00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 20-year-old man is assaulted outside a nightclub and struck with a baseball...

    Incorrect

    • A 20-year-old man is assaulted outside a nightclub and struck with a baseball bat, resulting in a blow to the right side of his head. He is taken to the emergency department and placed under observation. As his Glasgow Coma Scale score declines, he falls into a coma. What is the most probable haemodynamic parameter that will be present?

      Your Answer: Hypotension and bradycardia

      Correct Answer: Hypertension and bradycardia

      Explanation:

      Before coning, hypertension and bradycardia are observed. The brain regulates its own blood supply by managing the overall blood pressure.

      Patients with head injuries should be managed according to ATLS principles and extracranial injuries should be managed alongside cranial trauma. Different types of traumatic brain injury include extradural hematoma, subdural hematoma, and subarachnoid hemorrhage. Primary brain injury may be focal or diffuse, while secondary brain injury occurs when cerebral edema, ischemia, infection, tonsillar or tentorial herniation exacerbates the original injury. Management may include IV mannitol/furosemide, decompressive craniotomy, and ICP monitoring. Pupillary findings can provide information on the location and severity of the injury.

    • This question is part of the following fields:

      • Neurological System
      19.8
      Seconds
  • Question 2 - A 33-year-old woman with a history of asthma, gout, rheumatoid arthritis, and type...

    Correct

    • A 33-year-old woman with a history of asthma, gout, rheumatoid arthritis, and type II diabetes mellitus has been admitted to the respiratory ward due to breathlessness after contracting SARS-CoV-2. Despite receiving 60% oxygen via a venturi mask, her oxygen saturation remains at 91%. The doctor decides to prescribe dexamethasone. What is the expected effect of this medication?

      Your Answer: Increased blood glucose levels

      Explanation:

      The use of corticosteroids, such as dexamethasone, can worsen diabetic control due to their anti-insulin effects. Dexamethasone, which is commonly used to manage severe SARS-CoV-2 infection, has a high glucocorticoid activity that can lead to insulin resistance and increased blood glucose levels. However, it is unlikely to cause an asthma exacerbation or a flare-up of rheumatoid arthritis or gout. While psychosis is a known side effect of dexamethasone, it is less common than an increase in blood glucose levels.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      20
      Seconds
  • Question 3 - A 29-year-old man is diagnosed with pleomorphic adenoma and requires surgical resection. During...

    Correct

    • A 29-year-old man is diagnosed with pleomorphic adenoma and requires surgical resection. During the procedure, which of the following structures is least likely to be encountered in the resection of the parotid gland?

      Your Answer: Mandibular nerve

      Explanation:

      The parotid gland is traversed by several important structures, including the facial nerve and its branches, the external carotid artery and its branches (such as the maxillary and superficial temporal arteries), the retromandibular vein, and the auriculotemporal nerve. However, the mandibular nerve is located at a safe distance from the gland. The maxillary vein joins with the superficial temporal vein to form the retromandibular vein, which passes through the parotid gland. Damage to the auriculotemporal nerve during a parotidectomy can result in regrowth that attaches to sweat glands, leading to gustatory sweating (Freys Syndrome). The marginal mandibular branch of the facial nerve is also associated with the parotid gland.

      The parotid gland is located in front of and below the ear, overlying the mandibular ramus. Its salivary duct crosses the masseter muscle, pierces the buccinator muscle, and drains adjacent to the second upper molar tooth. The gland is traversed by several structures, including the facial nerve, external carotid artery, retromandibular vein, and auriculotemporal nerve. The gland is related to the masseter muscle, medial pterygoid muscle, superficial temporal and maxillary artery, facial nerve, stylomandibular ligament, posterior belly of the digastric muscle, sternocleidomastoid muscle, stylohyoid muscle, internal carotid artery, mastoid process, and styloid process. The gland is supplied by branches of the external carotid artery and drained by the retromandibular vein. Its lymphatic drainage is to the deep cervical nodes. The gland is innervated by the parasympathetic-secretomotor, sympathetic-superior cervical ganglion, and sensory-greater auricular nerve. Parasympathetic stimulation produces a water-rich, serous saliva, while sympathetic stimulation leads to the production of a low volume, enzyme-rich saliva.

    • This question is part of the following fields:

      • Gastrointestinal System
      17.2
      Seconds
  • Question 4 - A 56-year-old man with advanced motor neuron disease is experiencing difficulty breathing, possibly...

    Correct

    • A 56-year-old man with advanced motor neuron disease is experiencing difficulty breathing, possibly due to weakened respiratory muscles.

      Which skeletal muscle is not fully utilized during inspiration?

      Your Answer: Internal intercostals

      Explanation:

      The Muscles Involved in Breathing

      Breathing is a complex process that involves the contraction and relaxation of various muscles. The primary muscles responsible for inspiration are the external intercostal muscles and the diaphragm. These muscles work together to expand the chest cavity and create a negative pressure gradient, allowing air to flow into the lungs. In addition to these primary muscles, the sternocleidomastoid and the scalenes can also assist with inspiration.

      During quiet expiration, the lungs simply recoil back to their resting position due to their elastic properties. However, during forced expiration, the internal intercostal muscles come into play. These muscles contract to decrease the size of the chest cavity and increase the pressure within the lungs, forcing air out.

      the muscles involved in breathing is important for individuals with respiratory conditions, as well as athletes and performers who rely on proper breathing techniques for optimal performance. By strengthening and training these muscles, individuals can improve their breathing efficiency and overall respiratory health.

    • This question is part of the following fields:

      • Clinical Sciences
      8.1
      Seconds
  • Question 5 - Which of the following nerves is responsible for innervating the posterior belly of...

    Incorrect

    • Which of the following nerves is responsible for innervating the posterior belly of the digastric muscle?

      Your Answer: Hypoglossal nerve

      Correct Answer: Facial nerve

      Explanation:

      The facial nerve innervates the posterior belly of digastric, while the mylohoid nerve innervates the anterior belly.

      The Anterior Triangle of the Neck: Boundaries and Contents

      The anterior triangle of the neck is a region that is bounded by the anterior border of the sternocleidomastoid muscle, the lower border of the mandible, and the anterior midline. It is further divided into three sub-triangles by the digastric muscle and the omohyoid muscle. The muscular triangle contains the neck strap muscles, while the carotid triangle contains the carotid sheath, which houses the common carotid artery, the vagus nerve, and the internal jugular vein. The submandibular triangle, located below the digastric muscle, contains the submandibular gland, submandibular nodes, facial vessels, hypoglossal nerve, and other structures.

      The digastric muscle, which separates the submandibular triangle from the muscular triangle, is innervated by two different nerves. The anterior belly of the digastric muscle is supplied by the mylohyoid nerve, while the posterior belly is supplied by the facial nerve.

      Overall, the anterior triangle of the neck is an important anatomical region that contains many vital structures, including blood vessels, nerves, and glands. Understanding the boundaries and contents of this region is essential for medical professionals who work in this area.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      9.7
      Seconds
  • Question 6 - A 55-year-old man comes to the hospital complaining of lethargy, headache, and shortness...

    Incorrect

    • A 55-year-old man comes to the hospital complaining of lethargy, headache, and shortness of breath. Upon examination, he is found to be cyanotic and hypoxic, and is admitted to the respiratory ward for oxygen therapy.

      Following some initial tests, the consultant informs the patient that his hemoglobin has a high affinity for oxygen, resulting in reduced oxygen delivery to the tissues.

      What is the probable reason for this alteration in the oxygen dissociation curve?

      Your Answer: Low pH

      Correct Answer: Low 2,3-DPG

      Explanation:

      The correct answer is low 2,3-DPG. The professor’s description refers to a left shift in the oxygen dissociation curve, which indicates that haemoglobin has a high affinity for oxygen and is less likely to release it to the tissues. Factors that cause a left shift include low temperature, high pH, low PCO2, and low 2,3-DPG. 2,3-DPG is a substance that helps release oxygen from haemoglobin, so low levels of it result in less oxygen being released, causing a left shift in the oxygen dissociation curve.

      The answer high temperature is incorrect because it causes a right shift in the oxygen dissociation curve, promoting oxygen delivery to the tissues. Hypercapnoea also causes a right shift in the curve, promoting oxygen delivery. Hyperglycaemia has no effect on haemoglobin’s ability to release oxygen, so it is also incorrect.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      27.7
      Seconds
  • Question 7 - A 54-year-old man from Afganistan is staying with his relatives in the UK....

    Correct

    • A 54-year-old man from Afganistan is staying with his relatives in the UK. He has been experiencing occasional tingling and numbness in his feet and is worried about it. He has a medical history of tuberculosis and type 2 diabetes mellitus. Which medication he is taking could be causing his symptoms?

      Your Answer: Isoniazid

      Explanation:

      The standard quadruple therapy for tuberculosis consists of ethambutol, isoniazid, pyrazinamide, and rifampicin.

      Tuberculosis is a bacterial infection that can be treated with a combination of drugs. Each drug has a specific mechanism of action and can also cause side-effects. Rifampicin works by inhibiting bacterial DNA dependent RNA polymerase, which prevents the transcription of DNA into mRNA. However, it is a potent liver enzyme inducer and can cause hepatitis, orange secretions, and flu-like symptoms.

      Isoniazid, on the other hand, inhibits mycolic acid synthesis. It can cause peripheral neuropathy, which can be prevented with pyridoxine (Vitamin B6). It can also cause hepatitis and agranulocytosis, but it is a liver enzyme inhibitor.

      Pyrazinamide is converted by pyrazinamidase into pyrazinoic acid, which inhibits fatty acid synthase (FAS) I. However, it can cause hyperuricaemia, leading to gout, as well as arthralgia and myalgia. It can also cause hepatitis.

      Finally, Ethambutol inhibits the enzyme arabinosyl transferase, which polymerizes arabinose into arabinan. However, it can cause optic neuritis, so it is important to check visual acuity before and during treatment. The dose also needs adjusting in patients with renal impairment.

    • This question is part of the following fields:

      • General Principles
      21.1
      Seconds
  • Question 8 - A 28-year-old rugby player complains of polyuria and polydipsia. He reports being hospitalized...

    Correct

    • A 28-year-old rugby player complains of polyuria and polydipsia. He reports being hospitalized 5 months ago due to a head injury sustained while playing rugby. Central diabetes insipidus is confirmed through biochemistry and a water-deprivation test. A pituitary MRI reveals a thickened pituitary stalk, supporting the diagnosis. What is the appropriate medication for this patient?

      Your Answer: Desmopressin

      Explanation:

      Desmopressin is an effective treatment for central diabetes insipidus, which is a rare condition caused by damage or dysfunction of the posterior pituitary gland resulting in a lack of ADH production. Carbimazole is used to treat hyperthyroidism, while goserelin is used to treat prostate cancer. Indapamide, a thiazide-like diuretic, is used to manage hypertension and heart failure.

      Diabetes insipidus is a medical condition that can be caused by either a decreased secretion of antidiuretic hormone (ADH) from the pituitary gland (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be caused by various factors such as head injury, pituitary surgery, and infiltrative diseases like sarcoidosis. On the other hand, nephrogenic DI can be caused by genetic factors, electrolyte imbalances, and certain medications like lithium and demeclocycline. The common symptoms of DI are excessive urination and thirst. Diagnosis is made through a water deprivation test and checking the osmolality of the urine. Treatment options include thiazides and a low salt/protein diet for nephrogenic DI, while central DI can be treated with desmopressin.

    • This question is part of the following fields:

      • Renal System
      20.4
      Seconds
  • Question 9 - A pharmaceutical company is striving to develop a novel weight-loss drug that imitates...

    Correct

    • A pharmaceutical company is striving to develop a novel weight-loss drug that imitates the satiety-inducing effects of the endogenous peptide hormone cholecystokinin (CCK).

      What are the cells that naturally synthesize and secrete this hormone?

      Your Answer: I cells in the upper small intestine

      Explanation:

      CCK is a hormone produced by I cells in the upper small intestine that enhances the digestion of fats and proteins. When partially digested proteins and fats are detected, CCK is synthesized and released, resulting in various processes such as the secretion of digestive enzymes from the pancreas, contraction of the gallbladder, relaxation of the sphincter of Oddi, decreased gastric emptying, and a trophic effect on pancreatic acinar cells. These processes lead to the breakdown of fats and proteins and suppression of hunger.

      B cells, on the other hand, are part of the immune system and produce antibodies as part of the B cell receptors. They are produced in the bone marrow and migrate to the spleen and lymphatic system, but they do not play a role in satiety.

      Somatostatin is a hormone released from D cells in the pancreas and stomach that regulates peptide hormone release and gastric emptying. It is stimulated by the presence of fat, bile salt, and glucose in the intestines.

      Gastrin is a hormone that increases acid release from parietal cells in the stomach and aids in gastric motility. It is released from G cells in the antrum of the stomach in response to distension of the stomach, stimulation of the vagus nerves, and the presence of peptides/amino acids in the lumen.

      Secretin is a hormone that regulates enzyme secretion from the stomach, pancreas, and liver. It is released from the S cells in the duodenum in response to the presence of acid in the lumen.

      Overview of Gastrointestinal Hormones

      Gastrointestinal hormones play a crucial role in the digestion and absorption of food. These hormones are secreted by various cells in the stomach and small intestine in response to different stimuli such as the presence of food, pH changes, and neural signals.

      One of the major hormones involved in food digestion is gastrin, which is secreted by G cells in the antrum of the stomach. Gastrin increases acid secretion by gastric parietal cells, stimulates the secretion of pepsinogen and intrinsic factor, and increases gastric motility. Another hormone, cholecystokinin (CCK), is secreted by I cells in the upper small intestine in response to partially digested proteins and triglycerides. CCK increases the secretion of enzyme-rich fluid from the pancreas, contraction of the gallbladder, and relaxation of the sphincter of Oddi. It also decreases gastric emptying and induces satiety.

      Secretin is another hormone secreted by S cells in the upper small intestine in response to acidic chyme and fatty acids. Secretin increases the secretion of bicarbonate-rich fluid from the pancreas and hepatic duct cells, decreases gastric acid secretion, and has a trophic effect on pancreatic acinar cells. Vasoactive intestinal peptide (VIP) is a neural hormone that stimulates secretion by the pancreas and intestines and inhibits acid secretion.

      Finally, somatostatin is secreted by D cells in the pancreas and stomach in response to fat, bile salts, and glucose in the intestinal lumen. Somatostatin decreases acid and pepsin secretion, decreases gastrin secretion, decreases pancreatic enzyme secretion, and decreases insulin and glucagon secretion. It also inhibits the trophic effects of gastrin and stimulates gastric mucous production.

      In summary, gastrointestinal hormones play a crucial role in regulating the digestive process and maintaining homeostasis in the gastrointestinal tract.

    • This question is part of the following fields:

      • Gastrointestinal System
      8.2
      Seconds
  • Question 10 - You perform venepuncture on the basilic vein in the cubital fossa.

    At which point...

    Incorrect

    • You perform venepuncture on the basilic vein in the cubital fossa.

      At which point does this vein pass deep under muscle?

      Your Answer: At the medial epicondyle

      Correct Answer: Midway up the humerus

      Explanation:

      When the basilic vein is located halfway up the humerus, it travels beneath muscle. At the cubital fossa, the basilic vein connects with the median cubital vein, which in turn interacts with the cephalic vein. Contrary to popular belief, the basilic vein does not pass through the medial epicondyle. Meanwhile, the cephalic vein can be found in the deltopectoral groove.

      The Basilic Vein: A Major Pathway of Venous Drainage for the Arm and Hand

      The basilic vein is one of the two main pathways of venous drainage for the arm and hand, alongside the cephalic vein. It begins on the medial side of the dorsal venous network of the hand and travels up the forearm and arm. Most of its course is superficial, but it passes deep under the muscles midway up the humerus. Near the region anterior to the cubital fossa, the basilic vein joins the cephalic vein.

      At the lower border of the teres major muscle, the anterior and posterior circumflex humeral veins feed into the basilic vein. It is often joined by the medial brachial vein before draining into the axillary vein. The basilic vein is continuous with the palmar venous arch distally and the axillary vein proximally. Understanding the path and function of the basilic vein is important for medical professionals in diagnosing and treating conditions related to venous drainage in the arm and hand.

    • This question is part of the following fields:

      • Cardiovascular System
      11.1
      Seconds
  • Question 11 - A 27-year-old male with a history of paraplegia, due to C5 spinal cord...

    Incorrect

    • A 27-year-old male with a history of paraplegia, due to C5 spinal cord injury sustained 8 weeks prior, is currently admitted to an orthopaedic and spinal ward. One night, he wakes up in distress with a headache and diaphoresis above the level of his spinal cord injury. His blood pressure is currently 160/110 mmHg. It was recorded 2 hours ago as 110/70mmHg. His pulse rate is 50. The patient also has an indwelling catheter which was changed earlier today.

      The healthcare provider on-call suspects that autonomic dysreflexia might be the cause of the patient's symptoms.

      What is the most common life-threatening outcome associated with this condition?

      Your Answer: Pulmonary embolism

      Correct Answer: Haemorrhagic stroke

      Explanation:

      Autonomic dysreflexia is a condition that occurs in patients who have suffered a spinal cord injury at or above the T6 spinal level. It is caused by a reflex response triggered by various stimuli, such as faecal impaction or urinary retention, which sends signals through the thoracolumbar outflow. However, due to the spinal cord lesion, the usual parasympathetic response is prevented, leading to an unbalanced physiological response. This response is characterized by extreme hypertension, flushing, and sweating above the level of the cord lesion, as well as agitation. If left untreated, severe consequences such as haemorrhagic stroke can occur. The management of autonomic dysreflexia involves removing or controlling the stimulus and treating any life-threatening hypertension and/or bradycardia.

    • This question is part of the following fields:

      • Neurological System
      32.2
      Seconds
  • Question 12 - A 57-year-old man with stable angina undergoes an angiogram and is found to...

    Incorrect

    • A 57-year-old man with stable angina undergoes an angiogram and is found to have a 60% stenosis of the left main artery. The surgeons recommend a coronary artery bypass procedure. Which structure is likely to be supplied by the vessel used in this procedure?

      Your Answer: Thyroid gland

      Correct Answer: Thymus gland

      Explanation:

      The thymus receives its arterial supply from either the internal mammary artery or the pericardiophrenic arteries.

      During coronary artery bypass surgery, the internal thoracic artery, also referred to as the internal mammary artery, is utilized.

      The Thymus Gland: Development, Structure, and Function

      The thymus gland is an encapsulated organ that develops from the third and fourth pharyngeal pouches. It descends to the anterior superior mediastinum and is subdivided into lobules, each consisting of a cortex and a medulla. The cortex is made up of tightly packed lymphocytes, while the medulla is mostly composed of epithelial cells. Hassall’s corpuscles, which are concentrically arranged medullary epithelial cells that may surround a keratinized center, are also present.

      The inferior parathyroid glands, which also develop from the third pharyngeal pouch, may be located with the thymus gland. The thymus gland’s arterial supply comes from the internal mammary artery or pericardiophrenic arteries, while its venous drainage is to the left brachiocephalic vein. The thymus gland plays a crucial role in the development and maturation of T-cells, which are essential for the immune system’s proper functioning.

    • This question is part of the following fields:

      • Haematology And Oncology
      32.2
      Seconds
  • Question 13 - A 25-year-old female patient is admitted to the surgical ward for an elective...

    Incorrect

    • A 25-year-old female patient is admitted to the surgical ward for an elective exploratory laparotomy to confirm the diagnosis of endometriosis. She has a history of pelvic inflammatory disease.

      Upon laparoscopy, multiple chocolate cysts and ectopic endometrial tissue are found in the pelvis. However, the surgery results in damage to the structure that connects the left ovary to the lateral pelvic wall.

      Which structure has been affected during the surgery?

      Your Answer: Cardinal ligament

      Correct Answer: Suspensory ligament

      Explanation:

      The suspensory ligament of the ovaries attaches the ovaries to the lateral pelvic wall. This ligament is used as a clinical landmark to differentiate between intraovarian and extraovarian pathology. The broad ligament, cardinal ligament, round ligament, and uterosacral ligament are incorrect options as they do not attach the ovaries to the lateral pelvic wall and have different functions in the female reproductive system.

      Pelvic Ligaments and their Connections

      Pelvic ligaments are structures that connect various organs within the female reproductive system to the pelvic wall. These ligaments play a crucial role in maintaining the position and stability of these organs. There are several types of pelvic ligaments, each with its own unique function and connection.

      The broad ligament connects the uterus, fallopian tubes, and ovaries to the pelvic wall, specifically the ovaries. The round ligament connects the uterine fundus to the labia majora, but does not connect to any other structures. The cardinal ligament connects the cervix to the lateral pelvic wall and is responsible for supporting the uterine vessels. The suspensory ligament of the ovaries connects the ovaries to the lateral pelvic wall and supports the ovarian vessels. The ovarian ligament connects the ovaries to the uterus, but does not connect to any other structures. Finally, the uterosacral ligament connects the cervix and posterior vaginal dome to the sacrum, but does not connect to any other structures.

      Overall, pelvic ligaments are essential for maintaining the proper position and function of the female reproductive organs. Understanding the connections between these ligaments and the structures they support is crucial for diagnosing and treating any issues that may arise.

    • This question is part of the following fields:

      • Reproductive System
      21.1
      Seconds
  • Question 14 - What stage of cellular respiration is responsible for the production of pyruvic acid?...

    Incorrect

    • What stage of cellular respiration is responsible for the production of pyruvic acid?

      Your Answer: Oxidative phosphorylation

      Correct Answer: Glycolysis

      Explanation:

      The Versatility of Pyruvic Acid in Cellular Metabolism

      Pyruvic acid is a simple alpha-keto acid that plays a crucial role in several metabolic pathways within the cell. It serves as a central intersection where different pathways converge and diverge. One of the primary ways pyruvic acid is produced is through glycolysis, where glucose is broken down into pyruvic acid. Depending on the cell’s needs, pyruvic acid can be converted back into glucose through gluconeogenesis or used to synthesize fatty acids through the acetyl-CoA pathway. Additionally, pyruvic acid can be used to produce the amino acid alanine.

      Pyruvic acid is also involved in respiration, where it enters the Krebs cycle under aerobic conditions. This cycle produces energy in the form of ATP, which is used by the cell for various functions. Under anaerobic conditions, pyruvic acid can ferment into lactic acid, which is used by some organisms as a source of energy.

      In summary, pyruvic acid is a versatile molecule that plays a critical role in cellular metabolism. Its ability to be converted into different molecules depending on the cell’s needs makes it an essential component of many metabolic pathways.

    • This question is part of the following fields:

      • Basic Sciences
      7.2
      Seconds
  • Question 15 - A 35-year-old woman presents to the emergency department with seizures. She reports experiencing...

    Incorrect

    • A 35-year-old woman presents to the emergency department with seizures. She reports experiencing headaches, nausea, vomiting, and fevers for the past week. She was diagnosed with HIV 3 years ago but has been noncompliant with her medication due to forgetfulness. On lumbar puncture, her CSF shows a high opening pressure and India ink staining. A head CT reveals cerebral edema.

      What is the probable cause of her symptoms?

      Your Answer: Progressive multifocal leukoencephalopathy (PML)

      Correct Answer: Cryptococcus neoformans

      Explanation:

      Cryptococcus neoformans is a fungal infection that commonly affects the central nervous system and is often associated with HIV. This patient is at risk of developing neurological complications due to non-compliance with medication. Symptoms of Cryptococcus neoformans infection include seizures, headache, nausea, vomiting, and focal neurological deficits. A lumbar puncture will reveal high opening pressure and a positive India ink test.

      AIDS dementia complex typically has a more gradual onset than the acute symptoms seen in this patient. Patients with AIDS dementia complex may experience behavioral changes and motor impairment over a longer period of time.

      Encephalitis is a potential differential diagnosis for patients with neurological symptoms suggestive of infection, but the findings on lumbar puncture in this patient make Cryptococcus neoformans infection more likely.

      PML is caused by JC virus infection of oligodendrocytes. Patients with PML typically experience subacute onset of symptoms such as behavioral changes, speech impairment, motor impairment, or visual impairment. CT scans may show single or multiple lesions, but the CSF will not stain with India ink.

      Neurological complications are common in patients with HIV. Focal neurological lesions such as toxoplasmosis, primary CNS lymphoma, and tuberculosis can cause symptoms such as headache, confusion, and drowsiness. Toxoplasmosis is the most common cause of cerebral lesions in HIV patients and is treated with sulfadiazine and pyrimethamine. Primary CNS lymphoma, which is associated with the Epstein-Barr virus, is treated with steroids, chemotherapy, and whole brain irradiation. Differentiating between toxoplasmosis and lymphoma is important for proper treatment. Generalized neurological diseases such as encephalitis, cryptococcus, progressive multifocal leukoencephalopathy (PML), and AIDS dementia complex can also occur in HIV patients. Encephalitis may be due to CMV or HIV itself, while cryptococcus is the most common fungal infection of the CNS. PML is caused by infection of oligodendrocytes by JC virus, and AIDS dementia complex is caused by the HIV virus itself. Proper diagnosis and treatment of these neurological complications is crucial for improving outcomes in HIV patients.

      Neurological Complications in HIV Patients
      Introduction to the common neurological complications in HIV patients, including focal neurological lesions such as toxoplasmosis, primary CNS lymphoma, and tuberculosis.
      Details on the diagnosis and treatment of toxoplasmosis and primary CNS lymphoma, including the importance of differentiating between the two.
      Overview of generalized neurological diseases in HIV patients, including encephalitis, cryptococcus, PML, and AIDS dementia complex.
      Importance of proper diagnosis and treatment for improving outcomes in HIV patients with neurological complications.

    • This question is part of the following fields:

      • General Principles
      11
      Seconds
  • Question 16 - A man in his 50s is diagnosed with pernicious anaemia. What is the...

    Correct

    • A man in his 50s is diagnosed with pernicious anaemia. What is the probable cause for this condition?

      Your Answer: Autoimmune antibodies to parietal cells

      Explanation:

      The destruction of gastric parietal cells, often due to autoimmune factors, is a primary cause of pernicious anaemia. In some cases, mixed patterns may be present and further diagnostic assessment may be necessary, particularly in instances of bacterial overgrowth.

      Pernicious anaemia is a condition that results in a deficiency of vitamin B12 due to an autoimmune disorder affecting the gastric mucosa. The term pernicious refers to the gradual and subtle harm caused by the condition, which often leads to delayed diagnosis. While pernicious anaemia is the most common cause of vitamin B12 deficiency, other causes include atrophic gastritis, gastrectomy, and malnutrition. The condition is characterized by the presence of antibodies to intrinsic factor and/or gastric parietal cells, which can lead to reduced vitamin B12 absorption and subsequent megaloblastic anaemia and neuropathy.

      Pernicious anaemia is more common in middle to old age females and is associated with other autoimmune disorders such as thyroid disease, type 1 diabetes mellitus, Addison’s, rheumatoid, and vitiligo. Symptoms of the condition include anaemia, lethargy, pallor, dyspnoea, peripheral neuropathy, subacute combined degeneration of the spinal cord, neuropsychiatric features, mild jaundice, and glossitis. Diagnosis is made through a full blood count, vitamin B12 and folate levels, and the presence of antibodies.

      Management of pernicious anaemia involves vitamin B12 replacement, usually given intramuscularly. Patients with neurological features may require more frequent doses. Folic acid supplementation may also be necessary. Complications of the condition include an increased risk of gastric cancer.

    • This question is part of the following fields:

      • Gastrointestinal System
      10.3
      Seconds
  • Question 17 - A 67-year-old woman arrives at the emergency department complaining of sudden left leg...

    Incorrect

    • A 67-year-old woman arrives at the emergency department complaining of sudden left leg pain, redness, and swelling. She recently traveled from Australia and denies any history of trauma or family history of similar symptoms. What underlying risk factor may make her more susceptible to this condition?

      Your Answer: BMI of 16

      Correct Answer: Polycythaemia rubra vera

      Explanation:

      The risk of venous thromboembolism is elevated in individuals with polycythaemia due to the abnormal overproduction of red blood cells, which leads to increased blood viscosity and slower flow rate, increasing the likelihood of clot formation. Conversely, low BMI does not increase the risk of VTE, while obesity is a known risk factor. Additionally, thrombophilia, not haemophilia, is a risk factor for VTE.

      Risk Factors for Venous Thromboembolism

      Venous thromboembolism (VTE) is a condition where blood clots form in the veins, which can lead to serious complications such as pulmonary embolism (PE). While some common predisposing factors include malignancy, pregnancy, and the period following an operation, there are many other factors that can increase the risk of VTE. These include underlying conditions such as heart failure, thrombophilia, and nephrotic syndrome, as well as medication use such as the combined oral contraceptive pill and antipsychotics. It is important to note that around 40% of patients diagnosed with a PE have no major risk factors. Therefore, it is crucial to be aware of all potential risk factors and take appropriate measures to prevent VTE.

    • This question is part of the following fields:

      • Haematology And Oncology
      26
      Seconds
  • Question 18 - A 50-year-old man with T2DM goes for his yearly diabetic retinopathy screening and...

    Incorrect

    • A 50-year-old man with T2DM goes for his yearly diabetic retinopathy screening and is diagnosed with proliferative diabetic retinopathy. What retinal characteristics are indicative of this condition?

      Your Answer: 'Cotton-wool' spots

      Correct Answer: neovascularization

      Explanation:

      Diabetic retinopathy is a progressive disease that affects the retina and is a complication of diabetes mellitus (DM). The condition is caused by persistent high blood sugar levels, which can damage the retinal vessels and potentially lead to vision loss. The damage is caused by retinal ischaemia, which occurs when the retinal vasculature becomes blocked.

      There are various retinal findings that indicate the presence of diabetic retinopathy, which can be classified into two categories: non-proliferative and proliferative. Non-proliferative diabetic retinopathy is indicated by the presence of microaneurysms, ‘cotton-wool’ spots, ‘dot-blot’ haemorrhages, and venous beading at different stages. However, neovascularization, or the formation of new blood vessels, is the finding associated with more advanced, proliferative retinopathy.

      Understanding Diabetic Retinopathy

      Diabetic retinopathy is a leading cause of blindness in adults aged 35-65 years-old. The condition is caused by hyperglycaemia, which leads to abnormal metabolism in the retinal vessel walls, causing damage to endothelial cells and pericytes. This damage leads to increased vascular permeability, which causes exudates seen on fundoscopy. Pericyte dysfunction predisposes to the formation of microaneurysms, while neovascularization is caused by the production of growth factors in response to retinal ischaemia.

      Patients with diabetic retinopathy are typically classified into those with non-proliferative diabetic retinopathy (NPDR), proliferative retinopathy (PDR), and maculopathy. NPDR is further classified into mild, moderate, and severe, depending on the presence of microaneurysms, blot haemorrhages, hard exudates, cotton wool spots, venous beading/looping, and intraretinal microvascular abnormalities. PDR is characterized by retinal neovascularization, which may lead to vitreous haemorrhage, and fibrous tissue forming anterior to the retinal disc. Maculopathy is based on location rather than severity and is more common in Type II DM.

      Management of diabetic retinopathy involves optimizing glycaemic control, blood pressure, and hyperlipidemia, as well as regular review by ophthalmology. For maculopathy, intravitreal vascular endothelial growth factor (VEGF) inhibitors are used if there is a change in visual acuity. Non-proliferative retinopathy is managed through regular observation, while severe/very severe cases may require panretinal laser photocoagulation. Proliferative retinopathy is treated with panretinal laser photocoagulation, intravitreal VEGF inhibitors, and vitreoretinal surgery in severe or vitreous haemorrhage cases. Examples of VEGF inhibitors include ranibizumab, which has a strong evidence base for slowing the progression of proliferative diabetic retinopathy and improving visual acuity.

    • This question is part of the following fields:

      • Neurological System
      15.9
      Seconds
  • Question 19 - Which tumour is most frequently found in children who are less than one...

    Correct

    • Which tumour is most frequently found in children who are less than one year old?

      Your Answer: Neuroblastoma

      Explanation:

      Common Tumours in Children Under 1 Year Old

      Embryonal ‘-blastoma’ tumours are frequently found in children under 1 year old. These tumours include retinoblastoma, neuroblastoma, nephroblastoma, medulloblastoma, and hepatoblastoma. Among these, neuroblastoma is the most common and typically affects infants under 1 year old. It originates from neural crest cells in the adrenal medulla and often presents as a large abdominal mass in an otherwise healthy child.

      Acute lymphoblastic leukaemia (ALL) is the most common cancer in children overall, but it is less common in infants under 1 year old. Unfortunately, the prognosis for those who develop ALL before their first birthday is poorer. Astrocytomas, the most common type of CNS tumour, tend to affect slightly older children.

      Retinoblastomas are embryonal tumours of the retina, with half being spontaneous and the other half being familial due to an inherited mutation in the pRB tumour suppressor gene. Wilms’ tumour, also known as nephroblastoma, is another embryonal tumour that affects the kidneys and may present as an abdominal mass in infants.

      In summary, embryonal ‘-blastoma’ tumours are common in children under 1 year old, with neuroblastoma being the most prevalent. Other tumours, such as ALL and astrocytomas, tend to affect slightly older children. Early detection and treatment are crucial for improving outcomes in these young patients.

    • This question is part of the following fields:

      • Paediatrics
      8
      Seconds
  • Question 20 - A 23-year-old male presents to his GP with a 5-day-history of mild scrotal...

    Incorrect

    • A 23-year-old male presents to his GP with a 5-day-history of mild scrotal pain. He reports having unprotected sexual intercourse with a new female partner recently. Upon examination, the right hemi-scrotum is swollen, red, and tender with an enlarged epididymis. The patient has a normal glans penis and a present cremasteric reflex.

      In this scenario, which lymph nodes are most likely to be enlarged?

      Your Answer: Deep inguinal

      Correct Answer: Superficial inguinal

      Explanation:

      Lymphatic drainage is the process by which lymphatic vessels carry lymph, a clear fluid containing white blood cells, away from tissues and organs and towards lymph nodes. The lymphatic vessels that drain the skin and follow venous drainage are called superficial lymphatic vessels, while those that drain internal organs and structures follow the arteries and are called deep lymphatic vessels. These vessels eventually lead to lymph nodes, which filter and remove harmful substances from the lymph before it is returned to the bloodstream.

      The lymphatic system is divided into two main ducts: the right lymphatic duct and the thoracic duct. The right lymphatic duct drains the right side of the head and right arm, while the thoracic duct drains everything else. Both ducts eventually drain into the venous system.

      Different areas of the body have specific primary lymph node drainage sites. For example, the superficial inguinal lymph nodes drain the anal canal below the pectinate line, perineum, skin of the thigh, penis, scrotum, and vagina. The deep inguinal lymph nodes drain the glans penis, while the para-aortic lymph nodes drain the testes, ovaries, kidney, and adrenal gland. The axillary lymph nodes drain the lateral breast and upper limb, while the internal iliac lymph nodes drain the anal canal above the pectinate line, lower part of the rectum, and pelvic structures including the cervix and inferior part of the uterus. The superior mesenteric lymph nodes drain the duodenum and jejunum, while the inferior mesenteric lymph nodes drain the descending colon, sigmoid colon, and upper part of the rectum. Finally, the coeliac lymph nodes drain the stomach.

    • This question is part of the following fields:

      • Haematology And Oncology
      13.6
      Seconds
  • Question 21 - A 75-year-old man visits his doctor complaining of a productive cough that has...

    Incorrect

    • A 75-year-old man visits his doctor complaining of a productive cough that has lasted for 5 days. He has also been feeling generally unwell and has had a fever for the past 2 days. The doctor suspects a bacterial respiratory tract infection and orders a blood panel, sputum microscopy, and culture. What is the most likely abnormality to be found in the blood results?

      Your Answer: Eosinophils

      Correct Answer: Neutrophils

      Explanation:

      Neutrophils are typically elevated during an acute bacterial infection, while eosinophils are commonly elevated in response to parasitic infections and allergies. Lymphocytes tend to increase during acute viral infections and chronic inflammation. IgE levels are raised in cases of allergic asthma, malaria, and type 1 hypersensitivity reactions. Anti-CCP antibody is a diagnostic tool for Rheumatoid arthritis.

      Pneumonia is a common condition that affects the alveoli of the lungs, usually caused by a bacterial infection. Other causes include viral and fungal infections. Streptococcus pneumoniae is the most common organism responsible for pneumonia, accounting for 80% of cases. Haemophilus influenzae is common in patients with COPD, while Staphylococcus aureus often occurs in patients following influenzae infection. Mycoplasma pneumoniae and Legionella pneumophilia are atypical pneumonias that present with dry cough and other atypical symptoms. Pneumocystis jiroveci is typically seen in patients with HIV. Idiopathic interstitial pneumonia is a group of non-infective causes of pneumonia.

      Patients who develop pneumonia outside of the hospital have community-acquired pneumonia (CAP), while those who develop it within hospitals are said to have hospital-acquired pneumonia. Symptoms of pneumonia include cough, sputum, dyspnoea, chest pain, and fever. Signs of systemic inflammatory response, tachycardia, reduced oxygen saturations, and reduced breath sounds may also be present. Chest x-ray is used to diagnose pneumonia, with consolidation being the classical finding. Blood tests, such as full blood count, urea and electrolytes, and CRP, are also used to check for infection.

      Patients with pneumonia require antibiotics to treat the underlying infection and supportive care, such as oxygen therapy and intravenous fluids. Risk stratification is done using a scoring system called CURB-65, which stands for confusion, respiration rate, blood pressure, age, and is used to determine the management of patients with community-acquired pneumonia. Home-based care is recommended for patients with a CRB65 score of 0, while hospital assessment is recommended for all other patients, particularly those with a CRB65 score of 2 or more. The CURB-65 score also correlates with an increased risk of mortality at 30 days.

    • This question is part of the following fields:

      • Respiratory System
      41.3
      Seconds
  • Question 22 - A 65-year-old man presents to the hospital with a 3-day history of headaches....

    Correct

    • A 65-year-old man presents to the hospital with a 3-day history of headaches. He has a medical history of type 2 diabetes mellitus and hypertension.

      During the examination, it is observed that his left pupil is constricted with enophthalmos and ptosis of the left eyelid. However, the right side of his face appears to be unaffected.

      What could be the probable reason for this patient's symptoms?

      Your Answer: Carotid artery dissection

      Explanation:

      Carotid artery dissection is the likely cause of the patient’s Horner’s syndrome, which presents with ptosis, enophthalmos, and miosis. This syndrome occurs when there is damage to the cervical sympathetic chain, resulting in the loss of sympathetic innervation to the head and neck. The patient’s history of hypertension and headache further support this diagnosis.

      Facial nerve schwannoma is an incorrect diagnosis, as it would present with facial nerve palsy rather than Horner’s syndrome.

      Microvascular oculomotor nerve palsy is also an incorrect diagnosis, as it typically presents with complete ptosis and an eye that is turned outwards and downwards, without pupil dilatation.

      Uncal herniation is another incorrect diagnosis, as it can cause an oculomotor nerve palsy with pupillary involvement, but typically presents with a ‘down and out’ facing eye, rather than Horner’s syndrome.

      Horner’s syndrome is a condition characterized by several features, including a small pupil (miosis), drooping of the upper eyelid (ptosis), a sunken eye (enophthalmos), and loss of sweating on one side of the face (anhidrosis). The cause of Horner’s syndrome can be determined by examining additional symptoms. For example, congenital Horner’s syndrome may be identified by a difference in iris color (heterochromia), while anhidrosis may be present in central or preganglionic lesions. Pharmacologic tests, such as the use of apraclonidine drops, can also be helpful in confirming the diagnosis and identifying the location of the lesion. Central lesions may be caused by conditions such as stroke or multiple sclerosis, while postganglionic lesions may be due to factors like carotid artery dissection or cluster headaches. It is important to note that the appearance of enophthalmos in Horner’s syndrome is actually due to a narrow palpebral aperture rather than true enophthalmos.

    • This question is part of the following fields:

      • Neurological System
      30.1
      Seconds
  • Question 23 - A 65-year-old man presents to the emergency department with a sudden onset of...

    Correct

    • A 65-year-old man presents to the emergency department with a sudden onset of weakness and sensory loss on the right side of his body that started 2 hours ago. He reports difficulty walking due to more pronounced leg weakness than arm weakness, but denies any changes in vision or speech. The patient has a medical history of type 2 diabetes and hypertension and is currently taking metformin and ramipril for these conditions.

      Imaging is immediately performed, and treatment for his condition is initiated.

      What is the likely location of the lesion based on the given information?

      Your Answer: Left anterior cerebral artery

      Explanation:

      The correct answer is the left anterior cerebral artery. The patient is experiencing a stroke on the right side of their body, with the lower extremity being more affected than the upper. This indicates that the anterior cerebral artery is affected, specifically on the left side as the symptoms are affecting the right side of the body.

      The other options are incorrect. If the middle cerebral artery was affected, the upper extremities would be more affected than the lower. If the right anterior cerebral artery was affected, the left side of the brain would be affected. If the right middle cerebral artery was affected, there would be more weakness in the upper extremities and the left side of the body would be affected.

      Stroke can affect different parts of the brain depending on which artery is affected. If the anterior cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the lower extremities being more affected than the upper. If the middle cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the upper extremities being more affected than the lower. They may also experience vision loss and difficulty with language. If the posterior cerebral artery is affected, the person may experience vision loss and difficulty recognizing objects.

      Lacunar strokes are a type of stroke that are strongly associated with hypertension. They typically present with isolated weakness or loss of sensation on one side of the body, or weakness with difficulty coordinating movements. They often occur in the basal ganglia, thalamus, or internal capsule.

    • This question is part of the following fields:

      • Neurological System
      31.6
      Seconds
  • Question 24 - A 57-year-old woman arrives at the emergency department after experiencing a generalized tonic...

    Correct

    • A 57-year-old woman arrives at the emergency department after experiencing a generalized tonic clonic seizure. Routine laboratory tests come back normal, but a CT scan of the brain with contrast shows a densely enhancing, well-defined extra-axial mass attached to the dural layer. If a biopsy of the mass were to be performed, what is the most probable histological finding?

      Your Answer: Spindle cells in concentric whorls and calcified psammoma bodies

      Explanation:

      The characteristic histological findings of spindle cells in concentric whorls and calcified psammoma bodies are indicative of meningiomas, which are the most likely brain tumor in the given scenario. Meningiomas are typically asymptomatic due to their location outside the brain tissue, and are more commonly found in middle-aged females. They are described as masses with distinct margins, homogenous contrast uptake, and dural attachment. Psammoma bodies can also be found in other tumors such as papillary thyroid cancer, serous cystadenomas of the ovary, and mesotheliomas. The other answer choices are incorrect as they are associated with different types of brain tumors such as vestibular schwannomas, oligodendrogliomas, ependymomas, and glioblastoma multiform.

      Brain tumours can be classified into different types based on their location, histology, and clinical features. Metastatic brain cancer is the most common form of brain tumours, which often cannot be treated with surgical intervention. Glioblastoma multiforme is the most common primary tumour in adults and is associated with a poor prognosis. Meningioma is the second most common primary brain tumour in adults, which is typically benign and arises from the arachnoid cap cells of the meninges. Vestibular schwannoma is a benign tumour arising from the eighth cranial nerve, while pilocytic astrocytoma is the most common primary brain tumour in children. Medulloblastoma is an aggressive paediatric brain tumour that arises within the infratentorial compartment, while ependymoma is commonly seen in the 4th ventricle and may cause hydrocephalus. Oligodendroma is a benign, slow-growing tumour common in the frontal lobes, while haemangioblastoma is a vascular tumour of the cerebellum. Pituitary adenoma is a benign tumour of the pituitary gland that can be either secretory or non-secretory, while craniopharyngioma is a solid/cystic tumour of the sellar region that is derived from the remnants of Rathke’s pouch.

    • This question is part of the following fields:

      • Neurological System
      18
      Seconds
  • Question 25 - A 29-year-old woman visits the antenatal clinic for her week 28 anti-D injection...

    Incorrect

    • A 29-year-old woman visits the antenatal clinic for her week 28 anti-D injection during her first pregnancy. Blood tests were conducted, and the following outcomes were obtained:

      pH 7.47 (7.35 - 7.45)
      PO2 10 kPa (11 - 15)
      PCO2 4.0 kPa (4.6 - 6.4)
      Bicarbonate 20 mmol/L (22 - 29)

      What pregnancy-related physiological alteration is accountable for these findings?

      Your Answer: Increase in plasma and red cell count

      Correct Answer: Increase in pulmonary ventilation and tidal volume

      Explanation:

      A haemoglobin level of 105 g/L is considered normal at 28 weeks of pregnancy, with the non-pregnant reference range being 115-165 g/L.

      During pregnancy, a woman’s body undergoes various physiological changes. The cardiovascular system experiences an increase in stroke volume, heart rate, and cardiac output, while systolic blood pressure remains unchanged and diastolic blood pressure decreases in the first and second trimesters before returning to normal levels by term. The enlarged uterus may cause issues with venous return, leading to ankle swelling, supine hypotension, and varicose veins.

      The respiratory system sees an increase in pulmonary ventilation and tidal volume, with oxygen requirements only increasing by 20%. This can lead to a sense of dyspnea due to over-breathing and a fall in pCO2. The basal metabolic rate also increases, potentially due to increased thyroxine and adrenocortical hormones.

      Maternal blood volume increases by 30%, with red blood cells increasing by 20% and plasma increasing by 50%, leading to a decrease in hemoglobin levels. Coagulant activity increases slightly, while fibrinolytic activity decreases. Platelet count falls, and white blood cell count and erythrocyte sedimentation rate rise.

      The urinary system experiences an increase in blood flow and glomerular filtration rate, with elevated sex steroid levels leading to increased salt and water reabsorption and urinary protein losses. Trace glycosuria may also occur.

      Calcium requirements increase during pregnancy, with gut absorption increasing substantially due to increased 1,25 dihydroxy vitamin D. Serum levels of calcium and phosphate may fall, but ionized calcium levels remain stable. The liver experiences an increase in alkaline phosphatase and a decrease in albumin levels.

      The uterus undergoes significant changes, increasing in weight from 100g to 1100g and transitioning from hyperplasia to hypertrophy. Cervical ectropion and discharge may increase, and Braxton-Hicks contractions may occur in late pregnancy. Retroversion may lead to retention in the first trimester but usually self-corrects.

    • This question is part of the following fields:

      • Reproductive System
      32.1
      Seconds
  • Question 26 - A patient in his late 40s visits his GP complaining of intense shoulder...

    Correct

    • A patient in his late 40s visits his GP complaining of intense shoulder pain that radiates to the scapula area. Despite a thorough shoulder examination revealing no joint issues, the patient is referred for additional tests. Imaging studies reveal a bronchogenic apical lung tumor that has caused lesions in the brachial plexus and extends towards the superior cervical and stellate ganglia. If these two structures are compressed, what signs are most likely to occur?

      Your Answer: Ptosis, miosis, anhydrosis

      Explanation:

      The superior cervical ganglion (SCG) is a component of the sympathetic nervous system that solely innervates the head and neck. Its functions include innervating eye structures, and damage or compression of the SCG can lead to Horner’s syndrome, which is characterized by ptosis, miosis, and anhydrosis. This syndrome occurs due to the unopposed action of the parasympathetic system on the eye, as the sympathetic innervation is impaired.

      Damage to the external laryngeal nerve, a branch of the superior laryngeal nerve, can result in a monotonous voice. However, this nerve does not originate from the SCG, so it is unlikely to affect the voice.

      As the SCG is part of the sympathetic nervous system, its damage impairs sympathetic responses and leads to unopposed parasympathetic innervation. This can cause miosis (constriction) of the eye, not mydriasis (dilation).

      Sweating is caused by the action of the sympathetic nervous system, so damage to the SCG would most likely result in anhydrosis (lack of sweat) of the face, rather than hyperhidrosis (excessive sweating).

      Hoarse voice can result from damage to the recurrent laryngeal nerve, which is not related to the SCG, so it is unlikely to affect the voice.

      Horner’s syndrome is a condition characterized by several features, including a small pupil (miosis), drooping of the upper eyelid (ptosis), a sunken eye (enophthalmos), and loss of sweating on one side of the face (anhidrosis). The cause of Horner’s syndrome can be determined by examining additional symptoms. For example, congenital Horner’s syndrome may be identified by a difference in iris color (heterochromia), while anhidrosis may be present in central or preganglionic lesions. Pharmacologic tests, such as the use of apraclonidine drops, can also be helpful in confirming the diagnosis and identifying the location of the lesion. Central lesions may be caused by conditions such as stroke or multiple sclerosis, while postganglionic lesions may be due to factors like carotid artery dissection or cluster headaches. It is important to note that the appearance of enophthalmos in Horner’s syndrome is actually due to a narrow palpebral aperture rather than true enophthalmos.

    • This question is part of the following fields:

      • Neurological System
      15.3
      Seconds
  • Question 27 - An 80-year-old woman complains of altered bowel movements and a sigmoidoscopy reveals an...

    Correct

    • An 80-year-old woman complains of altered bowel movements and a sigmoidoscopy reveals an abnormal, ulcerated mass in the sigmoid colon. She undergoes anterior resection. Upon pathological examination, it is found that the tumor has invaded the muscularis propria but not the underlying tissues. Out of 36 lymph nodes, two are positive. What is the Dukes stage of this tumor?

      Your Answer: C

      Explanation:

      Staging Colorectal Cancer: Dukes System

      Colorectal cancer can be staged using either the TNM classification system or the simpler Dukes system. Both methods are used to determine the appropriate treatment and prognosis for the patient. The Dukes system categorizes the cancer into four stages based on the extent of its spread.

      Stage A refers to cancer that is confined to the mucosa or submucosa only, with a 93% 5-year survival rate. Stage B indicates that the cancer has invaded into the muscularis propria but has not spread beyond it, with a 77% 5-year survival rate. Stage C is characterized by the presence of local lymph node metastases, regardless of the depth of invasion, and has a 48% 5-year survival rate. Finally, Stage D indicates the presence of distant metastases, with a 6% 5-year survival rate. However, if the metastases are isolated to the liver, a 25-40% 5-year survival rate is possible.

      In summary, the Dukes system provides a simple and effective way to stage colorectal cancer based on the extent of its spread. This information is crucial in determining the appropriate treatment and predicting the patient’s prognosis.

    • This question is part of the following fields:

      • Clinical Sciences
      26.8
      Seconds
  • Question 28 - A 38-year-old man visits his doctor with worries of having spinal muscular atrophy,...

    Incorrect

    • A 38-year-old man visits his doctor with worries of having spinal muscular atrophy, as his father has been diagnosed with the condition. He asks for a physical examination.

      What physical exam finding is indicative of the characteristic pattern observed in this disorder?

      Your Answer: Increased tone

      Correct Answer: Reduced reflexes

      Explanation:

      Lower motor neuron lesions, such as spinal muscular atrophy, result in reduced reflexes and tone. Babinski’s sign is negative in these cases. Increased reflexes and tone are indicative of an upper motor neuron cause of symptoms, which may be seen in conditions such as stroke or Parkinson’s disease. Therefore, normal reflexes and tone are also incorrect findings in lower motor neuron lesions.

      The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.

      One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.

    • This question is part of the following fields:

      • Neurological System
      16
      Seconds
  • Question 29 - A 35-year-old male is undergoing investigation for oral thrush. During the examination, which...

    Incorrect

    • A 35-year-old male is undergoing investigation for oral thrush. During the examination, which two primary regions of the oral cavity are evaluated?

      Your Answer: Buccal frenum and oral cavity proper

      Correct Answer: Vestibule and oral cavity proper

      Explanation:

      The gastrointestinal system is accessed through the mouth, which serves as the entrance for food. The act of chewing and swallowing is initiated voluntarily. Once swallowed, the process becomes automatic. The oral cavity is divided into two main regions: the vestibule, which is located between the mucosa of the lips and cheeks and the teeth, and the oral cavity proper. These two regions are connected to each other at the back of the second molar tooth.

      Understanding Oesophageal Candidiasis

      Oesophageal candidiasis is a medical condition that is identified by the presence of white spots in the oropharynx, which can extend into the oesophagus. This condition is commonly associated with the use of broad-spectrum antibiotics, immunosuppression, and immunological disorders. Patients with oesophageal candidiasis may experience oropharyngeal symptoms, odynophagia, and dysphagia.

      The treatment for oesophageal candidiasis involves addressing the underlying cause, which should be investigated by a medical professional. Additionally, oral antifungal agents are prescribed to manage the symptoms of the condition.

    • This question is part of the following fields:

      • Gastrointestinal System
      7.2
      Seconds
  • Question 30 - A 28-year-old woman has been brought to the emergency department via ambulance after...

    Incorrect

    • A 28-year-old woman has been brought to the emergency department via ambulance after being discovered unconscious in a nearby park, with a heroin-filled needle found nearby.

      During the examination, the patient's heart rate is recorded at 44/min, BP at 110/60 mmHg, and respiratory rate at 10. Upon checking her pupils, they are observed to be pinpoint.

      Which three G protein-coupled receptors are affected by the drug responsible for this?

      Your Answer: GABA-A, delta and mu

      Correct Answer: Delta, mu and kappa

      Explanation:

      The three clinically relevant opioid receptors in the body are delta, mu, and kappa. These receptors are all G protein-coupled receptors and are responsible for the pharmacological actions of opioids. Based on the examination findings of bradycardia, bradypnoea, and pinpoint pupils, it is likely that the woman has experienced an opioid overdose. The answer GABA-A, delta and mu is not appropriate as the GABA-A receptor is a ligand-gated ion channel receptor for the inhibitory neurotransmitter GABA. Similarly, GABA-A, kappa and mu is not appropriate for the same reason. GABA-B, D-2 and kappa is also not appropriate as the GABA-B receptor is a G-protein-coupled receptor for the inhibitory neurotransmitter GABA, and the D-2 receptor is a G protein-coupled receptor for dopamine.

      Understanding Opioids: Types, Receptors, and Clinical Uses

      Opioids are a class of chemical compounds that act upon opioid receptors located within the central nervous system (CNS). These receptors are G-protein coupled receptors that have numerous actions throughout the body. There are three clinically relevant groups of opioid receptors: mu (µ), kappa (κ), and delta (δ) receptors. Endogenous opioids, such as endorphins, dynorphins, and enkephalins, are produced by specific cells within the CNS and their actions depend on whether µ-receptors or δ-receptors and κ-receptors are their main target.

      Drugs targeted at opioid receptors are the largest group of analgesic drugs and form the second and third steps of the WHO pain ladder of managing analgesia. The choice of which opioid drug to use depends on the patient’s needs and the clinical scenario. The first step of the pain ladder involves non-opioids such as paracetamol and non-steroidal anti-inflammatory drugs. The second step involves weak opioids such as codeine and tramadol, while the third step involves strong opioids such as morphine, oxycodone, methadone, and fentanyl.

      The strength, routes of administration, common uses, and significant side effects of these opioid drugs vary. Weak opioids have moderate analgesic effects without exposing the patient to as many serious adverse effects associated with strong opioids. Strong opioids have powerful analgesic effects but are also more liable to cause opioid-related side effects such as sedation, respiratory depression, constipation, urinary retention, and addiction. The sedative effects of opioids are also useful in anesthesia with potent drugs used as part of induction of a general anesthetic.

    • This question is part of the following fields:

      • Neurological System
      22.9
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurological System (4/9) 44%
Endocrine System (1/1) 100%
Gastrointestinal System (3/4) 75%
Clinical Sciences (2/2) 100%
Musculoskeletal System And Skin (0/1) 0%
Respiratory System (0/2) 0%
General Principles (1/2) 50%
Renal System (1/1) 100%
Cardiovascular System (0/1) 0%
Haematology And Oncology (0/3) 0%
Reproductive System (0/2) 0%
Basic Sciences (0/1) 0%
Paediatrics (1/1) 100%
Passmed