation:

      The correct answer is that the short saphenous vein passes posterior to the lateral malleolus and ascends between the two heads of the gastrocnemius muscle to empty directly into the popliteal vein. The long saphenous vein drains directly into the femoral vein and does not receive blood from the short saphenous vein. The dorsal venous arch drains the foot into the short and great saphenous veins but does not receive blood from either. The posterior tibial vein is part of the deep venous system but does not directly receive the short saphenous vein.

      The Anatomy of Saphenous Veins

      The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.

      On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.

      Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.

    • This question is part of the following fields:

      • Cardiovascular System
      3780.6
      Seconds
  • Question 4 - A teenage boy suddenly collapses outside his home. He is found to be...

    Incorrect

    • A teenage boy suddenly collapses outside his home. He is found to be in cardiac arrest and unfortunately passed away in the hospital. Posthumously, he is diagnosed with arrhythmogenic right ventricular cardiomyopathy. What alterations would this condition bring about in the heart?

      Your Answer:

      Correct Answer: Myocardium replaced by fatty and fibrofatty tissue

      Explanation:

      Arrhythmogenic right ventricular cardiomyopathy is characterized by the replacement of the right ventricular myocardium with fatty and fibrofatty tissue. Hypertrophic obstructive cardiomyopathy, which is the leading cause of sudden cardiac death, is associated with asymmetrical thickening of the septum. Left ventricular hypertrophy can be caused by hypertension, aortic valve stenosis, hypertrophic cardiomyopathy, and athletic training. While arrhythmogenic right ventricular cardiomyopathy can cause ventricular dilation in later stages, it is not transient. Transient ballooning would suggest a diagnosis of Takotsubo cardiomyopathy, which is triggered by acute stress.

      Arrhythmogenic right ventricular cardiomyopathy (ARVC), also known as arrhythmogenic right ventricular dysplasia or ARVD, is a type of inherited cardiovascular disease that can lead to sudden cardiac death or syncope. It is considered the second most common cause of sudden cardiac death in young individuals, following hypertrophic cardiomyopathy. The disease is inherited in an autosomal dominant pattern with variable expression, and it is characterized by the replacement of the right ventricular myocardium with fatty and fibrofatty tissue. Approximately 50% of patients with ARVC have a mutation in one of the several genes that encode components of desmosome.

      The presentation of ARVC may include palpitations, syncope, or sudden cardiac death. ECG abnormalities in V1-3, such as T wave inversion, are typically observed. An epsilon wave, which is best described as a terminal notch in the QRS complex, is found in about 50% of those with ARVC. Echo changes may show an enlarged, hypokinetic right ventricle with a thin free wall, although these changes may be subtle in the early stages. Magnetic resonance imaging is useful in showing fibrofatty tissue.

      Management of ARVC may involve the use of drugs such as sotalol, which is the most widely used antiarrhythmic. Catheter ablation may also be used to prevent ventricular tachycardia, and an implantable cardioverter-defibrillator may be recommended. Naxos disease is an autosomal recessive variant of ARVC that is characterized by a triad of ARVC, palmoplantar keratosis, and woolly hair.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 5 - A 55-year-old man with a recent diagnosis of essential hypertension and prescribed ramipril...

    Incorrect

    • A 55-year-old man with a recent diagnosis of essential hypertension and prescribed ramipril has returned for a follow-up appointment after 6 weeks. He has a medical history of osteoarthritis and benign prostate hypertrophy. Despite being compliant with his medication, his blood pressure reading is 145/90 mmHg, which is higher than his previous readings at home. What could be the reason for his inadequate blood pressure control despite medical treatment?

      Your Answer:

      Correct Answer: Ibuprofen

      Explanation:

      The patient with osteoarthritis is likely taking NSAIDs, which can diminish the effectiveness of ACE inhibitors in controlling hypertension. Additionally, NSAIDs can worsen the hyperkalemic effects of ACE inhibitors, contributing to the patient’s uncontrolled blood pressure. It is important to note that alcohol can also exacerbate the hypotensive effects of ACE inhibitors. Nitrates, on the other hand, are useful in managing hypertension.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 6 - You are shadowing a cardiologist during a clinic session and the first patient...

    Incorrect

    • You are shadowing a cardiologist during a clinic session and the first patient is an 80-year-old man who has come for his annual check-up. He reports experiencing swollen ankles, increased shortness of breath, and difficulty sleeping flat. He has a history of heart failure but has been stable for the past 10 years. He believes that his condition has worsened since starting a new medication, but he cannot recall the name of the drug. Unfortunately, the electronic medical records are down, and you cannot access his medication history. Which of the following medications is most likely responsible for his symptoms?

      Your Answer:

      Correct Answer: Hydralazine

      Explanation:

      Hydralazine is unique among these drugs as it has been known to cause fluid retention by elevating the plasma concentration of renin. Conversely, the other drugs listed are recognized for their ability to reduce fluid overload and promote fluid elimination.

      Hydralazine: An Antihypertensive with Limited Use

      Hydralazine is an antihypertensive medication that is not commonly used nowadays. It is still prescribed for severe hypertension and hypertension in pregnancy. The drug works by increasing cGMP, which leads to smooth muscle relaxation. However, there are certain contraindications to its use, such as systemic lupus erythematosus and ischaemic heart disease/cerebrovascular disease.

      Despite its potential benefits, hydralazine can cause adverse effects such as tachycardia, palpitations, flushing, fluid retention, headache, and drug-induced lupus. Therefore, it is not the first choice for treating hypertension in most cases. Overall, hydralazine is an older medication that has limited use due to its potential side effects and newer, more effective antihypertensive options available.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 7 - A 46-year-old man with a history of hypertrophic cardiomyopathy (HOCM) presents for evaluation...

    Incorrect

    • A 46-year-old man with a history of hypertrophic cardiomyopathy (HOCM) presents for evaluation at the cardiology clinic. During the assessment, a fourth heart sound is detected.

      What characteristic is associated with this clinical observation?

      Your Answer:

      Correct Answer: It coincides with the P wave of the ECG

      Explanation:

      The S4 heart sound occurs simultaneously with the P wave on an ECG. This sound is heard during late diastole when the left ventricle is being actively filled and the atrial contraction is forcing blood into a noncompliant left ventricle. The P wave on the ECG represents the depolarization of the left and right atrium, which results in atrial contraction. Therefore, the S4 heart sound coincides with the P wave on the ECG.

      The presence of an S4 heart sound can indicate diastolic heart failure, which is caused by severe left ventricular hypertrophy. This condition can be found in patients with HOCM or can develop as a complication of hypertension or aortic stenosis.

      In contrast, the S3 heart sound occurs during early diastole when the left ventricle is being passively filled.

      During diastole, the T wave on the ECG represents the repolarization of the ventricles and marks the beginning of ventricular relaxation.

      Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 8 - Mrs. Green is a 64-year-old woman with colon cancer. She is undergoing adjuvant...

    Incorrect

    • Mrs. Green is a 64-year-old woman with colon cancer. She is undergoing adjuvant chemotherapy, however in the past six months has suffered four deep vein thrombosis (DVT) events, despite being optimally anticoagulated with the maximum dose of dabigatran. On one occasion she suffered a DVT during treatment with dalteparin (a low molecular weight heparin). She has been admitted with symptoms of another DVT.

      What is the recommended treatment for her current DVT?

      Your Answer:

      Correct Answer: Insert an inferior vena caval filter

      Explanation:

      For patients with recurrent venous thromboembolic disease, an inferior vena cava filter may be considered. This is particularly relevant for patients with cancer who have experienced multiple DVTs despite being fully anticoagulated. Before considering an inferior vena cava filter, alternative treatments such as increasing the target INR to 3-4 for long-term high-intensity oral anticoagulant therapy or switching to LMWH should be considered. This recommendation is in line with NICE guidelines on the diagnosis, management, and thrombophilia testing of venous thromboembolic diseases. Prescribing apixaban, increasing the dose of dabigatran off-license, or prescribing Thrombo-Embolic Deterrent (TED) stockings are not appropriate solutions for this patient. Similarly, initiating end-of-life drugs and preparing the family is not indicated based on the clinical description provided.

      Management of Pulmonary Embolism

      Pulmonary embolism (PE) is a serious condition that requires prompt management. The National Institute for Health and Care Excellence (NICE) updated their guidelines on the management of venous thromboembolism (VTE) in 2020, with some key changes. One of the significant changes is the recommendation to use direct oral anticoagulants (DOACs) as the first-line treatment for most people with VTE, including those with active cancer. Another change is the increasing use of outpatient treatment for low-risk PE patients, determined by a validated risk stratification tool.

      Anticoagulant therapy is the cornerstone of VTE management. The guidelines recommend using apixaban or rivaroxaban as the first-line treatment for PE, followed by LMWH, dabigatran, edoxaban, or a vitamin K antagonist (VKA) if necessary. For patients with active cancer, DOACs are now recommended instead of LMWH. The length of anticoagulation depends on whether the VTE was provoked or unprovoked, with treatment typically lasting for at least three months. Patients with unprovoked VTE may continue treatment for up to six months, depending on their risk of recurrence and bleeding.

      In cases of haemodynamic instability, thrombolysis is recommended as the first-line treatment for massive PE with circulatory failure. Other invasive approaches may also be considered where appropriate facilities exist. Patients who have repeat pulmonary embolisms, despite adequate anticoagulation, may be considered for inferior vena cava (IVC) filters. However, the evidence base for IVC filter use is weak, and further studies are needed.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 9 - An elderly man in his late 60s is admitted to the cardiology ward...

    Incorrect

    • An elderly man in his late 60s is admitted to the cardiology ward due to worsening shortness of breath. He has a medical history of hypertension and ischaemic heart disease. During examination, bibasal crackles and pitting oedema to the knees bilaterally are observed. Blood tests are conducted, and the results show a brain natriuretic peptide level of 4990 pg/mL (< 400). What is the most probable physiological change that occurs in response to this finding?

      Your Answer:

      Correct Answer: Decreased afterload

      Explanation:

      BNP has several actions, including vasodilation which can decrease cardiac afterload, diuretic and natriuretic effects, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. In the case of heart failure, BNP is primarily secreted by the ventricular myocardium to compensate for symptoms by promoting diuresis, natriuresis, vasodilation, and suppression of sympathetic tone and renin-angiotensin-aldosterone activity. Vasodilation of the peripheral vascular system leads to a decrease in afterload, reducing the force that the left ventricle has to contract against and lowering the risk of left ventricular failure progression. BNP also suppresses sympathetic tone and the RAAS, which would exacerbate heart failure symptoms, and contributes to natriuresis, aiding diuresis and improving dyspnea.

      B-type natriuretic peptide (BNP) is a hormone that is primarily produced by the left ventricular myocardium in response to strain. Although heart failure is the most common cause of elevated BNP levels, any condition that causes left ventricular dysfunction, such as myocardial ischemia or valvular disease, may also raise levels. In patients with chronic kidney disease, reduced excretion may also lead to elevated BNP levels. Conversely, treatment with ACE inhibitors, angiotensin-2 receptor blockers, and diuretics can lower BNP levels.

      BNP has several effects, including vasodilation, diuresis, natriuresis, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. Clinically, BNP is useful in diagnosing patients with acute dyspnea. A low concentration of BNP (<100 pg/mL) makes a diagnosis of heart failure unlikely, but elevated levels should prompt further investigation to confirm the diagnosis. Currently, NICE recommends BNP as a helpful test to rule out a diagnosis of heart failure. In patients with chronic heart failure, initial evidence suggests that BNP is an extremely useful marker of prognosis and can guide treatment. However, BNP is not currently recommended for population screening for cardiac dysfunction.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 10 - A 32-year-old man is shot in the postero-inferior aspect of his thigh. What...

    Incorrect

    • A 32-year-old man is shot in the postero-inferior aspect of his thigh. What structure is located at the most lateral aspect of the popliteal fossa?

      Your Answer:

      Correct Answer: Common peroneal nerve

      Explanation:

      The structures found in the popliteal fossa, listed from medial to lateral, include the popliteal artery, popliteal vein, tibial nerve, and common peroneal nerve. The sural nerve, which is a branch of the tibial nerve, typically originates at the lower part of the popliteal fossa, but its location may vary.

      Anatomy of the Popliteal Fossa

      The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.

      The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.

      Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (2/3) 67%
Passmed