-
Question 1
Correct
-
A 54-year-old man visits his GP for a routine check-up and physical examination. He has a medical history of hypertension and asthma but currently has no immediate concerns. He reports feeling healthy.
During the examination, the man appears to be in good health, with normal vital signs except for a high blood pressure reading of 160/90 mmHg. While listening to his heart, the GP detects an S4 heart sound and orders an ECG.
Which segment of the ECG corresponds to the S4 heart sound?Your Answer: P wave
Explanation:The S4 heart sound coincides with the P wave on an ECG. This is because the S4 sound is caused by the contraction of the atria against a stiff ventricle, which occurs just before the S1 sound. It is commonly heard in conditions such as aortic stenosis, hypertrophic cardiomyopathy, or hypertension. As the P wave represents atrial depolarization, it is the ECG wave that coincides with the S4 heart sound.
It is important to note that the QRS complex, which represents ventricular depolarization, is not associated with the S4 heart sound. Similarly, the ST segment, which is the interval between ventricular depolarization and repolarization, and T waves, which indicate ventricular repolarization, are not linked to the S4 heart sound.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Incorrect
-
A 50-year-old white male is diagnosed with hypertension during a routine checkup at his GP clinic. What is the initial choice of antihypertensive medication for white males who are under 55 years of age?
Your Answer: Beta-blockers
Correct Answer: ACE inhibitor
Explanation:For patients under 55 years of age who are white, ACE inhibitors are the preferred initial medication for hypertension. These drugs have also been shown to improve survival rates after a heart attack and in cases of congestive heart failure.
However, for black patients or those over 55 years of age, a calcium channel blocker is the recommended first-line treatment. Beta blockers and diuretics are no longer considered the primary medication for hypertension.
Hypertension is a common medical condition that refers to chronically raised blood pressure. It is a significant risk factor for cardiovascular disease such as stroke and ischaemic heart disease. Normal blood pressure can vary widely according to age, gender, and individual physiology, but hypertension is defined as a clinic reading persistently above 140/90 mmHg or a 24-hour blood pressure average reading above 135/85 mmHg.
Around 90-95% of patients with hypertension have primary or essential hypertension, which is caused by complex physiological changes that occur as we age. Secondary hypertension may be caused by a variety of endocrine, renal, and other conditions. Hypertension typically does not cause symptoms unless it is very high, but patients may experience headaches, visual disturbance, or seizures.
Diagnosis of hypertension involves 24-hour blood pressure monitoring or home readings using an automated sphygmomanometer. Patients with hypertension typically have tests to check for renal disease, diabetes mellitus, hyperlipidaemia, and end-organ damage. Management of hypertension involves drug therapy using antihypertensives, modification of other risk factors, and monitoring for complications. Common drugs used to treat hypertension include angiotensin-converting enzyme inhibitors, calcium channel blockers, thiazide type diuretics, and angiotensin II receptor blockers. Drug therapy is decided by well-established NICE guidelines, which advocate a step-wise approach.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Incorrect
-
Evelyn is a 92-year-old woman who arrives at the hospital with severe chest pain, shortness of breath, and palpitations. Given her medical history of angina and diabetes mellitus, doctors suspect acute coronary syndrome. They order several tests, including a troponin I blood test. What is the function of this biomarker in the body?
Your Answer: Binds to tropomyosin to form the troponin-tropomyosin complex
Correct Answer: Binds to actin to hold the troponin-tropomyosin complex in place
Explanation:Troponin I plays a crucial role in muscle contraction by binding to actin and holding the troponin-tropomyosin complex in place. This prevents the myosin-binding site on the actin from being exposed, thereby preventing muscle contraction. Troponin I is also used as a marker for myocardial muscle injury.
Unlike troponin C, troponin I does not bind to calcium. Instead, troponin C has several calcium-binding sites that, when occupied, cause a conformational change in the troponin-tropomyosin complex. This change exposes the myosin-binding site on the actin filament, allowing myosin to bind and initiate muscle contraction.
Although troponin I binds to actin, it does not perform the power stroke that shortens muscle fibers. This is the role of the myosin head, which uses energy from ATP.
It is troponin T, not troponin I, that binds with tropomyosin to form the troponin-tropomyosin complex. This complex allows tropomyosin to move in response to the conformational change induced by calcium binding to troponin C.
Finally, it is tropomyosin, not troponin I, that directly inhibits myosin-binding sites. Tropomyosin is a long fiber that runs along the side of actin filaments, blocking all myosin binding sites. When calcium concentrations within the cell increase, the conformational change in troponin moves tropomyosin, exposing these sites and allowing muscle contraction to occur.
Understanding Troponin: The Proteins Involved in Muscle Contraction
Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.
Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.
Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
A 57-year-old woman comes to see her GP to discuss the findings of her ABPM, which revealed a blood pressure reading of 145/90 mmHg, leading to a diagnosis of stage 1 hypertension. What is the most common symptom experienced by patients with this condition?
Your Answer: None
Explanation:Symptoms are not typically caused by hypertension.
Hypertension is a common medical condition that refers to chronically raised blood pressure. It is a significant risk factor for cardiovascular disease such as stroke and ischaemic heart disease. Normal blood pressure can vary widely according to age, gender, and individual physiology, but hypertension is defined as a clinic reading persistently above 140/90 mmHg or a 24-hour blood pressure average reading above 135/85 mmHg.
Around 90-95% of patients with hypertension have primary or essential hypertension, which is caused by complex physiological changes that occur as we age. Secondary hypertension may be caused by a variety of endocrine, renal, and other conditions. Hypertension typically does not cause symptoms unless it is very high, but patients may experience headaches, visual disturbance, or seizures.
Diagnosis of hypertension involves 24-hour blood pressure monitoring or home readings using an automated sphygmomanometer. Patients with hypertension typically have tests to check for renal disease, diabetes mellitus, hyperlipidaemia, and end-organ damage. Management of hypertension involves drug therapy using antihypertensives, modification of other risk factors, and monitoring for complications. Common drugs used to treat hypertension include angiotensin-converting enzyme inhibitors, calcium channel blockers, thiazide type diuretics, and angiotensin II receptor blockers. Drug therapy is decided by well-established NICE guidelines, which advocate a step-wise approach.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Incorrect
-
A 65-year-old patient presents with sudden onset of chest pain, ankle edema, and difficulty breathing. The diagnosis is heart failure. Which of the following is the cause of the inadequate response of his stroke volume?
Your Answer: Afterload
Correct Answer: Preload
Explanation:The response of stroke volume in a normal heart to changes in preload is governed by Starling’s Law. This means that an increase in end diastolic volume in the left ventricle should result in a higher stroke volume, as the cardiac myocytes stretch. However, this effect has a limit, as seen in cases of heart failure where excessive stretch of the cardiac myocytes prevents this response.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
An 80-year-old patient comes in for a routine follow-up appointment and reports a decline in exercise tolerance. They mention having difficulty with stairs and experiencing occasional central chest pain that radiates to their back, which is relieved by rest. The pain is not present at rest.
During the examination, you observe a regular, slow-rising pulse and record a blood pressure of 110/95mmHg. Upon auscultation of the precordium, you detect an ejection systolic murmur.
To further assess cardiac function and valves, an echocardiogram is scheduled. Based on the likely diagnosis, what additional exam findings are you most likely to discover?Your Answer: Hepatomegaly
Correct Answer: Fourth heart sound (S4)
Explanation:The patient’s symptoms and physical exam suggest the presence of aortic stenosis. This is indicated by the ejection systolic murmur, slow-rising pulse, and progressive heart failure symptoms. The fourth heart sound (S4) is also present, which occurs when the left atrium contracts forcefully to compensate for a stiff ventricle. In aortic stenosis, the left ventricle is hypertrophied due to the narrowed valve, leading to the S4 sound.
While hepatomegaly is more commonly associated with right heart valvular disease, it is not entirely ruled out in this case. However, the patient’s history is more consistent with aortic stenosis.
Malar flush, a pink flushed appearance across the cheeks, is typically seen in mitral stenosis due to hypercarbia causing arteriole vasodilation.
Pistol shot femoral pulses, a sound heard during systole when auscultating the femoral artery, is a finding associated with aortic regurgitation and not present in this case.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Incorrect
-
A middle-aged man is informed of his hypertension during routine check-ups. The physician clarifies that his age increases the likelihood of a secondary cause for his hypertension. What is the primary cause of secondary hypertension?
Your Answer: Endocrine disease
Correct Answer: Renal disease
Explanation:Secondary hypertension is primarily caused by renal disease, while other endocrine diseases like hyperaldosteronism, phaeochromocytoma, and acromegaly are less common culprits. Malignancy and pregnancy typically do not lead to hypertension, although pregnancy can result in pre-eclampsia, which is characterized by high blood pressure. Certain medications, such as NSAIDs and glucocorticoids, can also induce hypertension.
Secondary Causes of Hypertension
Hypertension, or high blood pressure, can be caused by various factors. While primary hypertension has no identifiable cause, secondary hypertension is caused by an underlying medical condition. The most common cause of secondary hypertension is primary hyperaldosteronism, which accounts for 5-10% of cases. Other causes include renal diseases such as glomerulonephritis, pyelonephritis, adult polycystic kidney disease, and renal artery stenosis. Endocrine disorders like phaeochromocytoma, Cushing’s syndrome, Liddle’s syndrome, congenital adrenal hyperplasia, and acromegaly can also result in increased blood pressure. Certain medications like steroids, monoamine oxidase inhibitors, the combined oral contraceptive pill, NSAIDs, and leflunomide can also cause hypertension. Pregnancy and coarctation of the aorta are other possible causes. Identifying and treating the underlying condition is crucial in managing secondary hypertension.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
An 85-year-old woman arrives at the emergency department with complaints of palpitations and difficulty breathing. During the examination, you observe an irregularly irregular pulse. After conducting an ECG, you discover the absence of P waves and a ventricular rate of 94 beats per minute. What specific part of the heart prevents a rapid atrial rate from transmitting to the ventricles?
Your Answer: Bundle of Kent
Correct Answer: Atrioventricular node
Explanation:The correct answer is the atrioventricular (AV) node, which is located within the atrioventricular septum near the septal cusp of the tricuspid valve. It regulates the spread of excitation from the atria to the ventricles.
The sinoatrial (SA) node is situated in the right atrium, at the top of the crista terminalis where the right atrium meets the superior vena cava. It is where cardiac impulses originate in a healthy heart.
The bundle of His is a group of specialized cardiac myocytes that transmit the electrical impulse from the AV node to the ventricles.
The Purkinje fibers are a collection of fibers that distribute the cardiac impulse throughout the muscular ventricular walls.
The bundle of Kent is not present in a healthy heart. It refers to the accessory pathway between the atria and ventricles that exists in Wolff-Parkinson-White (WPW) syndrome. This additional conduction pathway allows for fast conduction of impulses between the atria and ventricles, without the additional control of the AV node. This results in a type of supraventricular tachycardia known as an atrioventricular re-entrant tachycardia.
The patient in the above question has presented with palpitations and shortness of breath. An irregularly irregular pulse is highly indicative of atrial fibrillation (AF). ECG signs of atrial fibrillation include an irregularly irregular rhythm and absent P waves. In AF, the impulses from the fibrillating heart are typically prevented from reaching the ventricles by the AV node.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
A 48-year-old man visits his local doctor complaining of chest pain that occurs during physical activity and subsides with rest. He first noticed it 10 months ago and feels that it has gradually worsened. He now experiences this pain while climbing a few stairs. Previously, he could walk down to the newsagent and back, a distance of 200 yards, without any discomfort. He has a medical history of hypertension and appendectomy.
His close friend had similar symptoms that were relieved by sublingual glyceryl nitrates. He asks the doctor to prescribe something similar.
What is the mechanism by which nitrates work?Your Answer: Nitrates cause a decrease in extracellular calcium which results in smooth muscle relaxation
Correct Answer: Nitrates cause a decrease in intracellular calcium which results in smooth muscle relaxation
Explanation:The reason why nitrates cause a decrease in intracellular calcium is because nitric oxide triggers the activation of smooth muscle soluble guanylyl cyclase (GC) to produce cGMP. This increase in intracellular cGMP inhibits calcium entry into the cell, resulting in a reduction in intracellular calcium levels and inducing smooth muscle relaxation. Additionally, nitric oxide activates K+ channels, leading to hyperpolarization and relaxation. Furthermore, nitric oxide stimulates a cGMP-dependent protein kinase that activates myosin light chain phosphatase, which dephosphorylates myosin light chains, ultimately leading to relaxation. Therefore, the correct answer is the second option.
Understanding Nitrates and Their Effects on the Body
Nitrates are a type of medication that can cause blood vessels to widen, which is known as vasodilation. They are commonly used to manage angina and treat heart failure. One of the most frequently prescribed nitrates is sublingual glyceryl trinitrate, which is used to relieve angina attacks in patients with ischaemic heart disease.
The mechanism of action for nitrates involves the release of nitric oxide in smooth muscle, which activates guanylate cyclase. This enzyme then converts GTP to cGMP, leading to a decrease in intracellular calcium levels. In the case of angina, nitrates dilate the coronary arteries and reduce venous return, which decreases left ventricular work and reduces myocardial oxygen demand.
However, nitrates can also cause side effects such as hypotension, tachycardia, headaches, and flushing. Additionally, many patients who take nitrates develop tolerance over time, which can reduce their effectiveness. To combat this, the British National Formulary recommends that patients who develop tolerance take the second dose of isosorbide mononitrate after 8 hours instead of 12 hours. This allows blood-nitrate levels to fall for 4 hours and maintains effectiveness. It’s important to note that this effect is not seen in patients who take modified release isosorbide mononitrate.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Correct
-
A 32-year-old male is admitted for elective surgery for a lymph node biopsy in the supraclavicular region. Following the surgery, the patient experiences difficulty in shrugging his left shoulder. What could be the probable cause?
Your Answer: Accessory nerve lesion
Explanation:The posterior triangle is where the accessory nerve is located, and it is susceptible to injury in this area. In addition to experiencing issues with shoulder shrugging, the individual may also encounter challenges when attempting to raise their arm above their head.
The posterior triangle of the neck is an area that is bound by the sternocleidomastoid and trapezius muscles, the occipital bone, and the middle third of the clavicle. Within this triangle, there are various nerves, vessels, muscles, and lymph nodes. The nerves present include the accessory nerve, phrenic nerve, and three trunks of the brachial plexus, as well as branches of the cervical plexus such as the supraclavicular nerve, transverse cervical nerve, great auricular nerve, and lesser occipital nerve. The vessels found in this area are the external jugular vein and subclavian artery. Additionally, there are muscles such as the inferior belly of omohyoid and scalene, as well as lymph nodes including the supraclavicular and occipital nodes.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)