-
Question 1
Incorrect
-
Sarah, a 30-year-old female, visits her doctor complaining of tingling sensation in her thumb, index finger, middle finger, and lateral aspect of ring finger. She is currently in the second trimester of her first pregnancy.
During the examination, Sarah exhibits a positive Tinel's sign, leading to a diagnosis of carpal tunnel syndrome.
Which nerve branch is responsible for innervating the lateral aspect of the palm of the hand and is usually unaffected in carpal tunnel syndrome?Your Answer: Palmar cutaneous nerve of the ulnar nerve
Correct Answer: Palmar cutaneous nerve of the median nerve
Explanation:The palmar cutaneous nerve, which provides sensation to the lateral aspect of the palm of the hand, branches off from the median nerve before it enters the carpal tunnel. This means that it is not affected by carpal tunnel syndrome, which is caused by compression of the median nerve within the tunnel. Other branches of the median nerve, such as the anterior interosseous nerve, palmar digital branch, and recurrent branch, are affected by carpal tunnel syndrome to varying degrees. The ulnar nerve is not involved in carpal tunnel syndrome, so the palmar cutaneous nerve of the ulnar nerve is not relevant to this condition.
Anatomy and Function of the Median Nerve
The median nerve is a nerve that originates from the lateral and medial cords of the brachial plexus. It descends lateral to the brachial artery and passes deep to the bicipital aponeurosis and the median cubital vein at the elbow. The nerve then passes between the two heads of the pronator teres muscle and runs on the deep surface of flexor digitorum superficialis. Near the wrist, it becomes superficial between the tendons of flexor digitorum superficialis and flexor carpi radialis, passing deep to the flexor retinaculum to enter the palm.
The median nerve has several branches that supply the upper arm, forearm, and hand. These branches include the pronator teres, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, flexor pollicis longus, and palmar cutaneous branch. The nerve also provides motor supply to the lateral two lumbricals, opponens pollicis, abductor pollicis brevis, and flexor pollicis brevis muscles, as well as sensory supply to the palmar aspect of the lateral 2 ½ fingers.
Damage to the median nerve can occur at the wrist or elbow, resulting in various symptoms such as paralysis and wasting of thenar eminence muscles, weakness of wrist flexion, and sensory loss to the palmar aspect of the fingers. Additionally, damage to the anterior interosseous nerve, a branch of the median nerve, can result in loss of pronation of the forearm and weakness of long flexors of the thumb and index finger. Understanding the anatomy and function of the median nerve is important in diagnosing and treating conditions that affect this nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 2
Correct
-
An 8-year-old girl comes to the doctor complaining of leg pains. She cries at night and her mother has to massage the painful areas to soothe her. Upon examination, there are no visible abnormalities. What is the probable diagnosis?
Your Answer: Idiopathic pains
Explanation:Idiopathic Limb Pains in Children
Idiopathic limb pains, also known as growing pains, are a common occurrence in children between the ages of 3 and 9. These pains typically occur in the lower limbs and can be quickly settled with comforting. It is important to note that these pains are not associated with any abnormalities found during examination and the child should be growing normally.
However, it is important to distinguish idiopathic limb pains from other conditions that may cause similar symptoms. Acute lymphoblastic leukaemia, for example, may cause limb pain due to bone marrow infiltration. Children with this condition may also exhibit signs of bone marrow failure and be systemically unwell.
Langerhans histiocytosis is another condition that can cause painful bone lesions. This proliferative disorder of antigen presenting cells may be localised or systemic and can be difficult to diagnose. The systemic form of the condition may also present with a widespread eczematous rash and fevers.
Non-accidental injury may also present with recurrent pains, but evidence of an injury would be expected. Primary bone malignancy is more common in teenage years and typically presents with unremitting pain, growth failure, weight loss, or pathological fractures.
In summary, while idiopathic limb pains are relatively easy to settle and associated with a normal examination, it is important to consider other potential conditions that may cause similar symptoms. Proper diagnosis and treatment can help ensure the best possible outcome for the child.
-
This question is part of the following fields:
- Rheumatology
-
-
Question 3
Incorrect
-
An aged patient is admitted to the hospital due to severe abdominal pain and blood in her urine. Her blood pressure is 90/60, and her heart rate is 140 bpm. She is breathing at a rate of 30 breaths per minute, and her oxygen saturation is at 90%. The medical team administers high-flow oxygen, antibiotics, and a fluid bolus. They also conduct blood cultures, lactate, and urine output tests. Within the next 10 minutes, her blood pressure and heart rate stabilise. The family is informed that the patient is most likely experiencing sepsis caused by a urinary tract infection. What cytokine is responsible for the chemotaxis of neutrophils?
Your Answer: IL-12
Correct Answer: IL-8
Explanation:IL-8’s primary role is to attract neutrophils towards the site of inflammation. It is produced by macrophages and certain epithelial tissues. IL-1 is involved in acute inflammation, while IL-2, secreted by Th1 cells, promotes the growth and specialization of T cells. IL-5 stimulates the proliferation of eosinophils.
Overview of Cytokines and Their Functions
Cytokines are signaling molecules that play a crucial role in the immune system. Interleukins are a type of cytokine that are produced by various immune cells and have specific functions. IL-1, produced by macrophages, induces acute inflammation and fever. IL-2, produced by Th1 cells, stimulates the growth and differentiation of T cell responses. IL-3, produced by activated T helper cells, stimulates the differentiation and proliferation of myeloid progenitor cells. IL-4, produced by Th2 cells, stimulates the proliferation and differentiation of B cells. IL-5, also produced by Th2 cells, stimulates the production of eosinophils. IL-6, produced by macrophages and Th2 cells, stimulates the differentiation of B cells and induces fever. IL-8, produced by macrophages, promotes neutrophil chemotaxis. IL-10, produced by Th2 cells, inhibits Th1 cytokine production and is known as an anti-inflammatory cytokine. IL-12, produced by dendritic cells, macrophages, and B cells, activates NK cells and stimulates the differentiation of naive T cells into Th1 cells.
In addition to interleukins, there are other cytokines with specific functions. Tumor necrosis factor-alpha, produced by macrophages, induces fever and promotes neutrophil chemotaxis. Interferon-gamma, produced by Th1 cells, activates macrophages. Understanding the functions of cytokines is important in developing treatments for various immune-related diseases.
-
This question is part of the following fields:
- General Principles
-
-
Question 4
Incorrect
-
What is the final product of glycolysis besides ATP?
Your Answer: Glucose
Correct Answer: Pyruvate
Explanation:Glycolysis: The Energy-Producing Reaction
Glycolysis is a crucial energy-producing reaction that converts glucose into pyruvate while releasing energy to create ATP and NADH+. It is one of the three major carbohydrate reactions, along with the citric acid cycle and the electron transport chain. The reaction involves ten enzymatic steps that provide entry points to glycolysis, allowing for a variety of starting points. The most common starting point is glucose or glycogen, which produces glucose-6-phosphate.
Glycolysis occurs in two phases: the preparatory (or investment) phase and the pay-off phase. In the preparatory phase, ATP is consumed to start the reaction, while in the pay-off phase, ATP is produced. Glycolysis can be either aerobic or anaerobic, but it does not require nor consume oxygen.
Although other molecules are involved in glycolysis at some stage, none of them form its end product. Lactic acid is associated with anaerobic glycolysis. glycolysis is essential for how the body produces energy from carbohydrates.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 5
Correct
-
A 32-year-old man visits the clinic complaining of weakness and frequent muscle cramps that have been ongoing for the past two weeks. Upon examination, you observe widespread hyporeflexia. A blood test reveals hypokalaemia, but the cause has not yet been determined. Which of the following conditions is linked to hypokalaemia?
Your Answer: Conn's syndrome
Explanation:Primary hyperaldosteronism, also known as Conn’s syndrome, can lead to hypertension, hypernatraemia, and hypokalemia. This condition is caused by an excess of aldosterone, which is responsible for maintaining potassium balance by activating Na+/K+ pumps. However, in excess, aldosterone can cause the movement of potassium into cells, resulting in hypokalaemia. The kidneys play a crucial role in maintaining potassium balance, along with other factors such as insulin, catecholamines, and aldosterone. On the other hand, congenital adrenal hypoplasia, Addison’s disease, rhabdomyolysis, and metabolic acidosis are all causes of hyperkalaemia, which is an excess of potassium in the blood. Addison’s disease and adrenal hypoplasia result in mineralocorticoid deficiency, which can lead to hyperkalaemia. Acidosis can also cause hyperkalaemia by causing positively charged hydrogen ions to enter cells while positively charged potassium ions leave cells and enter the bloodstream.
Primary hyperaldosteronism is a condition characterized by hypertension, hypokalaemia, and alkalosis. It was previously believed that adrenal adenoma, also known as Conn’s syndrome, was the most common cause of this condition. However, recent studies have shown that bilateral idiopathic adrenal hyperplasia is responsible for up to 70% of cases. It is important to differentiate between the two causes as it determines the appropriate treatment. Adrenal carcinoma is an extremely rare cause of primary hyperaldosteronism.
To diagnose primary hyperaldosteronism, the 2016 Endocrine Society recommends a plasma aldosterone/renin ratio as the first-line investigation. This test should show high aldosterone levels alongside low renin levels due to negative feedback from sodium retention caused by aldosterone. If the results are positive, a high-resolution CT abdomen and adrenal vein sampling are used to differentiate between unilateral and bilateral sources of aldosterone excess. If the CT is normal, adrenal venous sampling (AVS) can be used to distinguish between unilateral adenoma and bilateral hyperplasia.
The management of primary hyperaldosteronism depends on the underlying cause. Adrenal adenoma is treated with surgery, while bilateral adrenocortical hyperplasia is managed with an aldosterone antagonist such as spironolactone. It is important to accurately diagnose and manage primary hyperaldosteronism to prevent complications such as cardiovascular disease and stroke.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 6
Incorrect
-
A 25-year-old woman has a total thyroidectomy to treat papillary carcinoma of the thyroid. During examination of histological sections of the thyroid gland, the pathologist discovers the presence of psammoma bodies. What is the primary composition of these bodies?
Your Answer: Giant cells surrounding the tumour
Correct Answer: Clusters of calcification
Explanation:Clusters of microcalcification, known as psammoma bodies, are frequently observed in papillary carcinomas.
Thyroid cancer rarely causes hyperthyroidism or hypothyroidism as it does not usually secrete thyroid hormones. The most common type of thyroid cancer is papillary carcinoma, which is often found in young females and has an excellent prognosis. Follicular carcinoma is less common, while medullary carcinoma is a cancer of the parafollicular cells that secrete calcitonin and is associated with multiple endocrine neoplasia type 2. Anaplastic carcinoma is rare and not responsive to treatment, causing pressure symptoms. Lymphoma is also rare and associated with Hashimoto’s thyroiditis.
Management of papillary and follicular cancer involves a total thyroidectomy followed by radioiodine to kill residual cells. Yearly thyroglobulin levels are monitored to detect early recurrent disease. Papillary carcinoma usually contains a mixture of papillary and colloidal filled follicles, while follicular adenoma presents as a solitary thyroid nodule and malignancy can only be excluded on formal histological assessment. Follicular carcinoma may appear macroscopically encapsulated, but microscopically capsular invasion is seen. Medullary carcinoma is associated with raised serum calcitonin levels and familial genetic disease in up to 20% of cases. Anaplastic carcinoma is most common in elderly females and is treated by resection where possible, with palliation achieved through isthmusectomy and radiotherapy. Chemotherapy is ineffective.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 7
Incorrect
-
A 50-year-old construction worker presents with a haematemesis.
His wife provides a history that he has consumed approximately six cans of beer per day together with liberal quantities of whiskey for many years. He has attempted to quit drinking in the past but was unsuccessful.
Upon examination, he appears distressed and disoriented. His pulse is 110 beats per minute and blood pressure is 112/80 mmHg. He has several spider naevi over his chest. Abdominal examination reveals a distended abdomen with ascites.
What would be your next course of action for this patient?Your Answer: Serum alpha-fetoprotein (AFP)
Correct Answer: Endoscopy
Explanation:Possible Causes of Haematemesis in a Patient with Alcohol Abuse
When a patient with a history of alcohol abuse presents with symptoms of chronic liver disease and sudden haematemesis, the possibility of bleeding oesophageal varices should be considered as the primary diagnosis. However, other potential causes such as peptic ulceration or haemorrhagic gastritis should also be taken into account. To determine the exact cause of the bleeding, an urgent endoscopy should be requested. This procedure will allow for a thorough examination of the gastrointestinal tract and enable the medical team to identify the source of the bleeding. Prompt diagnosis and treatment are crucial in managing this potentially life-threatening condition.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 8
Incorrect
-
A 67-year-old man is scheduled for open surgery to treat a popliteal artery aneurysm. What is the structure that forms the supero-lateral boundary of the popliteal fossa?
Your Answer: Lateral head of gastrocnemius
Correct Answer: Tendon of biceps femoris
Explanation:The Polpiteal Fossa and Sartorius Muscle
The area behind the knee is known as the polpiteal fossa. It is bordered by the tenodon of biceps femoris on the superolateral side, and the tendons of semimembranous and semitendinosus on the superomedial side. The medial head of gastrocnemius forms the inferomedial border, while the lateral head of gastrocnemius forms the inferolateral border.
The sartorius muscle is attached to the medial surface of the tibia. This muscle is located in the thigh and runs from the hip to the knee. It is responsible for flexing and rotating the hip joint, as well as flexing the knee joint. The sartorius muscle is one of the longest muscles in the body and is important for maintaining proper posture and movement. the anatomy of the polpiteal fossa and the sartorius muscle can be helpful in diagnosing and treating injuries or conditions in this area.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 9
Correct
-
In a patient with a carcinoma of the proximal sigmoid colon, what is the most probable origin of its vascular supply?
Your Answer: Inferior mesenteric artery
Explanation:When performing a high anterior resection for these types of tumors, it is necessary to ligate the inferior mesenteric artery. However, it is important to note that the internal iliac artery’s branches, particularly the middle rectal branch, play a crucial role in preserving blood flow to the rectal stump and ensuring the anastomoses’ integrity.
Anatomy of the Rectum
The rectum is a capacitance organ that measures approximately 12 cm in length. It consists of both intra and extraperitoneal components, with the transition from the sigmoid colon marked by the disappearance of the tenia coli. The extra peritoneal rectum is surrounded by mesorectal fat that contains lymph nodes, which are removed during rectal cancer surgery. The fascial layers that surround the rectum are important clinical landmarks, with the fascia of Denonvilliers located anteriorly and Waldeyers fascia located posteriorly.
In males, the rectum is adjacent to the rectovesical pouch, bladder, prostate, and seminal vesicles, while in females, it is adjacent to the recto-uterine pouch (Douglas), cervix, and vaginal wall. Posteriorly, the rectum is in contact with the sacrum, coccyx, and middle sacral artery, while laterally, it is adjacent to the levator ani and coccygeus muscles.
The superior rectal artery supplies blood to the rectum, while the superior rectal vein drains it. Mesorectal lymph nodes located superior to the dentate line drain into the internal iliac and then para-aortic nodes, while those located inferior to the dentate line drain into the inguinal nodes. Understanding the anatomy of the rectum is crucial for surgical procedures and the diagnosis and treatment of rectal diseases.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 10
Incorrect
-
A teenage girl is hospitalized with E-coli 0157 following a trip to Germany during an outbreak. What statement about the condition is false?
Your Answer: It is most commonly transmitted by consumption of contaminated food.
Correct Answer: Adults typically develop haemolytic uraemic syndome.
Explanation:This complication is typically developed by children.
Gastroenteritis can occur either at home or while traveling abroad, which is known as travelers’ diarrhea. This type of diarrhea is characterized by at least three loose to watery stools in 24 hours, along with abdominal cramps, fever, nausea, vomiting, or blood in the stool. The most common cause of travelers’ diarrhea is Escherichia coli. Another type of illness is acute food poisoning, which is caused by the ingestion of a toxin and results in sudden onset of nausea, vomiting, and diarrhea. Staphylococcus aureus, Bacillus cereus, and Clostridium perfringens are the typical causes of acute food poisoning.
Different infections have stereotypical histories and presentations. Escherichia coli is common among travelers and causes watery stools, abdominal cramps, and nausea. Giardiasis results in prolonged, non-bloody diarrhea. Cholera causes profuse, watery diarrhea and severe dehydration resulting in weight loss, but it is not common among travelers. Shigella causes bloody diarrhea, vomiting, and abdominal pain. Staphylococcus aureus causes severe vomiting with a short incubation period. Campylobacter usually starts with a flu-like prodrome and is followed by crampy abdominal pains, fever, and diarrhea, which may be bloody and may mimic appendicitis. Bacillus cereus has two types of illness: vomiting within six hours, typically due to rice, and diarrheal illness occurring after six hours. Amoebiasis has a gradual onset of bloody diarrhea, abdominal pain, and tenderness that may last for several weeks.
The incubation period for different infections varies. Staphylococcus aureus and Bacillus cereus have an incubation period of 1-6 hours, while Salmonella and Escherichia coli have an incubation period of 12-48 hours. Shigella and Campylobacter have an incubation period of 48-72 hours, while Giardiasis and Amoebiasis have an incubation period of more than seven days. The vomiting subtype of Bacillus cereus has an incubation period of 6-14 hours, while the diarrheal illness has an incubation period of more than six hours.
-
This question is part of the following fields:
- General Principles
-
-
Question 11
Incorrect
-
A 67-year-old man presents to the emergency department after collapsing while shopping. He is experiencing profuse sweating and has a blood pressure of 98/63 mmHg. The patient reports severe epigastric pain as his only complaint.
The suspected cause of his symptoms is peptic ulcer disease, which may have caused erosion into a blood vessel. Upon endoscopy, a perforation is discovered in the posterior medial wall of the second part of the duodenum.
What is the most likely blood vessel that has been affected?Your Answer:
Correct Answer: Gastroduodenal artery
Explanation:The gastroduodenal artery is a potential source of significant gastrointestinal bleeding that can occur as a complication of peptic ulcer disease. The most likely diagnosis based on the given clinical information is peptic ulcer disease, which can cause the ulcer to penetrate through the posteromedial wall of the second part of the duodenum and into the gastroduodenal artery. This can result in a severe gastrointestinal bleed, leading to shock, which may present with symptoms such as low blood pressure, sweating, and collapse.
The answers Splenic artery, Left gastric artery, and Coeliac trunk are incorrect. The splenic artery runs behind the stomach and connects the coeliac trunk to the spleen, and does not pass near the second part of the duodenum. The left gastric artery runs along the small curvature of the stomach and supplies that region, and does not pass through the posteromedial wall of the duodenum. The coeliac trunk arises from the abdominal aorta at the level of T12 and gives rise to the splenic, left gastric, and common hepatic arteries, but does not lie near the second part of the duodenum.
Managing Acute Bleeding in Peptic Ulcer Disease
Peptic ulcer disease is a condition that can lead to acute bleeding, which is the most common complication of the disease. In fact, bleeding accounts for about three-quarters of all problems associated with peptic ulcer disease. The gastroduodenal artery is often the source of significant gastrointestinal bleeding in patients with this condition. The most common symptom of acute bleeding in peptic ulcer disease is haematemesis, but patients may also experience melaena, hypotension, and tachycardia.
When managing acute bleeding in peptic ulcer disease, an ABC approach should be taken, as with any upper gastrointestinal haemorrhage. Intravenous proton pump inhibitors are the first-line treatment, and endoscopic intervention is typically the preferred approach. However, if endoscopic intervention fails (which occurs in approximately 10% of patients), urgent interventional angiography with transarterial embolization or surgery may be necessary. By following these management strategies, healthcare providers can effectively address acute bleeding in patients with peptic ulcer disease.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 12
Incorrect
-
A 50-year-old motorcyclist is seeking treatment at your clinic after a bike accident that occurred 10 months ago. The patient suffered a significant pelvic fracture, which has since healed. However, he is worried about the persistent numbness in his right leg. During the examination, he experiences difficulty in adducting his right hip against resistance and has reduced sensation around the medial aspect of his right thigh. Which nerve is most likely to have been affected?
Your Answer:
Correct Answer: Obturator
Explanation:The patient is experiencing decreased sensation in the inner thigh and weakened adductor muscles, which are both controlled by the obturator nerve.
Meanwhile, the femoral nerve is responsible for providing sensation to the front of the thigh, while the sciatic nerve is responsible for sensation in the back of the thigh.
Additionally, the ilio-inguinal nerve is responsible for sensation in certain areas of the genital region, and the tibial nerve controls the movement of ankle muscles.
Anatomy of the Obturator Nerve
The obturator nerve is formed by branches from the ventral divisions of L2, L3, and L4 nerve roots, with L3 being the main contributor. It descends vertically in the posterior part of the psoas major muscle and emerges from its medial border at the lateral margin of the sacrum. After crossing the sacroiliac joint, it enters the lesser pelvis and descends on the obturator internus muscle to enter the obturator groove. The nerve lies lateral to the internal iliac vessels and ureter in the lesser pelvis and is joined by the obturator vessels lateral to the ovary or ductus deferens.
The obturator nerve supplies the muscles of the medial compartment of the thigh, including the external obturator, adductor longus, adductor brevis, adductor magnus (except for the lower part supplied by the sciatic nerve), and gracilis. The cutaneous branch, which is often absent, supplies the skin and fascia of the distal two-thirds of the medial aspect of the thigh when present.
The obturator canal connects the pelvis and thigh and contains the obturator artery, vein, and nerve, which divides into anterior and posterior branches. Understanding the anatomy of the obturator nerve is important in diagnosing and treating conditions that affect the medial thigh and pelvic region.
-
This question is part of the following fields:
- Neurological System
-
-
Question 13
Incorrect
-
An 80-year-old man visits his GP with complaints of worsening shortness of breath, dry cough, and fatigue over the past 6 weeks. The patient reports having to stop multiple times during his daily walk to catch his breath and sleeping with an extra pillow at night to aid his breathing. He has a medical history of hypertension and a smoking history of 30 pack-years. His current medications include ramipril, amlodipine, and atorvastatin.
During the examination, the GP observes end-inspiratory crackles at both lung bases. The patient's oxygen saturation is 94% on room air, his pulse is regular at 110 /min, and his respiratory rate is 24 /min.
What is the most probable underlying diagnosis?Your Answer:
Correct Answer: Chronic heart failure
Explanation:Orthopnoea is a useful indicator to distinguish between heart failure and COPD.
The Framingham diagnostic criteria for heart failure include major criteria such as acute pulmonary oedema and cardiomegaly, as well as minor criteria like ankle oedema and dyspnoea on exertion. Other minor criteria include hepatomegaly, nocturnal cough, pleural effusion, tachycardia (>120 /min), neck vein distension, and a third heart sound.
In this case, the patient exhibits orthopnoea (needing an extra pillow to alleviate breathlessness), rales (crackles heard during inhalation), and dyspnoea on exertion, all of which are indicative of heart failure.
While COPD can present with similar symptoms such as coughing, fatigue, shortness of breath, and desaturation, the presence of orthopnoea helps to differentiate between the two conditions.
Pulmonary fibrosis, on the other hand, does not typically present with orthopnoea.
Features of Chronic Heart Failure
Chronic heart failure is a condition that affects the heart’s ability to pump blood effectively. It is characterized by several features that can help in its diagnosis. Dyspnoea, or shortness of breath, is a common symptom of chronic heart failure. Patients may also experience coughing, which can be worse at night and accompanied by pink or frothy sputum. Orthopnoea, or difficulty breathing while lying down, and paroxysmal nocturnal dyspnoea, or sudden shortness of breath at night, are also common symptoms.
Another feature of chronic heart failure is the presence of a wheeze, known as a cardiac wheeze. Patients may also experience weight loss, known as cardiac cachexia, which occurs in up to 15% of patients. However, this may be hidden by weight gained due to oedema. On examination, bibasal crackles may be heard, and signs of right-sided heart failure, such as a raised JVP, ankle oedema, and hepatomegaly, may be present.
In summary, chronic heart failure is a condition that can be identified by several features, including dyspnoea, coughing, orthopnoea, paroxysmal nocturnal dyspnoea, wheezing, weight loss, bibasal crackles, and signs of right-sided heart failure. Early recognition and management of these symptoms can help improve outcomes for patients with chronic heart failure.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Incorrect
-
A 57-year-old man presents to the emergency department with acute, severe shortness of breath.
During the clinical examination, an elevated JVP is noted, and bilateral basal crackles are heard on auscultation. An S3 gallop is also heard on auscultation of his heart.
The physician places him on high flow oxygen and positions him upright. You are asked to review the patient's medication chart and discontinue any medications that may be contraindicated in his current condition.
Which medication should you discontinue?Your Answer:
Correct Answer: Nicorandil
Explanation:Nicorandil is a medication that is commonly used to treat angina. It works by activating potassium channels, which leads to vasodilation. This process is achieved through the activation of guanylyl cyclase, which results in an increase in cGMP. However, there are some adverse effects associated with the use of nicorandil, including headaches, flushing, and the development of ulcers on the skin, mucous membranes, and eyes. Additionally, gastrointestinal ulcers, including anal ulceration, may also occur. It is important to note that nicorandil should not be used in patients with left ventricular failure.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
A 50-year-old male is admitted to the burns unit after being involved in a house fire. He presents with hypoxia, hypotension, and flushed red skin. The suspicion of cyanide toxicity arises, and treatment with intravenous hydroxocobalamin is initiated.
What causes cyanide toxicity?Your Answer:
Correct Answer: Inhibits the mitochondrial enzyme cytochrome c oxidase
Explanation:The inhibition of cytochrome c oxidase by cyanide can cause the mitochondrial electron transfer chain to stop functioning, leading to histotoxic hypoxia. Plastic fires can result in cyanide toxicity.
Carbon monoxide poisoning can cause carboxyhemoglobinemia, which hinders the delivery of oxygen to the body by forming carboxyhemoglobin more readily than oxyhaemoglobin.
Methemoglobinemia is a type of haemoglobin that contains ferric iron, which impairs the affinity for oxygen and can result in tissue hypoxia. It can be caused by genetic or acquired factors, such as the use of drugs like amyl nitrite.
Paracetamol toxicity can lead to a depletion of glutathione stores.
Fomepizole is a competitive inhibitor of alcohol dehydrogenase and can be used to treat methanol and ethylene glycol toxicity.
Understanding Cyanide Poisoning
Cyanide is a toxic substance that can be found in insecticides, photograph development, and metal production. When ingested, cyanide can inhibit the enzyme cytochrome c oxidase, which can lead to the cessation of the mitochondrial electron transfer chain. This can result in a range of symptoms, depending on the severity and duration of exposure.
The presentation of cyanide poisoning can vary, but some classical features include brick-red skin and a smell of bitter almonds. Acute symptoms may include hypoxia, hypotension, headache, and confusion. Chronic exposure can lead to ataxia, peripheral neuropathy, and dermatitis.
If someone is suspected of cyanide poisoning, supportive measures such as administering 100% oxygen should be taken immediately. Definitive treatment involves the use of hydroxocobalamin, which is given intravenously. A combination of inhaled amyl nitrite, intravenous sodium nitrite, and intravenous sodium thiosulfate may also be used.
It is important to seek medical attention immediately if cyanide poisoning is suspected, as prompt treatment can be life-saving.
-
This question is part of the following fields:
- General Principles
-
-
Question 16
Incorrect
-
A 79-year-old man comes in with red, velvety lesions in his mouth. Upon biopsy, it is revealed that there is epithelial atrophy and moderate dysplasia. What is the name of this condition?
Your Answer:
Correct Answer: Erythroplakia
Explanation:Pre-Malignant Conditions and Tongue Abnormalities
Erythropakia and leukoplakia are two pre-malignant conditions that affect the mouth. They are characterized by the presence of dysplastic epithelial cells that can develop into squamous cell carcinoma if left untreated. Leukoplakia is more common than erythroplakia and appears as white patches that do not move with physical rubbing. On the other hand, erythroplakia appears as red, velvety patches. Both conditions are more common in older individuals and are associated with alcohol consumption and smoking.
Glossitis is a condition that involves inflammation of the tongue. It can occur in response to various factors such as vitamin B12 deficiency, Sjögren’s syndrome, and Crohn’s disease. Macroglossia, on the other hand, is an enlargement of the tongue that can be either congenital or acquired. Congenital causes include Down syndrome and Beckwith-Weideman syndrome, while acquired causes include vascular malformations, hypothyroidism, acromegaly, and amyloidosis.
Patterson-Brown-Kelly syndrome is a rare condition that causes dysphagia. It occurs when chronic, severe iron deficiency anemia stimulates the formation of an upper esophageal web. This web can cause difficulty swallowing and may require treatment such as dilation or surgery. Overall, it is important to be aware of these various conditions and seek medical attention if any symptoms arise.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 17
Incorrect
-
As a medical student on placement, while practising orthopaedic examinations, you come across a patient whose knee observation reveals that the centre of gravity is medial to the knee joint, causing the knees to bow outwards. What is the appropriate term for this condition?
Your Answer:
Correct Answer: Genu varum
Explanation:The knee joint is the largest and most complex synovial joint in the body, consisting of two condylar joints between the femur and tibia and a sellar joint between the patella and femur. The degree of congruence between the tibiofemoral articular surfaces is improved by the presence of the menisci, which compensate for the incongruence of the femoral and tibial condyles. The knee joint is divided into two compartments: the tibiofemoral and patellofemoral compartments. The fibrous capsule of the knee joint is a composite structure with contributions from adjacent tendons, and it contains several bursae and ligaments that provide stability to the joint. The knee joint is supplied by the femoral, tibial, and common peroneal divisions of the sciatic nerve and by a branch from the obturator nerve, while its blood supply comes from the genicular branches of the femoral artery, popliteal, and anterior tibial arteries.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 18
Incorrect
-
A 36-year-old female patient presents to her GP with complaints of epigastric pain that worsens after consuming takeaways or alcohol. During the consultation, she also reports experiencing a cough at night. The doctor diagnoses her with GORD, which is caused by the irritation of stomach acid (H+) released by cells stimulated by which hormone?
Which cell type is stimulated by gastrin?Your Answer:
Correct Answer: Gastric parietal cells
Explanation:Gastrin stimulates gastric parietal cells to increase their secretion of H+. The hormone is released by G cells in the stomach and acts on the parietal cells to enhance their production of H+. It is important to note that G cells do not release H+ themselves, but rather release gastrin to stimulate the parietal cells. Other cell types in the stomach, such as gastric chief cells and gastric mucosal cells, have different functions and do not secrete H+ in response to gastrin.
Overview of Gastrointestinal Hormones
Gastrointestinal hormones play a crucial role in the digestion and absorption of food. These hormones are secreted by various cells in the stomach and small intestine in response to different stimuli such as the presence of food, pH changes, and neural signals.
One of the major hormones involved in food digestion is gastrin, which is secreted by G cells in the antrum of the stomach. Gastrin increases acid secretion by gastric parietal cells, stimulates the secretion of pepsinogen and intrinsic factor, and increases gastric motility. Another hormone, cholecystokinin (CCK), is secreted by I cells in the upper small intestine in response to partially digested proteins and triglycerides. CCK increases the secretion of enzyme-rich fluid from the pancreas, contraction of the gallbladder, and relaxation of the sphincter of Oddi. It also decreases gastric emptying and induces satiety.
Secretin is another hormone secreted by S cells in the upper small intestine in response to acidic chyme and fatty acids. Secretin increases the secretion of bicarbonate-rich fluid from the pancreas and hepatic duct cells, decreases gastric acid secretion, and has a trophic effect on pancreatic acinar cells. Vasoactive intestinal peptide (VIP) is a neural hormone that stimulates secretion by the pancreas and intestines and inhibits acid secretion.
Finally, somatostatin is secreted by D cells in the pancreas and stomach in response to fat, bile salts, and glucose in the intestinal lumen. Somatostatin decreases acid and pepsin secretion, decreases gastrin secretion, decreases pancreatic enzyme secretion, and decreases insulin and glucagon secretion. It also inhibits the trophic effects of gastrin and stimulates gastric mucous production.
In summary, gastrointestinal hormones play a crucial role in regulating the digestive process and maintaining homeostasis in the gastrointestinal tract.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 19
Incorrect
-
A 82-year-old man arrives at the emergency department complaining of bone and abdominal pain. He appears confused, and his wife reports that he has been experiencing low mood lately. Upon conducting blood tests, it is discovered that he has elevated levels of calcium and parathyroid hormone. What is the probable cause of his hypercalcaemia?
Your Answer:
Correct Answer: Increased activity of osteoclasts
Explanation:Primary hyperparathyroidism is the likely diagnosis for this patient, which is typically caused by a single adenoma in the parathyroid gland. The hormone PTH plays a key role in increasing plasma calcium levels while decreasing phosphate levels. This is achieved through increased absorption of calcium in the bowel and kidneys, as well as increased bone resorption through the activity of osteoclasts.
If osteoblast activity were increased, it would actually decrease plasma calcium levels. Conversely, decreased resorption in the kidneys would result in more calcium being lost in the urine, leading to lower plasma calcium levels. Lower levels of plasma calcium would also result from decreased activity of vitamin D.
It’s important to note that PTH has no direct effect on calcitonin secretion, which is controlled by plasma calcium levels as well as the hormones gastrin and pentagastrin.
Maintaining Calcium Balance in the Body
Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.
PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.
Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.
Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.
Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.
-
This question is part of the following fields:
- Neurological System
-
-
Question 20
Incorrect
-
Which statement about peristalsis is true?
Your Answer:
Correct Answer: Longitudinal smooth muscle propels the food bolus through the oesophagus
Explanation:Peristalsis: The Movement of Food Through the Digestive System
Peristalsis is the process by which food is moved through the digestive system. Circular smooth muscle contracts behind the food bolus, while longitudinal smooth muscle propels the food through the oesophagus. Primary peristalsis spontaneously moves the food from the oesophagus into the stomach, taking about 9 seconds. Secondary peristalsis occurs when food does not enter the stomach, and stretch receptors are stimulated to cause peristalsis.
In the small intestine, peristalsis waves slow to a few seconds and cause a mixture of chyme. In the colon, three main types of peristaltic activity are recognised. Segmentation contractions are localised contractions in which the bolus is subjected to local forces to maximise mucosal absorption. Antiperistaltic contractions towards the ileum are localised reverse peristaltic waves to slow entry into the colon and maximise absorption. Mass movements are migratory peristaltic waves along the entire colon to empty the organ prior to the next ingestion of a food bolus.
Overall, peristalsis is a crucial process in the digestive system that ensures food is moved efficiently through the body.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 21
Incorrect
-
As a junior doctor in orthopaedics, you come across a patient during a ward round who had a hemiarthroplasty 6 days ago for a broken hip. Regrettably, the patient has now contracted a bacterial infection at the surgical site. Can you identify which immune-mediated processes are at play to combat this infection?
Your Answer:
Correct Answer: B cell antigen-presentation
Explanation:The correct answer is B cell antigen presentation. This process helps the body produce a large number of antibodies that are specific to the invading pathogen. It’s important to note that B cells mature into plasma cells, which are responsible for antibody production.
The other options are incorrect. Eosinophils coordinate the body’s response to parasites, while macrophages do not produce antibodies. Megakaryocytes are the precursor cells to platelets and do not participate in antigen presentation. Neutrophils do not coordinate the destruction of parasites; this is primarily the role of eosinophils.
The adaptive immune response involves several types of cells, including helper T cells, cytotoxic T cells, B cells, and plasma cells. Helper T cells are responsible for the cell-mediated immune response and recognize antigens presented by MHC class II molecules. They express CD4, CD3, TCR, and CD28 and are a major source of IL-2. Cytotoxic T cells also participate in the cell-mediated immune response and recognize antigens presented by MHC class I molecules. They induce apoptosis in virally infected and tumor cells and express CD8 and CD3. Both helper T cells and cytotoxic T cells mediate acute and chronic organ rejection.
B cells are the primary cells of the humoral immune response and act as antigen-presenting cells. They also mediate hyperacute organ rejection. Plasma cells are differentiated from B cells and produce large amounts of antibody specific to a particular antigen. Overall, these cells work together to mount a targeted and specific immune response to invading pathogens or abnormal cells.
-
This question is part of the following fields:
- General Principles
-
-
Question 22
Incorrect
-
Tom, a 50-year-old man, visits his primary care physician to discuss his medications. He was recently hospitalized for a deep vein thrombosis (DVT) and was prescribed dabigatran to prevent future occurrences. Can you explain how this anticoagulant works?
The mechanism of action of dabigatran is its ability to inhibit thrombin, a key enzyme in the blood clotting process. By blocking thrombin, dabigatran prevents the formation of blood clots and reduces the risk of DVT and other thromboembolic events. Unlike traditional anticoagulants such as warfarin, dabigatran does not require regular monitoring and has fewer drug interactions. However, it may increase the risk of bleeding and should be used with caution in patients with renal impairment.Your Answer:
Correct Answer: Directly inhibits thrombin
Explanation:Dabigatran is a DOAC that directly inhibits thrombin, a clotting factor that converts fibrinogen to fibrin strands. This impairs clot formation and can be reversed with idarucizumab in severe bleeding.
Tranexamic acid inhibits the activation of plasminogen, which prevents the breakdown of fibrin clots and increases clotting. It is commonly used in menorrhagia.
Other DOAC medications, such as rivaroxaban, apixaban, and edoxaban, inhibit clotting factor Xa, which activates thrombin. These medications can be reversed with recombinant human factor Xa.
Warfarin is a vitamin K antagonist that inhibits the synthesis of clotting factors II, VII, IX, and X, as well as natural anticoagulants protein C and S. It initially increases the risk of clotting, so patients must take heparin injections when first starting warfarin.
Aspirin irreversibly inhibits COX, an enzyme that synthesizes thromboxanes, which promote platelet aggregation and vasoconstriction. By inhibiting thromboxane production, aspirin is effective in preventing myocardial infarction and stroke.
Direct oral anticoagulants (DOACs) are medications used to prevent stroke in non-valvular atrial fibrillation (AF), as well as for the prevention and treatment of venous thromboembolism (VTE). To be prescribed DOACs for stroke prevention, patients must have certain risk factors, such as a prior stroke or transient ischaemic attack, age 75 or older, hypertension, diabetes mellitus, or heart failure. There are four DOACs available, each with a different mechanism of action and method of excretion. Dabigatran is a direct thrombin inhibitor, while rivaroxaban, apixaban, and edoxaban are direct factor Xa inhibitors. The majority of DOACs are excreted either through the kidneys or the liver, with the exception of apixaban and edoxaban, which are excreted through the feces. Reversal agents are available for dabigatran and rivaroxaban, but not for apixaban or edoxaban.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 23
Incorrect
-
A woman in her 50s presents to the emergency department with an upper gastrointestinal bleed. The coeliac trunk supplies the arterial blood to the upper gastrointestinal tract. However, which gastrointestinal structure receives its primary blood supply from the superior mesenteric artery instead of the coeliac trunk?
Your Answer:
Correct Answer: Proximal jejunum
Explanation:The coeliac trunk provides blood supply to the foregut, which includes all structures from the gastro-oesophageal junction to the duodenal-jejunal flexure. However, the superior mesenteric artery’s jejunal branches supply blood to the entire jejunum.
Branches of the Abdominal Aorta
The abdominal aorta is a major blood vessel that supplies oxygenated blood to the abdominal organs and lower extremities. It gives rise to several branches that supply blood to various organs and tissues. These branches can be classified into two types: parietal and visceral.
The parietal branches supply blood to the walls of the abdominal cavity, while the visceral branches supply blood to the abdominal organs. The branches of the abdominal aorta include the inferior phrenic, coeliac, superior mesenteric, middle suprarenal, renal, gonadal, lumbar, inferior mesenteric, median sacral, and common iliac arteries.
The inferior phrenic artery arises from the upper border of the abdominal aorta and supplies blood to the diaphragm. The coeliac artery supplies blood to the liver, stomach, spleen, and pancreas. The superior mesenteric artery supplies blood to the small intestine, cecum, and ascending colon. The middle suprarenal artery supplies blood to the adrenal gland. The renal arteries supply blood to the kidneys. The gonadal arteries supply blood to the testes or ovaries. The lumbar arteries supply blood to the muscles and skin of the back. The inferior mesenteric artery supplies blood to the descending colon, sigmoid colon, and rectum. The median sacral artery supplies blood to the sacrum and coccyx. The common iliac arteries are the terminal branches of the abdominal aorta and supply blood to the pelvis and lower extremities.
Understanding the branches of the abdominal aorta is important for diagnosing and treating various medical conditions that affect the abdominal organs and lower extremities.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 24
Incorrect
-
A 22-year-old man is referred to a cardiologist by his family physician due to consistently high cholesterol levels in his blood tests. During the assessment, the cardiologist observes yellowish skin nodules around the patient's Achilles tendon and white outer regions of the iris. The cardiologist informs the patient that he has inherited the condition from his biological parents and that there is a 50% chance of passing it on to his offspring, regardless of his partner's status. The patient reports a paternal uncle who died at 31 due to a heart-related condition. The cardiologist recommends treatment to manage cholesterol levels and prevent future cardiovascular events. What is the most likely underlying pathology in this patient's condition?
Your Answer:
Correct Answer: Defective low-density lipoprotein receptors
Explanation:The patient’s symptoms and signs suggest that they may have one of the familial dyslipidemias, likely familial hypercholesterolemia. This is supported by the presence of Achilles tendon xanthomas and corneal arcus in a relatively young patient, as well as the cardiologist’s statement that there is a 50% chance of inheritance if the mother is normal, indicating an autosomal dominant inheritance pattern. Familial hypercholesterolemia is caused by defective or absent LDL receptors.
Other familial dyslipidemias include dysbetalipoproteinemia, which is caused by defective apolipoprotein E and has an autosomal recessive inheritance pattern, hypertriglyceridemia, which is caused by overproduction of VLDL and has an autosomal dominant inheritance pattern, and hyperchylomicronemia, which is caused by deficiency of lipoprotein lipase or apolipoprotein C-II and has an autosomal recessive inheritance pattern. Hyperchylomicronemia is not associated with a higher risk of atherosclerosis, unlike the other forms of familial dyslipidemia.
Familial Hypercholesterolaemia: Causes, Diagnosis, and Management
Familial hypercholesterolaemia (FH) is a genetic condition that affects approximately 1 in 500 people. It is an autosomal dominant disorder that results in high levels of LDL-cholesterol, which can lead to early cardiovascular disease if left untreated. FH is caused by mutations in the gene that encodes the LDL-receptor protein.
To diagnose FH, NICE recommends suspecting it as a possible diagnosis in adults with a total cholesterol level greater than 7.5 mmol/l and/or a personal or family history of premature coronary heart disease. For children of affected parents, testing should be arranged by age 10 if one parent is affected and by age 5 if both parents are affected.
The Simon Broome criteria are used for clinical diagnosis, which includes a total cholesterol level greater than 7.5 mmol/l and LDL-C greater than 4.9 mmol/l in adults or a total cholesterol level greater than 6.7 mmol/l and LDL-C greater than 4.0 mmol/l in children. Definite FH is diagnosed if there is tendon xanthoma in patients or first or second-degree relatives or DNA-based evidence of FH. Possible FH is diagnosed if there is a family history of myocardial infarction below age 50 years in second-degree relatives, below age 60 in first-degree relatives, or a family history of raised cholesterol levels.
Management of FH involves referral to a specialist lipid clinic and the use of high-dose statins as first-line treatment. CVD risk estimation using standard tables is not appropriate in FH as they do not accurately reflect the risk of CVD. First-degree relatives have a 50% chance of having the disorder and should be offered screening, including children who should be screened by the age of 10 years if there is one affected parent. Statins should be discontinued in women 3 months before conception due to the risk of congenital defects.
-
This question is part of the following fields:
- Renal System
-
-
Question 25
Incorrect
-
A 28-year-old man visits his GP with complaints of ongoing stiffness and pain in his lower back for the past 6 months. He reports no specific injury that could have caused his symptoms and mentions that he leads an active lifestyle. The pain is particularly severe in the morning but improves with physical activity. Following imaging tests, he is diagnosed with ankylosing spondylitis. What is the gene linked to this condition?
Your Answer:
Correct Answer: Human leucocyte antigen- B27
Explanation:Ankylosing spondylitis is associated with the HLA-B27 serotype, with approximately 90% of patients with the condition testing positive for it. Adrenal 21-hydroxylase deficiency is thought to be linked to HLA-B47, while HLA-DQ2 is associated with coeliac disease and the development of autoimmune diseases. HLA-DR4 is primarily linked to rheumatoid arthritis, while HLA-DR2 is associated with systemic lupus erythematosus, multiple sclerosis, and leprosy, but not ankylosing spondylitis.
Ankylosing spondylitis is a type of spondyloarthropathy that is associated with HLA-B27. It is more common in males aged 20-30 years old. Inflammatory markers such as ESR and CRP are often elevated, but normal levels do not rule out ankylosing spondylitis. HLA-B27 is not very useful in making the diagnosis as it is positive in 90% of patients with ankylosing spondylitis and 10% of normal patients. The most useful diagnostic tool is a plain x-ray of the sacroiliac joints, which may show subchondral erosions, sclerosis, squaring of lumbar vertebrae, bamboo spine, and syndesmophytes. If the x-ray is negative but suspicion for AS remains high, an MRI may be obtained to confirm the diagnosis. Spirometry may show a restrictive defect due to pulmonary fibrosis, kyphosis, and ankylosis of the costovertebral joints.
Management of ankylosing spondylitis includes regular exercise such as swimming, NSAIDs as first-line treatment, physiotherapy, and disease-modifying drugs such as sulphasalazine if there is peripheral joint involvement. Anti-TNF therapy such as etanercept and adalimumab may be given to patients with persistently high disease activity despite conventional treatments, according to the 2010 EULAR guidelines. Research is ongoing to determine whether anti-TNF therapies should be used earlier in the course of the disease.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 26
Incorrect
-
A child with severe hydrocephalus is exhibiting a lack of upward gaze. What specific area of the brain is responsible for this impairment?
Your Answer:
Correct Answer: Superior colliculi
Explanation:The superior colliculi play a crucial role in upward gaze and are located on both sides of the tectal or quadrigeminal plate. Damage or compression of the superior colliculi, such as in severe hydrocephalus, can result in the inability to look up, known as sunsetting of the eyes.
The optic chiasm serves as the connection between the anterior and posterior optic pathways. The nasal fibers of the optic nerves cross over at the chiasm, leading to monocular visual field deficits with anterior pathway lesions and binocular visual field deficits with posterior pathway lesions.
The lateral geniculate body in the thalamus is where the optic tract connects with the optic radiations, while the inferior colliculi and medial geniculate bodies are responsible for processing auditory stimuli.
Understanding the Diencephalon: An Overview of Brain Anatomy
The diencephalon is a part of the brain that is located between the cerebral hemispheres and the brainstem. It is composed of several structures, including the thalamus, hypothalamus, epithalamus, and subthalamus. Each of these structures plays a unique role in regulating various bodily functions and behaviors.
The thalamus is responsible for relaying sensory information from the body to the cerebral cortex, which is responsible for processing and interpreting this information. The hypothalamus, on the other hand, is involved in regulating a wide range of bodily functions, including hunger, thirst, body temperature, and sleep. It also plays a role in regulating the release of hormones from the pituitary gland.
The epithalamus is a small structure that is involved in regulating the sleep-wake cycle and the production of melatonin, a hormone that helps to regulate sleep. The subthalamus is involved in regulating movement and is part of the basal ganglia, a group of structures that are involved in motor control.
Overall, the diencephalon plays a crucial role in regulating many of the body’s essential functions and behaviors. Understanding its anatomy and function can help us better understand how the brain works and how we can maintain optimal health and well-being.
-
This question is part of the following fields:
- Neurological System
-
-
Question 27
Incorrect
-
A 26-year-old male patient complains of malaise, weight loss, and lymphadenopathy. After a lymph node biopsy, the histology report reveals the presence of granuloma formation and central necrosis. What could be the probable underlying cause?
Your Answer:
Correct Answer: Infection with Mycobacterium tuberculosis
Explanation:In TB, the presence of necrosis within granulomas is a common histological feature that suggests an infectious cause. On the other hand, Churg Strauss syndrome is a type of vasculitis that typically shows granulomas in its histological presentation, but necrosis is not commonly observed.
Understanding Tuberculosis: The Pathophysiology and Risk Factors
Tuberculosis is a bacterial infection caused by Mycobacterium tuberculosis. The pathophysiology of tuberculosis involves the migration of macrophages to regional lymph nodes, forming a Ghon complex. This complex leads to the formation of a granuloma, which is a collection of epithelioid histiocytes with caseous necrosis in the center. The inflammatory response is mediated by a type 4 hypersensitivity reaction. While healthy individuals can contain the disease, immunocompromised individuals are at risk of developing disseminated (miliary) TB.
Several risk factors increase the likelihood of developing tuberculosis. These include having lived in Asia, Latin America, Eastern Europe, or Africa for years, exposure to an infectious TB case, and being infected with HIV. Immunocompromised individuals, such as diabetics, patients on immunosuppressive therapy, malnourished individuals, or those with haematological malignancies, are also at risk. Additionally, silicosis and apical fibrosis increase the likelihood of developing tuberculosis. Understanding the pathophysiology and risk factors of tuberculosis is crucial in preventing and treating this infectious disease.
-
This question is part of the following fields:
- General Principles
-
-
Question 28
Incorrect
-
Which nerve among the following is accountable for voluntary control of the urethral sphincter?
Your Answer:
Correct Answer: Pudendal nerve
Explanation:The bladder is under autonomic control from the hypogastric plexuses, while voluntary control of the urethral sphincter is provided by the pudendal nerve.
The Pudendal Nerve and its Functions
The pudendal nerve is a nerve that originates from the S2, S3, and S4 nerve roots and exits the pelvis through the greater sciatic foramen. It then re-enters the perineum through the lesser sciatic foramen. This nerve provides innervation to the anal sphincters and external urethral sphincter, as well as cutaneous innervation to the perineum surrounding the anus and posterior vulva.
Late onset pudendal neuropathy may occur due to traction and compression of the pudendal nerve by the foetus during late pregnancy. This condition may contribute to the development of faecal incontinence. Understanding the functions of the pudendal nerve is important in diagnosing and treating conditions related to the perineum and surrounding areas.
-
This question is part of the following fields:
- Neurological System
-
-
Question 29
Incorrect
-
A 25-year-old man has recently come back from travelling around South America, particularly Brazil. He reports experiencing fever and sweating every few days, along with a headache and joint pain. Upon further inquiry, he confesses to having multiple mosquito bites during his vacation. What is the probable pathogen responsible for his symptoms?
Your Answer:
Correct Answer: Plasmodium falciparum
Explanation:The patient is exhibiting symptoms that are characteristic of falciparum malaria, including fluctuating temperatures over a period of three days, arthralgia, headache, and sweating. The key piece of information in the patient’s history is their exposure to mosquito bites in an area where malaria is prevalent. Based on these factors, the likely causative organism is falciparum malaria.
Understanding Falciparum Malaria and its Complications
Falciparum malaria is the most common and severe type of malaria. It is characterized by schizonts on a blood film, parasitaemia greater than 2%, hypoglycaemia, acidosis, temperature above 39°C, severe anaemia, and various complications. Complications of falciparum malaria include cerebral malaria, acute renal failure, acute respiratory distress syndrome, hypoglycaemia, and disseminated intravascular coagulation.
In areas where strains resistant to chloroquine are prevalent, the 2010 WHO guidelines recommend artemisinin-based combination therapies (ACTs) as first-line therapy for uncomplicated falciparum malaria. Examples of ACTs include artemether plus lumefantrine, artesunate plus amodiaquine, artesunate plus mefloquine, artesunate plus sulfadoxine-pyrimethamine, and dihydroartemisinin plus piperaquine.
For severe falciparum malaria, a parasite count of more than 2% usually requires parenteral treatment regardless of clinical state. The WHO now recommends intravenous artesunate over intravenous quinine. If the parasite count is greater than 10%, exchange transfusion should be considered. Shock may indicate coexistent bacterial septicaemia, as malaria rarely causes haemodynamic collapse.
-
This question is part of the following fields:
- General Principles
-
-
Question 30
Incorrect
-
At which of the following anatomical sites does latent tuberculosis most commonly reactivate?
Your Answer:
Correct Answer: Apex of the lung
Explanation:The lung apex is the most common site for TB reactivation. This is because it has better oxygenation compared to other areas, which facilitates the rapid multiplication of mycobacteria and their subsequent spread both locally and distantly.
Understanding Tuberculosis: The Pathophysiology and Risk Factors
Tuberculosis is a bacterial infection caused by Mycobacterium tuberculosis. The pathophysiology of tuberculosis involves the migration of macrophages to regional lymph nodes, forming a Ghon complex. This complex leads to the formation of a granuloma, which is a collection of epithelioid histiocytes with caseous necrosis in the center. The inflammatory response is mediated by a type 4 hypersensitivity reaction. While healthy individuals can contain the disease, immunocompromised individuals are at risk of developing disseminated (miliary) TB.
Several risk factors increase the likelihood of developing tuberculosis. These include having lived in Asia, Latin America, Eastern Europe, or Africa for years, exposure to an infectious TB case, and being infected with HIV. Immunocompromised individuals, such as diabetics, patients on immunosuppressive therapy, malnourished individuals, or those with haematological malignancies, are also at risk. Additionally, silicosis and apical fibrosis increase the likelihood of developing tuberculosis. Understanding the pathophysiology and risk factors of tuberculosis is crucial in preventing and treating this infectious disease.
-
This question is part of the following fields:
- General Principles
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)