-
Question 1
Incorrect
-
What is the cause of the symptoms of weakness, dermatitis, diarrhoea and dementia in pellagra?
Your Answer: Deficiency of vitamin B12
Correct Answer: Deficiency of the vitamin niacin
Explanation:Niacin Deficiency and Other Genetic Diseases
Niacin, a vitamin present in two forms – nicotinamide and nicotinic acid, is found in a variety of plant and animal foodstuffs. However, in some cases, the form of the vitamin is not easily absorbed by the human body, leading to deficiency. This deficiency is common in areas where maize is the primary dietary carbohydrate. Additionally, niacin can be produced by the body from the amino acid tryptophan. Diseases that affect the availability of tryptophan, such as Hartnup disease and carcinoid syndrome, can also result in niacin deficiency.
Pellagra is a condition that arises from niacin deficiency. It initially presents with non-specific symptoms such as nausea, fatigue, and reduced appetite, followed by pigmented dermatitis in sun-exposed areas, gastrointestinal disturbance, mood disturbance, and dementia in severe cases.
Apart from niacin deficiency, genetic diseases affecting collagen synthesis, such as Ehlers Danlos, present with symptoms of fragile stretchy skin and joint hypermobility. Genetic diseases affecting haemoglobin, such as sickle cell anaemia, present with symptoms of pain, hepatosplenomegaly, shortness of breath, and anaemia. Deficiencies in B12 and folate can also lead to macrocytic anaemia, paresthesia, and lethargy.
In conclusion, the causes and symptoms of niacin deficiency and other genetic diseases is crucial for early diagnosis and effective treatment. A balanced diet and regular medical check-ups can help prevent and manage these conditions.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 2
Correct
-
What is the primary means of transportation for vitamin D in the human body?
Your Answer: In blood, bound to the group specific component
Explanation:The Role of UV Light and Vitamin D in Calcium and Phosphate Regulation
In order for the body to produce Vitamin D3, UV light at a specific wavelength is required to convert cholesterol in the skin. Vitamin D2 and D3 are then transported in the bloodstream bound to the Vitamin-D Binding Protein and undergo further modifications in the liver and kidney to become the active form, 1,25 (OH)2Vitamin D. This active form plays a crucial role in regulating calcium and phosphate concentrations in the body.
1,25 (OH)2Vitamin D increases calcium absorption in the duodenum and inhibits the secretion and synthesis of PTH, which helps to maintain calcium concentrations. It also increases phosphate absorption in the jejunum and ileum, which is important for maintaining phosphate concentrations. Additionally, 1,25 (OH)2Vitamin D promotes bone turnover by stimulating both osteoblast and osteoclast activity.
Overall, the production and activation of Vitamin D through UV light and dietary sources is essential for proper calcium and phosphate regulation in the body.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 3
Correct
-
What significance do linoleic and alpha-linolenic acids hold?
Your Answer: They are essential fatty acids
Explanation:The Importance of Essential Fatty Acids in the Diet
Essential fatty acids, such as linoleic and alpha-linolenic acids, are crucial components of a healthy diet. Although they are only required in small amounts, they play several important roles in the body. These fatty acids are necessary for the synthesis of phospholipids, which are essential components of cell membranes. They also help regulate cholesterol transport and synthesis, and serve as precursors for omega-3 fatty acids and arachidonic acid. Additionally, essential fatty acids are important for the synthesis of prostaglandins, leukotrienes, and thromboxanes.
A lack of adequate essential fatty acids in the diet can have negative consequences, particularly for brain growth in infancy. It can also lead to alopecia, dermatitis, and fatty liver. Therefore, it is important to ensure that the diet includes sources of these essential fatty acids, such as certain types of fish, nuts, and seeds. By doing so, individuals can support their overall health and well-being.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 4
Incorrect
-
What is the fundamental meaning of carbohydrate?
Your Answer: A compound containing carbon, hydrogen and oxygen in any proportion.
Correct Answer: A compound following the formula Cx(H2O)y
Explanation:Carbohydrates: Building Blocks of Energy and Storage
Carbohydrates are organic compounds made up of carbon, hydrogen, and oxygen, with a general formula of Cx(H2O)y. They can be classified as either aldehydes or ketones and contain multiple hydroxyl groups. Monosaccharides are the simplest form of carbohydrates, consisting of a single unit. They are categorized based on the number of carbon atoms they contain, with trioses having three, pentoses having five, and hexoses having six carbon atoms. These monosaccharides are essential for energy production and building larger carbohydrate structures.
Disaccharides are formed when two monosaccharides are joined together through a condensation reaction, releasing a water molecule. The most common disaccharides are lactose, maltose, and sucrose. Polysaccharides, on the other hand, are long, branched polymers made up of multiple single units. They serve as convenient storage molecules for energy reserves, such as glycogen in humans and starch in plants.
In summary, carbohydrates are vital building blocks for energy production and storage in living organisms. Monosaccharides, disaccharides, and polysaccharides all play important roles in maintaining the body’s energy balance and overall health.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 5
Correct
-
Which food is a rich source of vitamin D in the diet?
Your Answer: Oily fish
Explanation:Sources of Vitamin D
Vitamin D is a type of fat-soluble vitamin that can be found in certain foods such as cheese, butter, eggs, and oily fish. However, vegetable sources of vitamin D are limited, although some foods are fortified with this vitamin. For instance, 100 grams of sundried shiitake mushrooms contain 1600 IU of vitamin D, while one egg contains 20 IU. Wild salmon is also a good source of vitamin D, with 100 grams containing 800 IU, while farmed salmon contains 200 IU.
Aside from food sources, sunlight is also a good source of vitamin D. Exposure of arms and legs to sunlight for 10-15 minutes can provide 3000 IU of vitamin D. However, it is difficult to obtain the daily requirement of 25-50 IU of vitamin D through sunlight alone, especially for people living in temperate climates. As a result, many people may have insufficient vitamin D levels. It is important to ensure that we get enough vitamin D through a combination of food sources and sunlight exposure.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 6
Correct
-
What is the primary reason for malnutrition?
Your Answer: Inadequate intake of calories in any form
Explanation:Malnutrition
Malnutrition refers to a state where the dietary intake is insufficient to maintain a healthy state and stable weight. It can be caused by over- or under-nutrition, but it is commonly used to describe under-nutrition. Malnutrition can be defined as a state of nutrition where a deficiency, excess, or imbalance of energy, protein, and other nutrients causes measurable adverse effects on tissue, function, and clinical outcome. Protein malnutrition is the most severe form of malnutrition, causing significant mortality and clinical effects such as kwashiorkor. Carbohydrate malnutrition is less common as carbohydrate sources are widely grown and cheap. Fat malnutrition rarely results in problems if there is adequate dietary protein and carbohydrate. Deficiencies of fat-soluble vitamins can result in various clinical effects. Body size can give some indication of nutritional status, but many obese patients may have nutritional deficiencies due to their faddy diets.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 7
Incorrect
-
As part of your general practice placement, you have been tasked with conducting an audit on the duration of solid food introduction in the practice population. You review the data for the last six infants born within the practice:
6 months, 7 months, 8 months, 9 months, 10 months, 11 months.
What is the variance value for the duration of solid food introduction in the practice population?Your Answer: 8.6
Correct Answer: 74.9
Explanation:Variance and Standard Deviation in Breast Feeding Duration
Variance is a statistical measure that indicates how spread out a set of data is. In the case of breast feeding duration, variance can help us understand how much the duration varies from the mean. The formula for variance involves squaring the difference between each data point and the mean, then dividing the sum by n-1, where n is the total number of data points. In a sample population, n-1 is a better estimate of variance than n because it accounts for the variability within the sample.
For example, if the variance of breast feeding duration is 74.9 months, this indicates that the duration is widely distributed from the mean of 17.6 months. A smaller variance, such as 4.5 months, would indicate that the duration varies less and is closer to the mean. The standard deviation, which is the square root of the variance, is also important in the spread of data. In a normal distribution, 95% of observations will fall within two standard deviations of the mean.
In the case of breast feeding duration, the mean is 17.6 months, indicating that babies are breast fed for an average of 15 and a half months. The median, which is the middle number in the data set, is 15 months, meaning that half of the babies were breast fed for 15 months. variance and standard deviation can help us better understand the distribution of breast feeding duration and other medical measurements.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 8
Incorrect
-
What is the primary factor that increases the risk of thiamine (vitamin B1) deficiency?
Your Answer: Chronic cardiac failure
Correct Answer: Chronic alcohol excess
Explanation:Thiamine: Its Roles, Sources, Deficiency States, and Manifestations
Thiamine is a vital nutrient that plays several roles in the body. It acts as a cofactor to enzymes involved in energy production, metabolism of branched chain amino acids, and regulation of nerve and muscle action potentials. It is found in many foods, including wheat, oats, and yeast-containing products. However, deficiency states can occur in chronic alcohol dependence, renal dialysis, and cultures that mainly consume white rice. The deficiency can manifest as ‘dry’ beriberi, which causes peripheral neuropathy, muscle weakness, fatigue, and reduced concentration, or ‘wet’ beriberi, which also involves heart failure and edema. In severe cases, Wernicke-Korsakoff syndrome can develop, which is an emergency requiring urgent IV replacement of thiamine. If left untreated, it can lead to irreversible amnesia, confabulation, and dementia. Therefore, all patients with alcohol-related admissions should be considered for Pabrinex, a B vitamin infusion.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 9
Incorrect
-
Which of the following would not increase the rate of diffusion of a substance across a lipid membrane such as the cell wall?
Your Answer: Area of the membrane
Correct Answer: Thickness of the membrane
Explanation:Diffusion and Fick’s Law
Diffusion is a natural process that occurs when molecules move from an area of high concentration to an area of low concentration. This process is passive and random, meaning that it does not require any external energy input. Fick’s Law states that diffusion occurs more quickly across a large, permeable, and thin membrane. For example, in lung disease, the thickening of the alveolar epithelial barrier can lead to a poor carbon monoxide transfer coefficient because the thicker membrane slows down the diffusion process. the principles of diffusion and Fick’s Law can help us better understand how molecules move and interact in various biological and chemical processes. By optimizing the conditions for diffusion, we can improve the efficiency of many natural and artificial systems.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 10
Incorrect
-
Over the last five years, the total number of patients admitted and deaths in the East and North Hertfordshire NHS Trust have been recorded. In the year 2010/2011, there were 95,071 patients admitted and 1,912 deaths. What is the crude mortality ratio for this group in that year (per 100 admissions)?
Your Answer: 1.9
Correct Answer: 2
Explanation:In this scenario, the crude mortality ratio is established by comparing the number of deaths occurring within the hospital in a given year to the total number of admissions, disregarding age or gender-specific mortality rates. For instance, with 1,912 deaths out of 95,071 admissions, the ratio computes to 0.02, or 2.0% when calculated per 100 admissions (1,912/95,071 = 0.02/100= 2.0%. When recalculated per 1,000 admissions, the crude admission rate would be 20 per 1,000.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 11
Incorrect
-
What occurs in eukaryotic prometaphase?
Your Answer: The chromosomes align across a plane
Correct Answer: The nuclear membrane and the nucleoli disintegrate and kinetochores appear
Explanation:The Significance of Prometaphase in Cell Division
Prometaphase is a crucial phase in cell division that marks the transition from prophase to metaphase. Although it is often considered as a part of these two phases, it has distinct events that make it an individual phase. During prometaphase, the nuclear membrane disintegrates, and the nucleoli are no longer visible. Additionally, each chromosome forms two kinetochores near the centromere, which serve as attachment points for spindle fibers. These fibers connect to the opposite poles of the cell, forming travelling lines that will separate the sister chromatids during anaphase.
Prophase is characterized by chromatin condensation, while DNA and centrosome duplication occur during interphase. Chromosome alignment takes place during metaphase, and the sister chromatids separate during anaphase. Prometaphase, therefore, plays a crucial role in preparing the chromosomes for separation during anaphase. Its distinct events make it an essential phase in cell division, and its proper execution is necessary for successful cell division.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 12
Correct
-
What type of molecule does haemoglobin belong to?
Your Answer: Quaternary protein structure
Explanation:The Structure and Functions of Proteins
Proteins are complex molecules that can vary in structure from single amino acids to large, folded molecules. Amino acids are joined together by peptide bonds to form dipeptides and polypeptides. More complex molecules can also have disulphide bonds and ionic bonds. The primary structure of a protein is a simple amino acid chain, while the secondary structure is a specific shape such as a helix or pleated sheet. The tertiary structure is a more globular shape, arranged by ionic, hydrogen, and disulphide bonds, and hydrophobic interactions. The quaternary structure is a complex protein containing several polypeptide chains held together by interactions.
Proteins have multiple roles within the human body, including as hormones, food substrates, enzymes, receptor molecules, muscles, cell membrane constituents, carrier molecules in blood, and determinants of oncotic/osmotic pressures. However, proteins can be easily damaged by denaturation, which is the loss of the specific three-dimensional shape of a molecule. Denaturation can be caused by heat, salts, heavy metals, solvents, detergents, and extremes of pH.
In summary, proteins are essential molecules with a diverse range of structures and functions within the human body. their structure and potential for denaturation is crucial for maintaining their proper function.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 13
Correct
-
What is the primary role of the nuclear membrane?
Your Answer: To regulate transport of molecules in and out of the nucleus
Explanation:The Role of the Nucleus and Nuclear Envelope in Cell Function
The nucleus is a crucial component of eukaryotic cells, serving as the control centre for the cell. It is characterised by a membrane-enclosed structure that contains the cell’s chromosomes and is heavily involved in regulating gene transcription and protein synthesis. The nuclear envelope, which consists of an outer and inner membrane, plays a critical role in regulating the movement of molecules in and out of the nucleus. This is achieved through nuclear pores on the surface of the envelope, which allow the passage of water-soluble molecules. While the incorrect answer options describe minor roles of the nuclear envelope, its primary function is to act as a regulatory barrier for anything that enters or exits the nucleus. Overall, the nucleus and nuclear envelope are essential components of cell function, playing a critical role in regulating gene expression and maintaining cellular homeostasis.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 14
Correct
-
A 65-year-old patient with suspected spinal cord compression has been admitted to the neurosurgical team for an urgent MRI of the spine. Which particle's magnetic properties does magnetic resonance imaging rely predominantly upon?
Your Answer: Hydrogen ion (proton)
Explanation:How MRI Scanners Use Hydrogen Ions to Create Images
MRI scanners use the magnetic properties of hydrogen ions, also known as protons, to create images of the human body. These protons have nuclear spin, which means they have magnetic vectors that can be aligned in an electromagnet. The scanner bombards the protons with radiofrequency radiation, causing them to release energy when they return to their resting state. This energy release is recorded and used to construct the MRI image.
While other nuclei, such as carbon 13, also have nuclear spin and could be used in MRI imaging, hydrogen ions are much more abundant in human tissues. This makes them the preferred choice for creating images of the body. The process of aligning the magnetic vectors of the protons and then recording their energy release is repeated many times to create a detailed image of the body’s internal structures.
Overall, MRI scanners use the magnetic properties of hydrogen ions to create detailed images of the human body. This non-invasive imaging technique has revolutionized medical diagnosis and treatment, allowing doctors to see inside the body without the need for surgery.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 15
Correct
-
What are the defining features of an amino acid?
Your Answer: It has the formula H2N - CHR - COOH where R is the variable group
Explanation:The Versatility of Amino Acids and its Applications in Electrophoresis
Amino acids are the building blocks of proteins and are composed of a basic structure of H2N – CHR – COOH, where R represents the variable group that distinguishes one amino acid from another. The simplest amino acid is glycine, where the R group is just H. Amino acids are capable of forming complex and useful molecules due to their dipolar or amphoteric nature, which makes them simultaneously acidic and basic. In solution, they form zwitterions, which can act as either an acid or a base depending on the pH of the solution. This versatility of amino acids is what allows for the process of electrophoresis, which separates proteins based on their charge in a solution. By using solutions of different pH, different proteins can be assessed, making it a useful tool in the diagnosis of bone marrow malignancies like myeloma.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 16
Incorrect
-
What function does vitamin E serve in the body?
Your Answer: Autoimmune surveillance
Correct Answer: Antioxidant
Explanation:Vitamin E and its Functions
Several substances are classified as vitamin E, with alpha-tocopherol being the most common, accounting for 90% of human vitamin E. Alpha-tocopherol is composed of two carbon rings and a long saturated hydrocarbon chain, making it hydrophobic. It has an aromatic ring with an OH- group attached to it. Other substances with vitamin E activity include other tocopherols and tocotrienols, all of which act as antioxidants. Alpha-tocopherol is particularly important in cell membranes, preventing the peroxidation of unsaturated fatty acids by free radicals. It also has other functions, such as regulating gene transcription, inhibiting clotting formation, reducing proliferation of vascular smooth muscle, and playing a role in immunity.
Despite claims that taking vitamin E can reduce the risk of heart disease, cancer, and enhance sexual performance, there is currently no strong evidence to support these claims.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 17
Incorrect
-
What is the estimated percentage of oxygen in the blood that is attached to haemoglobin?
Your Answer: 80%
Correct Answer: 100%
Explanation:Calculation of Oxygen in Blood
The majority of oxygen in the blood is bound to haemoglobin, with the exact amount varying based on the oxygen saturation and haemoglobin level. To calculate the amount of oxygen per litre of blood, the formula (13.9 × Hb × sats/100) + (PaO2 × 0.03) can be used. For example, an average man with an Hb of 14, saturations of 98% on room air, and a PaO2 of 12 would have 191 ml of oxygen per litre of blood. It is important to note that only 0.36 ml of this oxygen is dissolved in the blood.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 18
Incorrect
-
A 40-year-old male complains of a painful and swollen right calf. The possibility of deep vein thrombosis (DVT) is being considered. What tests should be conducted to confirm the diagnosis?
Your Answer: MRI of the leg veins
Correct Answer: Dopplers of the leg veins
Explanation:Diagnostic Methods for Deep Vein Thrombosis
When it comes to diagnosing deep vein thrombosis (DVT), there are several methods available. The most common ones are Doppler studies and venography. Doppler studies use B mode ultrasonography to examine the venous system, while venography involves injecting a contrast dye into the veins and taking X-rays. CT scans are not typically used for DVT diagnosis because they require contrast and expose the patient to radiation. D-Dimer concentrations can help rule out DVT if they are negative, but they cannot diagnose it. MRI scans are useful for examining soft tissues and bones, but they are not the best option for visualizing the vasculature. Finally, oxygen saturation of the limbs is not a reliable diagnostic method because tissue perfusion can be the same even if there is arterial disease. Overall, Doppler studies and venography are the most effective methods for diagnosing DVT.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 19
Incorrect
-
What is the primary function of riboflavin in the B vitamin group?
Your Answer: Visual acuity
Correct Answer: Mopping up free radicals
Explanation:The Role of Riboflavin in the Body
Riboflavin, also known as vitamin B2, is a B-vitamin that plays a crucial role in the body. One of its functions is to act as an antioxidant, mopping up free radicals that can cause damage to cells. However, if the metabolites formed during this process are not excreted promptly, the free radicals can be generated again. Riboflavin is also involved in the production of blue-light sensitive pigments in the eye, which help establish the circadian rhythm. This function is not related to visual acuity.
Riboflavin is found in a variety of foods, including milk and offal. Deficiency of this vitamin is rare, but when it does occur, it can cause non-specific effects on the skin and mucous membranes. There is no evidence of clear long-lasting damage from riboflavin deficiency. Overall, riboflavin is an important nutrient that plays a vital role in maintaining good health.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 20
Incorrect
-
What is the statement of Henry's law?
Your Answer: Equal volumes of gases at standardised temperature and pressure each contain the same number of molecules
Correct Answer: The concentration of a gas when dissolved in liquid is proportional to its partial pressure
Explanation:Gas Laws
Gas laws are a set of scientific principles that describe the behavior of gases under different conditions. One of these laws is Avogadro’s law, which states that equal volumes of gases at a standardized temperature and pressure contain the same number of molecules. Another law is Boyle’s law, which explains that gases expand when the temperature is increased. Charles’ law, on the other hand, states that the pressure of a gas is inversely proportional to its volume at a standardized temperature. Lastly, Graham’s law explains that the rate of diffusion of a gas is in inverse proportion to its weight. The specific gas laws that you need to know may vary depending on your syllabus, but you should be able to recognize and apply them if given the formulae. It is unlikely that you will be expected to know the correct formula.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 21
Correct
-
What stage of cellular respiration is responsible for the production of pyruvic acid?
Your Answer: Glycolysis
Explanation:The Versatility of Pyruvic Acid in Cellular Metabolism
Pyruvic acid is a simple alpha-keto acid that plays a crucial role in several metabolic pathways within the cell. It serves as a central intersection where different pathways converge and diverge. One of the primary ways pyruvic acid is produced is through glycolysis, where glucose is broken down into pyruvic acid. Depending on the cell’s needs, pyruvic acid can be converted back into glucose through gluconeogenesis or used to synthesize fatty acids through the acetyl-CoA pathway. Additionally, pyruvic acid can be used to produce the amino acid alanine.
Pyruvic acid is also involved in respiration, where it enters the Krebs cycle under aerobic conditions. This cycle produces energy in the form of ATP, which is used by the cell for various functions. Under anaerobic conditions, pyruvic acid can ferment into lactic acid, which is used by some organisms as a source of energy.
In summary, pyruvic acid is a versatile molecule that plays a critical role in cellular metabolism. Its ability to be converted into different molecules depending on the cell’s needs makes it an essential component of many metabolic pathways.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 22
Correct
-
In which part of the cell are the electron transport chain carriers situated?
Your Answer: Mitochondrial cristae
Explanation:The Electron Transport Chain in Mitochondria
The electron transport chain (ETC) is a crucial process in cellular aerobic respiration that occurs in the mitochondrial cristae. These are folded membranes inside the organelle. During respiration, NADH and FADH produced from other parts of the process, such as glycolysis, transfer electrons from electron donors to electron acceptors through redox reactions. This electron transfer is coupled with proton transfer across the mitochondrial membrane, creating an electrochemical proton gradient. This gradient induces the production of ATP, which is used as an energy currency by the cell.
ATP is produced through a mechanism called chemiosmotic phosphorylation. The structure of the mitochondrion is essential for this process to occur. The cristae provide a large surface area for the ETC to take place, and the mitochondrial membrane is impermeable to protons, allowing for the creation of the proton gradient. The inner membrane also contains ATP synthase, the enzyme responsible for producing ATP through chemiosmotic phosphorylation.
In summary, the electron transport chain in mitochondria is a complex process that involves the transfer of electrons and protons across the mitochondrial membrane to create a proton gradient. This gradient is then used to produce ATP through chemiosmotic phosphorylation. The structure of the mitochondrion is crucial for this process to occur efficiently.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 23
Correct
-
A 29-year-old woman visits your clinic with concerns about a possible pregnancy.
Can you explain the mechanism behind a urinary pregnancy test?Your Answer: ELISA
Explanation:Techniques in Biochemistry
Over-the-counter urine pregnancy tests use ELISA to detect beta-HCG in a woman’s urine. The test stick contains antibodies that react with beta-HCG, producing a color change that confirms pregnancy. The urinary pregnancy test is a solid-phase ELISA, where the antibody is immobilized on a specialized filter paper. The fluid travels laterally across the paper to bind with the antibody, and if beta-HCG is present, the line turns blue. Electrophoresis characterizes the electrical charge and size of substances, while PCR identifies specific sequences of DNA or RNA. Radioimmunoassay uses radioactivity to identify specific proteins. Enzymatic degradation breaks down large proteins into smaller subunits for which target antibodies may already exist. This method is used to characterize large proteins for which the structure has not yet been described.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 24
Incorrect
-
What role does vitamin K play in the body?
Your Answer: Maintaining healthy liver function
Correct Answer: Activation of clotting factors II, VII, IX, X
Explanation:The Roles of Vitamin K in the Body
Vitamin K plays several important roles in the body. One of its main functions is to modify clotting factors II, VII, IX, and X through a process called carboxylation. This modification allows calcium to bind to the factors, which is necessary for them to participate in the clotting pathway. This principle is used in full blood counts to prevent clotting by adding EDTA, which chelates the calcium. Vitamin K also modifies osteocalcin and matrix proteins in bone, as well as nephrocalcin in the kidney, in a similar way.
In addition to its role in blood clotting and bone health, vitamin K is also important for nervous tissue development and growth. However, vitamin K antagonists such as warfarin are sometimes used as anticoagulants to prevent blood clots. It is important to follow guidelines and instructions carefully when using these medications. Overall, vitamin K plays a crucial role in maintaining the health and function of various systems in the body.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 25
Correct
-
What controls the specific stages of the cell cycle?
Your Answer: Cyclins and cyclin-dependent kinases
Explanation:Regulation of the Cell Cycle by Cyclins and Cyclin-Dependent Kinases
The cell cycle is controlled by the activity of proteins known as cyclins and phosphorylating enzymes called cyclin-dependent kinases (CDKs). Cyclins and CDKs combine to form an activated heterodimer, where cyclins act as the regulatory subunits and CDKs act as the catalytic subunits. Neither of these molecules is active on their own. When a cyclin binds to a CDK, the CDK phosphorylates other target proteins, either activating or deactivating them. This coordination leads to the entry into the next phase of the cell cycle. The specific proteins that are activated depend on the different combinations of cyclin-CDK. Additionally, CDKs are always present in cells, while cyclins are produced at specific points in the cell cycle in response to other signaling pathways.
In summary, the cell cycle is regulated by the interaction between cyclins and CDKs. This interaction leads to the phosphorylation of target proteins, which ultimately controls the progression of the cell cycle.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 26
Incorrect
-
You encounter a patient in the Emergency department who has been in a severe car accident. You need to insert a venous cannula for aggressive fluid resuscitation. Applying the Hagen-Poiseuille equation, you select a cannula with appropriate dimensions for maximum flow into the vein.
As per this law, which of the following statements is correct?Your Answer: Flow is not affected by the viscosity of the fluid
Correct Answer: Flow will be faster through a shorter cannula
Explanation:Poiseuille’s Equation and Fluid Flow in Cylinders
Poiseuille’s equation is used to describe the flow of non-pulsatile laminar fluids through a cylinder. The equation states that the flow rate is directly proportional to the pressure driving the fluid and the fourth power of the radius. Additionally, it is inversely proportional to the viscosity of the fluid and the length of the tube. This means that a short, wide cannula with pressure on the bag will deliver fluids more rapidly than a long, narrow one.
It is important to note that even small changes in the radius of a tube can greatly affect the flow rate. This is because the fourth power of the radius is used in the equation. Therefore, any changes in the radius will have a significant impact on the flow rate. Poiseuille’s equation is crucial in determining the optimal conditions for fluid delivery in medical settings.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 27
Incorrect
-
What are the vitamins that are soluble in fat?
Your Answer: Vitamins A, B, C, D, and E
Correct Answer: Vitamins A, D, E and K
Explanation:Absorption of Fat-Soluble Vitamins
Fat-soluble vitamins, namely A, D, E, and K, have a different absorption process compared to water-soluble vitamins. In the gut, these vitamins are combined with other fat-soluble substances such as monoacylglycerols and cholesterol to form micelles. These micelles are then transported to the lymphatic system and eventually enter the bloodstream through the subclavian vein.
However, any issues that affect the absorption of fats will also impact the absorption of fat-soluble vitamins. This means that individuals with conditions that affect fat absorption, such as cystic fibrosis or celiac disease, may have difficulty absorbing these vitamins. It is important to ensure adequate intake of fat-soluble vitamins through a balanced diet or supplements to prevent deficiencies and associated health problems.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 28
Incorrect
-
A 65-year-old patient with suspected spinal cord compression has been admitted to the neurosurgical team for an urgent MRI of the spine. The MRI technique primarily relies on the magnetic properties of which particle?
Your Answer: Electron
Correct Answer: Hydrogen ion (proton)
Explanation:How MRI Scanners Use Hydrogen Ions to Create Images
MRI scanners use the magnetic properties of hydrogen ions, also known as protons, to create images of the human body. These protons have nuclear spin, which means they have magnetic vectors that can be aligned in an electromagnet. The scanner bombards the protons with radiofrequency radiation, causing them to release energy when they return to their resting state. This energy release is recorded and used to construct the MRI image.
While other nuclei, such as carbon 13, also have net nuclear spin and could be used in MRI imaging, hydrogen ions are much more abundant in human tissues. This makes them the preferred choice for creating images of the body. By using the magnetic properties of hydrogen ions, MRI scanners can create detailed images of internal structures without the use of harmful radiation.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 29
Correct
-
What is the conversion of pyruvate before it enters the Krebs cycle?
Your Answer: Acetyl-CoA
Explanation:The Krebs cycle occurs in the mitochondrion and involves the conversion of acetyl-CoA to oxaloacetate. This cycle produces six NADH, two FADH, and two ATP for each molecule of glucose. Pyruvate is converted to acetyl-CoA before entering the Krebs cycle, and water and carbon dioxide are end products. Acetic acid itself has no role in the cycle, but its acetyl group is used to form acetyl-CoA. Some anaerobic bacteria can convert sugars to acetic acid directly.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 30
Incorrect
-
What is a good dietary source of vitamin A?
Your Answer: Citrus fruit
Correct Answer: Liver
Explanation:The Importance of Vitamin A in Our Body
Vitamin A is an essential nutrient that can be found in various sources such as liver, fish liver oils, dark green leafy vegetables, carrots, and mangoes. It can also be added to certain foods like cereals and margarines. This nutrient plays a crucial role in our body as it is required for vision, growth and development of tissues, regulation of gene transcription, and synthesis of hydrophobic glycoproteins and parts of the protein kinase enzyme pathways.
One of the primary functions of vitamin A is to support our vision. It is a component of rhodopsin, a pigment that is necessary for the rod cells of the retina. Without vitamin A, our eyesight can be compromised, leading to various eye problems. Additionally, vitamin A is also essential for the growth and development of many types of tissues in our body. It helps in maintaining healthy skin, teeth, and bones.
Moreover, vitamin A is involved in regulating gene transcription, which is the process of converting DNA into RNA. This nutrient also plays a role in the synthesis of hydrophobic glycoproteins and parts of the protein kinase enzyme pathways. These processes are essential for the proper functioning of our body.
In conclusion, vitamin A is a vital nutrient that our body needs to function correctly. It is essential for our vision, growth and development of tissues, regulation of gene transcription, and synthesis of hydrophobic glycoproteins and parts of the protein kinase enzyme pathways. Therefore, it is crucial to include vitamin A-rich foods in our diet or take supplements if necessary.
-
This question is part of the following fields:
- Basic Sciences
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)