00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - Which is least likely to cause hyperuricaemia? ...

    Incorrect

    • Which is least likely to cause hyperuricaemia?

      Your Answer: Severe psoriasis

      Correct Answer: Amiodarone

      Explanation:

      The drugs that cause hyperuricaemia due to reduced urate excretion can be remembered using the mnemonic Can’t leap, which stands for Ciclosporin, Alcohol, Nicotinic acid, Thiazides, Loop diuretics, Ethambutol, Aspirin, and Pyrazinamide. Additionally, decreased tubular secretion of urate can occur in patients with acidosis, such as those with diabetic ketoacidosis, ethanol or salicylate intoxication, or starvation ketosis, as the organic acids that accumulate in these conditions compete with urate for tubular secretion.

      Understanding Hyperuricaemia

      Hyperuricaemia is a condition characterized by elevated levels of uric acid in the blood. This can be caused by an increase in cell turnover or a decrease in the excretion of uric acid by the kidneys. While some individuals with hyperuricaemia may not experience any symptoms, it can be associated with other health conditions such as hyperlipidaemia, hypertension, and the metabolic syndrome.

      There are several factors that can contribute to the development of hyperuricaemia. Increased synthesis of uric acid can occur in conditions such as Lesch-Nyhan disease, myeloproliferative disorders, and with a diet rich in purines. On the other hand, decreased excretion of uric acid can be caused by drugs like low-dose aspirin, diuretics, and pyrazinamide, as well as pre-eclampsia, alcohol consumption, renal failure, and lead exposure.

      It is important to understand the underlying causes of hyperuricaemia in order to properly manage and treat the condition. Regular monitoring of uric acid levels and addressing any contributing factors can help prevent complications such as gout and kidney stones.

    • This question is part of the following fields:

      • Renal System
      17.7
      Seconds
  • Question 2 - A 42-year-old woman visits your clinic to review the results of her ambulatory...

    Correct

    • A 42-year-old woman visits your clinic to review the results of her ambulatory blood pressure test, which showed an average blood pressure of 148/93 mmHg. As a first-line treatment for hypertension in this age group, you suggest starting antihypertensive medication, specifically ACE inhibitors. These medications work by inhibiting the action of angiotensin-converting-enzyme, which converts angiotensin I to angiotensin II. Renin catalyzes the hydrolysis of angiotensinogen to produce angiotensin I. What type of kidney cell releases renin?

      Your Answer: Juxtaglomerular cells

      Explanation:

      The kidneys have several specialized cells that play important roles in their function. The juxtaglomerular cells, found in the walls of the afferent arterioles, produce renin which is a key factor in the renin-angiotensin-aldosterone system. Podocytes, located in the Bowman’s capsule, wrap around the glomerular capillaries and help filter blood through their filtration slits. The cells lining the proximal tubule are responsible for absorption and secretion of various substances. The macula densa, located in the cortical thick ascending limb of the loop of Henle, detects sodium chloride levels and can trigger the release of renin and vasodilation of the afferent arterioles if levels are low.

      Renin and its Factors

      Renin is a hormone that is produced by juxtaglomerular cells. Its main function is to convert angiotensinogen into angiotensin I. There are several factors that can stimulate or reduce the secretion of renin.

      Factors that stimulate renin secretion include hypotension, which can cause reduced renal perfusion, hyponatremia, sympathetic nerve stimulation, catecholamines, and erect posture. On the other hand, there are also factors that can reduce renin secretion, such as beta-blockers and NSAIDs.

      It is important to understand the factors that affect renin secretion as it plays a crucial role in regulating blood pressure and fluid balance in the body. By knowing these factors, healthcare professionals can better manage and treat conditions related to renin secretion.

    • This question is part of the following fields:

      • Renal System
      19.6
      Seconds
  • Question 3 - You have been asked to take a history from a patient in a...

    Incorrect

    • You have been asked to take a history from a patient in a breast clinic at the hospital. You clerk a 68-year-old woman, who had a right-sided mastectomy for invasive ductal carcinoma 3 years ago; she has now presented for follow-up. From your history, you elicit that she has had no symptoms of recurrence, and is still currently taking an aromatase inhibitor called letrozole, due to the findings of immunohistochemistry when the biopsy was taken.

      What is the mechanism of action of this drug?

      Your Answer: Negative feedback on the HPO axis

      Correct Answer: Inhibition of the conversion of testosterone to oestradiol

      Explanation:

      Breast cancers that are positive for oestrogen receptors can be treated by reducing oestrogen levels, which can lower the risk of recurrence. Aromatase inhibitors are commonly prescribed to postmenopausal women with oestrogen-positive breast cancer for a period of 5 years, but they can cause side effects such as a decrease in bone density and an increase in osteoporosis risk. Tamoxifen is another medication that can modulate the effect of oestrogen on the breast and is usually prescribed to premenopausal women. Letrozole, on the other hand, does not fall into this category and does not exhibit negative feedback on the HPO axis. Trastuzumab is a drug that binds to HER2 receptors and is used for breast cancers that have a positive HER2 receptor status. Letrozole may be given alongside this drug if the tumour is also oestrogen receptor positive. Letrozole is not a selective progesterone receptor modulator, unlike drugs such as ulipristal acetate.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      37.2
      Seconds
  • Question 4 - A 45-year-old obese female patient presents with persistent abdominal pain in her right...

    Incorrect

    • A 45-year-old obese female patient presents with persistent abdominal pain in her right upper quadrant that extends to her right shoulder, along with nausea and vomiting. During the physical examination, a palpable mass is detected in her right upper quadrant and she exhibits a positive Murphy's sign.

      What abnormalities are expected to be observed in her liver function test (LFT) results?

      Your Answer: ALT 205 u/L, AST 198 u/L, ALP 549 u/L

      Correct Answer: ALT 113 u/L, AST 129 u/L, ALP 549 u/L

      Explanation:

      Elevated levels of alkaline phosphatase enzymes and slightly elevated liver transaminase enzymes indicate the possibility of biliary disease. Based on the patient’s medical history, it is likely that she has cholecystitis, which can lead to biliary obstruction and post-hepatic jaundice. In cholestatic diseases, the ALP level is typically much higher than liver transaminases. If the liver transaminases are elevated to the same or greater extent than ALP, it suggests a hepatocellular cause of disease, such as alcoholic liver disease or viral hepatitis. Normal or decreased liver function test results are unlikely in cases of cholestatic diseases.

      Understanding Alkaline Phosphatase and its Causes

      Alkaline phosphatase (ALP) is an enzyme found in various tissues throughout the body, including the liver, bones, and intestines. When the levels of ALP in the blood are elevated, it can indicate a potential health issue. The causes of raised ALP can be divided into two categories based on the calcium level in the blood.

      If both ALP and calcium levels are high, it may indicate bone metastases, hyperparathyroidism, osteomalacia, or renal failure. On the other hand, if ALP is high but calcium is low, it may be due to cholestasis, hepatitis, fatty liver, neoplasia, Paget’s disease, or physiological factors such as pregnancy, growing children, or healing fractures.

      It is important to note that elevated ALP levels do not necessarily indicate a serious health problem, and further testing may be needed to determine the underlying cause. Regular monitoring of ALP levels can help detect potential health issues early on and allow for prompt treatment.

    • This question is part of the following fields:

      • Renal System
      23
      Seconds
  • Question 5 - A 62-year-old male with type 2 diabetes is urgently referred by his GP...

    Incorrect

    • A 62-year-old male with type 2 diabetes is urgently referred by his GP due to poor glycaemic control for the past three days, with home blood glucose readings around 25 mmol/L. He is currently being treated with metformin and lisinopril. Yesterday, his GP checked his U+E and found that his serum sodium was 138 mmol/L (137-144), serum potassium was 5.8 mmol/L (3.5-4.9), serum urea was 20 mmol/L (2.5-7.5), and serum creatinine was 350 µmol/L (60-110). On examination, he has a temperature of 39°C, a pulse of 108 bpm, a blood pressure of 96/60 mmHg, a respiratory rate of 32/min, and oxygen saturations of 99% on air. His cardiovascular, respiratory, and abdominal examination are otherwise normal. Further investigations reveal a plasma glucose level of 17 mmol/L (3.0-6.0) and urine analysis showing blood ++ and protein ++, but ketones are negative. What is the likely diagnosis?

      Your Answer: Diabetic ketoacidosis

      Correct Answer: Sepsis

      Explanation:

      The causes of septic shock are important to understand in order to provide appropriate treatment and improve patient outcomes. Septic shock can cause fever, hypotension, and renal failure, as well as tachypnea due to metabolic acidosis. However, it is crucial to rule out other conditions such as hyperosmolar hyperglycemic state or diabetic ketoacidosis, which have different symptoms and diagnostic criteria.

      While metformin can contribute to acidosis, it is unlikely to be the primary cause in this case. Diabetic patients may be prone to renal tubular acidosis, but this is not likely to be the cause of an acute presentation. Instead, a type IV renal tubular acidosis, characterized by hyporeninaemic hypoaldosteronism, may be a more likely association.

      Overall, it is crucial to carefully evaluate patients with septic shock and consider all possible causes of their symptoms. By ruling out other conditions and identifying the underlying cause of the acidosis, healthcare providers can provide targeted treatment and improve patient outcomes. Further research and education on septic shock and its causes can also help to improve diagnosis and treatment in the future.

    • This question is part of the following fields:

      • Renal System
      15.7
      Seconds
  • Question 6 - A 58-year-old man is having a radical nephrectomy performed through a posterior approach....

    Correct

    • A 58-year-old man is having a radical nephrectomy performed through a posterior approach. What is the structure that is most likely to be encountered during the surgical procedure?

      Your Answer: 12th rib

      Explanation:

      During a posterior approach, the kidneys may come across the 11th and 12th ribs which are located at the back. It is important to note that a potential complication of this surgery is the occurrence of a pneumothorax.

      Renal Anatomy: Understanding the Structure and Relations of the Kidneys

      The kidneys are two bean-shaped organs located in a deep gutter alongside the vertebral bodies. They measure about 11cm long, 5cm wide, and 3 cm thick, with the left kidney usually positioned slightly higher than the right. The upper pole of both kidneys approximates with the 11th rib, while the lower border is usually alongside L3. The kidneys are surrounded by an outer cortex and an inner medulla, which contains pyramidal structures that terminate at the renal pelvis into the ureter. The renal sinus lies within the kidney and contains branches of the renal artery, tributaries of the renal vein, major and minor calyces, and fat.

      The anatomical relations of the kidneys vary depending on the side. The right kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, and transversus abdominis, while the left kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, transversus abdominis, stomach, pancreas, spleen, and distal part of the small intestine. Each kidney and suprarenal gland is enclosed within a common layer of investing fascia, derived from the transversalis fascia, which is divided into anterior and posterior layers (Gerotas fascia).

      At the renal hilum, the renal vein lies most anteriorly, followed by the renal artery (an end artery), and the ureter lies most posteriorly. Understanding the structure and relations of the kidneys is crucial in diagnosing and treating renal diseases and disorders.

    • This question is part of the following fields:

      • Renal System
      14.3
      Seconds
  • Question 7 - A 63-year-old man is seen in the oncology clinic. He is being monitored...

    Incorrect

    • A 63-year-old man is seen in the oncology clinic. He is being monitored for known breast cancer. His recent mammogram and biopsy suggest an increased disease burden. It is decided to initiate Tamoxifen therapy while awaiting a mastectomy.

      What is the mechanism of action of this new medication?

      Your Answer: Steroidal anti-androgen

      Correct Answer: Androgen receptor blocker

      Explanation:

      Bicalutamide is a medication that blocks the androgen receptor and is commonly used to treat prostate cancer. Abiraterone, on the other hand, is an androgen synthesis inhibitor that is prescribed to patients with metastatic prostate cancer who have not responded to androgen deprivation therapy. GnRH agonists like goserelin can also be used to treat prostate cancer by reducing the release of gonadotrophins and inhibiting androgen production. While cyproterone acetate is a steroidal anti-androgen, it is not as commonly used as non-steroidal anti-androgens like bicalutamide.

      Prostate cancer management varies depending on the stage of the disease and the patient’s life expectancy and preferences. For localized prostate cancer (T1/T2), treatment options include active monitoring, watchful waiting, radical prostatectomy, and radiotherapy (external beam and brachytherapy). For localized advanced prostate cancer (T3/T4), options include hormonal therapy, radical prostatectomy, and radiotherapy. Patients may develop proctitis and are at increased risk of bladder, colon, and rectal cancer following radiotherapy for prostate cancer.

      In cases of metastatic prostate cancer, reducing androgen levels is a key aim of treatment. A combination of approaches is often used, including anti-androgen therapy, synthetic GnRH agonist or antagonists, bicalutamide, cyproterone acetate, abiraterone, and bilateral orchidectomy. GnRH agonists, such as Goserelin (Zoladex), initially cause a rise in testosterone levels before falling to castration levels. To prevent a rise in testosterone, anti-androgens are often used to cover the initial therapy. GnRH antagonists, such as degarelix, are being evaluated to suppress testosterone while avoiding the flare phenomenon. Chemotherapy with docetaxel is also an option for the treatment of hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after androgen deprivation therapy has failed, and before chemotherapy is indicated.

    • This question is part of the following fields:

      • Renal System
      18.4
      Seconds
  • Question 8 - A 65-year-old woman visits her GP after experiencing painless frank haematuria. She reports...

    Incorrect

    • A 65-year-old woman visits her GP after experiencing painless frank haematuria. She reports that this happened two days ago and her urine looked like port wine. She has a smoking history of 30 pack-years and denies drinking alcohol.

      The patient is urgently referred for cystoscopy, which reveals a 2x3cm ulcerated lesion adjacent to the left ureteric orifice. The lesion is biopsied and diagnosed as transitional cell carcinoma.

      Which venous structure transmits blood from the tumour to the internal iliac veins?

      Your Answer:

      Correct Answer: Vesicouterine plexus

      Explanation:

      The vesicouterine plexus is responsible for draining the bladder in females.

      Bladder Anatomy and Innervation

      The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 9 - A 65-year-old man is undergoing assessment for polycythemia and has no history of...

    Incorrect

    • A 65-year-old man is undergoing assessment for polycythemia and has no history of smoking. What type of solid-organ cancer could be a possible cause?

      Your Answer:

      Correct Answer: Renal cell carcinoma

      Explanation:

      Renal cell carcinoma has the potential to secrete various hormones such as erythropoietin, PTHrP, renin, or ACTH. This can lead to secondary polycythemia, hypercalcemia, or other related conditions. On the other hand, small cell lung cancer can cause ectopic secretion of ACTH or ADH, but not erythropoietin. Pituitary tumors, on the other hand, may secrete prolactin.

      Renal cell cancer, also known as hypernephroma, is a primary renal neoplasm that accounts for 85% of cases. It originates from the proximal renal tubular epithelium and is commonly associated with smoking and conditions such as von Hippel-Lindau syndrome and tuberous sclerosis. The clear cell subtype is the most prevalent, comprising 75-85% of tumors.

      Renal cell cancer is more common in middle-aged men and may present with classical symptoms such as haematuria, loin pain, and an abdominal mass. Other features include endocrine effects, such as the secretion of erythropoietin, parathyroid hormone-related protein, renin, and ACTH. Metastases are present in 25% of cases at presentation, and paraneoplastic syndromes such as Stauffer syndrome may also occur.

      The T category criteria for renal cell cancer are based on tumor size and extent of invasion. Management options include partial or total nephrectomy, depending on the tumor size and extent of disease. Patients with a T1 tumor are typically offered a partial nephrectomy, while alpha-interferon and interleukin-2 may be used to reduce tumor size and treat metastases. Receptor tyrosine kinase inhibitors such as sorafenib and sunitinib have shown superior efficacy compared to interferon-alpha.

      In summary, renal cell cancer is a common primary renal neoplasm that is associated with various risk factors and may present with classical symptoms and endocrine effects. Management options depend on the extent of disease and may include surgery and targeted therapies.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 10 - A 26-year-old male presents to his general practitioner with polyuria. He complains that...

    Incorrect

    • A 26-year-old male presents to his general practitioner with polyuria. He complains that it has been affecting his social life, as he often has to go to the bathroom in the middle of social situations. The patient mentions that he notices this mostly when he drinks alcohol with his friends. He is otherwise feeling well. There is no significant past medical history and he is not on any regular medication. Clinical examinations are normal. A urine dipstick test shows no abnormalities. Blood results show no electrolyte abnormalities. The general practitioner explains that his symptoms are likely related to alcohol intake, as alcohol can cause polyuria.

      What is the most likely physiological explanation for this patient's polyuria?

      Your Answer:

      Correct Answer: Suppressed antidiuretic hormone secretion

      Explanation:

      Polyuria in the patient is most likely caused by alcohol bingeing, which can suppress ADH secretion in the posterior pituitary gland. This leads to decreased water reabsorption in the kidneys and subsequent polyuria. Other potential causes such as ADH resistance from chronic lithium ingestion, diabetes insipidus, osmotic diuresis from hyperglycemia, and chronic kidney disease are less likely based on the patient’s symptoms and investigative findings.

      Polyuria, or excessive urination, can be caused by a variety of factors. A recent review in the BMJ categorizes these causes by their frequency of occurrence. The most common causes of polyuria include the use of diuretics, caffeine, and alcohol, as well as diabetes mellitus, lithium, and heart failure. Less common causes include hypercalcaemia and hyperthyroidism, while rare causes include chronic renal failure, primary polydipsia, and hypokalaemia. The least common cause of polyuria is diabetes insipidus, which occurs in less than 1 in 10,000 cases. It is important to note that while these frequencies may not align with exam questions, understanding the potential causes of polyuria can aid in diagnosis and treatment.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 11 - An 80-year-old man visits his GP for a follow up appointment after starting...

    Incorrect

    • An 80-year-old man visits his GP for a follow up appointment after starting trimethoprim for a urinary tract infection 7 days ago. He mentions that his urinary symptoms have gone but that he has been feeling generally tired and weak for the last 4 weeks (before the urinary tract infection). He asks if this could be related to the new medication he started 5 weeks ago. Upon reviewing his medical history, you see that he was started on ramipril 5 weeks ago. He also mentions that his osteoarthritic pain has been quite bad recently, which caused him to miss his most recent medication review appointment, but he has been taking more paracetamol and ibuprofen than usual. Due to the combination of medication and his vague symptoms, you decide to perform an ECG. The ECG shows tall, tented T waves, prolonged PR interval, and bradycardia. What is the underlying cause of these ECG changes?

      Your Answer:

      Correct Answer: Hyperkalaemia

      Explanation:

      The patient is most likely suffering from hyperkalaemia, as evidenced by their medication history which includes an increase in potassium-raising drugs such as trimethoprim, ramipril, and ibuprofen. The ECG results also show classic signs of hyperkalaemia, including tall tented T waves, bradycardia, and a prolonged PR interval.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 12 - A 58-year-old man is having a right nephrectomy. At what level does the...

    Incorrect

    • A 58-year-old man is having a right nephrectomy. At what level does the renal artery typically branch off from the abdominal aorta during this procedure?

      Your Answer:

      Correct Answer: L2

      Explanation:

      The level with L2 is where the renal arteries typically branch off from the aorta.

      Anatomy of the Renal Arteries

      The renal arteries are blood vessels that supply the kidneys with oxygenated blood. They are direct branches off the aorta and enter the kidney at the hilum. The right renal artery is longer than the left renal artery. The renal vein, artery, and pelvis also enter the kidney at the hilum.

      The right renal artery is related to the inferior vena cava, right renal vein, head of the pancreas, and descending part of the duodenum. On the other hand, the left renal artery is related to the left renal vein and tail of the pancreas.

      In some cases, there may be accessory arteries, mainly on the left side. These arteries usually pierce the upper or lower part of the kidney instead of entering at the hilum.

      Before reaching the hilum, each renal artery divides into four or five segmental branches that supply each pyramid and cortex. These segmental branches then divide within the sinus into lobar arteries. Each vessel also gives off small inferior suprarenal branches to the suprarenal gland, ureter, and surrounding tissue and muscles.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 13 - An 80-year-old woman is recuperating in the hospital after undergoing a right hemicolectomy....

    Incorrect

    • An 80-year-old woman is recuperating in the hospital after undergoing a right hemicolectomy. She has a medical history of hypertension, hypercholesterolemia, and a previous pulmonary embolism. On the fifth day following the surgery, she experiences confusion and has a NEWS2 score of 7, leading to suspicion of sepsis and initiation of the sepsis 6 protocol. The following day, she is diagnosed with AKI, with a sudden rise in serum creatinine and potassium levels.

      Which medication(s) should be discontinued due to the risk of exacerbating renal function?

      Your Answer:

      Correct Answer: Gentamicin

      Explanation:

      Aminoglycosides, such as gentamicin, should be discontinued in cases of AKI as they may exacerbate renal function. Gentamicin may have been prescribed to treat suspected sepsis. Other medications that should be stopped for the same reason include NSAIDs, ACE inhibitors, angiotensin II receptor antagonists, and diuretics. Atenolol is safe to continue in AKI, but not recommended for use in asthma. Atorvastatin is also safe to continue in AKI, but not during pregnancy or breastfeeding. Paracetamol is generally safe to continue in AKI and is also safe during pregnancy and breastfeeding, unlike NSAIDs.

      Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.

      The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.

      Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 14 - An elderly man of 74 years old complains of symptoms and displays signs...

    Incorrect

    • An elderly man of 74 years old complains of symptoms and displays signs of benign prostatic hyperplasia. Which structure is most likely to be enlarged in his case?

      Your Answer:

      Correct Answer: Median lobe of the prostate

      Explanation:

      Prostate carcinoma commonly develops in the posterior lobe, while BPH often causes enlargement of the median lobe. The anterior lobe, which contains minimal glandular tissue, is rarely affected by enlargement.

      Benign prostatic hyperplasia (BPH) is a common condition that affects older men, with around 50% of 50-year-old men showing evidence of BPH and 30% experiencing symptoms. The risk of BPH increases with age, with around 80% of 80-year-old men having evidence of the condition. Ethnicity also plays a role, with black men having a higher risk than white or Asian men. BPH typically presents with lower urinary tract symptoms (LUTS), which can be categorised into obstructive (voiding) symptoms and irritative (storage) symptoms. Complications of BPH can include urinary tract infections, retention, and obstructive uropathy.

      Assessment of BPH may involve dipstick urine testing, U&Es, and PSA testing if obstructive symptoms are present or if the patient is concerned about prostate cancer. A urinary frequency-volume chart and the International Prostate Symptom Score (IPSS) can also be used to assess the severity of LUTS and their impact on quality of life. Management options for BPH include watchful waiting, alpha-1 antagonists, 5 alpha-reductase inhibitors, combination therapy, and surgery. Alpha-1 antagonists are considered first-line for moderate-to-severe voiding symptoms and can improve symptoms in around 70% of men, but may cause adverse effects such as dizziness and dry mouth. 5 alpha-reductase inhibitors may slow disease progression and reduce prostate volume, but can cause adverse effects such as erectile dysfunction and reduced libido. Combination therapy may be used for bothersome moderate-to-severe voiding symptoms and prostatic enlargement. Antimuscarinic drugs may be tried for persistent storage symptoms. Surgery, such as transurethral resection of the prostate (TURP), may also be an option.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 15 - A 35-year-old man comes to you with complaints of pedal oedema, frothy urine...

    Incorrect

    • A 35-year-old man comes to you with complaints of pedal oedema, frothy urine and decreased urine output. He has no significant medical history. You suspect that the patient's nephrotic syndrome may be caused by a common form of idiopathic glomerulonephritis that affects adults.

      What would be the most helpful initial test to confirm this particular diagnosis?

      Your Answer:

      Correct Answer: Anti-phospholipase A2 antibodies

      Explanation:

      Idiopathic membranous glomerulonephritis is believed to be associated with anti-phospholipase A2 antibodies. This condition is a common cause of nephrotic syndrome in adults, and since the patient has no other relevant medical history, an idiopathic cause is likely. To confirm the diagnosis, measuring anti-phospholipase A2 levels is recommended.

      Testing for ASOT would suggest post-streptococcal glomerulonephritis (PSGN), which is more common in children and typically presents with an acute nephritic picture rather than nephrotic syndrome. Therefore, this is not the most likely diagnosis.

      While dyslipidaemia is commonly found in nephrotic syndrome, confirming it would not help confirm the suspected diagnosis of idiopathic membranous glomerulonephritis.

      Although acute kidney injury (AKI) can occur in individuals with nephrotic syndrome, assessing renal function is unlikely to help diagnose membranous glomerulonephritis.

      While assessing the protein content in a sample may be useful in diagnosing nephrotic syndrome, it is not specific to membranous glomerulonephritis.

      Membranous glomerulonephritis is the most common type of glomerulonephritis in adults and is the third leading cause of end-stage renal failure. It typically presents with proteinuria or nephrotic syndrome. A renal biopsy will show a thickened basement membrane with subepithelial electron dense deposits, creating a spike and dome appearance. The condition can be caused by various factors, including infections, malignancy, drugs, autoimmune diseases, and idiopathic reasons.

      Management of membranous glomerulonephritis involves the use of ACE inhibitors or ARBs to reduce proteinuria and improve prognosis. Immunosuppression may be necessary for patients with severe or progressive disease, but many patients spontaneously improve. Corticosteroids alone are not effective, and a combination of corticosteroid and another agent such as cyclophosphamide is often used. Anticoagulation may be considered for high-risk patients.

      The prognosis for membranous glomerulonephritis follows the rule of thirds: one-third of patients experience spontaneous remission, one-third remain proteinuric, and one-third develop end-stage renal failure. Good prognostic factors include female sex, young age at presentation, and asymptomatic proteinuria of a modest degree at the time of diagnosis.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 16 - A 79-year-old male is admitted to hospital with dehydration. Blood tests are sent...

    Incorrect

    • A 79-year-old male is admitted to hospital with dehydration. Blood tests are sent to assess his renal function. The results are below. He is diagnosed with an acute kidney injury.

      Na+ 143 mmol/l
      K+ 4.8 mmol/l
      Urea 32 mmol/l
      Creatinine 383 mmol/l
      eGFR 15 ml/min

      What electrolyte should be monitored closely?

      Your Answer:

      Correct Answer: Potassium

      Explanation:

      The nephron plays a crucial role in maintaining the balance of electrolytes in the bloodstream, particularly potassium and hydrogen ions, which are regulated in the distal convoluted tubule (DCT) and collecting duct (CD).

      Dehydration-induced acute kidney injury (AKI) is considered a pre-renal cause that reduces the glomerular filtration rate (GFR). In response, the kidney attempts to reabsorb as much fluid as possible to compensate for the body’s fluid depletion. As a result, minimal filtrate reaches the DCT and CD, leading to reduced potassium excretion. High levels of potassium can be extremely hazardous, especially due to its impact on the myocardium. Therefore, monitoring potassium levels is crucial in such situations, which can be done quickly through a venous blood gas (VBG) test.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 17 - A 9-year-old girl was brought to the clinic by her father who has...

    Incorrect

    • A 9-year-old girl was brought to the clinic by her father who has been worried about increasing 'swelling around her eyes and legs' over the past few weeks. She is otherwise healthy. Upon further inquiry, her father reports no blood in her urine but noticed that it is more foamy than usual. A urinalysis shows severe proteinuria. The girl is referred for a kidney biopsy and eventually started on prednisolone based on the suspected diagnosis. What is the most probable result of the biopsy?

      Your Answer:

      Correct Answer: Podocyte effacement with electron microscopy

      Explanation:

      The patient’s symptoms suggest that they may be suffering from nephrotic syndrome, which is characterized by periorbital and peripheral edema, as well as severe proteinuria. In young children, the most common cause of nephrotic syndrome is Minimal Change Disease, which can be identified through podocyte effacement on biopsy using electron microscopy. Fortunately, most cases of this disease in young children respond well to steroid treatment. Other potential diagnoses include membranous glomerulonephritis, Goodpasture syndrome, and focal segmental glomerulosclerosis.

      Minimal change disease is a condition that typically presents as nephrotic syndrome, with children accounting for 75% of cases and adults accounting for 25%. While most cases are idiopathic, a cause can be found in around 10-20% of cases, such as drugs like NSAIDs and rifampicin, Hodgkin’s lymphoma, thymoma, or infectious mononucleosis. The pathophysiology of the disease involves T-cell and cytokine-mediated damage to the glomerular basement membrane, resulting in polyanion loss and a reduction of electrostatic charge, which increases glomerular permeability to serum albumin.

      The features of minimal change disease include nephrotic syndrome, normotension (hypertension is rare), and highly selective proteinuria, where only intermediate-sized proteins like albumin and transferrin leak through the glomerulus. Renal biopsy shows normal glomeruli on light microscopy, while electron microscopy shows fusion of podocytes and effacement of foot processes.

      Management of minimal change disease involves oral corticosteroids, which are effective in 80% of cases. For steroid-resistant cases, cyclophosphamide is the next step. The prognosis for the disease is generally good, although relapse is common. Roughly one-third of patients have just one episode, one-third have infrequent relapses, and one-third have frequent relapses that stop before adulthood.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 18 - A 70-year-old man visits the endocrinology clinic complaining of muscle cramps, headaches, and...

    Incorrect

    • A 70-year-old man visits the endocrinology clinic complaining of muscle cramps, headaches, and lethargy. During the clinic visit, his vital signs are heart rate 80/min, respiratory rate 18/min, blood pressure 150/100 mmHg, temperature 36.5ºC, and saturations 99% on air. Recent blood tests reveal:

      - Na+ 147 mmol/L (135 - 145)
      - K+ 3.2 mmol/L (3.5 - 5.0)
      - Bicarbonate 28 mmol/L (22 - 29)
      - Urea 6.0 mmol/L (2.0 - 7.0)
      - Creatinine 95 µmol/L (55 - 120)

      An adrenal mass is detected on his abdominal CT scan. Can you identify where the hormone responsible for his symptoms is produced?

      Your Answer:

      Correct Answer: Zona glomerulosa

      Explanation:

      The correct answer is the zona glomerulosa. This patient is experiencing symptoms of hyperaldosteronism, which is likely caused by an adenoma in the zona glomerulosa, as indicated by the mass seen on CT scan (also known as Conn’s syndrome). The adenoma stimulates the production of aldosterone, leading to hypertension and hypokalemia.

      The adrenal medulla produces catecholamines, such as adrenaline and noradrenaline.

      The juxtaglomerular apparatus is located in the kidney and produces renin in response to decreased renal perfusion.

      The zona fasciculata is the middle layer of the adrenal cortex and is responsible for producing glucocorticoids, such as cortisol.

      The zona reticularis is the innermost layer of the adrenal cortex and produces androgens, such as dehydroepiandrosterone (DHEA).

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 19 - A 28-year-old female patient presents with haemoptysis and is diagnosed with metastatic tumour...

    Incorrect

    • A 28-year-old female patient presents with haemoptysis and is diagnosed with metastatic tumour in the lung parenchyma. Upon biopsy, the histology reveals clear cells. What is the probable origin of the primary site?

      Your Answer:

      Correct Answer: Kidney

      Explanation:

      Renal cell cancer includes a subtype known as clear cell tumours, which exhibit distinct genetic alterations located on chromosome 3.

      Renal Lesions: Types, Features, and Treatments

      Renal lesions refer to abnormal growths or masses that develop in the kidneys. There are different types of renal lesions, each with its own disease-specific features and treatment options. Renal cell carcinoma is the most common renal tumor, accounting for 85% of cases. It often presents with haematuria and may cause hypertension and polycythaemia as paraneoplastic features. Treatment usually involves radical or partial nephrectomy.

      Nephroblastoma, also known as Wilms tumor, is a rare childhood tumor that accounts for 80% of all genitourinary malignancies in those under the age of 15 years. It often presents with a mass and hypertension. Diagnostic workup includes ultrasound and CT scanning, and treatment involves surgical resection combined with chemotherapy. Neuroblastoma is the most common extracranial tumor of childhood, with up to 80% occurring in those under 4 years of age. It is a tumor of neural crest origin and may be diagnosed using MIBG scanning. Treatment involves surgical resection, radiotherapy, and chemotherapy.

      Transitional cell carcinoma accounts for 90% of lower urinary tract tumors but only 10% of renal tumors. It often presents with painless haematuria and may be caused by occupational exposure to industrial dyes and rubber chemicals. Diagnosis and staging are done with CT IVU, and treatment involves radical nephroureterectomy. Angiomyolipoma is a hamartoma type lesion that occurs sporadically in 80% of cases and in those with tuberous sclerosis in the remaining cases. It is composed of blood vessels, smooth muscle, and fat and may cause massive bleeding in 10% of cases. Surgical resection is required for lesions larger than 4 cm and causing symptoms.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 20 - A middle-aged woman presents with collapse and weakness on her left side. Her...

    Incorrect

    • A middle-aged woman presents with collapse and weakness on her left side. Her husband reports that she has a medical history of hyperthyroidism, diabetes, and autosomal dominant polycystic kidney disease, but no known drug allergies. A CT scan of her head reveals a significant intracerebral bleed on the left side. What is the probable cause of the bleed?

      Your Answer:

      Correct Answer: Ruptured berry aneurysm

      Explanation:

      Autosomal dominant polycystic kidney disease increases the risk of brain haemorrhage due to ruptured berry aneurysms.

      Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited kidney disease that affects 1 in 1,000 Caucasians. The disease is caused by mutations in two genes, PKD1 and PKD2, which produce polycystin-1 and polycystin-2 respectively. ADPKD type 1 accounts for 85% of cases, while ADPKD type 2 accounts for 15% of cases. ADPKD type 1 is caused by a mutation in the PKD1 gene on chromosome 16, while ADPKD type 2 is caused by a mutation in the PKD2 gene on chromosome 4. ADPKD type 1 tends to present with renal failure earlier than ADPKD type 2.

      To screen for ADPKD in relatives of affected individuals, an abdominal ultrasound is recommended. The diagnostic criteria for ultrasound include the presence of two cysts, either unilateral or bilateral, if the individual is under 30 years old. If the individual is between 30-59 years old, two cysts in both kidneys are required for diagnosis. If the individual is over 60 years old, four cysts in both kidneys are necessary for diagnosis.

      For some patients with ADPKD, tolvaptan, a vasopressin receptor 2 antagonist, may be an option to slow the progression of cyst development and renal insufficiency. However, NICE recommends tolvaptan only for adults with ADPKD who have chronic kidney disease stage 2 or 3 at the start of treatment, evidence of rapidly progressing disease, and if the company provides it with the agreed discount in the patient access scheme.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 21 - A 25-year-old male presents with a painless swelling of the testis. Histologically the...

    Incorrect

    • A 25-year-old male presents with a painless swelling of the testis. Histologically the stroma has a lymphocytic infiltrate. What is the most likely diagnosis?

      Seminoma is the most common type of testicular tumor and is frequently seen in males aged between 25-40 years. The classical subtype is the most prevalent, and histology shows a lymphocytic stromal infiltrate. Other subtypes include spermatocytic, anaplastic, and syncytiotrophoblast giant cells. A teratoma is more common in males aged 20-30 years.

      Your Answer:

      Correct Answer: Classical seminoma

      Explanation:

      The most prevalent form of testicular tumor is seminoma, which is typically found in males between the ages of 30 and 40. The classical subtype of seminoma is the most common and is characterized by a lymphocytic stromal infiltrate. Other subtypes include spermatocytic, which features tumor cells that resemble spermatocytes and has a favorable prognosis, anaplastic, and syncytiotrophoblast giant cells, which contain β HCG. Teratoma, on the other hand, is more frequently observed in males between the ages of 20 and 30.

      Overview of Testicular Disorders

      Testicular disorders can range from benign conditions to malignant tumors. Testicular cancer is the most common malignancy in men aged 20-30 years, with germ-cell tumors accounting for 95% of cases. Seminomas are the most common subtype, while non-seminomatous germ cell tumors include teratoma, yolk sac tumor, choriocarcinoma, and mixed germ cell tumors. Risk factors for testicular cancer include cryptorchidism, infertility, family history, Klinefelter’s syndrome, and mumps orchitis. The most common presenting symptom is a painless lump, but pain, hydrocele, and gynecomastia may also be present.

      Benign testicular disorders include epididymo-orchitis, which is an acute inflammation of the epididymis often caused by bacterial infection. Testicular torsion, which results in testicular ischemia and necrosis, is most common in males aged between 10 and 30. Hydrocele presents as a mass that transilluminates and may occur as a result of a patent processus vaginalis in children. Treatment for these conditions varies, with orchidectomy being the primary treatment for testicular cancer. Surgical exploration is necessary for testicular torsion, while epididymo-orchitis and hydrocele may require medication or surgical procedures depending on the severity of the condition.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 22 - A 14-year-old girl presents with bilateral swelling around her eyes and ankles. She...

    Incorrect

    • A 14-year-old girl presents with bilateral swelling around her eyes and ankles. She has no significant medical history. Upon examination, a urine dipstick and blood tests are performed, revealing the following results:

      Blood: Negative
      Protein: +++
      Nitrites: Negative
      Leukocytes: Negative
      eGFR: 95 mL/min/1.73m2 (>90 mL/min/1.73m2)
      Albumin: 3.0 g/dL (3.5 - 5.5 g/dL)

      What is the most probable diagnosis?

      Your Answer:

      Correct Answer: Minimal change glomerulonephritis

      Explanation:

      The most frequent reason for nephrotic syndrome in children is minimal change disease, a type of glomerulonephritis. This question assesses your comprehension of glomerulonephritis and the populations it affects. The child in question displays symptoms of nephrotic syndrome, including proteinuria, hypoalbuminemia, and edema.

      Post-streptococcal glomerulonephritis is an inappropriate answer as it typically appears a few weeks after a streptococcal infection, such as pharyngitis. This patient was previously healthy, and this condition would cause a nephritic presentation with hematuria.

      Focal segmental glomerulosclerosis is not the most probable answer as it is less common in children and more prevalent in adults.

      Minimal change disease is the correct answer as it is the most common cause of glomerulonephritis in children and results in a nephrotic presentation.

      IgA nephropathy is not the most appropriate answer as it typically presents during or shortly after an upper respiratory tract infection. This child was previously healthy, and it would cause a nephritic, not a nephrotic, presentation.

      Understanding Nephrotic Syndrome in Children

      Nephrotic syndrome is a medical condition characterized by the presence of proteinuria, hypoalbuminaemia, and oedema. This condition is commonly observed in children between the ages of 2 and 5 years old, with around 80% of cases attributed to minimal change glomerulonephritis. Fortunately, the prognosis for this condition is generally good, with 90% of cases responding well to high-dose oral steroids.

      Aside from the classic triad of symptoms, children with nephrotic syndrome may also experience hyperlipidaemia, a hypercoagulable state, and a higher risk of infection. These additional features are due to the loss of antithrombin III and immunoglobulins, respectively. Understanding the signs and symptoms of nephrotic syndrome in children is crucial for early detection and prompt treatment.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 23 - A 75-year-old woman is admitted for a laparoscopic cholecystectomy. As part of her...

    Incorrect

    • A 75-year-old woman is admitted for a laparoscopic cholecystectomy. As part of her pre-operative evaluation, it is discovered that she is taking furosemide to manage her high blood pressure. What is the location of action for this diuretic medication?

      Your Answer:

      Correct Answer: Ascending limb of the loop of Henle

      Explanation:

      Furosemide and bumetanide are diuretics that work by blocking the Na-K-Cl cotransporter in the thick ascending limb of the loop of Henle, which decreases the reabsorption of NaCl.

      Diuretic drugs are classified into three major categories based on the location where they inhibit sodium reabsorption. Loop diuretics act on the thick ascending loop of Henle, thiazide diuretics on the distal tubule and connecting segment, and potassium sparing diuretics on the aldosterone-sensitive principal cells in the cortical collecting tubule. Sodium is reabsorbed in the kidney through Na+/K+ ATPase pumps located on the basolateral membrane, which return reabsorbed sodium to the circulation and maintain low intracellular sodium levels. This ensures a constant concentration gradient.

      The physiological effects of commonly used diuretics vary based on their site of action. furosemide, a loop diuretic, inhibits the Na+/K+/2Cl- carrier in the ascending limb of the loop of Henle and can result in up to 25% of filtered sodium being excreted. Thiazide diuretics, which act on the distal tubule and connecting segment, inhibit the Na+Cl- carrier and typically result in between 3 and 5% of filtered sodium being excreted. Finally, spironolactone, a potassium sparing diuretic, inhibits the Na+/K+ ATPase pump in the cortical collecting tubule and typically results in between 1 and 2% of filtered sodium being excreted.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 24 - Which of the following is the primary location for the release of dehydroepiandrosterone...

    Incorrect

    • Which of the following is the primary location for the release of dehydroepiandrosterone in individuals?

      Your Answer:

      Correct Answer: Zona reticularis of the adrenal gland

      Explanation:

      The adrenal cortex can be remembered with the mnemonic GFR-ACD, where DHEA is a hormone with androgenic effects that is primarily secreted by the adrenal gland.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 25 - A 30-year-old woman is being evaluated for possible Addison's disease due to experiencing...

    Incorrect

    • A 30-year-old woman is being evaluated for possible Addison's disease due to experiencing atypical exhaustion and observing a mild bronzing of her skin. The underlying cause is believed to be an autoimmune assault on the adrenal cortex, leading to reduced secretion of aldosterone.

      What is the typical physiological trigger for the production of this steroid hormone?

      Your Answer:

      Correct Answer: Angiotensin II

      Explanation:

      The correct answer is Angiotensin II, which stimulates the release of aldosterone. It also has the ability to stimulate the release of ADH, increase blood pressure, and influence the kidneys to retain sodium and water.

      Angiotensin I is not the correct answer as it is converted to angiotensin II by ACE and does not have a direct role in the release of aldosterone by the adrenal cortex.

      ACE is released by the capillaries in the lungs and is responsible for converting angiotensin I to angiotensin II.

      Angiotensinogen is not the correct answer as it is the first step in the renin-angiotensin-aldosterone system. It is released by the liver and converted to angiotensin I by renin.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 26 - A 28-year-old man is on day 9 of his cycle from Land's End...

    Incorrect

    • A 28-year-old man is on day 9 of his cycle from Land's End to John O'Groats. He made a wrong turn and ran out of fluids. After getting back on track, he found a shop and purchased a 2L bottle of water.

      Which part of the nephron is responsible for reabsorbing the majority of this water?

      Your Answer:

      Correct Answer: Proximal tubule

      Explanation:

      The correct answer is the proximal tubule. This is where the majority of filtered water is reabsorbed, due to the osmotic force generated by Na+ reabsorption. Bowman’s capsule only allows for ultrafiltration, while the collecting duct allows for variable water reabsorption, but not to the same extent as the proximal tubule. The distal tubule also plays a role in Na+ reabsorption, but water reabsorption is dependent on this mechanism.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 27 - In a patient with an ectopic kidney, where would you expect to find...

    Incorrect

    • In a patient with an ectopic kidney, where would you expect to find the adrenal gland situated?

      Your Answer:

      Correct Answer: In its usual position

      Explanation:

      If the kidney is present, the adrenal gland will typically develop in its normal location instead of being absent.

      The adrenal cortex, which secretes steroids, is derived from the mesoderm of the posterior abdominal wall and is first detected at 6 weeks’ gestation. The fetal cortex predominates throughout fetal life, with adult-type zona glomerulosa and fasciculata detected but making up only a small proportion of the gland. The adrenal medulla, which is responsible for producing adrenaline, is of ectodermal origin and arises from neural crest cells that migrate to the medial aspect of the developing cortex. The fetal adrenal gland is relatively large, but it rapidly regresses at birth, disappearing almost completely by age 1 year. By age 4-5 years, the permanent adult-type adrenal cortex has fully developed.

      Anatomic anomalies of the adrenal gland may occur, such as agenesis of an adrenal gland being usually associated with ipsilateral agenesis of the kidney. Fused adrenal glands, whereby the two glands join across the midline posterior to the aorta, are also associated with a fused kidney. Adrenal hypoplasia can occur in two forms: hypoplasia or absence of the fetal cortex with a poorly formed medulla, or disorganized fetal cortex and medulla with no permanent cortex present. Adrenal heterotopia describes a normal adrenal gland in an abnormal location, such as within the renal or hepatic capsules. Accessory adrenal tissue, also known as adrenal rests, is most commonly located in the broad ligament or spermatic cord but can be found anywhere within the abdomen, and even intracranial adrenal rests have been reported.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 28 - Which of the following is not a cause of hyperkalemia? ...

    Incorrect

    • Which of the following is not a cause of hyperkalemia?

      Your Answer:

      Correct Answer: Severe malnutrition

      Explanation:

      There are various factors that can lead to an increase in serum potassium levels, which are abbreviated as MACHINE. These include certain medications such as ACE inhibitors and NSAIDs, acidosis (both metabolic and respiratory), cellular destruction due to burns or traumatic injury, hypoaldosteronism, excessive intake of potassium, nephrons, and renal failure, and impaired excretion of potassium. Additionally, familial periodic paralysis can have subtypes that are associated with either hyperkalemia or hypokalemia.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 29 - A 25-year-old patient arrives at the emergency department with a head injury after...

    Incorrect

    • A 25-year-old patient arrives at the emergency department with a head injury after a night of heavy drinking. All his vital signs are normal, and his pupils react to light equally. A CT scan of his head shows no abnormalities. He reports feeling thirsty and experiencing excessive urination.

      What is causing his polyuria?

      Your Answer:

      Correct Answer: Inhibition of posterior pituitary gland

      Explanation:

      Excessive alcohol consumption can result in the suppression of ADH in the posterior pituitary gland, which can lead to polyuria.

      Normally, dehydration causes an increase in plasma osmolality, which triggers the release of vasopressin (antidiuretic hormone) from the posterior pituitary gland. This hormone increases the insertion of aquaporin 2 channels in the distal convoluted tubules and collecting duct in the kidney, which in turn increases water reabsorption. This leads to a decrease in plasma osmolality and a reduction in the volume of urine produced, i.e., antidiuretic.

      However, alcohol inhibits this mechanism, resulting in polyuria and dehydration. Polyuria can then cause thirst, i.e., polydipsia.

      It is important to note that the sugars in alcohol do not typically cause osmotic diuresis unless there is an underlying condition such as diabetes and hyperglycemia.

      Polyuria, or excessive urination, can be caused by a variety of factors. A recent review in the BMJ categorizes these causes by their frequency of occurrence. The most common causes of polyuria include the use of diuretics, caffeine, and alcohol, as well as diabetes mellitus, lithium, and heart failure. Less common causes include hypercalcaemia and hyperthyroidism, while rare causes include chronic renal failure, primary polydipsia, and hypokalaemia. The least common cause of polyuria is diabetes insipidus, which occurs in less than 1 in 10,000 cases. It is important to note that while these frequencies may not align with exam questions, understanding the potential causes of polyuria can aid in diagnosis and treatment.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 30 - A healthy 35-year-old man gives a blood donation of 500ml. What is the...

    Incorrect

    • A healthy 35-year-old man gives a blood donation of 500ml. What is the most probable process that will take place?

      Your Answer:

      Correct Answer: Activation of the renin angiotensin system

      Explanation:

      Losing 500ml of fluid (for a 70 Kg male) is typically enough to trigger the renin angiotensin system, but it is unlikely to cause any other bodily disruptions.

      Understanding Bleeding and its Effects on the Body

      Bleeding, even if it is of a small volume, triggers a response in the body that causes generalised splanchnic vasoconstriction. This response is mediated by the activation of the sympathetic nervous system. The process of vasoconstriction is usually enough to maintain renal perfusion and cardiac output if the volume of blood lost is small. However, if greater volumes of blood are lost, the renin angiotensin system is activated, resulting in haemorrhagic shock.

      The body’s physiological measures can restore circulating volume if the source of bleeding ceases. Ongoing bleeding, on the other hand, will result in haemorrhagic shock. Blood loss is typically quantified by the degree of shock produced, which is determined by parameters such as blood loss volume, pulse rate, blood pressure, respiratory rate, urine output, and symptoms. Understanding the effects of bleeding on the body is crucial in managing and treating patients who experience blood loss.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Renal System (2/7) 29%
Passmed