-
Question 1
Incorrect
-
A 25-year-old woman visits the outpatient department with concerns of eyelid drooping, double vision, shortness of breath, and rapid breathing. These symptoms typically occur in the evening or after physical activity.
What respiratory condition could be causing her symptoms?Your Answer: Obstructive lung disease
Correct Answer: Restrictive lung disease
Explanation:The presence of myasthenia gravis can result in a restrictive pattern of lung disease due to weakened chest wall muscles, leading to incomplete expansion during inhalation.
Occupational lung disease, also known as pneumoconioses, is caused by inhaling specific types of dust particles in the workplace, resulting in a restrictive pattern of lung disease. However, symptoms such as drooping eyelids and double vision are typically not associated with this condition.
Pneumonia is an infection of the lung tissue that typically presents with symptoms such as coughing, chest pain, fever, and difficulty breathing.
Pulmonary embolism is an acute condition that presents with symptoms such as chest pain, shortness of breath, and coughing up blood.
Understanding the Differences between Obstructive and Restrictive Lung Diseases
Obstructive and restrictive lung diseases are two distinct categories of respiratory conditions that affect the lungs in different ways. Obstructive lung diseases are characterized by a reduction in the flow of air through the airways due to narrowing or blockage, while restrictive lung diseases are characterized by a decrease in lung volume or capacity, making it difficult to breathe in enough air.
Spirometry is a common diagnostic tool used to differentiate between obstructive and restrictive lung diseases. In obstructive lung diseases, the ratio of forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) is less than 80%, indicating a reduced ability to exhale air. In contrast, restrictive lung diseases are characterized by an FEV1/FVC ratio greater than 80%, indicating a reduced ability to inhale air.
Examples of obstructive lung diseases include chronic obstructive pulmonary disease (COPD), chronic bronchitis, and emphysema, while asthma and bronchiectasis are also considered obstructive. Restrictive lung diseases include intrapulmonary conditions such as idiopathic pulmonary fibrosis, extrinsic allergic alveolitis, and drug-induced fibrosis, as well as extrapulmonary conditions such as neuromuscular diseases, obesity, and scoliosis.
Understanding the differences between obstructive and restrictive lung diseases is important for accurate diagnosis and appropriate treatment. While both types of conditions can cause difficulty breathing, the underlying causes and treatment approaches can vary significantly.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 2
Correct
-
An 85-year-old woman visits her doctor with a complaint of worsening breathlessness in the past 6 months. She has been smoking 10 cigarettes a day for the last 40 years. The doctor suspects that she may have chronic obstructive pulmonary disease. What is one of the mechanisms by which smoking damages the lungs and leads to emphysema?
Your Answer: Inactivation of alpha-1 antitrypsin
Explanation:The function of alpha-1 antitrypsin is to inhibit elastase. However, smoke has a negative impact on this protein in the lungs, resulting in increased activity of elastases and the breakdown of elastic tissue, which leads to emphysema.
Contrary to popular belief, smoke actually activates polymorphonuclear leucocytes, which contributes to the development of emphysema.
Mucous gland hyperplasia, basal cell metaplasia, and basement membrane thickening are all examples of how smoke affects the lungs to cause chronic bronchitis, not emphysema.
COPD, or chronic obstructive pulmonary disease, can be caused by a variety of factors. The most common cause is smoking, which can lead to inflammation and damage in the lungs over time. Another potential cause is alpha-1 antitrypsin deficiency, a genetic condition that can result in lung damage. Additionally, exposure to certain substances such as cadmium (used in smelting), coal, cotton, cement, and grain can also contribute to the development of COPD. It is important to identify and address these underlying causes in order to effectively manage and treat COPD.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 3
Incorrect
-
A patient in her 50s undergoes spirometry, during which she is instructed to perform a maximum forced exhalation following a maximum inhalation. The volume of exhaled air is measured. What is the term used to describe the difference between this volume and her total lung capacity?
Your Answer: Functional residual capacity
Correct Answer: Residual volume
Explanation:The total lung capacity can be calculated by adding the vital capacity and residual volume. The expiratory reserve volume refers to the amount of air that can be exhaled after a normal breath compared to a maximal exhalation. The functional residual capacity is the amount of air remaining in the lungs after a normal exhalation. The inspiratory reserve volume is the difference between the amount of air in the lungs after a normal breath and a maximal inhalation. The residual volume is the amount of air left in the lungs after a maximal exhalation, which is the difference between the total lung capacity and vital capacity. The vital capacity is the maximum amount of air that can be inhaled and exhaled, measured by the volume of air exhaled after a maximal inhalation.
Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 4
Incorrect
-
A 42-year-old male patient comes to the clinic complaining of shoulder weakness. During the examination, it is observed that he cannot initiate shoulder abduction. Which of the following nerves is most likely to be dysfunctional?
Your Answer: Axillary nerve
Correct Answer: Suprascapular nerve
Explanation:The Suprascapular Nerve and its Function
The suprascapular nerve is a nerve that originates from the upper trunk of the brachial plexus. It is located superior to the trunks of the brachial plexus and runs parallel to them. The nerve passes through the scapular notch, which is located deep to the trapezius muscle. Its main function is to innervate both the supraspinatus and infraspinatus muscles, which are responsible for initiating abduction of the shoulder.
If the suprascapular nerve is damaged, patients may experience difficulty in initiating abduction of the shoulder. However, they may still be able to abduct the shoulder by leaning over the affected side, as the deltoid muscle can then continue to abduct the shoulder. Overall, the suprascapular nerve plays an important role in the movement and function of the shoulder joint.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 5
Correct
-
An 80-year-old man visits the GP clinic for a routine hearing examination. He reports a decline in hearing ability in his left ear for the past few months. After conducting Rinne and Weber tests, you determine that he has conductive hearing loss in the left ear. Upon otoscopy, you observe cerumen impaction.
What are the test findings for this patient?Your Answer: Rinne: bone conduction > air conduction in right ear; Weber: lateralising to right ear
Explanation:Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness
Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.
Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.
The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.
Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 6
Incorrect
-
Which one of the following nerves conveys sensory information from the nasal mucosa?
Your Answer: None of the above
Correct Answer: Laryngeal branches of the vagus
Explanation:The larynx receives sensory information from the laryngeal branches of the vagus.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 7
Incorrect
-
Which one of the following is not found in the anterior mediastinum?
Your Answer: Aortic root
Correct Answer: Thoracic duct
Explanation:The posterior and superior mediastinum contain the thoracic duct.
The mediastinum is the area located between the two pulmonary cavities and is covered by the mediastinal pleura. It extends from the thoracic inlet at the top to the diaphragm at the bottom. The mediastinum is divided into four regions: the superior mediastinum, middle mediastinum, posterior mediastinum, and anterior mediastinum.
The superior mediastinum is the area between the manubriosternal angle and T4/5. It contains important structures such as the superior vena cava, brachiocephalic veins, arch of aorta, thoracic duct, trachea, oesophagus, thymus, vagus nerve, left recurrent laryngeal nerve, and phrenic nerve. The anterior mediastinum contains thymic remnants, lymph nodes, and fat. The middle mediastinum contains the pericardium, heart, aortic root, arch of azygos vein, and main bronchi. The posterior mediastinum contains the oesophagus, thoracic aorta, azygos vein, thoracic duct, vagus nerve, sympathetic nerve trunks, and splanchnic nerves.
In summary, the mediastinum is a crucial area in the thorax that contains many important structures and is divided into four regions. Each region contains different structures that are essential for the proper functioning of the body.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 8
Incorrect
-
A 48-year-old male presents for a preoperative evaluation for an inguinal hernia repair. During the assessment, you observe a loculated left pleural effusion on his chest x-ray. Upon further inquiry, the patient discloses that he worked as a builder three decades ago. What is the probable reason for the effusion?
Your Answer: Asbestosis
Correct Answer: Mesothelioma
Explanation:Due to his profession as a builder, this individual is at risk of being exposed to asbestos. Given the 30-year latent period and the presence of a complex effusion, it is highly probable that the underlying cause is mesothelioma.
Understanding Mesothelioma
Mesothelioma is a type of cancer that affects the mesothelial layer of the pleural cavity, which is commonly linked to asbestos exposure. Although it is rare, other mesothelial layers in the abdomen may also be affected. Symptoms of mesothelioma include dyspnoea, weight loss, chest wall pain, and clubbing. In some cases, patients may present with painless pleural effusion. It is important to note that only 20% of patients have pre-existing asbestosis, but 85-90% have a history of asbestos exposure, with a latent period of 30-40 years.
Diagnosis of mesothelioma is typically made through a chest x-ray, which may show pleural effusion or pleural thickening. A pleural CT is then performed to confirm the diagnosis. If a pleural effusion is present, fluid is sent for MC&S, biochemistry, and cytology. However, cytology is only helpful in 20-30% of cases. Local anaesthetic thoracoscopy is increasingly used to investigate cytology negative exudative effusions as it has a high diagnostic yield of around 95%. If an area of pleural nodularity is seen on CT, an image-guided pleural biopsy may be used.
Management of mesothelioma is mainly symptomatic, with industrial compensation available for those who have been exposed to asbestos. Chemotherapy and surgery may be options for those who are operable. Unfortunately, the prognosis for mesothelioma is poor, with a median survival of only 12 months.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 9
Incorrect
-
A patient with a body mass index (BMI) of 40kg/m² presents to the GP describing apnoeic episodes during sleep. He is referred to the hospital's respiratory team where he receives an initial spirometry test which is shown below.
Forced expiratory volume in 1 sec (FEV1) 2.00 48% of predicted
Vital capacity (VC) 2.35 43% of predicted
Total lung capacity (TLC) 4.09 51% of predicted
Residual volume (RV) 1.74 75% of predicted
Total lung coefficient (TLCO) 5.37 47% of predicted
Transfer coefficient (KCO) 1.83 120% of predicted
What type of lung disease pattern is shown in a patient with a body mass index (BMI) of 30kg/m² who presents to the GP with similar symptoms?Your Answer:
Correct Answer: Extrapulmonary
Explanation:Understanding Pulmonary Function Tests
Pulmonary function tests are a useful tool in determining whether a respiratory disease is obstructive or restrictive. These tests measure various aspects of lung function, such as forced expiratory volume in one second (FEV1) and forced vital capacity (FVC). By analyzing the results of these tests, doctors can diagnose and monitor conditions such as asthma, COPD, pulmonary fibrosis, and neuromuscular disorders.
In obstructive lung diseases, such as asthma and COPD, the FEV1 is significantly reduced, while the FVC may be reduced or normal. The FEV1% (FEV1/FVC) is also reduced. On the other hand, in restrictive lung diseases, such as pulmonary fibrosis and asbestosis, the FEV1 is reduced, but the FVC is significantly reduced. The FEV1% (FEV1/FVC) may be normal or increased.
It is important to note that there are many conditions that can affect lung function, and pulmonary function tests are just one tool in diagnosing and managing respiratory diseases. However, understanding the results of these tests can provide valuable information for both patients and healthcare providers.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 10
Incorrect
-
A 49-year-old man comes to the clinic with recent onset of asthma and frequent nosebleeds. Laboratory results reveal elevated eosinophil counts and a positive pANCA test.
What is the probable diagnosis?Your Answer:
Correct Answer: Eosinophilic granulomatosis with polyangiitis (EGPA)
Explanation:The presence of adult-onset asthma, eosinophilia, and a positive pANCA test strongly suggests a diagnosis of eosinophilic granulomatosis with polyangiitis (EGPA) in this patient.
Although GPA can cause epistaxis, the absence of other characteristic symptoms such as saddle-shaped nose deformity, haemoptysis, renal failure, and positive cANCA make EGPA a more likely diagnosis.
Polyarteritis Nodosa, Temporal Arteritis, and Toxic Epidermal Necrolysis have distinct clinical presentations that do not match the symptoms exhibited by this patient.
Eosinophilic Granulomatosis with Polyangiitis (Churg-Strauss Syndrome)
Eosinophilic granulomatosis with polyangiitis (EGPA), previously known as Churg-Strauss syndrome, is a type of small-medium vessel vasculitis that is associated with ANCA. It is characterized by asthma, blood eosinophilia (more than 10%), paranasal sinusitis, mononeuritis multiplex, and pANCA positivity in 60% of cases.
Compared to granulomatosis with polyangiitis, EGPA is more likely to have blood eosinophilia and asthma as prominent features. Additionally, leukotriene receptor antagonists may trigger the onset of the disease.
Overall, EGPA is a rare but serious condition that requires prompt diagnosis and treatment to prevent complications.
-
This question is part of the following fields:
- Respiratory System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)