00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 38-year-old woman presents to the Emergency Department with a 2-day history of...

    Incorrect

    • A 38-year-old woman presents to the Emergency Department with a 2-day history of left flank pain. She has been recently diagnosed with osteoporosis after a low-energy, femoral neck fracture.

      Her blood results show the following:

      Na+ 140 mmol/L (135 - 145)
      K+ 3.6 mmol/L (3.5 - 5.0)
      Calcium 2.9 mmol/L (2.1-2.6)
      Phosphate 0.6 mmol/L (0.8-1.4)

      Her urine dip is positive for erythrocytes making a diagnosis of renal calculi likely.

      What is the pathophysiological reason for the low serum phosphate level, given the likely underlying pathology?

      Your Answer: Decreased absorption of phosphate in the gastrointestinal tract

      Correct Answer: Decreased renal phosphate reabsorption

      Explanation:

      The decrease in renal phosphate reabsorption is caused by PTH.

      The symptoms presented are indicative of a kidney stone, which can be a sign of hyperparathyroidism. Primary hyperparathyroidism, caused by a functioning parathyroid adenoma, can result in low phosphate and high calcium levels. PTH reduces renal phosphate reabsorption, leading to increased phosphate loss in urine. Pituitary adenomas are associated with osteoporosis due to excessive PTH causing bone resorption.

      PTH activates vitamin D, which increases phosphate absorption in the gastrointestinal tract. However, the renal loss of phosphate is greater than the increase in absorption, resulting in a net loss of phosphate when PTH levels are high.

      PTH also increases renal vitamin D activation, leading to increased intestinal absorption of calcium and phosphate, as well as increased osteoclast activity. This results in elevated levels of serum calcium and phosphate.

      Hypothyroidism does not significantly affect phosphate regulation, so it would not cause low serum phosphate levels.

      Increased osteoclast activity caused by PTH leads to bone resorption and the release of calcium and phosphate into the blood. However, the renal loss of phosphate is greater than the increase in serum phosphate due to osteoclast activity, resulting in an overall decrease in serum phosphate levels.

      Understanding Parathyroid Hormone and Its Effects

      Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.

      The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.

      Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.

    • This question is part of the following fields:

      • Endocrine System
      56.9
      Seconds
  • Question 2 - A 30-year-old female patient complains of anxiety and weight loss. During the examination,...

    Correct

    • A 30-year-old female patient complains of anxiety and weight loss. During the examination, a fine tremor of the outstretched hands, lid lag, and a moderate goitre with a bruit are observed. What is the probable diagnosis?

      Your Answer: Graves' disease

      Explanation:

      Thyroid Disorders and their Differentiation

      Thyroid disorders are a common occurrence, and their diagnosis is crucial for effective treatment. One such disorder is Graves’ disease, which is characterized by a goitre with a bruit. Unlike MNG, Graves’ disease is associated with angiogenesis and thyroid follicular hypertrophy. Other signs of Graves’ disease include eye signs such as conjunctival oedema, exophthalmos, and proptosis. Additionally, pretibial myxoedema is a dermatological manifestation of this disease.

      DeQuervain’s thyroiditis is another thyroid disorder that follows a viral infection and is characterized by painful thyroiditis. Hashimoto’s thyroiditis, on the other hand, is a chronic autoimmune degradation of the thyroid. Multinodular goitre (MNG) is the most common form of thyroid disorder, leading to the formation of multiple nodules over the gland. Lastly, a toxic thyroid nodule is a solitary lesion on the thyroid that produces excess thyroxine.

      In conclusion, the different types of thyroid disorders and their symptoms is crucial for accurate diagnosis and effective treatment.

    • This question is part of the following fields:

      • Endocrine System
      21.4
      Seconds
  • Question 3 - A 35-year-old woman is referred to the endocrine clinic due to missed periods...

    Correct

    • A 35-year-old woman is referred to the endocrine clinic due to missed periods and lactation. She has also gained weight and experiences vaginal dryness. The endocrinologist decides to measure her prolactin levels. What hormone is responsible for suppressing the release of prolactin from the pituitary gland?

      Your Answer: Dopamine

      Explanation:

      Dopamine consistently prevents the release of prolactin.

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      11.7
      Seconds
  • Question 4 - A 36-year-old woman visits her GP complaining of frequent urination. She has been...

    Incorrect

    • A 36-year-old woman visits her GP complaining of frequent urination. She has been waking up several times at night to urinate for the past two weeks and has been feeling more thirsty than usual. Her temperature is 37.3ºC. She has a history of bipolar disorder and is currently on lithium medication.

      What could be the possible cause of her polyuria?

      Your Answer: Lithium causing insulin resistance and hyperglycaemia

      Correct Answer: Lithium reducing ADH-dependent water reabsorption in the collecting duct

      Explanation:

      The site of action for antidiuretic hormone (ADH) is the collecting ducts. Lithium treatment for bipolar disorder can lead to diabetes insipidus, which is characterized by increased thirst (polydipsia) and increased urination (polyuria). Lithium use can cause nephrogenic diabetes insipidus, where the kidneys are unable to respond adequately to ADH. Normally, ADH induces the expression of aquaporin 2 channels in the collecting duct, which stimulates water reabsorption.

      Central diabetes insipidus occurs when there is damage to the posterior pituitary gland, resulting in insufficient production and release of ADH. However, lithium use causes nephrogenic diabetes insipidus instead of central diabetes insipidus.

      Although insulin resistance and hyperglycemia can also cause polyuria and polydipsia, as seen in diabetic ketoacidosis, the use of lithium suggests that the patient’s symptoms are due to diabetes insipidus rather than diabetes mellitus.

      Lithium inhibits the expression of aquaporin channels in the renal collecting duct, rather than the distal convoluted tubule, which causes diabetes insipidus.

      While a urinary tract infection can also present with polyuria and nocturia, the presence of lithium in the patient’s drug history and the fact that the patient also has polydipsia suggest nephrogenic diabetes insipidus. Diabetes insipidus causes increased thirst due to the excessive volume of urine produced, leading to water loss from the body. In addition, a urinary tract infection would likely cause dysuria (burning or stinging when passing urine) and lower abdominal pain.

      Understanding Antidiuretic Hormone (ADH)

      Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.

      ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.

      Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.

      Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.

    • This question is part of the following fields:

      • Endocrine System
      285.1
      Seconds
  • Question 5 - A 45-year-old patient comes in with symptoms of weight loss, nausea, vomiting, abdominal...

    Correct

    • A 45-year-old patient comes in with symptoms of weight loss, nausea, vomiting, abdominal pain, and hyperpigmentation of the skin. The doctor orders a urea & electrolyte test and a short Synacthen test which comes back abnormal and diagnoses the patient with Addison's disease.

      What electrolyte abnormality is most likely to be observed in this patient?

      Your Answer: Hyperkalaemia & hyponatraemia

      Explanation:

      In Addison’s disease, there is a deficiency in the production of both aldosterone and cortisol.

      Aldosterone plays a crucial role in the reabsorption of sodium and the excretion of potassium.

      Therefore, the absence of aldosterone leads to an imbalance in the levels of sodium and potassium in the body, resulting in hyperkalemia (high potassium levels) and hyponatremia (low sodium levels).

      Addison’s disease is the most common cause of primary hypoadrenalism in the UK, with autoimmune destruction of the adrenal glands being the main culprit, accounting for 80% of cases. This results in reduced production of cortisol and aldosterone. Symptoms of Addison’s disease include lethargy, weakness, anorexia, nausea and vomiting, weight loss, and salt-craving. Hyperpigmentation, especially in palmar creases, vitiligo, loss of pubic hair in women, hypotension, hypoglycemia, and hyponatremia and hyperkalemia may also be observed. In severe cases, a crisis may occur, leading to collapse, shock, and pyrexia.

      Other primary causes of hypoadrenalism include tuberculosis, metastases (such as bronchial carcinoma), meningococcal septicaemia (Waterhouse-Friderichsen syndrome), HIV, and antiphospholipid syndrome. Secondary causes include pituitary disorders, such as tumours, irradiation, and infiltration. Exogenous glucocorticoid therapy can also lead to hypoadrenalism.

      It is important to note that primary Addison’s disease is associated with hyperpigmentation, while secondary adrenal insufficiency is not.

    • This question is part of the following fields:

      • Endocrine System
      30.2
      Seconds
  • Question 6 - A 14-year-old boy is brought to the clinic by his mother due to...

    Correct

    • A 14-year-old boy is brought to the clinic by his mother due to concerns about his height compared to other boys his age. The boy also shares that he often receives comments about his appearance, with some likening him to a toy doll. What can be inferred about the pattern of hormone release that he may be lacking?

      Your Answer: It is released in a pulsatile manner

      Explanation:

      The doll-like appearance of the boy in his presentation suggests that he may be suffering from growth hormone deficiency, which can cause short stature, forehead prominence, and maxillary hypoplasia. The hypothalamus controls the release of growth hormone through the pulsatile release of growth hormone releasing hormone. Therefore, measuring GHRH levels is not a useful method for investigating growth hormone deficiency.

      Understanding Growth Hormone and Its Functions

      Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.

      GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.

      In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.

    • This question is part of the following fields:

      • Endocrine System
      40.7
      Seconds
  • Question 7 - A 27-year-old mother is concerned about her infant's skin tone. The baby was...

    Incorrect

    • A 27-year-old mother is concerned about her infant's skin tone. The baby was delivered naturally 18 days ago and is now showing signs of jaundice. Despite having normal vital signs, what could be the possible reason for the baby's prolonged jaundice?

      Your Answer: Haemolytic disease of the newborn

      Correct Answer: Congenital hypothyroidism

      Explanation:

      The age of the baby is an important factor in determining the possible causes of neonatal jaundice. Congenital hypothyroidism may be responsible for prolonged jaundice in newborns. The following is a summary of the potential causes of jaundice based on the age at which it appears:

      Jaundice within 24 hours of birth may be caused by haemolytic disease of the newborn, infections, or G6PD deficiency.

      Jaundice appearing between 24-72 hours may be due to physiological factors, sepsis, or polycythaemia.

      Jaundice appearing after 72 hours may be caused by extrahepatic biliary atresia, sepsis, or other factors.

      Understanding Congenital Hypothyroidism

      Congenital hypothyroidism is a condition that affects approximately 1 in 4000 newborns. If left undiagnosed and untreated within the first four weeks of life, it can lead to irreversible cognitive impairment. Some of the common features of this condition include prolonged neonatal jaundice, delayed mental and physical milestones, short stature, a puffy face, macroglossia, and hypotonia.

      To ensure early detection and treatment, children are screened for congenital hypothyroidism at 5-7 days of age using the heel prick test. This test involves taking a small sample of blood from the baby’s heel and analyzing it for thyroid hormone levels. If the results indicate low levels of thyroid hormone, the baby will be referred for further testing and treatment.

      It is important for parents and healthcare providers to be aware of the signs and symptoms of congenital hypothyroidism and to ensure that newborns receive timely screening and treatment to prevent long-term complications. With early detection and appropriate management, children with congenital hypothyroidism can lead healthy and fulfilling lives.

    • This question is part of the following fields:

      • Endocrine System
      28.1
      Seconds
  • Question 8 - A 39-year-old, with an elevated BMI and confirmed type II diabetes is attending...

    Incorrect

    • A 39-year-old, with an elevated BMI and confirmed type II diabetes is attending a clinic for a check-up on his glucose control.

      Despite being on treatment for a few months, his latest Hb1Ac and home blood glucose readings are still high. The healthcare provider decides to start the patient on gliclazide. The patient is informed that this medication may cause hypoglycaemia as a side effect by increasing insulin production and release.

      Which pancreatic cell membrane channels does gliclazide bind to?

      Your Answer: Tyrosine kinase

      Correct Answer: ATP-dependent potassium

      Explanation:

      Gliclazide is a medication used to treat diabetes by increasing insulin release from pancreatic beta cells. It works by binding to ATP-dependent potassium channels on these cells, causing depolarization and an increase in intracellular calcium. This leads to the secretion of insulin.

      Dipeptidyl peptidase-4 (DDP) inhibitors are another type of medication used to manage diabetes. They work by increasing levels of incretin hormones such as GLP-1 and GIP, which stimulate insulin secretion and decrease blood glucose levels.

      Chloride channels are not affected by sulfonylureas, and they play a role in regulating fluid transport in various organs.

      Insulin binds to tyrosine kinase receptors on the cell membrane, which triggers a signal transduction pathway that activates enzymes and transcription factors within the cell. Sulfonylureas do not affect these receptors.

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      30.9
      Seconds
  • Question 9 - Cortisol is mainly synthesized by which of the following? ...

    Correct

    • Cortisol is mainly synthesized by which of the following?

      Your Answer: Zona fasciculata of the adrenal

      Explanation:

      The adrenal gland’s zona fasciculata produces cortisol, with a relative glucocorticoid activity of 1. Prednisolone has a relative glucocorticoid activity of 4, while dexamethasone has a relative glucocorticoid activity of 25.

      Cortisol: Functions and Regulation

      Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.

      The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.

      Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.

    • This question is part of the following fields:

      • Endocrine System
      9
      Seconds
  • Question 10 - A 29-year-old male attends a pre-operative assessment clinic for thyroidectomy due to failed...

    Correct

    • A 29-year-old male attends a pre-operative assessment clinic for thyroidectomy due to failed treatment with carbimazole and radio-iodine for Grave's disease. What is the potential complication that he is at a high risk of developing during this procedure?

      Your Answer: Recurrent laryngeal nerve palsy

      Explanation:

      The risk of complications during thyroidectomy is relatively low, but there are still potential risks to be aware of. One of the most common complications is damage to the recurrent laryngeal nerve, which can result in vocal cord paralysis and hoarseness. However, the vagal nerve and phrenic nerve are rarely damaged during the procedure as they are not in close proximity to the operating site. Trauma to the esophagus is also uncommon. If the parathyroid glands are inadvertently removed during the procedure, it can result in hypoparathyroidism rather than hyperparathyroidism.

      Thyroid disorders are commonly encountered in clinical practice, with hypothyroidism and thyrotoxicosis being the most prevalent. Women are ten times more likely to develop these conditions than men. The thyroid gland is a bi-lobed structure located in the anterior neck and is part of a hypothalamus-pituitary-end organ system that regulates the production of thyroxine and triiodothyronine hormones. These hormones help regulate energy sources, protein synthesis, and the body’s sensitivity to other hormones. Hypothyroidism can be primary or secondary, while thyrotoxicosis is mostly primary. Autoimmunity is the leading cause of thyroid problems in the developed world.

      Thyroid disorders can present in various ways, with symptoms often being the opposite depending on whether the thyroid gland is under or overactive. For example, hypothyroidism may result in weight gain, while thyrotoxicosis leads to weight loss. Thyroid function tests are the primary investigation for diagnosing thyroid disorders. These tests primarily look at serum TSH and T4 levels, with T3 being measured in specific cases. TSH levels are more sensitive than T4 levels for monitoring patients with existing thyroid problems.

      Treatment for thyroid disorders depends on the cause. Patients with hypothyroidism are given levothyroxine to replace the underlying deficiency. Patients with thyrotoxicosis may be treated with propranolol to control symptoms such as tremors, carbimazole to reduce thyroid hormone production, or radioiodine treatment.

    • This question is part of the following fields:

      • Endocrine System
      20.4
      Seconds
  • Question 11 - A 9-year-old girl is being treated by a paediatrician for bedwetting at night....

    Incorrect

    • A 9-year-old girl is being treated by a paediatrician for bedwetting at night. Non-invasive methods have not yielded any results and her family is interested in trying medication. The paediatrician has approved a trial of desmopressin.

      What is the site of action of this drug?

      Your Answer: The distal tubule of the kidney

      Correct Answer: The collecting ducts of the kidney

      Explanation:

      Desmopressin is a synthetic version of antidiuretic hormone (ADH) that acts on the collecting ducts in the kidneys. ADH is released by the posterior pituitary gland in response to increased blood osmolality. By increasing the reabsorption of solute-free water in the collecting ducts, ADH reduces blood osmolality and produces small volumes of concentrated urine. This mechanism is effective in reducing the volume of urine produced overnight in cases of nocturnal enuresis (bed-wetting). The distal tubule, glomerulus, and proximal tubule are not sites of ADH action. Although the posterior pituitary gland produces ADH, it exerts its effects on the kidneys.

      Understanding Antidiuretic Hormone (ADH)

      Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.

      ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.

      Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.

      Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.

    • This question is part of the following fields:

      • Endocrine System
      18.8
      Seconds
  • Question 12 - A 42-year-old man with schizophrenia undergoes his yearly physical examination. He is currently...

    Correct

    • A 42-year-old man with schizophrenia undergoes his yearly physical examination. He is currently taking risperidone as part of his medication regimen.

      What is the most common issue that can be linked to the use of risperidone in this patient?

      Your Answer: Galactorrhoea

      Explanation:

      Risperidone, an atypical antipsychotic, has the potential to increase prolactin levels. This is because it inhibits dopamine, which reduces dopamine-mediated inhibition of prolactin. Although elevated prolactin may not cause any symptoms, it can have adverse effects if persistently elevated. One of the major roles of prolactin is to stimulate milk production in the mammary glands. Therefore, any cause of raised prolactin can result in milk production, which is known as galactorrhoea. This can occur in both males and females due to raised prolactin levels. Galactorrhoea is the most likely side effect caused by risperidone.

      Raised prolactin levels can also lead to reduced libido and infertility in both sexes. However, it is unlikely to result in increased libido. Prolactin can interfere with other hormones, such as oestrogen and progesterone, which can cause irregular periods, but it does not specifically cause painful periods. Elevated levels of prolactin would not result in seizures. Risperidone is more likely to be associated with weight gain rather than weight loss, as it acts on the histamine receptor.

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      13.7
      Seconds
  • Question 13 - A 32-year-old woman comes to the clinic complaining of fatigue and weight loss...

    Incorrect

    • A 32-year-old woman comes to the clinic complaining of fatigue and weight loss that has been going on for 6 weeks. She reports feeling dizzy when she stands up and has noticed a tan all over her body, despite it being early spring in the UK.

      Upon conducting a blood test, it is found that she has hyponatraemia and hyperkalaemia, with normal full blood count results. A lying-standing blood pressure reading shows a postural drop of 36 mmHg.

      What is the most likely cause of this woman's presentation in the UK, given her symptoms and test results?

      Your Answer: Pituitary tumour

      Correct Answer: Autoimmune adrenal insufficiency

      Explanation:

      The most likely cause of this patient’s symptoms is autoimmune adrenalitis, which is responsible for the majority of cases of hypoadrenalism. In this condition, auto-antibodies attack the adrenal gland, leading to a decrease or complete loss of cortisol and aldosterone production. This results in low blood pressure, electrolyte imbalances, and a significant drop in blood pressure upon standing. The body compensates for the low cortisol levels by producing more adrenocorticotropic hormone (ACTH), which can cause the skin to take on a bronze hue.

      While iodine deficiency is a common cause of hypothyroidism worldwide, it is not consistent with this patient’s presentation. A mutation in the HFE gene can lead to haemochromatosis, which can cause reduced libido and skin darkening, but it does not match the electrolyte abnormalities described. Pituitary tumors and tuberculosis can also cause hypoadrenalism, but they are less common in the UK compared to autoimmune causes.

      Addison’s disease is the most common cause of primary hypoadrenalism in the UK, with autoimmune destruction of the adrenal glands being the main culprit, accounting for 80% of cases. This results in reduced production of cortisol and aldosterone. Symptoms of Addison’s disease include lethargy, weakness, anorexia, nausea and vomiting, weight loss, and salt-craving. Hyperpigmentation, especially in palmar creases, vitiligo, loss of pubic hair in women, hypotension, hypoglycemia, and hyponatremia and hyperkalemia may also be observed. In severe cases, a crisis may occur, leading to collapse, shock, and pyrexia.

      Other primary causes of hypoadrenalism include tuberculosis, metastases (such as bronchial carcinoma), meningococcal septicaemia (Waterhouse-Friderichsen syndrome), HIV, and antiphospholipid syndrome. Secondary causes include pituitary disorders, such as tumours, irradiation, and infiltration. Exogenous glucocorticoid therapy can also lead to hypoadrenalism.

      It is important to note that primary Addison’s disease is associated with hyperpigmentation, while secondary adrenal insufficiency is not.

    • This question is part of the following fields:

      • Endocrine System
      429
      Seconds
  • Question 14 - A 67-year-old male is undergoing evaluation for Cushing's syndrome. During the assessment, his...

    Correct

    • A 67-year-old male is undergoing evaluation for Cushing's syndrome. During the assessment, his primary care physician requests a serum cortisol test. In its unbound form, cortisol is responsible for the manifestations of Cushing's syndrome. What is the primary substance that binds to cortisol in the bloodstream, rendering it inactive?

      Your Answer: Cortisol binding globulin

      Explanation:

      Cortisol: Functions and Regulation

      Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.

      The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.

      Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.

    • This question is part of the following fields:

      • Endocrine System
      36
      Seconds
  • Question 15 - You are in charge of the care of a 23-year-old man who has...

    Incorrect

    • You are in charge of the care of a 23-year-old man who has come for a military medical evaluation. Based on his symptoms, you suspect that he has type 1 diabetes and has been secretly administering insulin. What clinical methods can you use to evaluate his endogenous insulin production?

      Your Answer: HbA1C

      Correct Answer: C-peptide

      Explanation:

      C-peptide is a reliable indicator of insulin production as it is secreted in proportion to insulin. It is often used clinically to measure endogenous insulin production.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      11.9
      Seconds
  • Question 16 - The following results were obtained on a 57-year-old male who complains of fatigue:
    Free...

    Incorrect

    • The following results were obtained on a 57-year-old male who complains of fatigue:
      Free T4 9.8 pmol/L (9.0-25.0)
      TSH 50.02 mU/L (0.27-4.20)
      What physical signs would you anticipate during the examination?

      Your Answer: Lid lag

      Correct Answer: Slow relaxation of tendon jerks

      Explanation:

      Symptoms and Signs of Hypothyroidism

      Hypothyroidism is a condition that is characterized by an underactive thyroid gland, which leads to a decrease in the production of thyroid hormones. This condition is associated with several symptoms and signs, including a relative bradycardia, slow relaxation of tendon jerks, pale complexion, thinning of the hair, and weight gain. In severe cases of hypothyroidism, hypothermia may also be present.

      A relative bradycardia refers to a slower than normal heart rate, which is a common symptom of hypothyroidism. Additionally, slow relaxation of tendon jerks is another sign of this condition. This refers to a delay in the relaxation of muscles after a reflex is elicited. Other physical signs of hypothyroidism include a pale complexion and thinning of the hair, which can be attributed to a decrease in metabolic activity.

      Weight gain is also a common symptom of hypothyroidism, as the decrease in thyroid hormone production can lead to a slower metabolism and decreased energy expenditure. In severe cases of hypothyroidism, hypothermia may also be present, which refers to a body temperature that is lower than normal.

      It is important to note that while a thyroid bruit is typical of Graves’ thyrotoxicosis, it is not a common sign of hypothyroidism. Overall, the symptoms and signs of hypothyroidism can vary in severity and may require medical intervention to manage.

    • This question is part of the following fields:

      • Endocrine System
      26
      Seconds
  • Question 17 - A 20-year-old man was admitted to hospital with a 5 day history of...

    Correct

    • A 20-year-old man was admitted to hospital with a 5 day history of vomiting, fever and chills. He developed a purpuric rash on his lower limbs and abdomen. During examination, the patient was found to have a pulse rate of 100 beats per minute and a systolic blood pressure of 70mmHg. A spinal tap was performed for CSF microscopy and a CT scan revealed adrenal haemorrhage. Based on the CT scan, the doctor suspected Waterhouse-Friderichsen syndrome. What is the most common bacterial cause of this syndrome?

      Your Answer: Neisseria meningitidis

      Explanation:

      The most frequent cause of Waterhouse-Friderichsen syndrome is Neisseria meningitidis. This syndrome is characterized by adrenal gland failure caused by bleeding into the adrenal gland. Although any organism that can induce disseminated intravascular coagulation can lead to adrenal haemorrhage, neisseria meningitidis is the most common cause and therefore the answer.

      Understanding Waterhouse-Friderichsen Syndrome

      Waterhouse-Friderichsen syndrome is a condition that occurs when the adrenal glands fail due to a previous adrenal haemorrhage caused by a severe bacterial infection. The most common cause of this condition is Neisseria meningitidis, but it can also be caused by other bacteria such as Haemophilus influenzae, Pseudomonas aeruginosa, Escherichia coli, and Streptococcus pneumoniae.

      The symptoms of Waterhouse-Friderichsen syndrome are similar to those of hypoadrenalism, including lethargy, weakness, anorexia, nausea and vomiting, and weight loss. Other symptoms may include hyperpigmentation, especially in the palmar creases, vitiligo, and loss of pubic hair in women. In severe cases, a crisis may occur, which can lead to collapse, shock, and pyrexia.

    • This question is part of the following fields:

      • Endocrine System
      28.2
      Seconds
  • Question 18 - A 65-year-old man with type 2 diabetes mellitus has been taking metformin 1g...

    Incorrect

    • A 65-year-old man with type 2 diabetes mellitus has been taking metformin 1g twice daily for the past 6 months. Despite this, his HbA1c has remained above target at 64 mmol/mol (8.0%).

      He has a history of left ventricular failure following a myocardial infarction 2 years ago. He has been trying to lose weight since but still has a body mass index of 33 kg/m². He is also prone to recurrent urinary tract infections.

      You intend to intensify treatment by adding a second medication.

      What is the mechanism of action of the most appropriate anti-diabetic drug for him?

      Your Answer: Binding to KATP channels on pancreatic beta cells to stimulate insulin release

      Correct Answer: Inhibition of dipeptidyl peptidase-4 (DPP-4) to increase incretin levels

      Explanation:

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      20.2
      Seconds
  • Question 19 - A 23-year-old male patient visits his GP complaining of breast tissue enlargement that...

    Incorrect

    • A 23-year-old male patient visits his GP complaining of breast tissue enlargement that has been progressively worsening for the past 3 months. He also reports the presence of a new lump on his left testicle. Upon thorough examination and taking a detailed medical history, the GP suspects that the patient may be suffering from testicular cancer.

      What is the probable diagnosis?

      Your Answer: Sertoli cell tumour

      Correct Answer: HCG secreting seminoma

      Explanation:

      Gynaecomastia can be caused by testicular conditions such as seminoma that secrete hCG.

      Understanding Gynaecomastia: Causes and Drug Triggers

      Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.

      Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.

      Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.

      In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.

    • This question is part of the following fields:

      • Endocrine System
      12.1
      Seconds
  • Question 20 - A 55-year-old male visits his doctor complaining of a milky discharge from his...

    Incorrect

    • A 55-year-old male visits his doctor complaining of a milky discharge from his nipples. He has a history of schizophrenia and has been taking olanzapine for a while now. No recent changes have been made to his medication.

      Which compound with elevated levels is most likely causing this symptom?

      Your Answer: Prolactin, released from the posterior pituitary

      Correct Answer: Prolactin, released from the anterior pituitary

      Explanation:

      The patient is experiencing galactorrhea, which is commonly associated with hyperprolactinemia. Prolactin stimulates milk production in the mammary glands, and the patient’s hyperprolactinemia is likely due to his use of olanzapine, which acts as a dopamine antagonist. Dopamine normally inhibits prolactin secretion. The other answer choices are incorrect as they do not accurately explain the mechanism behind the patient’s presentation.

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      14.9
      Seconds
  • Question 21 - A 25-year-old woman visits the endocrinology department for weight management issues. She has...

    Incorrect

    • A 25-year-old woman visits the endocrinology department for weight management issues. She has been struggling with her weight since she was a child and currently has a BMI of 46 kg/m². Despite eating large portions at meals, she never feels full and snacks between meals. Her parents and two older siblings are all at a healthy weight. Genetic testing reveals a de novo mutation in the satiety signalling pathway. Which hormone's decreased synthesis may be responsible for her condition?

      Your Answer: Ghrelin

      Correct Answer: Leptin

      Explanation:

      Leptin is the hormone that lowers appetite, while ghrelin is the hormone that increases appetite. Leptin is produced by adipose tissue and plays a crucial role in regulating feelings of fullness and satiety. Mutations that affect leptin signaling can lead to severe childhood-onset obesity. On the other hand, ghrelin is known as the hunger hormone and stimulates appetite. However, decreased ghrelin synthesis does not cause obesity. Insulin is an anabolic hormone that promotes glucose uptake and lipogenesis, while obestatin’s role in satiety is still controversial.

      The Physiology of Obesity: Leptin and Ghrelin

      Leptin is a hormone produced by adipose tissue that plays a crucial role in regulating body weight. It acts on the hypothalamus, specifically on the satiety centers, to decrease appetite and induce feelings of fullness. In cases of obesity, where there is an excess of adipose tissue, leptin levels are high. Leptin also stimulates the release of melanocyte-stimulating hormone (MSH) and corticotrophin-releasing hormone (CRH), which further contribute to the regulation of appetite. On the other hand, low levels of leptin stimulate the release of neuropeptide Y (NPY), which increases appetite.

      Ghrelin, on the other hand, is a hormone that stimulates hunger. It is mainly produced by the P/D1 cells lining the fundus of the stomach and epsilon cells of the pancreas. Ghrelin levels increase before meals, signaling the body to prepare for food intake, and decrease after meals, indicating that the body has received enough nutrients.

      In summary, the balance between leptin and ghrelin plays a crucial role in regulating appetite and body weight. In cases of obesity, there is an imbalance in this system, with high levels of leptin and potentially disrupted ghrelin signaling, leading to increased appetite and weight gain.

    • This question is part of the following fields:

      • Endocrine System
      30.8
      Seconds
  • Question 22 - As a third year medical student working in a GP surgery, you come...

    Incorrect

    • As a third year medical student working in a GP surgery, you come across a worried 54-year-old male patient who is experiencing chest discomfort. He has recently begun taking a new tablet for his high blood pressure and suspects it may be the cause of his symptoms. During your examination, you notice bilateral non-tender glandular swellings around the areolae. There are no signs of lymphadenopathy in the axillary region, and testicular examination is normal. Which medication is most likely responsible for this clinical presentation?

      Your Answer: Bendroflumethiazide

      Correct Answer: Spironolactone

      Explanation:

      Spironolactone-Induced Gynaecomastia

      Spironolactone is a type of diuretic that helps to increase urine production by blocking aldosterone receptors in the kidneys. However, it also has anti-androgenic properties that can lead to the development of gynaecomastia, a condition where men develop breast tissue. This is because spironolactone inhibits the production of testosterone and increases the level of free oestrogen in the blood, causing the proliferation of glandular tissue in the mammary glands.

      While gynaecomastia is not commonly associated with other medications, they all have their own side effects. Aspirin, for example, can cause gastrointestinal ulceration by inhibiting COX enzymes and prostaglandin synthesis. Thiazide diuretics work by blocking the sodium chloride co-transporter in the distal convoluted tubule, which can lead to a decrease in blood volume. Loop diuretics, on the other hand, can cause severe hyponatraemia but do not affect testosterone production. Statins, which are used to lower cholesterol levels, can cause rhabdomyolysis, a serious condition where muscle tissue breaks down and releases harmful substances into the bloodstream.

      In summary, while spironolactone can be an effective diuretic, it is important to be aware of its potential side effects, including gynaecomastia. Patients should always consult with their healthcare provider before starting any new medication and report any unusual symptoms or side effects.

    • This question is part of the following fields:

      • Endocrine System
      39
      Seconds
  • Question 23 - A man in his early 50s comes to the hospital with a fever...

    Incorrect

    • A man in his early 50s comes to the hospital with a fever and cough. An X-ray shows pneumonia in his left lower lobe. Upon arrival at the emergency department, his blood pressure is 83/60mmHg and his heart rate is 112/min. The doctor prescribes antibiotics and IV fluids.

      What is the primary way the body reacts to a drop in blood pressure?

      Your Answer: Decreased heart rate and vasoconstriction

      Correct Answer: Insertion of AQP-2 channels in collecting ducts

      Explanation:

      When blood pressure drops, the body initiates several physiological responses, one of which is the activation of the renin-angiotensin aldosterone system (RAAS). This system breaks down bradykinin, a potent vasodilator, through the action of angiotensin-converting enzyme (ACE).

      RAAS activation results in increased aldosterone levels, which in turn increases the number of epithelial sodium channels (ENAC) to enhance sodium reabsorption.

      Another response to low blood pressure is the release of antidiuretic hormone, which promotes the insertion of aquaporin-2 channels in the collecting duct. This mechanism increases water reabsorption to help maintain fluid balance in the body.

      Understanding Antidiuretic Hormone (ADH)

      Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.

      ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.

      Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.

      Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.

    • This question is part of the following fields:

      • Endocrine System
      20.1
      Seconds
  • Question 24 - A 22-year-old male presents to the emergency department with a two-hour history of...

    Incorrect

    • A 22-year-old male presents to the emergency department with a two-hour history of nausea, confusion, and drowsiness. The patient has a medical history of type 1 diabetes mellitus.

      Upon conducting an A-E examination, the only significant finding is a plasma glucose level of 3.4 mmol/L. The patient is capable of swallowing.

      What is the most suitable course of action for managing this patient?

      Your Answer: 1 litre of intravenous 5% dextrose

      Correct Answer: Two tubes of oral glucose gel

      Explanation:

      The recommended first-line treatment for a conscious patient with hypoglycaemia is a fast-acting carbohydrate taken orally, such as glucose liquids, tablets, or gels. In this case, the appropriate course of action would be to administer two tubes of glucose gel. Glucagon via intramuscular injection is not necessary unless the patient is experiencing severe hypoglycaemia or is unable to swallow. Insulin via intramuscular injection is not appropriate for treating hypoglycaemia, and intravenous glucose is only used in cases of severe hypoglycaemia.

      Understanding Hypoglycaemia: Causes, Features, and Management

      Hypoglycaemia is a condition characterized by low blood sugar levels, which can lead to a range of symptoms and complications. There are several possible causes of hypoglycaemia, including insulinoma, liver failure, Addison’s disease, and alcohol consumption. The physiological response to hypoglycaemia involves hormonal and sympathoadrenal responses, which can result in autonomic and neuroglycopenic symptoms. While blood glucose levels and symptom severity are not always correlated, common symptoms of hypoglycaemia include sweating, shaking, hunger, anxiety, nausea, weakness, vision changes, confusion, and dizziness. In severe cases, hypoglycaemia can lead to convulsions or coma.

      Managing hypoglycaemia depends on the severity of the symptoms and the setting in which it occurs. In the community, individuals with diabetes who inject insulin may be advised to consume oral glucose or a quick-acting carbohydrate such as GlucoGel or Dextrogel. A ‘HypoKit’ containing glucagon may also be prescribed for home use. In a hospital setting, treatment may involve administering a quick-acting carbohydrate or subcutaneous/intramuscular injection of glucagon for unconscious or unable to swallow patients. Alternatively, intravenous glucose solution may be given through a large vein.

      Overall, understanding the causes, features, and management of hypoglycaemia is crucial for individuals with diabetes or other conditions that increase the risk of low blood sugar levels. Prompt and appropriate treatment can help prevent complications and improve outcomes.

    • This question is part of the following fields:

      • Endocrine System
      7.9
      Seconds
  • Question 25 - A 57-year-old woman presents to the physician with a recurring blistering rash on...

    Incorrect

    • A 57-year-old woman presents to the physician with a recurring blistering rash on her hands. The rash has also affected her legs, inguinal creases, and the corners of her mouth at different times. She was diagnosed with type 2 diabetes mellitus three months ago and has occasional loose stools. The patient denies experiencing palpitations, abdominal pain, or vomiting, but reports having occasional watery stools.

      During the physical examination, the physician observes coalescing erythematous plaques with crusting and scaling at the borders and central areas of brownish induration over the lower abdomen and in the perioral skin.

      What is the most likely diagnosis for this patient?

      Your Answer: Somatostatinoma

      Correct Answer: Glucagonoma

      Explanation:

      The patient is likely suffering from a glucagonoma, a rare tumor that originates from the alpha cells of the pancreas. This condition causes the excessive secretion of glucagon, resulting in hyperglycemia or diabetes mellitus. One of the characteristic symptoms of glucagonoma is necrolytic migratory erythema, a painful and itchy rash that appears on the face, groin, and limbs.

      Gastrinoma, on the other hand, does not cause a blistering rash or diabetes mellitus. However, it is often associated with abdominal pain, diarrhea, and ulceration.

      Somatostatinoma typically presents with abdominal pain, constipation, hyperglycemia, and steatorrhea, which are not present in this patient.

      VIPoma is unlikely as it usually causes intractable diarrhea, hypokalemia, and achlorhydria.

      Although zinc deficiency can cause skin lesions that resemble necrolytic migratory erythema, the patient’s recent diabetes mellitus diagnosis and lack of other symptoms make glucagonoma the more likely diagnosis.

      Glucagonoma: A Rare Pancreatic Tumor

      Glucagonoma is a rare type of pancreatic tumor that usually originates from the alpha cells of the pancreas. These tumors are typically small and malignant, and they can cause a range of symptoms, including diabetes mellitus, venous thrombo-embolism, and a distinctive red, blistering rash known as necrolytic migratory erythema. To diagnose glucagonoma, doctors typically look for a serum level of glucagon that is higher than 1000pg/ml, and they may also use CT scanning to visualize the tumor. Treatment options for glucagonoma include surgical resection and octreotide, a medication that can help to control the symptoms of the disease. Overall, glucagonoma is a rare but serious condition that requires prompt diagnosis and treatment to manage its symptoms and prevent complications.

    • This question is part of the following fields:

      • Endocrine System
      26.9
      Seconds
  • Question 26 - A 45-year-old male has been diagnosed with Cushing's disease due to a pituitary...

    Correct

    • A 45-year-old male has been diagnosed with Cushing's disease due to a pituitary adenoma, resulting in elevated plasma cortisol levels. Which part of the adrenal gland is responsible for producing cortisol hormone?

      Your Answer: Zona fasciculata

      Explanation:

      The adrenal gland comprises two primary parts: the cortex and medulla.

      The adrenal medulla is accountable for the production of adrenaline and noradrenaline, which are catecholamines.

      The adrenal cortex is divided into three layers: glomerulosa, fasciculata, and reticularis. The glomerulosa primarily produces mineralocorticoids, while the reticularis mainly produces sex steroids. As a result, the Zona fasciculata is the primary source of glucocorticosteroids.

      Cortisol: Functions and Regulation

      Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.

      The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.

      Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.

    • This question is part of the following fields:

      • Endocrine System
      18.2
      Seconds
  • Question 27 - A 12-year-old girl is being informed about the typical changes that occur during...

    Incorrect

    • A 12-year-old girl is being informed about the typical changes that occur during puberty by her doctor. The doctor explains that there are three main changes that usually happen before menarche. What is the order in which these changes occur?

      Your Answer: Growth of axillary hair, growth of pubic hair, breast buds

      Correct Answer: Breast buds, growth of pubic hair, growth of axillary hair

      Explanation:

      The onset of menarche is preceded by three sequential physical changes: the development of breast buds, growth of pubic hair, and growth of axillary hair. These changes are brought about by the hormone estrogen, which is crucial for the process of puberty.

      Puberty: Normal Changes in Males and Females

      Puberty is a natural process that marks the transition from childhood to adolescence. In males, the first sign of puberty is testicular growth, which typically occurs around the age of 12. Testicular volume greater than 4 ml indicates the onset of puberty. The maximum height spurt for boys occurs at the age of 14. On the other hand, in females, the first sign of puberty is breast development, which usually occurs around the age of 11.5. The height spurt for girls reaches its maximum early in puberty, at the age of 12, before menarche. Menarche, or the first menstrual period, typically occurs at the age of 13, with a range of 11-15 years. Following menarche, there is only a slight increase of about 4% in height.

      During puberty, it is normal for boys to experience gynaecomastia, or the development of breast tissue. Girls may also experience asymmetrical breast growth. Additionally, diffuse enlargement of the thyroid gland may be seen in both males and females. These changes are all part of the normal process of puberty and should not be a cause for concern.

    • This question is part of the following fields:

      • Endocrine System
      22.3
      Seconds
  • Question 28 - A 23-year-old woman presents with clinical manifestations of hyperthyroidism and is diagnosed with...

    Incorrect

    • A 23-year-old woman presents with clinical manifestations of hyperthyroidism and is diagnosed with Graves disease. What is the most appropriate explanation for the pathophysiology of this condition?

      Your Answer:

      Correct Answer: Formation of IgG antibodies to the TSH receptors on the thyroid gland

      Explanation:

      Graves disease typically results in the formation of IgG antibodies that target the TSH receptors located on the thyroid gland, leading to a significant decrease in TSH levels.

      Thyroid Hormones and LATS in Graves Disease

      Thyroid hormones are produced by the thyroid gland and include triiodothyronine (T3) and thyroxine (T4), with T3 being the major hormone active in target cells. The synthesis and secretion of these hormones involves the active concentration of iodide by the thyroid, which is then oxidized and iodinated by peroxidase in the follicular cells. This process is stimulated by thyroid-stimulating hormone (TSH), which is released by the pituitary gland. The normal thyroid has approximately three months’ worth of reserves of thyroid hormones.

      In Graves disease, patients develop IgG antibodies to the TSH receptors on the thyroid gland. This results in chronic and long-term stimulation of the gland with the release of thyroid hormones. As a result, individuals with Graves disease typically have raised thyroid hormones and low TSH levels. It is important to check for thyroid receptor autoantibodies in individuals presenting with hyperthyroidism, as they are present in up to 85% of cases. This condition is known as LATS (long-acting thyroid stimulator) and can lead to a range of symptoms and complications if left untreated.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 29 - Whilst an inpatient for a chest infection, a 65-year-old man is seen by...

    Incorrect

    • Whilst an inpatient for a chest infection, a 65-year-old man is seen by the hospital's diabetic specialist nurse. Despite trying various medications, his diabetic control has been generally inadequate. His latest blood test shows his HbA1c to still be above the normal range. The specialist nurse decides to initiate a new medication and advises the GP to review with a repeat blood test in a few months. The patient is cautioned about severe adverse effects, particularly Fournier gangrene.

      What is the mechanism of action of the prescribed medication?

      Your Answer:

      Correct Answer: Inhibits sodium-glucose co-transporter 2

      Explanation:

      SGLT-2 inhibitors work by inhibiting the sodium-glucose co-transporter 2 (SGLT-2) in the renal proximal convoluted tubule. This class of drugs includes empagliflozin and dapagliflozin and can lead to weight loss. However, they may also cause urinary/genital infections and normoglycaemic ketoacidosis. Fournier gangrene is a known serious adverse effect of this drug class.

      Thiazolidinedione drugs, such as pioglitazone, activate peroxisome proliferator-activated receptor-gamma (PPAR gamma). This receptor complex affects various target genes, ultimately decreasing insulin resistance and causing other effects.

      Sulfonylureas, like gliclazide, block ATP-sensitive potassium channels. These drugs may cause weight gain and induce hypoglycaemia.

      GLP-1 mimetics, including exenatide, activate glucagon-like peptide 1 receptors. This relatively new class of drug can lead to weight loss but is not widely used in diabetic guidelines.

      DPP4 inhibitors, such as sitagliptin and linagliptin, work by inhibiting dipeptidyl peptidase-4 (DPP4). This ultimately leads to increased levels of incretin circulation, similar to GLP-1 mimetics.

      Understanding SGLT-2 Inhibitors

      SGLT-2 inhibitors are medications that work by blocking the reabsorption of glucose in the kidneys, leading to increased excretion of glucose in the urine. This mechanism of action helps to lower blood sugar levels in patients with type 2 diabetes mellitus. Examples of SGLT-2 inhibitors include canagliflozin, dapagliflozin, and empagliflozin.

      However, it is important to note that SGLT-2 inhibitors can also have adverse effects. Patients taking these medications may be at increased risk for urinary and genital infections due to the increased glucose in the urine. Fournier’s gangrene, a rare but serious bacterial infection of the genital area, has also been reported. Additionally, there is a risk of normoglycemic ketoacidosis, a condition where the body produces high levels of ketones even when blood sugar levels are normal. Finally, patients taking SGLT-2 inhibitors may be at increased risk for lower-limb amputations, so it is important to closely monitor the feet.

      Despite these potential risks, SGLT-2 inhibitors can also have benefits. Patients taking these medications often experience weight loss, which can be beneficial for those with type 2 diabetes mellitus. Overall, it is important for patients to discuss the potential risks and benefits of SGLT-2 inhibitors with their healthcare provider before starting treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 30 - A 38-year-old woman is diagnosed with hyperthyroidism and started on carbimazole. What is...

    Incorrect

    • A 38-year-old woman is diagnosed with hyperthyroidism and started on carbimazole. What is the mechanism of action of this medication?

      Your Answer:

      Correct Answer: Prevents iodination of the tyrosine residue on thyroglobulin

      Explanation:

      Carbimazole is a medication used to treat thyrotoxicosis, a condition where the thyroid gland produces too much thyroid hormone. It is usually given in high doses for six weeks until the patient’s thyroid hormone levels become normal, after which the dosage is reduced. The drug works by blocking thyroid peroxidase, an enzyme that is responsible for coupling and iodinating the tyrosine residues on thyroglobulin, which ultimately leads to a reduction in thyroid hormone production. In contrast, propylthiouracil has a dual mechanism of action, inhibiting both thyroid peroxidase and 5′-deiodinase, which reduces the peripheral conversion of T4 to T3.

      However, carbimazole is not without its adverse effects. One of the most serious side effects is agranulocytosis, a condition where the body’s white blood cell count drops significantly, making the patient more susceptible to infections. Additionally, carbimazole can cross the placenta and affect the developing fetus, although it may be used in low doses during pregnancy under close medical supervision. Overall, carbimazole is an effective medication for managing thyrotoxicosis, but its potential side effects should be carefully monitored.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Endocrine System (14/27) 52%
Passmed