00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 75-year-old man with Alzheimer's disease visits his doctor for a medication review,...

    Incorrect

    • A 75-year-old man with Alzheimer's disease visits his doctor for a medication review, accompanied by his son. The son reports that his father is struggling to perform daily tasks and requests an increase in his care package.

      During the examination, the patient appears disoriented to time and place. A mini-mental state examination is conducted, revealing a score of 14/30, indicating moderate dementia.

      Which histological finding would be the most specific for this patient's diagnosis?

      Your Answer: Extraneuronal Lewy bodies, intraneuronal amyloid plaques

      Correct Answer: Extraneuronal amyloid plaques, intraneuronal neurofibrillary tangles

      Explanation:

      In Alzheimer’s disease, the pathology involves extraneuronal amyloid plaques and intraneuronal neurofibrillary tangles. Amyloid plaques are clumps of beta-amyloid that are found in the extracellular matrix, while neurofibrillary tangles are made up of hyperphosphorylated tau and are located within the neurons. The exact role of beta-amyloid and tau in the development of Alzheimer’s disease is still not fully understood.

      Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.

      The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.

      Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.

    • This question is part of the following fields:

      • Neurological System
      5.8
      Seconds
  • Question 2 - A 16-year-old female arrives at the emergency department accompanied by her father. According...

    Correct

    • A 16-year-old female arrives at the emergency department accompanied by her father. According to him, she was watching TV when she suddenly complained of a tingling sensation on the left side of her body. She then reported that her leg had gone numb. Her father mentions that both he and his sister have epilepsy. Given her altered spatial perception and sensation, you suspect that she may have experienced a seizure. What type of seizure is most probable?

      Your Answer: Parietal lobe seizure

      Explanation:

      Paresthesia is a symptom that can help identify a parietal lobe seizure.

      When a patient experiences a parietal lobe seizure, they may feel a tingling sensation on one side of their body or even experience numbness in certain areas. This type of seizure is not very common and is typically associated with sensory symptoms.

      On the other hand, occipital lobe seizures tend to cause visual disturbances like seeing flashes or floaters. Temporal lobe seizures can lead to hallucinations, which can affect the senses of hearing, taste, and smell. Additionally, they may cause repetitive movements like lip smacking or grabbing.

      Absence seizures are more commonly seen in children between the ages of 3 and 10. These seizures are brief and cause the person to stop what they are doing and stare off into space with a blank expression. Fortunately, most children with absence seizures will outgrow them by adolescence.

      Finally, frontal lobe seizures often cause movements of the head or legs and can result in a period of weakness after the seizure has ended.

      Localising Features of Focal Seizures in Epilepsy

      Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.

      On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.

    • This question is part of the following fields:

      • Neurological System
      4.6
      Seconds
  • Question 3 - A 67-year-old man arrives at the emergency department with a sudden onset of...

    Correct

    • A 67-year-old man arrives at the emergency department with a sudden onset of visual disturbance. He has a medical history of hypertension and takes amlodipine. He smokes 10 cigarettes daily.

      During the eye examination, a field defect is observed in the right lower quadrant of both eyes. Apart from this, the examination is unremarkable.

      What is the anatomical location of the lesion causing the vision problem?

      Your Answer: Left superior optic radiation

      Explanation:

      Lesions in the parietal lobe affecting the superior optic radiations result in inferior homonymous quadrantanopias.

      Understanding Visual Field Defects

      Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.

      When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.

      Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.

      Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.

    • This question is part of the following fields:

      • Neurological System
      14.1
      Seconds
  • Question 4 - A 58-year-old man visits his doctor complaining of constipation and a decrease in...

    Incorrect

    • A 58-year-old man visits his doctor complaining of constipation and a decrease in his sex drive. The man cannot recall when the symptoms began, but he does recall falling off a ladder recently. Upon examination, the man appears to be in good health.

      What is the most probable site of injury or damage in this man?

      Your Answer: Thyroid gland

      Correct Answer: Sacral spine (S2,3,4)

      Explanation:

      Understanding the Autonomic Nervous System

      The autonomic nervous system is responsible for regulating involuntary functions in the body, such as heart rate, digestion, and sexual arousal. It is composed of two main components, the sympathetic and parasympathetic nervous systems, as well as a sensory division. The sympathetic division arises from the T1-L2/3 region of the spinal cord and synapses onto postganglionic neurons at paravertebral or prevertebral ganglia. The parasympathetic division arises from cranial nerves and the sacral spinal cord and synapses with postganglionic neurons at parasympathetic ganglia. The sensory division includes baroreceptors and chemoreceptors that monitor blood levels of oxygen, carbon dioxide, and glucose, as well as arterial pressure and the contents of the stomach and intestines.

      The autonomic nervous system releases neurotransmitters such as noradrenaline and acetylcholine to achieve necessary functions and regulate homeostasis. The sympathetic nervous system causes fight or flight responses, while the parasympathetic nervous system causes rest and digest responses. Autonomic dysfunction refers to the abnormal functioning of any part of the autonomic nervous system, which can present in many forms and affect any of the autonomic systems. To assess a patient for autonomic dysfunction, a detailed history should be taken, and the patient should undergo a full neurological examination and further testing if necessary. Understanding the autonomic nervous system is crucial in diagnosing and treating autonomic dysfunction.

    • This question is part of the following fields:

      • Neurological System
      10.3
      Seconds
  • Question 5 - An 80-year-old man arrives at the emergency department with his daughter. They were...

    Incorrect

    • An 80-year-old man arrives at the emergency department with his daughter. They were having a conversation when she noticed he was having difficulty understanding her. He has a history of high blood pressure and has smoked for 40 years.

      During your assessment, you observe that he is able to speak fluently but makes some errors. However, his comprehension appears to be intact and he can correctly identify his daughter and name objects in the room. When asked to repeat certain words, he struggles and appears frustrated by his mistakes.

      Based on these symptoms, what is the likely diagnosis?

      Your Answer: Broca's aphasia

      Correct Answer: Conduction aphasia

      Explanation:

      The patient is experiencing conduction aphasia, which is characterized by fluent speech but poor repetition ability. However, their comprehension remains intact. This type of aphasia is typically caused by a stroke that affects the arcuate fasciculus, the part of the parietal lobe that connects Broca’s and Wernicke’s areas. Given the sudden onset of symptoms, it is likely an acute cause. The patient’s medical history and smoking habit put them at risk for stroke.

      Anomic aphasia, which causes difficulty in naming objects, is less likely as the patient was able to name some bedside objects correctly. This type of aphasia can be caused by damage to various areas, including Broca’s and Wernicke’s areas, the parietal lobe, and the temporal lobe, due to trauma or neurodegenerative disease.

      Broca’s aphasia, which results in non-fluent speech but intact comprehension, can be ruled out as the patient is fluent but struggles with repeating sentences. Broca’s area is located in the dominant hemisphere’s frontal lobe and can be damaged by a stroke or trauma.

      Global aphasia, which involves a lack of fluency and comprehension, is not the diagnosis as the patient has both. This type of aphasia is caused by extensive damage to multiple language centers in the dominant hemisphere, often due to a stroke, but can also be caused by a tumor, trauma, or infection.

      Types of Aphasia: Understanding the Different Forms of Language Impairment

      Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.

      Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.

      Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.

      Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.

    • This question is part of the following fields:

      • Neurological System
      4.2
      Seconds
  • Question 6 - A 28-year-old woman presents to the Emergency Department complaining of a headache and...

    Incorrect

    • A 28-year-old woman presents to the Emergency Department complaining of a headache and blurred vision. The headache began 2 days ago and is aggravated by coughing and changing position. The blurred vision started 5 hours ago. She has no history of head injuries and has never experienced these symptoms before. Her BMI is 27 kg/m² and she is currently taking the combined oral contraceptive pill.

      Upon examination, the patient has difficulty abducting her left eye. Fundoscopy reveals bilateral papilloedema.

      Vital signs:
      Blood pressure: 130/90 mmHg
      Heart rate: 80 bpm
      Respiratory rate: 16/min

      What is the most probable diagnosis?

      Your Answer: Meningitis

      Correct Answer: Idiopathic intracranial hypertension

      Explanation:

      The patient’s difficulty in abducting the right eye and accompanying 6th nerve palsy, along with papilloedema, are indicative of idiopathic intracranial hypertension. This is further supported by the patient’s age, BMI, and COCP use, which are common risk factors for this condition. Acute-angle closure glaucoma, meningitis, and migraine are less likely explanations as they do not fully align with the patient’s symptoms and history.

      Understanding Idiopathic Intracranial Hypertension

      Idiopathic intracranial hypertension, also known as pseudotumour cerebri, is a medical condition that is commonly observed in young, overweight females. The condition is characterized by a range of symptoms, including headache, blurred vision, and papilloedema, which is usually present. Other symptoms may include an enlarged blind spot and sixth nerve palsy.

      There are several risk factors associated with idiopathic intracranial hypertension, including obesity, female sex, pregnancy, and certain drugs such as the combined oral contraceptive pill, steroids, tetracyclines, vitamin A, and lithium.

      Management of idiopathic intracranial hypertension may involve weight loss, diuretics such as acetazolamide, and topiramate, which can also cause weight loss in most patients. Repeated lumbar puncture may also be necessary, and surgery may be required to prevent damage to the optic nerve. This may involve optic nerve sheath decompression and fenestration, or a lumboperitoneal or ventriculoperitoneal shunt to reduce intracranial pressure.

      It is important to note that if intracranial hypertension is thought to occur secondary to a known cause, such as medication, it is not considered idiopathic. Understanding the risk factors and symptoms associated with idiopathic intracranial hypertension can help individuals seek appropriate medical attention and management.

    • This question is part of the following fields:

      • Neurological System
      15
      Seconds
  • Question 7 - Which of these openings allows the facial nerve to enter the temporal bone?...

    Incorrect

    • Which of these openings allows the facial nerve to enter the temporal bone?

      Your Answer: Foramen lacerum

      Correct Answer: Internal acoustic meatus

      Explanation:

      The facial nerve passes through the internal acoustic meatus of the temporal bone and emerges from the stylomastoid foramen.

      The facial nerve is responsible for supplying the muscles of facial expression, the digastric muscle, and various glandular structures. It also contains a few afferent fibers that originate in the genicular ganglion and are involved in taste. Bilateral facial nerve palsy can be caused by conditions such as sarcoidosis, Guillain-Barre syndrome, Lyme disease, and bilateral acoustic neuromas. Unilateral facial nerve palsy can be caused by these conditions as well as lower motor neuron issues like Bell’s palsy and upper motor neuron issues like stroke.

      The upper motor neuron lesion typically spares the upper face, specifically the forehead, while a lower motor neuron lesion affects all facial muscles. The facial nerve’s path includes the subarachnoid path, where it originates in the pons and passes through the petrous temporal bone into the internal auditory meatus with the vestibulocochlear nerve. The facial canal path passes superior to the vestibule of the inner ear and contains the geniculate ganglion at the medial aspect of the middle ear. The stylomastoid foramen is where the nerve passes through the tympanic cavity anteriorly and the mastoid antrum posteriorly, and it also includes the posterior auricular nerve and branch to the posterior belly of the digastric and stylohyoid muscle.

    • This question is part of the following fields:

      • Neurological System
      0.5
      Seconds
  • Question 8 - As a 6th year medical student observing a neurosurgeon, I am witnessing the...

    Incorrect

    • As a 6th year medical student observing a neurosurgeon, I am witnessing the removal of a cerebellar astrocytoma in a 9-year-old girl. If the cancer were to spread to the occipital lobes, which structure would it have to breach?

      Your Answer: Falx cerebelli

      Correct Answer: Tentorium cerebelli

      Explanation:

      The tentorium cerebelli, a fold of the dura mater, acts as a barrier between the cerebellum and brainstem and the occipital lobes. Therefore, for the boy’s cancer to reach the occipital lobes, it would need to breach this fold.

      The filum terminale is a strand of the pia mater that extends from the conus medullaris.

      The sellar diaphragm is a small dural fold that covers the pituitary gland.

      The falx cerebelli is a small dural fold that partially separates the cerebral hemispheres.

      The falx cerebri is a dural fold that separates the cerebral hemispheres.

      The Three Layers of Meninges

      The meninges are a group of membranes that cover the brain and spinal cord, providing support to the central nervous system and the blood vessels that supply it. These membranes can be divided into three distinct layers: the dura mater, arachnoid mater, and pia mater.

      The outermost layer, the dura mater, is a thick fibrous double layer that is fused with the inner layer of the periosteum of the skull. It has four areas of infolding and is pierced by small areas of the underlying arachnoid to form structures called arachnoid granulations. The arachnoid mater forms a meshwork layer over the surface of the brain and spinal cord, containing both cerebrospinal fluid and vessels supplying the nervous system. The final layer, the pia mater, is a thin layer attached directly to the surface of the brain and spinal cord.

      The meninges play a crucial role in protecting the brain and spinal cord from injury and disease. However, they can also be the site of serious medical conditions such as subdural and subarachnoid haemorrhages. Understanding the structure and function of the meninges is essential for diagnosing and treating these conditions.

    • This question is part of the following fields:

      • Neurological System
      2.4
      Seconds
  • Question 9 - A young woman comes in with a gunshot wound and exhibits spastic weakness...

    Incorrect

    • A young woman comes in with a gunshot wound and exhibits spastic weakness on the left side of her body. She also has lost proprioception and vibration on the same side, while experiencing a loss of pain and temperature sensation on the opposite side. The sensory deficits begin at the level of the umbilicus. Where is the lesion located and what is its nature?

      Your Answer:

      Correct Answer: Left-sided Brown-Sequard syndrome at T10

      Explanation:

      The symptoms described indicate a T10 lesion on the left side, which is known as Brown-Sequard syndrome. This condition causes spastic paralysis on the same side as the lesion, as well as a loss of proprioception and vibration sensation. On the opposite side of the lesion, there is a loss of pain and temperature sensation. It is important to note that transverse myelitis is not the cause of these symptoms, as it presents differently.

      Spinal cord lesions can affect different tracts and result in various clinical symptoms. Motor lesions, such as amyotrophic lateral sclerosis and poliomyelitis, affect either upper or lower motor neurons, resulting in spastic paresis or lower motor neuron signs. Combined motor and sensory lesions, such as Brown-Sequard syndrome, subacute combined degeneration of the spinal cord, Friedrich’s ataxia, anterior spinal artery occlusion, and syringomyelia, affect multiple tracts and result in a combination of spastic paresis, loss of proprioception and vibration sensation, limb ataxia, and loss of pain and temperature sensation. Multiple sclerosis can involve asymmetrical and varying spinal tracts and result in a combination of motor, sensory, and ataxia symptoms. Sensory lesions, such as neurosyphilis, affect the dorsal columns and result in loss of proprioception and vibration sensation.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 10 - A 40-year-old man visits his GP with his wife who is worried about...

    Incorrect

    • A 40-year-old man visits his GP with his wife who is worried about his behavior. Upon further inquiry, the wife reveals that her husband has been displaying erratic and impulsive behavior for the past 4 months. She also discloses that he inappropriately touched a family friend, which is out of character for him. When asked about his medical history, the patient mentions that he used to be an avid motorcyclist but had a severe accident 6 months ago, resulting in a month-long hospital stay. He denies experiencing flashbacks and reports generally good mood. What is the most probable cause of his symptoms?

      Your Answer:

      Correct Answer: Frontal lobe injury

      Explanation:

      Disinhibition can be a result of frontal lobe lesions.

      Based on his recent accident, it is probable that the man has suffered from a frontal lobe injury. Such injuries can cause changes in behavior, including impulsiveness and a lack of inhibition.

      If the injury were to the occipital lobe, it would likely result in vision loss.

      The patient’s denial of flashbacks and positive mood make it unlikely that he has PTSD.

      Injuries to the parietal and temporal lobes can lead to communication difficulties and sensory perception problems.

      Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.

      In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 11 - A 52-year-old woman arrives at the emergency department with a complaint of the...

    Incorrect

    • A 52-year-old woman arrives at the emergency department with a complaint of the most intense headache she has ever experienced. The pain came on suddenly, and there is no history of trauma. She is feeling nauseated, sensitive to light, and extremely anxious. Based on her symptoms, you suspect a subarachnoid hemorrhage. You order an urgent CT scan, but it shows no abnormalities. To obtain a sample of cerebrospinal fluid (CSF), you perform a lumbar puncture. What is the primary structure responsible for producing CSF?

      Your Answer:

      Correct Answer: Choroid plexus

      Explanation:

      The choroid plexus is a branching structure resembling sea coral that contains specialized ependymal cells responsible for producing and releasing cerebrospinal fluid (CSF). It is present in all four ventricles of the brain, with the largest portion located in the lateral ventricles. The choroid plexus plays a role in removing waste products from the CSF.

      The inferior colliculus is a nucleus in the midbrain involved in the auditory pathway. There are two inferior colliculi, one on each side of the midbrain, and they are part of the corpora quadrigemina along with the two superior colliculi (involved in the visual pathway).

      Arachnoid villi are microscopic projections of the arachnoid membrane that allow for the absorption of cerebrospinal fluid into the venous system. This is important as the amount of CSF produced each day is four times the total volume of the ventricular system.

      The corpus callosum is a bundle of nerve fibers that connects the left and right hemispheres of the brain, allowing for communication between them.

      The pineal gland is a small protrusion on the brain that produces melatonin and regulates the sleep cycle.

      A sudden-onset severe headache, described as the worst ever experienced, may indicate a subarachnoid hemorrhage. This can occur with or without trauma and is characterized by a thunderclap headache. If a CT scan is normal, CSF should be examined for xanthochromia, which is a yellow coloration that occurs several hours after a subarachnoid hemorrhage due to the breakdown of red blood cells and the release of bilirubin into the CSF.

      Cerebrospinal Fluid: Circulation and Composition

      Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.

      The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.

      The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 12 - A 82-year-old man arrives at the emergency department complaining of bone and abdominal...

    Incorrect

    • A 82-year-old man arrives at the emergency department complaining of bone and abdominal pain. He appears confused, and his wife reports that he has been experiencing low mood lately. Upon conducting blood tests, it is discovered that he has elevated levels of calcium and parathyroid hormone. What is the probable cause of his hypercalcaemia?

      Your Answer:

      Correct Answer: Increased activity of osteoclasts

      Explanation:

      Primary hyperparathyroidism is the likely diagnosis for this patient, which is typically caused by a single adenoma in the parathyroid gland. The hormone PTH plays a key role in increasing plasma calcium levels while decreasing phosphate levels. This is achieved through increased absorption of calcium in the bowel and kidneys, as well as increased bone resorption through the activity of osteoclasts.

      If osteoblast activity were increased, it would actually decrease plasma calcium levels. Conversely, decreased resorption in the kidneys would result in more calcium being lost in the urine, leading to lower plasma calcium levels. Lower levels of plasma calcium would also result from decreased activity of vitamin D.

      It’s important to note that PTH has no direct effect on calcitonin secretion, which is controlled by plasma calcium levels as well as the hormones gastrin and pentagastrin.

      Maintaining Calcium Balance in the Body

      Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.

      PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.

      Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.

      Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.

      Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 13 - A 9-month-old baby is presented to the emergency department by their mother with...

    Incorrect

    • A 9-month-old baby is presented to the emergency department by their mother with recurrent seizures and an increasing head circumference. The infant has been experiencing excessive sleeping, vomiting, and irritability. An MRI scan of the brain reveals an enlarged posterior fossa and an absent cerebellar vermis. Which structure is anticipated to be in a raised position in this infant?

      Your Answer:

      Correct Answer: Tentorium cerebelli

      Explanation:

      The Dandy-Walker malformation causes an enlargement of the posterior fossa, resulting in an accumulation of cerebrospinal fluid that pushes the tentorium cerebelli upwards. This can lead to symptoms due to the mass effect. The falx cerebri, pituitary gland, sphenoid sinus, and superior cerebellar peduncle are unlikely to be significantly affected by this condition.

      The Three Layers of Meninges

      The meninges are a group of membranes that cover the brain and spinal cord, providing support to the central nervous system and the blood vessels that supply it. These membranes can be divided into three distinct layers: the dura mater, arachnoid mater, and pia mater.

      The outermost layer, the dura mater, is a thick fibrous double layer that is fused with the inner layer of the periosteum of the skull. It has four areas of infolding and is pierced by small areas of the underlying arachnoid to form structures called arachnoid granulations. The arachnoid mater forms a meshwork layer over the surface of the brain and spinal cord, containing both cerebrospinal fluid and vessels supplying the nervous system. The final layer, the pia mater, is a thin layer attached directly to the surface of the brain and spinal cord.

      The meninges play a crucial role in protecting the brain and spinal cord from injury and disease. However, they can also be the site of serious medical conditions such as subdural and subarachnoid haemorrhages. Understanding the structure and function of the meninges is essential for diagnosing and treating these conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 14 - A 79-year-old man with no prior medical history presents with symptoms of an...

    Incorrect

    • A 79-year-old man with no prior medical history presents with symptoms of an ischaemic stroke. During the neurological examination in the emergency department, he is alert and able to answer questions appropriately. His limbs have normal tone, power, reflexes, and sensation, but he displays some lack of coordination. When asked to perform a finger-nose test, he accuses the examiner of cheating, claiming that he cannot see their finger or read their name tag. Which specific area of his brain is likely to be damaged, causing his visual deficits?

      Your Answer:

      Correct Answer: Lateral geniculate nucleus

      Explanation:

      Damage to the lateral geniculate nucleus in the thalamus can cause visual impairment, while damage to other brain regions such as the brainstem, medial geniculate nucleus, postcentral gyrus, and prefrontal cortex produce different neurological deficits. Understanding the functions of each brain region can aid in localising strokes.

      The Thalamus: Relay Station for Motor and Sensory Signals

      The thalamus is a structure located between the midbrain and cerebral cortex that serves as a relay station for motor and sensory signals. Its main function is to transmit these signals to the cerebral cortex, which is responsible for processing and interpreting them. The thalamus is composed of different nuclei, each with a specific function. The lateral geniculate nucleus relays visual signals, while the medial geniculate nucleus transmits auditory signals. The medial portion of the ventral posterior nucleus (VML) is responsible for facial sensation, while the ventral anterior/lateral nuclei relay motor signals. Finally, the lateral portion of the ventral posterior nucleus is responsible for body sensation, including touch, pain, proprioception, pressure, and vibration. Overall, the thalamus plays a crucial role in the transmission of sensory and motor information to the brain, allowing us to perceive and interact with the world around us.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 15 - A 23-year-old man is hit in the head while playing rugby. He experiences...

    Incorrect

    • A 23-year-old man is hit in the head while playing rugby. He experiences a temporary concussion but later regains consciousness. After thirty minutes, he begins to exhibit slurred speech, ataxia, and eventually loses consciousness. Upon arrival at the hospital, he is intubated and put on a ventilator. A CT scan reveals the presence of an extradural hematoma. What is the probable cause of this condition?

      Your Answer:

      Correct Answer: Middle meningeal artery laceration

      Explanation:

      The middle meningeal artery is the vessel most likely to result in an acute Extradural haemorrhage, while the anterior and middle cerebral arteries may cause acute Subdural haemorrhage. It is worth noting that acute Subdural haemorrhages tend to take a bit longer to develop compared to acute Extradural haemorrhages.

      The Middle Meningeal Artery: Anatomy and Clinical Significance

      The middle meningeal artery is a branch of the maxillary artery, which is one of the two terminal branches of the external carotid artery. It is the largest of the three arteries that supply the meninges, the outermost layer of the brain. The artery runs through the foramen spinosum and supplies the dura mater. It is located beneath the pterion, where the skull is thin, making it vulnerable to injury. Rupture of the artery can lead to an Extradural hematoma.

      In the dry cranium, the middle meningeal artery creates a deep indentation in the calvarium. It is intimately associated with the auriculotemporal nerve, which wraps around the artery. This makes the two structures easily identifiable in the dissection of human cadavers and also easily damaged in surgery.

      Overall, understanding the anatomy and clinical significance of the middle meningeal artery is important for medical professionals, particularly those involved in neurosurgery.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 16 - A 23-year-old man is involved in a physical altercation and suffers a stab...

    Incorrect

    • A 23-year-old man is involved in a physical altercation and suffers a stab wound in his upper forearm. Upon examination, a small yet deep laceration is observed. There is an evident loss of pincer movement in the thumb and index finger, with minimal sensation loss. Which nerve is most likely to have been injured?

      Your Answer:

      Correct Answer: Anterior interosseous nerve

      Explanation:

      The median nerve gives rise to the anterior interosseous nerve, which is a motor branch located below the elbow. If this nerve is injured, it typically results in the following symptoms: pain in the forearm, inability to perform pincer movements with the thumb and index finger (as it controls the long flexor muscles of the flexor pollicis longus and flexor digitorum profundus of the index and middle finger), and minimal loss of sensation due to the absence of a cutaneous branch.

      Anatomy and Function of the Median Nerve

      The median nerve is a nerve that originates from the lateral and medial cords of the brachial plexus. It descends lateral to the brachial artery and passes deep to the bicipital aponeurosis and the median cubital vein at the elbow. The nerve then passes between the two heads of the pronator teres muscle and runs on the deep surface of flexor digitorum superficialis. Near the wrist, it becomes superficial between the tendons of flexor digitorum superficialis and flexor carpi radialis, passing deep to the flexor retinaculum to enter the palm.

      The median nerve has several branches that supply the upper arm, forearm, and hand. These branches include the pronator teres, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, flexor pollicis longus, and palmar cutaneous branch. The nerve also provides motor supply to the lateral two lumbricals, opponens pollicis, abductor pollicis brevis, and flexor pollicis brevis muscles, as well as sensory supply to the palmar aspect of the lateral 2 ½ fingers.

      Damage to the median nerve can occur at the wrist or elbow, resulting in various symptoms such as paralysis and wasting of thenar eminence muscles, weakness of wrist flexion, and sensory loss to the palmar aspect of the fingers. Additionally, damage to the anterior interosseous nerve, a branch of the median nerve, can result in loss of pronation of the forearm and weakness of long flexors of the thumb and index finger. Understanding the anatomy and function of the median nerve is important in diagnosing and treating conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 17 - Sarah, a 30-year-old female, visits her doctor complaining of tingling sensation in her...

    Incorrect

    • Sarah, a 30-year-old female, visits her doctor complaining of tingling sensation in her thumb, index finger, middle finger, and lateral aspect of ring finger. She is currently in the second trimester of her first pregnancy.

      During the examination, Sarah exhibits a positive Tinel's sign, leading to a diagnosis of carpal tunnel syndrome.

      Which nerve branch is responsible for innervating the lateral aspect of the palm of the hand and is usually unaffected in carpal tunnel syndrome?

      Your Answer:

      Correct Answer: Palmar cutaneous nerve of the median nerve

      Explanation:

      The palmar cutaneous nerve, which provides sensation to the lateral aspect of the palm of the hand, branches off from the median nerve before it enters the carpal tunnel. This means that it is not affected by carpal tunnel syndrome, which is caused by compression of the median nerve within the tunnel. Other branches of the median nerve, such as the anterior interosseous nerve, palmar digital branch, and recurrent branch, are affected by carpal tunnel syndrome to varying degrees. The ulnar nerve is not involved in carpal tunnel syndrome, so the palmar cutaneous nerve of the ulnar nerve is not relevant to this condition.

      Anatomy and Function of the Median Nerve

      The median nerve is a nerve that originates from the lateral and medial cords of the brachial plexus. It descends lateral to the brachial artery and passes deep to the bicipital aponeurosis and the median cubital vein at the elbow. The nerve then passes between the two heads of the pronator teres muscle and runs on the deep surface of flexor digitorum superficialis. Near the wrist, it becomes superficial between the tendons of flexor digitorum superficialis and flexor carpi radialis, passing deep to the flexor retinaculum to enter the palm.

      The median nerve has several branches that supply the upper arm, forearm, and hand. These branches include the pronator teres, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, flexor pollicis longus, and palmar cutaneous branch. The nerve also provides motor supply to the lateral two lumbricals, opponens pollicis, abductor pollicis brevis, and flexor pollicis brevis muscles, as well as sensory supply to the palmar aspect of the lateral 2 ½ fingers.

      Damage to the median nerve can occur at the wrist or elbow, resulting in various symptoms such as paralysis and wasting of thenar eminence muscles, weakness of wrist flexion, and sensory loss to the palmar aspect of the fingers. Additionally, damage to the anterior interosseous nerve, a branch of the median nerve, can result in loss of pronation of the forearm and weakness of long flexors of the thumb and index finger. Understanding the anatomy and function of the median nerve is important in diagnosing and treating conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 18 - A 46-year-old man was in a car accident a week ago and suffered...

    Incorrect

    • A 46-year-old man was in a car accident a week ago and suffered a concussion. He now experiences ongoing diplopia, which is more noticeable when looking down at a book or going downstairs. Upon examination, his right eye is rotated upwards and inwards, with limited movement in depression and adduction. Both pupils are equal and reactive. What is the probable cause of his diplopia?

      Your Answer:

      Correct Answer: 4th nerve palsy

      Explanation:

      If you experience worsened vision while going down stairs, it may be a sign of 4th nerve palsy. This condition is characterized by limited depression and adduction of the eye, as well as persistent diplopia when looking down. It is often caused by head trauma, which can damage the long course of the trochlear nerve.

      People with 4th nerve palsy may tilt their heads away from the affected eye to compensate for the condition. This helps supply the superior oblique nerve, which aids in adduction and intorsion.

      Other conditions that can cause eye movement problems include 3rd nerve palsy, which may be caused by aneurysms or diabetes complications, and 6th nerve palsy, which prevents the affected eye from abducting. Horner syndrome, which is characterized by ptosis, anhidrosis, and miosis, may also affect eye movement and is often associated with Pancoast tumors.

      Understanding Fourth Nerve Palsy

      Fourth nerve palsy is a condition that affects the superior oblique muscle, which is responsible for depressing the eye and moving it inward. One of the main features of this condition is vertical diplopia, which is double vision that occurs when looking straight ahead. This is often noticed when reading a book or going downstairs. Another symptom is subjective tilting of objects, also known as torsional diplopia. Patients may also develop a head tilt, which they may or may not be aware of. When looking straight ahead, the affected eye appears to deviate upwards and is rotated outwards. Understanding the symptoms of fourth nerve palsy can help individuals seek appropriate treatment and management for this condition.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 19 - A 30-year-old woman presents with an absent corneal reflex on cranial nerve examination....

    Incorrect

    • A 30-year-old woman presents with an absent corneal reflex on cranial nerve examination. The examining neurologist suspects a lesion affecting either the afferent or efferent limb of this reflex. Which two cranial nerves should be considered as potential culprits?

      Your Answer:

      Correct Answer: Trigeminal and facial nerve

      Explanation:

      The trigeminal nerve’s ophthalmic branch serves as the input or arriving limb in the corneal reflex, while the facial nerve acts as the output or exiting limb.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 20 - A 40-year-old woman underwent axillary node clearance for breast cancer. After the surgery,...

    Incorrect

    • A 40-year-old woman underwent axillary node clearance for breast cancer. After the surgery, she complains of shoulder weakness. Specifically, she cannot push herself forward from a wall using her right arm, and her scapula protrudes medially from the chest wall. What nerve injury is most probable?

      Your Answer:

      Correct Answer: Long thoracic nerve

      Explanation:

      The cause of the patient’s winged scapula is damage to the long thoracic nerve, which innervates the serratus anterior muscle. This damage occurred during surgery and affects the nerve roots C5, C6, and C7. The serratus anterior muscle is responsible for protracting the scapula during a punching motion. It is important to note that lateral winging of the scapula may indicate weakness in the trapezius muscle, which is innervated by the spinal accessory nerve.

      The Long Thoracic Nerve and its Role in Scapular Winging

      The long thoracic nerve is derived from the ventral rami of C5, C6, and C7, which are located close to their emergence from intervertebral foramina. It runs downward and passes either anterior or posterior to the middle scalene muscle before reaching the upper tip of the serratus anterior muscle. From there, it descends on the outer surface of this muscle, giving branches into it.

      One of the most common symptoms of long thoracic nerve injury is scapular winging, which occurs when the serratus anterior muscle is weakened or paralyzed. This can happen due to a variety of reasons, including trauma, surgery, or nerve damage. In addition to long thoracic nerve injury, scapular winging can also be caused by spinal accessory nerve injury (which denervates the trapezius) or a dorsal scapular nerve injury.

      Overall, the long thoracic nerve plays an important role in the function of the serratus anterior muscle and the stability of the scapula. Understanding its anatomy and function can help healthcare professionals diagnose and treat conditions that affect the nerve and its associated muscles.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 21 - Which one of the following is not a direct branch of the facial...

    Incorrect

    • Which one of the following is not a direct branch of the facial nerve?

      Your Answer:

      Correct Answer: Auriculotemporal

      Explanation:

      The mandibular nerve gives rise to several branches, including the auriculotemporal nerve, lingual nerve, inferior alveolar nerve, nerve to the mylohyoid, and mental nerve.

      The facial nerve is responsible for supplying the muscles of facial expression, the digastric muscle, and various glandular structures. It also contains a few afferent fibers that originate in the genicular ganglion and are involved in taste. Bilateral facial nerve palsy can be caused by conditions such as sarcoidosis, Guillain-Barre syndrome, Lyme disease, and bilateral acoustic neuromas. Unilateral facial nerve palsy can be caused by these conditions as well as lower motor neuron issues like Bell’s palsy and upper motor neuron issues like stroke.

      The upper motor neuron lesion typically spares the upper face, specifically the forehead, while a lower motor neuron lesion affects all facial muscles. The facial nerve’s path includes the subarachnoid path, where it originates in the pons and passes through the petrous temporal bone into the internal auditory meatus with the vestibulocochlear nerve. The facial canal path passes superior to the vestibule of the inner ear and contains the geniculate ganglion at the medial aspect of the middle ear. The stylomastoid foramen is where the nerve passes through the tympanic cavity anteriorly and the mastoid antrum posteriorly, and it also includes the posterior auricular nerve and branch to the posterior belly of the digastric and stylohyoid muscle.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 22 - A 75-year-old male comes to the neurology clinic accompanied by his wife. He...

    Incorrect

    • A 75-year-old male comes to the neurology clinic accompanied by his wife. He reports experiencing severe headaches for the past two months and losing a significant amount of weight in the last month. His wife adds that he constantly complains of feeling hot, despite trying to cool down. The patient has a history of lung cancer. The physician suspects a hypothalamic lesion may be responsible for his inability to regulate body temperature and orders an MRI of the brain.

      What is the most likely nucleus in the hypothalamus where the lesion is located?

      Your Answer:

      Correct Answer: Posterior nucleus

      Explanation:

      Poikilothermia can be caused by lesions in the posterior nucleus of the hypothalamus, which is likely the case for this patient with lung cancer. Diabetes insipidus can result from a lesion in the supraoptic or paraventricular nucleus, which produce antidiuretic hormone. Anorexia can be caused by a lesion in the lateral nucleus, while hyperphagia can result from a lesion in the ventromedial nucleus, which is responsible for regulating satiety.

      The hypothalamus is a part of the brain that plays a crucial role in maintaining the body’s internal balance, or homeostasis. It is located in the diencephalon and is responsible for regulating various bodily functions. The hypothalamus is composed of several nuclei, each with its own specific function. The anterior nucleus, for example, is involved in cooling the body by stimulating the parasympathetic nervous system. The lateral nucleus, on the other hand, is responsible for stimulating appetite, while lesions in this area can lead to anorexia. The posterior nucleus is involved in heating the body and stimulating the sympathetic nervous system, and damage to this area can result in poikilothermia. Other nuclei include the septal nucleus, which regulates sexual desire, the suprachiasmatic nucleus, which regulates circadian rhythm, and the ventromedial nucleus, which is responsible for satiety. Lesions in the paraventricular nucleus can lead to diabetes insipidus, while lesions in the dorsomedial nucleus can result in savage behavior.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 23 - A 45-year-old woman had an attempted central line placement in her internal jugular...

    Incorrect

    • A 45-year-old woman had an attempted central line placement in her internal jugular vein, but the doctor accidentally damaged her carotid artery, requiring surgical exploration. During the procedure, a nerve was found between the carotid artery and internal jugular vein. What is the most likely identity of this nerve?

      Your Answer:

      Correct Answer: Vagus

      Explanation:

      The carotid sheath contains the vagus nerve, while the hypoglossal nerve passes through it but is not situated inside it.

      The common carotid artery is a major blood vessel that supplies the head and neck with oxygenated blood. It has two branches, the left and right common carotid arteries, which arise from different locations. The left common carotid artery originates from the arch of the aorta, while the right common carotid artery arises from the brachiocephalic trunk. Both arteries terminate at the upper border of the thyroid cartilage by dividing into the internal and external carotid arteries.

      The left common carotid artery runs superolaterally to the sternoclavicular joint and is in contact with various structures in the thorax, including the trachea, left recurrent laryngeal nerve, and left margin of the esophagus. In the neck, it passes deep to the sternocleidomastoid muscle and enters the carotid sheath with the vagus nerve and internal jugular vein. The right common carotid artery has a similar path to the cervical portion of the left common carotid artery, but with fewer closely related structures.

      Overall, the common carotid artery is an important blood vessel with complex anatomical relationships in both the thorax and neck. Understanding its path and relations is crucial for medical professionals to diagnose and treat various conditions related to this artery.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 24 - A 25-year-old male presents for a follow-up appointment. He sustained a crush injury...

    Incorrect

    • A 25-year-old male presents for a follow-up appointment. He sustained a crush injury to his arm at work six weeks ago and was diagnosed with axonotmesis. The patient is eager to return to work and asks when he can expect the numbness in his arm to go away.

      What guidance should you provide to the patient?

      Your Answer:

      Correct Answer: This type of injury usually recovers fully but can take up to a year

      Explanation:

      When a nerve is crushed, it can result in axonotmesis, which is a type of injury where both the axon and myelin sheath are damaged, but the nerve remains intact. Fortunately, axonotmesis injuries usually heal completely, although the process can be slow. The amount of time it takes for the nerve to heal depends on the severity and location of the injury, but typically, axons regenerate at a rate of 1mm per day and can take anywhere from three months to a year to fully recover. It’s not uncommon to experience residual numbness up to four weeks after the injury, but there’s usually no need for further testing at this point. While amitriptyline can help with pain relief, it doesn’t speed up the healing process. In contrast, neurotmesis injuries are more severe and can result in permanent nerve damage. However, in most cases of axonotmesis, full recovery is possible with time. Neuropraxia is a less severe type of nerve injury where the axon is not damaged, and healing typically occurs within six to eight weeks.

      Nerve injuries can be classified into three types: neuropraxia, axonotmesis, and neurotmesis. Neuropraxia occurs when the nerve is intact but its electrical conduction is affected. However, full recovery is possible, and autonomic function is preserved. Wallerian degeneration, which is the degeneration of axons distal to the site of injury, does not occur. Axonotmesis, on the other hand, happens when the axon is damaged, but the myelin sheath is preserved, and the connective tissue framework is not affected. Wallerian degeneration occurs in this type of injury. Lastly, neurotmesis is the most severe type of nerve injury, where there is a disruption of the axon, myelin sheath, and surrounding connective tissue. Wallerian degeneration also occurs in this type of injury.

      Wallerian degeneration typically begins 24-36 hours following the injury. Axons are excitable before degeneration occurs, and the myelin sheath degenerates and is phagocytosed by tissue macrophages. Neuronal repair may only occur physiologically where nerves are in direct contact. However, nerve regeneration may be hampered when a large defect is present, and it may not occur at all or result in the formation of a neuroma. If nerve regrowth occurs, it typically happens at a rate of 1mm per day.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 25 - A 32-year-old woman who is a primigravida at 15 weeks gestation presents to...

    Incorrect

    • A 32-year-old woman who is a primigravida at 15 weeks gestation presents to the emergency department with drooped features on the left side of her face and a runny nose. She noticed this in the morning when washing her face. There is no limb weakness, visual disturbance, or dysphagia noted.

      What other symptoms would be indicative of this diagnosis?

      Your Answer:

      Correct Answer: Loss of taste sensation

      Explanation:

      The patient is exhibiting symptoms consistent with Bell’s palsy, which is an acute, unilateral, and idiopathic facial nerve paralysis. It is believed to be linked to the herpes simplex virus and is most commonly seen in individuals aged 20-40 years and pregnant women. The patient’s facial droop is unilateral with lower motor neuron involvement and hyperacusis in the ear on the affected side. Loss of taste sensation in the anterior two-thirds of the tongue on the same side may also be present.

      Hyperlacrimation is not typically associated with Bell’s palsy, and patients may experience dry eyes due to reduced blinking on the affected side. Loss of smell sensation is not usually seen in Bell’s palsy and may indicate an alternative diagnosis, such as a neurodegenerative syndrome. Pins and needles in the limbs are not typically associated with Bell’s palsy, and if present, alternative diagnoses should be considered.

      The presence of a vesicular rash around the ear strongly suggests Ramsay Hunt syndrome, which is caused by the reactivation of the varicella-zoster virus in the geniculate ganglion of the seventh cranial nerve. It presents with auricular pain, facial nerve palsy, a vesicular rash around the ear, and vertigo/tinnitus.

      Bell’s palsy is a sudden, one-sided facial nerve paralysis of unknown cause. It typically affects individuals between the ages of 20 and 40, and is more common in pregnant women. The condition is characterized by a lower motor neuron facial nerve palsy that affects the forehead, while sparing the upper face. Patients may also experience postauricular pain, altered taste, dry eyes, and hyperacusis.

      The management of Bell’s palsy has been a topic of debate, with various treatment options proposed in the past. However, there is now consensus that all patients should receive oral prednisolone within 72 hours of onset. The addition of antiviral medications is still a matter of discussion, with some experts recommending it for severe cases. Eye care is also crucial to prevent exposure keratopathy, and patients may need to use artificial tears and eye lubricants. If they are unable to close their eye at bedtime, they should tape it closed using microporous tape.

      Follow-up is essential for patients who show no improvement after three weeks, as they may require urgent referral to ENT. Those with more long-standing weakness may benefit from a referral to plastic surgery. The prognosis for Bell’s palsy is generally good, with most patients making a full recovery within three to four months. However, untreated cases can result in permanent moderate to severe weakness in around 15% of patients.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 26 - A 65-year-old man presents to the emergency department with a sudden onset of...

    Incorrect

    • A 65-year-old man presents to the emergency department with a sudden onset of weakness and sensory loss on the right side of his body that started 2 hours ago. He reports difficulty walking due to more pronounced leg weakness than arm weakness, but denies any changes in vision or speech. The patient has a medical history of type 2 diabetes and hypertension and is currently taking metformin and ramipril for these conditions.

      Imaging is immediately performed, and treatment for his condition is initiated.

      What is the likely location of the lesion based on the given information?

      Your Answer:

      Correct Answer: Left anterior cerebral artery

      Explanation:

      The correct answer is the left anterior cerebral artery. The patient is experiencing a stroke on the right side of their body, with the lower extremity being more affected than the upper. This indicates that the anterior cerebral artery is affected, specifically on the left side as the symptoms are affecting the right side of the body.

      The other options are incorrect. If the middle cerebral artery was affected, the upper extremities would be more affected than the lower. If the right anterior cerebral artery was affected, the left side of the brain would be affected. If the right middle cerebral artery was affected, there would be more weakness in the upper extremities and the left side of the body would be affected.

      Stroke can affect different parts of the brain depending on which artery is affected. If the anterior cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the lower extremities being more affected than the upper. If the middle cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the upper extremities being more affected than the lower. They may also experience vision loss and difficulty with language. If the posterior cerebral artery is affected, the person may experience vision loss and difficulty recognizing objects.

      Lacunar strokes are a type of stroke that are strongly associated with hypertension. They typically present with isolated weakness or loss of sensation on one side of the body, or weakness with difficulty coordinating movements. They often occur in the basal ganglia, thalamus, or internal capsule.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 27 - An 8-year-old boy is brought to the general practice by his father. The...

    Incorrect

    • An 8-year-old boy is brought to the general practice by his father. The father has observed several peculiar episodes where his son would stop what he was doing and become unresponsive to sounds and touch for 5-10 seconds. The doctor suspects epilepsy as the cause.

      What EEG pattern is typical of the underlying condition?

      Your Answer:

      Correct Answer: 3Hz spike-and-wave

      Explanation:

      An absence seizure is characterized by 3Hz oscillations on EEG, making it a defining feature. Therefore, EEG is the primary diagnostic tool used to detect absence seizures.

      Absence seizures, also known as petit mal, are a type of epilepsy that is commonly observed in children. This form of generalised epilepsy typically affects children between the ages of 3-10 years old, with girls being twice as likely to be affected as boys. Absence seizures are characterised by brief episodes that last only a few seconds and are followed by a quick recovery. These seizures may be triggered by hyperventilation or stress, and the child is usually unaware of the seizure. They may occur multiple times a day and are identified by a bilateral, symmetrical 3Hz spike and wave pattern on an EEG.

      The first-line treatment for absence seizures includes sodium valproate and ethosuximide. The prognosis for this condition is generally good, with 90-95% of affected individuals becoming seizure-free during adolescence.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 28 - A 25-year-old male patient complains of headache, confusion, and lethargy. During the examination,...

    Incorrect

    • A 25-year-old male patient complains of headache, confusion, and lethargy. During the examination, he has a fever and exhibits weakness on the right side. A CT scan reveals a ring-enhancing lesion that affects the motor cortex on the left side. What is the most probable diagnosis?

      Your Answer:

      Correct Answer: Cerebral abscess

      Explanation:

      The presence of fever, headache, and rapidly worsening neurological symptoms strongly indicates the possibility of cerebral abscess. A CT scan can confirm this diagnosis by revealing a lesion with a ring-enhancing appearance, as the contrast material cannot reach the center of the abscess cavity. It is important to note that HSV encephalitis does not typically result in ring-enhancing lesions.

      Understanding Brain Abscesses

      Brain abscesses can occur due to various reasons such as sepsis from middle ear or sinuses, head injuries, and endocarditis. The symptoms of brain abscesses depend on the location of the abscess, with those in critical areas presenting earlier. Brain abscesses can cause a mass effect in the brain, leading to raised intracranial pressure. Symptoms of brain abscesses include persistent headaches, fever, focal neurology, nausea, papilloedema, and seizures.

      To diagnose brain abscesses, doctors may perform imaging with CT scanning. Treatment for brain abscesses involves surgery, where a craniotomy is performed to remove the abscess cavity. However, the abscess may reform after drainage. Intravenous antibiotics such as 3rd-generation cephalosporin and metronidazole are also administered, along with intracranial pressure management using dexamethasone.

      Overall, brain abscesses are a serious condition that require prompt diagnosis and treatment to prevent further complications.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 29 - A client comes to the medical facility after a surgical operation. She reports...

    Incorrect

    • A client comes to the medical facility after a surgical operation. She reports an inability to shrug her shoulder. What is the probable nerve injury causing this issue?

      Your Answer:

      Correct Answer: Accessory nerve

      Explanation:

      Operations in the posterior triangle can result in injury to the accessory nerve, which can impact the functioning of the trapezius muscle.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 30 - A 82-year-old man presents to falls clinic with a history of four falls...

    Incorrect

    • A 82-year-old man presents to falls clinic with a history of four falls in the past four months, despite no previous falls. He also complains of a worsening headache at night over the last three months. During the cranial nerve exam, an inferior homonymous quadrantanopia is observed, but eye movements are intact. The rest of the neurological exam is unremarkable. What area of the brain could be responsible for these symptoms?

      Your Answer:

      Correct Answer: Superior optic radiation

      Explanation:

      Superior optic radiation lesions in the parietal lobe are responsible for inferior homonymous quadrantanopias. The location of the lesion can be determined by analyzing the visual field defect pattern. Lesions anterior to the optic chiasm cause incongruous defects, while lesions at the optic chiasm cause bitemporal/binasal hemianopias. Lesions posterior to the optic chiasm result in homonymous hemianopias. The optic radiations carry nerves from the optic chiasm to the occipital lobe. Lesions located inferiorly cause superior visual field defects, and vice versa. Therefore, the woman’s inferior homonymous quadrantanopias indicate a lesion on the superior aspect of the optic radiation in the parietal lobe. Superior homonymous quadrantanopias result from lesions to the inferior aspect of the optic radiations. Compression of the lateral aspects of the optic chiasm causes nasal/binasal visual field defects, while compression of the superior optic chiasm causes bitemporal hemianopias. Lesions to the optic nerve before reaching the optic chiasm cause an incongruous homonymous hemianopia affecting the ipsilateral eye.

      Understanding Visual Field Defects

      Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.

      When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.

      Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.

      Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 31 - A mother brings her 3-day-old baby for a physical examination. She experienced complications...

    Incorrect

    • A mother brings her 3-day-old baby for a physical examination. She experienced complications during delivery as her son's right shoulder was stuck behind her pubic bone, causing a delay in the birth of his body. Upon examination, you observe that his right arm is hanging by his side, rotated medially, and his forearm is extended and pronated. What nerve roots are likely to be affected based on this presentation?

      Your Answer:

      Correct Answer: C5-C6

      Explanation:

      Erb-Duchenne paralysis can occur due to damage to the C5,6 roots, which is likely the case for this baby who experienced shoulder dystocia during delivery.

      The ulnar nerve originates from the brachial plexus’ medial cord (C8, T1). If damaged at the wrist, it can result in claw hand, where the 4th and 5th digits experience hyperextension at the metacarpophalangeal joints and flexion at the distal and proximal interphalangeal joints.

      The radial nerve is a continuation of the brachial plexus’ posterior cord (C5-T1). Damage to this nerve can cause wrist drop.

      T1 damage can lead to Klumpke paralysis, which causes the forearm to remain supinated with extended wrists. The fingers are unable to abduct or adduct, and they are flexed at the interphalangeal joints.

      The median nerve is formed by the lateral and medial roots of the brachial plexus’ lateral (C5-7) and medial (C8, T1) cords. If damaged at the wrist, it can cause carpal tunnel syndrome, which results in paralysis and atrophy of the thenar eminence muscles and opponens pollicis. Additionally, there is sensory loss to the palmar aspect of the lateral 2 ½ fingers.

      Brachial Plexus Injuries: Erb-Duchenne and Klumpke’s Paralysis

      Erb-Duchenne paralysis is a type of brachial plexus injury that results from damage to the C5 and C6 roots. This can occur during a breech presentation, where the baby’s head and neck are pulled to the side during delivery. Symptoms of Erb-Duchenne paralysis include weakness or paralysis of the arm, shoulder, and hand, as well as a winged scapula.

      On the other hand, Klumpke’s paralysis is caused by damage to the T1 root of the brachial plexus. This type of injury typically occurs due to traction, such as when a baby’s arm is pulled during delivery. Klumpke’s paralysis can result in a loss of intrinsic hand muscles, which can affect fine motor skills and grip strength.

      It is important to note that brachial plexus injuries can have long-term effects on a person’s mobility and quality of life. Treatment options may include physical therapy, surgery, or a combination of both. Early intervention is key to improving outcomes and minimizing the impact of these injuries.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 32 - A 87-year-old man complains of a headache and hearing loss. Although he frequently...

    Incorrect

    • A 87-year-old man complains of a headache and hearing loss. Although he frequently experiences headaches, this time it feels different, and he cannot hear anyone on his right side. During the examination, a sensorineural hearing loss is observed in the right ear, but nothing else is noteworthy.

      A CT scan of the head reveals no acute bleeding, but an MRI scan shows an ischemic area surrounding the thalamus on the right side.

      What is the probable location of the lesion in the thalamus?

      Your Answer:

      Correct Answer: Medial geniculate nucleus

      Explanation:

      Hearing impairment can be caused by damage to the medial geniculate nucleus of the thalamus.

      The Thalamus: Relay Station for Motor and Sensory Signals

      The thalamus is a structure located between the midbrain and cerebral cortex that serves as a relay station for motor and sensory signals. Its main function is to transmit these signals to the cerebral cortex, which is responsible for processing and interpreting them. The thalamus is composed of different nuclei, each with a specific function. The lateral geniculate nucleus relays visual signals, while the medial geniculate nucleus transmits auditory signals. The medial portion of the ventral posterior nucleus (VML) is responsible for facial sensation, while the ventral anterior/lateral nuclei relay motor signals. Finally, the lateral portion of the ventral posterior nucleus is responsible for body sensation, including touch, pain, proprioception, pressure, and vibration. Overall, the thalamus plays a crucial role in the transmission of sensory and motor information to the brain, allowing us to perceive and interact with the world around us.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 33 - A laceration of the wrist produces a median nerve transection in a 50-year-old...

    Incorrect

    • A laceration of the wrist produces a median nerve transection in a 50-year-old patient. The wound is clean and seen immediately after injury. Collateral soft tissue damage is absent. The patient asks what the prognosis is. You indicate that the nerve should regrow at approximately:

      Your Answer:

      Correct Answer: 1 mm per day

      Explanation:

      When a peripheral nerve is cut, it causes bleeding and the nerve ends retract. The axon, which is the part of the nerve that transmits signals, starts to degenerate immediately after the injury. This degeneration occurs both in the part of the nerve that is distal to the injury and in the part that is proximal to the first node of Ranvier. As the degenerated axonal fragments are removed by phagocytosis, empty spaces are left in the neurilemmal sheath where the axons used to be.

      After a few days, axons from the proximal part of the nerve start to regrow. If they are able to make contact with the distal neurilemmal sheath, they can regrow at a rate of about 1 mm per day. However, if there is any trauma, fracture, infection, or separation of the neurilemmal sheath ends that prevents contact between the axons, the regrowth can be erratic and may result in the formation of a traumatic neuroma.

      In cases where the nerve injury is accompanied by significant soft tissue damage and bleeding (which increases the risk of infection), some surgeons may choose to delay the reattachment of the severed nerve ends for several weeks.

      Nerve injuries can be classified into three types: neuropraxia, axonotmesis, and neurotmesis. Neuropraxia occurs when the nerve is intact but its electrical conduction is affected. However, full recovery is possible, and autonomic function is preserved. Wallerian degeneration, which is the degeneration of axons distal to the site of injury, does not occur. Axonotmesis, on the other hand, happens when the axon is damaged, but the myelin sheath is preserved, and the connective tissue framework is not affected. Wallerian degeneration occurs in this type of injury. Lastly, neurotmesis is the most severe type of nerve injury, where there is a disruption of the axon, myelin sheath, and surrounding connective tissue. Wallerian degeneration also occurs in this type of injury.

      Wallerian degeneration typically begins 24-36 hours following the injury. Axons are excitable before degeneration occurs, and the myelin sheath degenerates and is phagocytosed by tissue macrophages. Neuronal repair may only occur physiologically where nerves are in direct contact. However, nerve regeneration may be hampered when a large defect is present, and it may not occur at all or result in the formation of a neuroma. If nerve regrowth occurs, it typically happens at a rate of 1mm per day.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 34 - A 28-year-old male comes to the Emergency Department complaining of a severely painful,...

    Incorrect

    • A 28-year-old male comes to the Emergency Department complaining of a severely painful, reddened right-eye that has been going on for 6 hours. He also reports experiencing haloes around light and reduced visual acuity. The patient has a history of hypermetropia. Upon examination, the right-eye appears red with a fixed and dilated pupil and conjunctival injection.

      What is the most probable diagnosis?

      Your Answer:

      Correct Answer: Acute closed-angle glaucoma

      Explanation:

      The correct diagnosis is acute closed-angle glaucoma, which is characterized by an increase in intra-ocular pressure due to impaired aqueous outflow. Symptoms include a painful red eye, reduced visual acuity, and haloes around light. Risk factors include hypermetropia, pupillary dilatation, and age-related lens growth. Examination findings typically include a fixed dilated pupil with conjunctival injection. Treatment options include reducing aqueous secretions with acetazolamide and increasing pupillary constriction with topical pilocarpine.

      Anterior uveitis is an incorrect diagnosis, as it refers to inflammation of the anterior portion of the uvea and is associated with systemic inflammatory conditions. Ophthalmoscopy findings include an irregular pupil.

      Central retinal vein occlusion is also an incorrect diagnosis, as it causes acute blindness due to thromboembolism or vasculitis in the central retinal vein. Ophthalmoscopy typically reveals severe retinal haemorrhages.

      Infective conjunctivitis is another incorrect diagnosis, as it is characterized by sore, red eyes with discharge. Bacterial causes typically result in purulent discharge, while viral cases often have serous discharge.

      Acute angle closure glaucoma (AACG) is a type of glaucoma where there is a rise in intraocular pressure (IOP) due to a blockage in the outflow of aqueous humor. This condition is more likely to occur in individuals with hypermetropia, pupillary dilation, and lens growth associated with aging. Symptoms of AACG include severe pain, decreased visual acuity, a hard and red eye, haloes around lights, and a semi-dilated non-reacting pupil. AACG is an emergency and requires urgent referral to an ophthalmologist. The initial medical treatment involves a combination of eye drops, such as a direct parasympathomimetic, a beta-blocker, and an alpha-2 agonist, as well as intravenous acetazolamide to reduce aqueous secretions. Definitive management involves laser peripheral iridotomy, which creates a tiny hole in the peripheral iris to allow aqueous humor to flow to the angle.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 35 - A 50-year-old woman comes to the Emergency Department with facial drooping and slurred...

    Incorrect

    • A 50-year-old woman comes to the Emergency Department with facial drooping and slurred speech. You perform a cranial nerves examination and find that her oculomotor nerve has been affected. What sign would you anticipate observing in this patient?

      Your Answer:

      Correct Answer: Ptosis

      Explanation:

      The correct answer is ptosis. Issues with the oculomotor nerve can cause ptosis, a drooping of the eyelid, as well as a dilated, fixed pupil and a down and out eye. The oculomotor nerve is responsible for various functions, including eye movements (such as those controlled by the MR, IO, SR, and IR muscles), pupil constriction, accommodation, and eyelid opening. Arcuate scotoma is an incorrect answer. This condition is caused by damage to the optic nerve, resulting in a blind spot that appears as an arc shape in the visual field. It does not affect extraocular movements. Bitemporal hemianopia is also an incorrect answer. This visual field defect affects the outer halves of both eyes and is caused by lesions of the optic chiasm, such as those resulting from a pituitary adenoma. Horizontal diplopia is another incorrect answer. This condition is caused by problems with the abducens nerve, which controls the lateral rectus muscle responsible for eye abduction. Defective abduction leads to horizontal diplopia, or double vision.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 36 - Which option is false regarding the trigeminal nerve? ...

    Incorrect

    • Which option is false regarding the trigeminal nerve?

      Your Answer:

      Correct Answer: The posterior scalp is supplied by the trigeminal nerve

      Explanation:

      The blood supply to the posterior scalp is provided by the C2-C3 nerves.

      The trigeminal nerve is the main sensory nerve of the head and also innervates the muscles of mastication. It has sensory distribution to the scalp, face, oral cavity, nose and sinuses, and dura mater, and motor distribution to the muscles of mastication, mylohyoid, anterior belly of digastric, tensor tympani, and tensor palati. The nerve originates at the pons and has three branches: ophthalmic, maxillary, and mandibular. The ophthalmic and maxillary branches are sensory only, while the mandibular branch is both sensory and motor. The nerve innervates various muscles, including the masseter, temporalis, and pterygoids.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 37 - A 36-year-old man presents to the emergency department with a sudden and severe...

    Incorrect

    • A 36-year-old man presents to the emergency department with a sudden and severe headache in the occipital region. The pain started an hour ago while he was making breakfast and rates the severity as 10/10. The patient has a medical history of autosomal dominant polycystic kidney disease. During examination, the patient appears to be sensitive to light and has stiffness on neck flexion. Neurological examination is normal. The patient's vital signs are stable with a blood pressure of 150/90 mmHg, heart rate of 88 beats per minute, and temperature of 37.2 ºC. What is the most likely cause of this patient's headache?

      Your Answer:

      Correct Answer: Subarachnoid haemorrhage

      Explanation:

      Subarachnoid haemorrhage is characterised by a sudden occipital headache, often described as the worst headache of the patient’s life. It is commonly caused by the rupture of a cerebral aneurysm and is associated with hypertension, smoking, and autosomal dominant polycystic kidney disease. Symptoms may also include photophobia and neck stiffness. Bacterial meningitis, extradural haematoma, and intracerebral haematoma are incorrect answers as they present with different symptoms and causes.

      There are different types of traumatic brain injury, including focal (contusion/haematoma) or diffuse (diffuse axonal injury). Diffuse axonal injury occurs due to mechanical shearing following deceleration, causing disruption and tearing of axons. Intracranial haematomas can be extradural, subdural or intracerebral, while contusions may occur adjacent to (coup) or contralateral (contre-coup) to the side of impact. Secondary brain injury occurs when cerebral oedema, ischaemia, infection, tonsillar or tentorial herniation exacerbates the original injury.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 38 - What is the most effective test for differentiating between an upper and lower...

    Incorrect

    • What is the most effective test for differentiating between an upper and lower motor neuron lesion of the facial nerve in clinical practice, particularly in older patients?

      Your Answer:

      Correct Answer: Raise eyebrow

      Explanation:

      Facial nerve upper motor neuron lesions result in paralysis of the lower half of the face, while lower motor neuron lesions cause paralysis of the entire face on the same side.

      The facial nerve has a nucleus located in the ventrolateral pontine tegmentum, and its axons exit the ventral pons medial to the spinal trigeminal nucleus. Lesions affecting the corticobulbar tract are known as upper motor neuron lesions, while those affecting the individual branches of the facial nerve are lower motor neuron lesions. The lower motor neurons of the facial nerve can leave from either the left or right posterior or anterior facial motor nucleus, with the temporal branch receiving input from both hemispheres of the cerebral cortex, while the zygomatic, buccal, mandibular, and cervical branches receive input from only the contralateral hemisphere.

      In the case of an upper motor neuron lesion in the left hemisphere, the right mid- and lower-face would be paralyzed, while the forehead would remain unaffected. This is because the anterior facial motor nucleus receives only contralateral cortical input, while the posterior component receives input from both hemispheres. However, a lower motor neuron lesion affecting either the left or right side would paralyze the entire side of the face, as both the anterior and posterior routes on that side would be affected. This is because the nerves no longer have a means to receive compensatory contralateral input at a downstream decussation.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 39 - A 21-year-old male visits the GP complaining of a sore and itchy eye...

    Incorrect

    • A 21-year-old male visits the GP complaining of a sore and itchy eye upon waking up. Upon examination, the right eye appears red with a discharge of mucopurulent nature. The patient has a medical history of asthma and eczema and is currently using a salbutamol inhaler. Based on this information, what is the most probable diagnosis?

      Your Answer:

      Correct Answer: Bacterial conjunctivitis

      Explanation:

      A mucopurulent discharge is indicative of bacterial conjunctivitis, which is likely in this patient presenting with an itchy, red eye. Although the patient has a history of asthma and eczema, allergic rhinitis would not produce a mucopurulent discharge. Viral conjunctivitis, the most common type of conjunctivitis, is associated with a watery discharge. A corneal ulcer, on the other hand, is characterized by pain and a watery eye.

      Infective conjunctivitis is a common eye problem that is often seen in primary care. It is characterized by red, sore eyes that are accompanied by a sticky discharge. There are two types of infective conjunctivitis: bacterial and viral. Bacterial conjunctivitis is identified by a purulent discharge and eyes that may be stuck together in the morning. On the other hand, viral conjunctivitis is characterized by a serous discharge and recent upper respiratory tract infection, as well as preauricular lymph nodes.

      In most cases, infective conjunctivitis is a self-limiting condition that resolves on its own within one to two weeks. However, patients are often offered topical antibiotic therapy, such as Chloramphenicol or topical fusidic acid. Chloramphenicol drops are given every two to three hours initially, while chloramphenicol ointment is given four times a day initially. Topical fusidic acid is an alternative and should be used for pregnant women. For contact lens users, topical fluoresceins should be used to identify any corneal staining, and treatment should be the same as above. It is important to advise patients not to share towels and to avoid wearing contact lenses during an episode of conjunctivitis. School exclusion is not necessary.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 40 - A 24-year-old male arrives at the Emergency Department after sustaining a head injury...

    Incorrect

    • A 24-year-old male arrives at the Emergency Department after sustaining a head injury while playing football. He was struck on the back of his head and lost consciousness for a brief period before regaining it. According to his friend, he appeared to be fine after regaining consciousness except for a headache. However, he has lost consciousness again unexpectedly.

      A biconvex blood collection is revealed on a head CT scan. It does not seem to cross the suture lines.

      Where is the probable location of the bleed?

      Your Answer:

      Correct Answer: Between the dura mater and the skull

      Explanation:

      The outermost layer of the meninges is known as the dura mater. If a patient loses consciousness briefly after a head injury and then suddenly becomes unconscious again, it is likely that they have an extra-dural haematoma. This type of bleed is often caused by the middle meningeal artery, which supplies blood to the dura mater. The resulting blood collection between the skull and dura mater creates a biconvex shape on a CT scan that does not cross suture lines. In contrast, subdural haematomas occur in the potential space beneath the dura mater and are crescent-shaped on a CT scan that crosses suture lines. Subarachnoid bleeds typically cause a sudden, severe headache and appear as a lighter grey/white area in the subarachnoid space on a CT scan. A superficial scalp bleed would not be visible on a CT scan and is unlikely to cause loss of consciousness.

      The Three Layers of Meninges

      The meninges are a group of membranes that cover the brain and spinal cord, providing support to the central nervous system and the blood vessels that supply it. These membranes can be divided into three distinct layers: the dura mater, arachnoid mater, and pia mater.

      The outermost layer, the dura mater, is a thick fibrous double layer that is fused with the inner layer of the periosteum of the skull. It has four areas of infolding and is pierced by small areas of the underlying arachnoid to form structures called arachnoid granulations. The arachnoid mater forms a meshwork layer over the surface of the brain and spinal cord, containing both cerebrospinal fluid and vessels supplying the nervous system. The final layer, the pia mater, is a thin layer attached directly to the surface of the brain and spinal cord.

      The meninges play a crucial role in protecting the brain and spinal cord from injury and disease. However, they can also be the site of serious medical conditions such as subdural and subarachnoid haemorrhages. Understanding the structure and function of the meninges is essential for diagnosing and treating these conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 41 - A 51-year-old male comes to his doctor complaining of increasing back pain. Despite...

    Incorrect

    • A 51-year-old male comes to his doctor complaining of increasing back pain. Despite taking paracetamol and ibuprofen, he has not experienced sufficient pain relief. The doctor considers prescribing a weak opioid, such as codeine, and asks the medical student accompanying him for the week about the receptors that opioids act on to produce their pharmacological effects.

      Which receptors do opioids target?

      Your Answer:

      Correct Answer: Mu, delta and kappa receptors

      Explanation:

      Opioids produce their pharmacological effects by binding to three opioid receptors, namely mu, delta, and kappa, whose genes have been identified and cloned as Oprm, Oprd1, and Oprk1, respectively. It is important to note that alpha and beta receptors are not involved in the mechanism of action of opioids.

      Understanding Opioids: Types, Receptors, and Clinical Uses

      Opioids are a class of chemical compounds that act upon opioid receptors located within the central nervous system (CNS). These receptors are G-protein coupled receptors that have numerous actions throughout the body. There are three clinically relevant groups of opioid receptors: mu (µ), kappa (κ), and delta (δ) receptors. Endogenous opioids, such as endorphins, dynorphins, and enkephalins, are produced by specific cells within the CNS and their actions depend on whether µ-receptors or δ-receptors and κ-receptors are their main target.

      Drugs targeted at opioid receptors are the largest group of analgesic drugs and form the second and third steps of the WHO pain ladder of managing analgesia. The choice of which opioid drug to use depends on the patient’s needs and the clinical scenario. The first step of the pain ladder involves non-opioids such as paracetamol and non-steroidal anti-inflammatory drugs. The second step involves weak opioids such as codeine and tramadol, while the third step involves strong opioids such as morphine, oxycodone, methadone, and fentanyl.

      The strength, routes of administration, common uses, and significant side effects of these opioid drugs vary. Weak opioids have moderate analgesic effects without exposing the patient to as many serious adverse effects associated with strong opioids. Strong opioids have powerful analgesic effects but are also more liable to cause opioid-related side effects such as sedation, respiratory depression, constipation, urinary retention, and addiction. The sedative effects of opioids are also useful in anesthesia with potent drugs used as part of induction of a general anesthetic.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 42 - What is the incorrect pairing in the following options? ...

    Incorrect

    • What is the incorrect pairing in the following options?

      Your Answer:

      Correct Answer: Termination of dural sac and L4

      Explanation:

      Sorry, your input is not clear. Please provide more information or context for me to understand what you want me to do.

      Anatomical Planes and Levels in the Human Body

      The human body can be divided into different planes and levels to aid in anatomical study and medical procedures. One such plane is the transpyloric plane, which runs horizontally through the body of L1 and intersects with various organs such as the pylorus of the stomach, left kidney hilum, and duodenojejunal flexure. Another way to identify planes is by using common level landmarks, such as the inferior mesenteric artery at L3 or the formation of the IVC at L5.

      In addition to planes and levels, there are also diaphragm apertures located at specific levels in the body. These include the vena cava at T8, the esophagus at T10, and the aortic hiatus at T12. By understanding these planes, levels, and apertures, medical professionals can better navigate the human body during procedures and accurately diagnose and treat various conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 43 - A 65-year-old woman visits her GP complaining of difficulty swallowing, altered taste, and...

    Incorrect

    • A 65-year-old woman visits her GP complaining of difficulty swallowing, altered taste, and a recent weight loss of 6kg over the past 2 months. Upon examination, the patient appears pale and cachectic, with an absent gag reflex. A CT scan of the head and neck reveals a poorly defined hypodense lesion consistent with a skull base tumor that is compressing the sigmoid sinus. Which structure is most likely to have been invaded by this tumor?

      Your Answer:

      Correct Answer: Jugular foramen

      Explanation:

      The glossopharyngeal nerve travels through the jugular foramen, which is consistent with the patient’s absent gag reflex. The sigmoid sinus also passes through this canal, which is compressed in the patient’s CT. Therefore, the correct answer is the jugular foramen. The foramen ovale, foramen rotundum, and hypoglossal canal are not associated with the glossopharyngeal nerve and would not cause the patient’s symptoms.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 44 - Which of the following characteristics does not increase the risk of refeeding syndrome?...

    Incorrect

    • Which of the following characteristics does not increase the risk of refeeding syndrome?

      Your Answer:

      Correct Answer: Thyrotoxicosis

      Explanation:

      Understanding Refeeding Syndrome and its Metabolic Consequences

      Refeeding syndrome is a condition that occurs when a person is fed after a period of starvation. This can lead to metabolic abnormalities such as hypophosphataemia, hypokalaemia, hypomagnesaemia, and abnormal fluid balance. These metabolic consequences can result in organ failure, making it crucial to be aware of the risks associated with refeeding.

      To prevent refeeding problems, it is recommended to re-feed patients who have not eaten for more than five days at less than 50% energy and protein levels. Patients who are at high risk for refeeding problems include those with a BMI of less than 16 kg/m2, unintentional weight loss of more than 15% over 3-6 months, little nutritional intake for more than 10 days, and hypokalaemia, hypophosphataemia, or hypomagnesaemia prior to feeding (unless high). Patients with two or more of the following are also at high risk: BMI less than 18.5 kg/m2, unintentional weight loss of more than 10% over 3-6 months, little nutritional intake for more than 5 days, and a history of alcohol abuse, drug therapy including insulin, chemotherapy, diuretics, and antacids.

      To prevent refeeding syndrome, it is recommended to start at up to 10 kcal/kg/day and increase to full needs over 4-7 days. It is also important to start oral thiamine 200-300mg/day, vitamin B co strong 1 tds, and supplements immediately before and during feeding. Additionally, K+ (2-4 mmol/kg/day), phosphate (0.3-0.6 mmol/kg/day), and magnesium (0.2-0.4 mmol/kg/day) should be given to patients. By understanding the risks associated with refeeding syndrome and taking preventative measures, healthcare professionals can ensure the safety and well-being of their patients.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 45 - A 28-year-old man with a history of Marfan's syndrome arrives at the emergency...

    Incorrect

    • A 28-year-old man with a history of Marfan's syndrome arrives at the emergency department complaining of sudden, painless vision loss in his left eye. He reports no prior symptoms or injuries.

      What is the probable diagnosis?

      Your Answer:

      Correct Answer: Lens dislocation

      Explanation:

      In Marfan’s syndrome, painless loss of vision in one eye may be caused by lens dislocation, which is a common ocular symptom of the condition. The dislocation usually occurs in the upper outer part of the eye and can affect one or both eyes. While retinal detachment can also cause sudden vision loss without pain, it is less common than lens dislocation and is often preceded by visual disturbances such as flashes, floaters, or blind spots.

      Causes of Lens Dislocation

      Lens dislocation can occur due to various reasons. One of the most common causes is Marfan’s syndrome, which causes the lens to dislocate upwards. Another cause is homocystinuria, which leads to the lens dislocating downwards. Ehlers-Danlos syndrome is also a contributing factor to lens dislocation. Trauma, uveal tumors, and autosomal recessive ectopia lentis are other causes of lens dislocation. It is important to identify the underlying cause of lens dislocation to determine the appropriate treatment plan. Proper diagnosis and management can prevent further complications and improve the patient’s quality of life.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 46 - You are evaluating an 80-year-old woman in the emergency department who complains of...

    Incorrect

    • You are evaluating an 80-year-old woman in the emergency department who complains of a gradual decline in her vision over the past year. She reports having good eyesight in her younger years but now experiences hazy vision with halos around lights at night. During ophthalmoscope examination, you observe a dimming of the red reflex in both eyes, making it difficult to visualize the retina. Upon further examination with a slit lamp, you notice a uniform brunescent opacification of the crystalline lens.

      What type of lens pathology is present in this patient?

      Your Answer:

      Correct Answer: Nuclear sclerotic cataract

      Explanation:

      Cataract is a condition that occurs with age and affects the lens of the eye. The most prevalent type of age-related cataract is known as nuclear cataract.

      Nuclear sclerotic cataracts are characterized by the hardening and clouding of the center of the lens, which can lead to a decrease in the eye’s ability to focus. The quality of the lens can change as it matures, initially causing haziness and white or gray discoloration. As the cataract progresses, it can become brunescent and even liquefy in severe cases.

      While congenital cataracts are most commonly diagnosed in childhood, posterior subcapsular cataracts are more frequently seen in patients who have undergone cataract surgery or have conditions such as diabetes or have been on prolonged courses of steroids. These cataracts occur on the back surface of the lens.

      Cortical cataracts are less common and are characterized by spoke-like opacities radiating from the center of the lens.

      Understanding Cataracts

      A cataract is a common eye condition that occurs when the lens of the eye becomes cloudy, making it difficult for light to reach the retina and causing reduced or blurred vision. Cataracts are more common in women and increase in incidence with age, affecting 30% of individuals aged 65 and over. The most common cause of cataracts is the normal ageing process, but other possible causes include smoking, alcohol consumption, trauma, diabetes mellitus, long-term corticosteroids, radiation exposure, myotonic dystrophy, and metabolic disorders such as hypocalcaemia.

      Patients with cataracts typically experience a gradual onset of reduced vision, faded colour vision, glare, and halos around lights. Signs of cataracts include a defect in the red reflex, which is the reddish-orange reflection seen through an ophthalmoscope when a light is shone on the retina. Diagnosis is made through ophthalmoscopy and slit-lamp examination, which reveal a visible cataract.

      In the early stages, age-related cataracts can be managed conservatively with stronger glasses or contact lenses and brighter lighting. However, surgery is the only effective treatment for cataracts, involving the removal of the cloudy lens and replacement with an artificial one. Referral for surgery should be based on the presence of visual impairment, impact on quality of life, patient choice, and the risks and benefits of surgery. Complications following surgery may include posterior capsule opacification, retinal detachment, posterior capsule rupture, and endophthalmitis. Despite these risks, cataract surgery has a high success rate, with 85-90% of patients achieving corrected vision of 6/12 or better on a Snellen chart postoperatively.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 47 - Samantha, a 75-year-old female, arrives at the emergency department after falling down a...

    Incorrect

    • Samantha, a 75-year-old female, arrives at the emergency department after falling down a flight of stairs. She reports experiencing discomfort in her right upper arm.

      Upon examination, the physician orders an X-ray which reveals a mid shaft humeral fracture on the right.

      What is the most probable symptom associated with this type of fracture?

      Your Answer:

      Correct Answer: Wrist drop

      Explanation:

      A mid shaft humeral fracture can result in wrist drop, which is a clinical sign indicating damage to the radial nerve. The radial nerve controls the muscles responsible for extending the wrist, and when it is damaged, the wrist remains in a flexed position. Other clinical signs associated with nerve or vascular damage include the hand of benediction (median nerve), ulnar claw (ulnar nerve), and Volkmann’s contracture (brachial artery).

      The Radial Nerve: Anatomy, Innervation, and Patterns of Damage

      The radial nerve is a continuation of the posterior cord of the brachial plexus, with root values ranging from C5 to T1. It travels through the axilla, posterior to the axillary artery, and enters the arm between the brachial artery and the long head of triceps. From there, it spirals around the posterior surface of the humerus in the groove for the radial nerve before piercing the intermuscular septum and descending in front of the lateral epicondyle. At the lateral epicondyle, it divides into a superficial and deep terminal branch, with the deep branch crossing the supinator to become the posterior interosseous nerve.

      The radial nerve innervates several muscles, including triceps, anconeus, brachioradialis, and extensor carpi radialis. The posterior interosseous branch innervates supinator, extensor carpi ulnaris, extensor digitorum, and other muscles. Denervation of these muscles can lead to weakness or paralysis, with effects ranging from minor effects on shoulder stability to loss of elbow extension and weakening of supination of prone hand and elbow flexion in mid prone position.

      Damage to the radial nerve can result in wrist drop and sensory loss to a small area between the dorsal aspect of the 1st and 2nd metacarpals. Axillary damage can also cause paralysis of triceps. Understanding the anatomy, innervation, and patterns of damage of the radial nerve is important for diagnosing and treating conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 48 - A 54-year-old woman comes to her GP complaining of a gradual increase in...

    Incorrect

    • A 54-year-old woman comes to her GP complaining of a gradual increase in numbness and tingling in her right hand's ring and little fingers. She works as a librarian and denies any physical strain or injury. There is no significant medical history or family history of similar symptoms.

      The woman reports that her symptoms are causing her to take frequent breaks from work and is worried about losing her job.

      What is the primary pathology most commonly associated with her symptoms?

      Your Answer:

      Correct Answer: Nerve entrapment of the medial epicondyle

      Explanation:

      The correct answer is nerve entrapment of the medial epicondyle. The ulnar nerve provides sensory innervation to the palmar and dorsal aspects of the 4th and 5th digits, and it travels posterior to the medial epicondyle through the ulnar tunnel. Medial epicondylitis, an over-use injury of the flexor-pronator muscles, can cause ulnar nerve damage.

      The other answer choices are incorrect. The radial nerve supplies dorsal sensation to the thumb and wrist extension, while the ulnar nerve arises from C8-T1 of the brachial plexus. Fracture of the humeral shaft is associated with radial nerve damage, not ulnar nerve damage.

      The ulnar nerve originates from the medial cord of the brachial plexus, specifically from the C8 and T1 nerve roots. It provides motor innervation to various muscles in the hand, including the medial two lumbricals, adductor pollicis, interossei, hypothenar muscles (abductor digiti minimi, flexor digiti minimi), and flexor carpi ulnaris. Sensory innervation is also provided to the medial 1 1/2 fingers on both the palmar and dorsal aspects. The nerve travels through the posteromedial aspect of the upper arm and enters the palm of the hand via Guyon’s canal, which is located superficial to the flexor retinaculum and lateral to the pisiform bone.

      The ulnar nerve has several branches that supply different muscles and areas of the hand. The muscular branch provides innervation to the flexor carpi ulnaris and the medial half of the flexor digitorum profundus. The palmar cutaneous branch arises near the middle of the forearm and supplies the skin on the medial part of the palm, while the dorsal cutaneous branch supplies the dorsal surface of the medial part of the hand. The superficial branch provides cutaneous fibers to the anterior surfaces of the medial one and one-half digits, and the deep branch supplies the hypothenar muscles, all the interosseous muscles, the third and fourth lumbricals, the adductor pollicis, and the medial head of the flexor pollicis brevis.

      Damage to the ulnar nerve at the wrist can result in a claw hand deformity, where there is hyperextension of the metacarpophalangeal joints and flexion at the distal and proximal interphalangeal joints of the 4th and 5th digits. There may also be wasting and paralysis of intrinsic hand muscles (except for the lateral two lumbricals), hypothenar muscles, and sensory loss to the medial 1 1/2 fingers on both the palmar and dorsal aspects. Damage to the nerve at the elbow can result in similar symptoms, but with the addition of radial deviation of the wrist. It is important to diagnose and treat ulnar nerve damage promptly to prevent long-term complications.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 49 - A 65-year-old male comes to the head and neck clinic for his postoperative...

    Incorrect

    • A 65-year-old male comes to the head and neck clinic for his postoperative check-up following the removal of a tumour from his mouth. He reports experiencing numbness and tingling in the floor of his mouth after the surgery. It is suspected that the sensory nerve to the floor of his mouth may have been affected.

      What is the most probable nerve that has been damaged?

      Your Answer:

      Correct Answer: Lingual nerve

      Explanation:

      The lingual nerve provides sensation to the floor of the mouth, a portion of the tongue, and the gingivae of the mandibular lingual. The mandibular nerve transmits sensory fibers to the submandibular glands, while the greater auricular nerve is responsible for sensation in the parotid gland. The hypoglossal nerve, the twelfth cranial nerve, controls tongue movement, and the facial nerve, the seventh cranial nerve, is responsible for salivation, lacrimation, facial movement, and taste in the anterior two-thirds of the tongue.

      Lingual Nerve: Sensory Nerve to the Tongue and Mouth

      The lingual nerve is a sensory nerve that provides sensation to the mucosa of the presulcal part of the tongue, floor of the mouth, and mandibular lingual gingivae. It arises from the posterior trunk of the mandibular nerve and runs past the tensor veli palatini and lateral pterygoid muscles. At this point, it is joined by the chorda tympani branch of the facial nerve.

      After emerging from the cover of the lateral pterygoid, the lingual nerve proceeds antero-inferiorly, lying on the surface of the medial pterygoid and close to the medial aspect of the mandibular ramus. At the junction of the vertical and horizontal rami of the mandible, it is anterior to the inferior alveolar nerve. The lingual nerve then passes below the mandibular attachment of the superior pharyngeal constrictor and lies on the periosteum of the root of the third molar tooth.

      Finally, the lingual nerve passes medial to the mandibular origin of mylohyoid and then passes forwards on the inferior surface of this muscle. Overall, the lingual nerve plays an important role in providing sensory information to the tongue and mouth.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 50 - A 62-year-old man comes to the emergency department with recent involuntary movements. During...

    Incorrect

    • A 62-year-old man comes to the emergency department with recent involuntary movements. During the examination, it is observed that he has unmanageable thrashing movements of his left arm and leg, which cannot be diverted. A CT scan reveals a fresh acute infarct.

      What part of the brain has been impacted by this infarct, causing these symptoms?

      Your Answer:

      Correct Answer: Subthalamic nucleus

      Explanation:

      Lesions of the subthalamic nucleus (STN) within the basal ganglia can result in a hemiballismus, characterized by uncontrollable thrashing movements. The STN plays a role in unconscious motor control by providing excitatory input to the globus pallidus internus (GPi), which then acts in an inhibitory way on motor outflow from the cortex. When the STN is damaged, there is less activity within the GPi and relative hyperactivity of the motor cortex, leading to excessive movements.

      In contrast, lesions of the caudate nucleus within the basal ganglia can cause behavioral changes and agitation. The caudate processes motor information from the cortex and provides an excitatory input to the globus pallidus externus (GPe), which then has an excitatory input to the STN. Lesions of the caudate result in motor hyperactivity, but this manifests as a restless state rather than uncontrolled movements. The caudate also plays a role in the neural circuits underlying goal-directed behaviors, and lesions can result in personality and behavioral changes.

      Lesions of the medial pons can cause hemiplegia and hemisensory loss or locked-in syndrome, depending on the level of disruption to the motor and sensory pathways. Lesions above the level of the trigeminal and facial motor nuclei can result in a full locked-in syndrome, while lesions below these nuclei result in hemiplegia and hemisensory loss but with preservation of facial sensation and movement.

      Lesions of the substantia nigra result in Parkinsonism, as the dopaminergic neurons of the substantia nigra have an inhibitory effect on the outflow of the striatum. This prevents motor information from leaving the cortex, resulting in the bradykinesia characteristic of Parkinsonism.

      Thalamic lesions most commonly cause hemisensory loss, as the thalamus acts as a sensory gateway that allows processing of sensory information before relaying it to the relevant primary cortex. Lesions disrupt this pathway and prevent information from reaching the cortex.

      Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.

      In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 51 - A 27-year-old male is brought in after collapsing. According to the paramedics, he...

    Incorrect

    • A 27-year-old male is brought in after collapsing. According to the paramedics, he was found unconscious at a bar and no one knows what happened. Upon examination, his eyes remain closed and do not respond to commands, but he mumbles incomprehensibly when pressure is applied to his nailbed. He also opens his eyes and uses his other hand to push away the painful stimulus. His temperature is 37°C, his oxygen saturation is 95% on air, and his pulse is 100 bpm with a blood pressure of 106/76 mmHg. What is his Glasgow coma scale score?

      Your Answer:

      Correct Answer: 9

      Explanation:

      The Glasgow Coma Scale is used because it is simple, has high interobserver reliability, and correlates well with outcome following severe brain injury. It consists of three components: Eye Opening, Verbal Response, and Motor Response. The score is the sum of the scores as well as the individual elements. For example, a score of 10 might be expressed as GCS10 = E3V4M3.

      Best eye response:
      1- No eye opening
      2- Eye opening to pain
      3- Eye opening to sound
      4- Eyes open spontaneously

      Best verbal response:
      1- No verbal response
      2- Incomprehensible sounds
      3- Inappropriate words
      4- Confused
      5- Orientated

      Best motor response:
      1- No motor response.
      2- Abnormal extension to pain
      3- Abnormal flexion to pain
      4- Withdrawal from pain
      5- Localizing pain
      6- Obeys commands

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 52 - Which of the following cranial venous sinuses is singular? ...

    Incorrect

    • Which of the following cranial venous sinuses is singular?

      Your Answer:

      Correct Answer: Superior sagittal sinus

      Explanation:

      The superior sagittal sinus is a single structure that starts at the crista galli and may connect with the veins of the frontal sinus and nasal cavity. It curves backwards within the falx cerebri and ends at the internal occipital protuberance, typically draining into the right transverse sinus. The parietal emissary veins provide a connection between the superior sagittal sinus and the veins on the outside of the skull.

      Overview of Cranial Venous Sinuses

      The cranial venous sinuses are a series of veins located within the dura mater, the outermost layer of the brain. Unlike other veins in the body, they do not have valves, which can increase the risk of sepsis spreading. These sinuses eventually drain into the internal jugular vein.

      There are several cranial venous sinuses, including the superior sagittal sinus, inferior sagittal sinus, straight sinus, transverse sinus, sigmoid sinus, confluence of sinuses, occipital sinus, and cavernous sinus. Each of these sinuses has a specific location and function within the brain.

      To better understand the topography of the cranial venous sinuses, it is helpful to visualize them as a map. The superior sagittal sinus runs along the top of the brain, while the inferior sagittal sinus runs along the bottom. The straight sinus connects the two, while the transverse sinus runs horizontally across the back of the brain. The sigmoid sinus then curves downward and connects to the internal jugular vein. The confluence of sinuses is where several of these sinuses meet, while the occipital sinus is located at the back of the head. Finally, the cavernous sinus is located on either side of the pituitary gland.

      Understanding the location and function of these cranial venous sinuses is important for diagnosing and treating various neurological conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 53 - An 88-year-old man is brought by his daughter to see his family physician....

    Incorrect

    • An 88-year-old man is brought by his daughter to see his family physician. The daughter reports that her father has been getting lost while driving and forgetting important appointments. She also notices that he has been misplacing items around the house and struggling to recognize familiar faces. These symptoms have been gradually worsening over the past 6 months.

      Upon examination, the doctor finds that a recent MRI scan shows increased sulci depth consistent with Alzheimer's disease. The man has not experienced any falls or motor difficulties. He has no significant medical history.

      What is the most likely brain pathology in this patient?

      Your Answer:

      Correct Answer: Extracellular amyloid plaques and intracellular neurofibrillary tangles

      Explanation:

      Alzheimer’s disease is characterized by the deposition of type A-Beta-amyloid protein in cortical plaques and abnormal aggregation of the tau protein in intraneuronal neurofibrillary tangles. A patient presenting with memory problems and decreased ability to recognize faces is likely to have Alzheimer’s disease, with Lewy body dementia and vascular dementia being the main differential diagnoses. Lewy body dementia can be ruled out as the patient does not have any movement symptoms. Vascular dementia typically occurs on a background of vascular risk factors and presents with sudden deteriorations in cognition and memory. The diagnosis of Alzheimer’s disease is supported by MRI findings of increased sulci depth due to brain atrophy following neurodegeneration. Pick’s disease, now known as frontotemporal dementia, is characterized by intracellular tau protein aggregates called Pick bodies and presents with personality changes, language impairment, and emotional disturbances.

      Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.

      The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.

      Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 54 - A 56-year-old woman undergoes a serum calcium test. If her renal function is...

    Incorrect

    • A 56-year-old woman undergoes a serum calcium test. If her renal function is normal, what percentage of calcium filtered by the glomerulus will be reabsorbed by the renal tubules?

      Your Answer:

      Correct Answer: 95%

      Explanation:

      Maintaining Calcium Balance in the Body

      Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.

      PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.

      Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.

      Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.

      Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 55 - A 50-year-old man with multiple sclerosis is prescribed baclofen by your consultant to...

    Incorrect

    • A 50-year-old man with multiple sclerosis is prescribed baclofen by your consultant to treat muscle spasms.

      What is the mechanism of action of baclofen?

      Your Answer:

      Correct Answer: GABA receptor agonist

      Explanation:

      Baclofen is a medication that is commonly prescribed to alleviate muscle spasticity in individuals with conditions like multiple sclerosis, cerebral palsy, and spinal cord injuries. It works by acting as an agonist of GABA receptors in the central nervous system, which includes both the brain and spinal cord. Essentially, this means that baclofen helps to enhance the effects of a neurotransmitter called GABA, which can help to reduce the activity of certain neurons and ultimately lead to a reduction in muscle spasticity. Overall, baclofen is an important medication for individuals with these conditions, as it can help to improve their quality of life and reduce the impact of muscle spasticity on their daily activities.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 56 - Regarding the middle cranial fossa, which of the following statements about the foramina...

    Incorrect

    • Regarding the middle cranial fossa, which of the following statements about the foramina is inaccurate?

      Your Answer:

      Correct Answer: The foramen ovale transmits the middle meningeal artery

      Explanation:

      The middle meningeal artery passes through the foramen spinosum, while the mandibular nerve passes through the foramen ovale. Due to the weakening of the bone at these foramina, fractures in this area are frequent.

      Foramina of the Base of the Skull

      The base of the skull contains several openings called foramina, which allow for the passage of nerves, blood vessels, and other structures. The foramen ovale, located in the sphenoid bone, contains the mandibular nerve, otic ganglion, accessory meningeal artery, and emissary veins. The foramen spinosum, also in the sphenoid bone, contains the middle meningeal artery and meningeal branch of the mandibular nerve. The foramen rotundum, also in the sphenoid bone, contains the maxillary nerve.

      The foramen lacerum, located in the sphenoid bone, is initially occluded by a cartilaginous plug and contains the internal carotid artery, nerve and artery of the pterygoid canal, and the base of the medial pterygoid plate. The jugular foramen, located in the temporal bone, contains the inferior petrosal sinus, glossopharyngeal, vagus, and accessory nerves, sigmoid sinus, and meningeal branches from the occipital and ascending pharyngeal arteries.

      The foramen magnum, located in the occipital bone, contains the anterior and posterior spinal arteries, vertebral arteries, and medulla oblongata. The stylomastoid foramen, located in the temporal bone, contains the stylomastoid artery and facial nerve. Finally, the superior orbital fissure, located in the sphenoid bone, contains the oculomotor nerve, recurrent meningeal artery, trochlear nerve, lacrimal, frontal, and nasociliary branches of the ophthalmic nerve, and abducent nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 57 - A 45-year-old female comes to see you with concerns about her vision. She...

    Incorrect

    • A 45-year-old female comes to see you with concerns about her vision. She reports experiencing blurred vision for the past few weeks, which she first noticed while descending stairs. She now sees two images when looking at one object, with one image appearing below and tilted away from the other. She denies any changes in her taste or hearing. Upon examination, her pupils are equal and reactive to light, and there is no evidence of nystagmus. Based on these findings, which cranial nerve is most likely affected?

      Your Answer:

      Correct Answer: Trochlea

      Explanation:

      Torsional diplopia is a symptom that is commonly associated with a fourth nerve palsy, also known as a trochlear nerve palsy. This condition is characterized by the perception of tilted objects, as the affected individual sees one object as two images, with one image appearing slightly tilted in relation to the other. Fourth nerve palsy can also cause vertical diplopia, where two images of one object are seen, with one image appearing above the other. The affected eye may be deviated upwards and rotated outwards.

      Lesions in the eighth cranial nerve, also known as the vestibulocochlear nerve, can lead to symptoms such as hearing loss, vertigo, and nystagmus.

      Sixth nerve palsy, or abducens nerve palsy, can cause horizontal diplopia, where two images of one object are seen side by side. This is due to defective abduction, which prevents the eye from moving laterally.

      Third nerve palsy, or oculomotor nerve palsy, can result in diplopia, as well as a down and out eye with a fixed, dilated pupil.

      Seventh nerve palsy, or facial nerve palsy, can cause flaccid paralysis of the upper and lower face, loss of corneal reflex, loss of taste, and hyperacusis.

      Understanding Fourth Nerve Palsy

      Fourth nerve palsy is a condition that affects the superior oblique muscle, which is responsible for depressing the eye and moving it inward. One of the main features of this condition is vertical diplopia, which is double vision that occurs when looking straight ahead. This is often noticed when reading a book or going downstairs. Another symptom is subjective tilting of objects, also known as torsional diplopia. Patients may also develop a head tilt, which they may or may not be aware of. When looking straight ahead, the affected eye appears to deviate upwards and is rotated outwards. Understanding the symptoms of fourth nerve palsy can help individuals seek appropriate treatment and management for this condition.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 58 - A 68-year-old man presents to the orthopaedic outpatient clinic 8 weeks after his...

    Incorrect

    • A 68-year-old man presents to the orthopaedic outpatient clinic 8 weeks after his hip replacement surgery. His medical records indicate that he underwent a left hip arthroplasty with a posterior approach. He reports feeling generally well, but complains of lower back pain.

      During gait examination, the patient displays a left-sided gluteal lurch upon heel strike and exhibits a loss of hip extension on the same side. Based on these findings, which nerve is most likely affected?

      Your Answer:

      Correct Answer: Inferior gluteal nerve

      Explanation:

      The inferior gluteal nerve innervates the gluteus maximus muscle, while the superior gluteal nerve innervates the gluteus medius and gluteus minimus muscles. The sural nerve provides only sensory innervation to the lateral foot and posterolateral leg, with no motor function.

      The gluteal region is composed of various muscles and nerves that play a crucial role in hip movement and stability. The gluteal muscles, including the gluteus maximus, medius, and minimis, extend and abduct the hip joint. Meanwhile, the deep lateral hip rotators, such as the piriformis, gemelli, obturator internus, and quadratus femoris, rotate the hip joint externally.

      The nerves that innervate the gluteal muscles are the superior and inferior gluteal nerves. The superior gluteal nerve controls the gluteus medius, gluteus minimis, and tensor fascia lata muscles, while the inferior gluteal nerve controls the gluteus maximus muscle.

      If the superior gluteal nerve is damaged, it can result in a Trendelenburg gait, where the patient is unable to abduct the thigh at the hip joint. This weakness causes the pelvis to tilt down on the opposite side during the stance phase, leading to compensatory movements such as trunk lurching to maintain a level pelvis throughout the gait cycle. As a result, the pelvis sags on the opposite side of the lesioned superior gluteal nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 59 - A 49-year-old man is admitted to the neurology ward following a subarachnoid haemorrhage....

    Incorrect

    • A 49-year-old man is admitted to the neurology ward following a subarachnoid haemorrhage. The neurologist inserts an intraventricular catheter to monitor the patient's intracranial pressure (ICP) as part of their ongoing monitoring.

      Which of the following values would be considered pathological in this setting?

      Your Answer:

      Correct Answer: 21 mmHg

      Explanation:

      Subarachnoid haemorrhage often leads to increased intracranial pressure, which requires careful monitoring in a hospital setting. The normal range for intracranial pressure is between 7 and 15 mmHg, and any readings above 20 mmHg require immediate intervention.

      Since the brain is enclosed in a fixed space within the skull, there is little room for additional substances such as blood, tissue, or cerebrospinal fluid before intracranial pressure rises rapidly. In subarachnoid haemorrhage, the haematoma’s mass effect can cause increased intracranial pressure.

      Other causes of increased intracranial pressure include meningitis, trauma, and idiopathic presentations. Symptoms of increased intracranial pressure include headache, vomiting, altered consciousness, and Cushing’s triad (widening pulse pressure, bradycardia, irregular breathing).

      Management of increased intracranial pressure should be tailored to the underlying cause. The first-line treatment involves elevating the head to 30º, and more severe cases may require intravenous mannitol to lower intracranial pressure.

      Understanding Raised Intracranial Pressure

      As the brain and ventricles are enclosed by a rigid skull, any additional volume such as haematoma, tumour, or excessive cerebrospinal fluid (CSF) can lead to a rise in intracranial pressure (ICP). The normal ICP in adults in the supine position is 7-15 mmHg. Cerebral perfusion pressure (CPP) is the net pressure gradient causing cerebral blood flow to the brain, and it is calculated by subtracting ICP from mean arterial pressure.

      Raised intracranial pressure can be caused by various factors such as idiopathic intracranial hypertension, traumatic head injuries, infection, meningitis, tumours, and hydrocephalus. Its features include headache, vomiting, reduced levels of consciousness, papilloedema, and Cushing’s triad, which is characterized by widening pulse pressure, bradycardia, and irregular breathing.

      To investigate raised intracranial pressure, neuroimaging such as CT or MRI is key to determine the underlying cause. Invasive ICP monitoring can also be done by placing a catheter into the lateral ventricles of the brain to monitor the pressure, collect CSF samples, and drain small amounts of CSF to reduce the pressure. A cut-off of > 20 mmHg is often used to determine if further treatment is needed to reduce the ICP.

      Management of raised intracranial pressure involves investigating and treating the underlying cause, head elevation to 30º, IV mannitol as an osmotic diuretic, controlled hyperventilation to reduce pCO2 and vasoconstriction of the cerebral arteries, and removal of CSF through techniques such as drain from intraventricular monitor, repeated lumbar puncture, or ventriculoperitoneal shunt for hydrocephalus.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 60 - A 40-year-old male comes to the emergency department complaining of a severe headache...

    Incorrect

    • A 40-year-old male comes to the emergency department complaining of a severe headache that started today. He reports that the pain is situated at the back of his head and worsens when he coughs and bends forward. He has vomited twice and is experiencing some blurred vision. An MRI scan is ordered, which reveals a downward herniation of the cerebellar tonsils.

      What brain structure has the cerebellar tonsils herniated into, based on the most probable diagnosis?

      Your Answer:

      Correct Answer: Foramen magnum

      Explanation:

      Arnold-Chiari malformation refers to the cerebellar tonsils herniating downwards through the foramen magnum. This condition has four types, with type one being the most prevalent.

      The fourth ventricle is situated in front of the cerebellum and serves as a pathway for cerebrospinal fluid (CSF) from the cerebral aqueduct.

      The thalamus is a central structure located between the midbrain and cerebral cortex. It comprises various nuclei that transmit sensory and motor signals to the cerebral cortex.

      The cerebral aqueduct is positioned between the third and fourth ventricle and facilitates the flow of CSF.

      The hypothalamus is a subdivision of the diencephalon that primarily regulates homeostasis.

      Understanding Arnold-Chiari Malformation

      Arnold-Chiari malformation is a condition where the cerebellar tonsils are pushed downwards through the foramen magnum. This can occur either due to a congenital defect or as a result of trauma. The condition can lead to non-communicating hydrocephalus, which is caused by the obstruction of cerebrospinal fluid outflow. Patients with Arnold-Chiari malformation may experience headaches and syringomyelia, which is a condition where fluid-filled cysts form in the spinal cord.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 61 - Emergency medical services are summoned to attend to a 44-year-old motorcyclist who collided...

    Incorrect

    • Emergency medical services are summoned to attend to a 44-year-old motorcyclist who collided with a vehicle. The patient is alert but has sustained a fracture to the shaft of his right humerus. He is experiencing difficulty with extending his wrist and elbow. Which nerve is most likely to have been affected?

      Your Answer:

      Correct Answer: Radial

      Explanation:

      The radial nerve is the most probable nerve to have been affected.

      Understanding the anatomical pathway of the major nerves in the upper limb is crucial. The radial nerve originates from the axilla, travels down the arm through the radial groove of the humerus, and then moves anteriorly to the lateral epicondyle in the forearm. It primarily supplies motor innervation to the posterior compartments of the arm and forearm, which are responsible for extension.

      The radial nerve is commonly damaged due to mid-humeral shaft fractures, shoulder dislocation, and lateral elbow injuries.

      The Radial Nerve: Anatomy, Innervation, and Patterns of Damage

      The radial nerve is a continuation of the posterior cord of the brachial plexus, with root values ranging from C5 to T1. It travels through the axilla, posterior to the axillary artery, and enters the arm between the brachial artery and the long head of triceps. From there, it spirals around the posterior surface of the humerus in the groove for the radial nerve before piercing the intermuscular septum and descending in front of the lateral epicondyle. At the lateral epicondyle, it divides into a superficial and deep terminal branch, with the deep branch crossing the supinator to become the posterior interosseous nerve.

      The radial nerve innervates several muscles, including triceps, anconeus, brachioradialis, and extensor carpi radialis. The posterior interosseous branch innervates supinator, extensor carpi ulnaris, extensor digitorum, and other muscles. Denervation of these muscles can lead to weakness or paralysis, with effects ranging from minor effects on shoulder stability to loss of elbow extension and weakening of supination of prone hand and elbow flexion in mid prone position.

      Damage to the radial nerve can result in wrist drop and sensory loss to a small area between the dorsal aspect of the 1st and 2nd metacarpals. Axillary damage can also cause paralysis of triceps. Understanding the anatomy, innervation, and patterns of damage of the radial nerve is important for diagnosing and treating conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 62 - A 68-year-old male comes to the emergency department with hemiparesis. During your conversation...

    Incorrect

    • A 68-year-old male comes to the emergency department with hemiparesis. During your conversation with him, you discover that his speech is fluent but his repetition is poor. He is conscious of his inability to repeat words accurately but persists in trying. You suspect that a stroke may be the cause of this condition.

      Which region of the brain has been impacted by the stroke?

      Your Answer:

      Correct Answer: Arcuate fasciculus

      Explanation:

      The patient is exhibiting symptoms of conduction aphasia, which is typically caused by a stroke that affects the arcuate fasciculus.

      If the lesion is in the parietal lobe, the patient may experience sensory inattention and inferior homonymous quadrantanopia.

      Lesions in the inferior frontal gyrus can cause speech to become non-fluent, labored, and halting.

      Occipital lobe lesions can result in visual changes.

      If the lesion is in the superior temporal gyrus, the patient may produce sentences that don’t make sense, use word substitution, and create neologisms, but their speech will still be fluent.

      Types of Aphasia: Understanding the Different Forms of Language Impairment

      Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.

      Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.

      Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.

      Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 63 - An 80-year-old man presents to the emergency department with complaints of headache, nausea,...

    Incorrect

    • An 80-year-old man presents to the emergency department with complaints of headache, nausea, and vomiting for the past 6 hours. His wife reports that he had a fall one week ago, but did not lose consciousness.

      Upon examination, the patient is oriented to person, but not to place and time. His vital signs are within normal limits except for a blood pressure of 150/90 mmHg. Deep tendon reflexes are 4+ on the right and 2+ on the left, and there is mild weakness of his left-sided muscles. Babinski's sign is present on the right. A non-contrast CT scan of the head reveals a hyperdense crescent across the left hemisphere.

      What is the likely underlying cause of this patient's presentation?

      Your Answer:

      Correct Answer: Rupture of bridging veins

      Explanation:

      Subdural hemorrhage occurs when damaged bridging veins between the cortex and venous sinuses bleed. In this patient’s CT scan, a hyperdense crescent-shaped collection is visible on the left hemisphere, indicating subdural hemorrhage. Given the patient’s age and symptoms, this diagnosis is likely.

      Ischemic stroke can result from blockage of the anterior or middle cerebral artery. The former typically presents with contralateral motor weakness, while the latter presents with contralateral motor weakness, sensory loss, and hemianopia. If the dominant hemisphere is affected, the patient may also experience aphasia, while hemineglect may occur if the non-dominant hemisphere is affected. Early CT scans may appear normal, but later scans may show hypodense areas in the contralateral parietal and temporal lobes.

      Subarachnoid hemorrhage is caused by an aneurysm rupture and presents acutely with a severe headache, photophobia, and meningism. The CT scan would show hyperdense material in the subarachnoid space.

      Epidural hematoma results from the rupture of the middle meningeal artery and appears as a biconvex hyperdense collection between the brain and skull.

      Understanding Subdural Haemorrhage

      Subdural haemorrhage is a condition where blood accumulates beneath the dural layer of the meninges. This type of bleeding is not within the brain tissue and is referred to as an extra-axial or extrinsic lesion. Subdural haematomas can be classified into three types based on their age: acute, subacute, and chronic.

      Acute subdural haematomas are caused by high-impact trauma and are associated with other brain injuries. Symptoms and severity of presentation vary depending on the size of the compressive acute subdural haematoma and the associated injuries. CT imaging is the first-line investigation, and surgical options include monitoring of intracranial pressure and decompressive craniectomy.

      Chronic subdural haematomas, on the other hand, are collections of blood within the subdural space that have been present for weeks to months. They are caused by the rupture of small bridging veins within the subdural space, which leads to slow bleeding. Elderly and alcoholic patients are particularly at risk of subdural haematomas due to brain atrophy and fragile or taut bridging veins. Infants can also experience subdural haematomas due to fragile bridging veins rupturing in shaken baby syndrome.

      Chronic subdural haematomas typically present with a progressive history of confusion, reduced consciousness, or neurological deficit. CT imaging shows a crescentic shape, not restricted by suture lines, and compresses the brain. Unlike acute subdurals, chronic subdurals are hypodense compared to the substance of the brain. Treatment options depend on the size and severity of the haematoma, with conservative management or surgical decompression with burr holes being the main options.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 64 - A 67-year-old male is referred to a neurologist for a complete evaluation of...

    Incorrect

    • A 67-year-old male is referred to a neurologist for a complete evaluation of a 6-month history of anosmia. The patient denies any other symptoms except for anosmia and occasional headaches. An MRI scan reveals a small brain tumor, which is suspected to be the underlying cause of the symptoms.

      What is the most probable location of this lesion?

      Your Answer:

      Correct Answer: Frontal lobe

      Explanation:

      Anosmia, or loss of smell, can be caused by lesions in the frontal lobe of the brain. In addition to anosmia, frontal lobe lesions may also cause Broca’s aphasia, personality changes, and loss of motor function. Cerebellar lesions, on the other hand, may present with the DANISH symptoms, which include dysdiadochokinesia, ataxia, intention tremor, nystagmus, and hypotonia. Lesions in the occipital lobe can cause visual loss, while lesions in the parietal lobe may cause sensory problems, body awareness issues, and language development weakening. Finally, lesions in the temporal lobe may cause Wernicke’s aphasia, memory loss, emotional changes, and a superior quadrantanopia.

      Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.

      In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 65 - A 42-year-old man is stabbed in the back. During examination, it is observed...

    Incorrect

    • A 42-year-old man is stabbed in the back. During examination, it is observed that he has a total absence of sensation at the nipple level. Which specific dermatome is accountable for this?

      Your Answer:

      Correct Answer: T4

      Explanation:

      The dermatome for T4 can be found at the nipples, which can be remembered as Teat Pore.

      Understanding Dermatomes: Major Landmarks and Mnemonics

      Dermatomes are areas of skin that are innervated by a single spinal nerve. Understanding dermatomes is important in diagnosing and treating various neurological conditions. The major dermatome landmarks are listed in the table above, along with helpful mnemonics to aid in memorization.

      Starting at the top of the body, the C2 dermatome covers the posterior half of the skull, resembling a cap. Moving down to C3, it covers the area of a high turtleneck shirt, while C4 covers the area of a low-collar shirt. The C5 dermatome runs along the ventral axial line of the upper limb, while C6 covers the thumb and index finger. To remember this, make a 6 with your left hand by touching the tip of your thumb and index finger together.

      Moving down to the middle finger and palm of the hand, the C7 dermatome is located here, while the C8 dermatome covers the ring and little finger. The T4 dermatome is located at the nipples, while T5 covers the inframammary fold. The T6 dermatome is located at the xiphoid process, and T10 covers the umbilicus. To remember this, think of BellybuT-TEN.

      The L1 dermatome covers the inguinal ligament, while L4 covers the knee caps. To remember this, think of being Down on aLL fours with the number 4 representing the knee caps. The L5 dermatome covers the big toe and dorsum of the foot (except the lateral aspect), while the S1 dermatome covers the lateral foot and small toe. To remember this, think of S1 as the smallest one. Finally, the S2 and S3 dermatomes cover the genitalia.

      Understanding dermatomes and their landmarks can aid in diagnosing and treating various neurological conditions. The mnemonics provided can help in memorizing these important landmarks.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 66 - A 32-year-old woman has recently had a parathyroidectomy for primary hyperparathyroidism. The surgery...

    Incorrect

    • A 32-year-old woman has recently had a parathyroidectomy for primary hyperparathyroidism. The surgery was challenging, with all four glands explored. The wound was left clean and dry, and a suction drain was inserted. However, on the ward, she becomes agitated and experiences stridor. Upon examination, her neck is soft, and the drain is empty. What is the initial treatment that should be attempted?

      Your Answer:

      Correct Answer: Administration of intravenous calcium gluconate

      Explanation:

      Manipulation of the parathyroid glands can lead to a reduction in blood flow, causing a rapid decrease in serum PTH levels and potentially resulting in symptoms of hypocalcaemia such as neuromuscular irritability and laryngospasm. Immediate administration of intravenous calcium gluconate is crucial for saving the patient’s life. If there is no swelling in the neck and no blood in the drain, it is unlikely that there is a contained haematoma in the neck, which would require removal of skin closure.

      Maintaining Calcium Balance in the Body

      Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.

      PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.

      Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.

      Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.

      Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 67 - A 75-year-old female patient presents to the Emergency Department after experiencing a fall....

    Incorrect

    • A 75-year-old female patient presents to the Emergency Department after experiencing a fall. She has a medical history of hypertension and type 2 diabetes, and is a smoker with a BMI of 34 kg/m². Her family history includes high cholesterol in her father and older sister, who both passed away due to a heart attack.

      The patient denies any head trauma from the fall and has a regular pulse of 78 bpm. Upon conducting a full neurological examination, it is discovered that her left arm and left leg have a power of 3/5. Additionally, her smile is asymmetrical and droops on the left side.

      What is the most probable underlying cause of her symptoms?

      Your Answer:

      Correct Answer: Emboli caused by atherosclerosis

      Explanation:

      Intracerebral haemorrhage is not the most probable cause of all strokes. Hence, it is crucial to conduct a CT head scan to eliminate the possibility of haemorrhagic stroke before initiating treatment.

      A transient ischaemic attack (TIA) is a brief period of neurological deficit caused by a vascular issue, lasting less than an hour. The original definition of a TIA was based on time, but it is now recognized that even short periods of ischaemia can result in pathological changes to the brain. Therefore, a new ’tissue-based’ definition is now used. The clinical features of a TIA are similar to those of a stroke, but the symptoms resolve within an hour. Possible features include unilateral weakness or sensory loss, aphasia or dysarthria, ataxia, vertigo, or loss of balance, visual problems, sudden transient loss of vision in one eye (amaurosis fugax), diplopia, and homonymous hemianopia.

      NICE recommends immediate antithrombotic therapy, giving aspirin 300 mg immediately unless the patient has a bleeding disorder or is taking an anticoagulant. If aspirin is contraindicated, management should be discussed urgently with the specialist team. Specialist review is necessary if the patient has had more than one TIA or has a suspected cardioembolic source or severe carotid stenosis. Urgent assessment within 24 hours by a specialist stroke physician is required if the patient has had a suspected TIA in the last 7 days. Referral for specialist assessment should be made as soon as possible within 7 days if the patient has had a suspected TIA more than a week previously. The person should be advised not to drive until they have been seen by a specialist.

      Neuroimaging should be done on the same day as specialist assessment if possible. MRI is preferred to determine the territory of ischaemia or to detect haemorrhage or alternative pathologies. Carotid imaging is necessary as atherosclerosis in the carotid artery may be a source of emboli in some patients. All patients should have an urgent carotid doppler unless they are not a candidate for carotid endarterectomy.

      Antithrombotic therapy is recommended, with clopidogrel being the first-line treatment. Aspirin + dipyridamole should be given to patients who cannot tolerate clopidogrel. Carotid artery endarterectomy should only be considered if the patient has suffered a stroke or TIA in the carotid territory and is not severely disabled. It should only be recommended if carotid stenosis is greater

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 68 - A 28-year-old man has just begun taking haloperidol and is worried about developing...

    Incorrect

    • A 28-year-old man has just begun taking haloperidol and is worried about developing Parkinsonism due to some motor symptoms he has been experiencing. What sign during the examination would suggest a different diagnosis?

      Your Answer:

      Correct Answer: Babinski's sign

      Explanation:

      Extrapyramidal symptoms such as akathisia, bradykinesia, dystonia, and tardive dyskinesia are commonly observed in Parkinsonian conditions. Babinski’s sign, which is the upward movement of the big toe upon stimulation of the sole of the foot, is normal in infants but may indicate upper motor neuron dysfunction in older individuals. The presence of these symptoms suggests a possible diagnosis of Parkinsonism, as discussed in the case.

      Parkinsonism is a condition that can be caused by various factors. One of the most common causes is Parkinson’s disease, which is a degenerative disorder of the nervous system. Other causes include drug-induced Parkinsonism, which can occur as a side effect of certain medications such as antipsychotics and metoclopramide. Progressive supranuclear palsy, multiple system atrophy, Wilson’s disease, post-encephalitis, dementia pugilistica, and exposure to toxins such as carbon monoxide and MPTP can also lead to Parkinsonism.

      It is important to note that not all medications that can cause Parkinsonism have the same effect. For example, domperidone does not cross the blood-brain barrier and therefore does not cause extrapyramidal side-effects. Parkinsonism can have a significant impact on a person’s quality of life, and it is important to identify the underlying cause in order to provide appropriate treatment and management. With proper care and management, individuals with Parkinsonism can lead fulfilling lives.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 69 - A 35-year-old male patient comes to you with a right eye that is...

    Incorrect

    • A 35-year-old male patient comes to you with a right eye that is looking outward and downward, along with ptosis of the same eye. Which cranial nerve lesion is the most probable cause of this presentation?

      Your Answer:

      Correct Answer: Oculomotor

      Explanation:

      The oculomotor nerve is responsible for innervating all the extra-ocular muscles of the eye, except for the lateral rectus and superior oblique. If this nerve is damaged, it can result in unopposed action of the lateral rectus and superior oblique muscles, leading to a distinct ‘down and out’ gaze. Additionally, the oculomotor nerve controls the levator palpebrae superioris, so a lesion can cause ptosis. Furthermore, the nerve carries parasympathetic fibers that constrict the pupil, so compression of the nerve can result in a dilated pupil (mydriasis).

      Disorders of the Oculomotor System: Nerve Path and Palsy Features

      The oculomotor system is responsible for controlling eye movements and pupil size. Disorders of this system can result in various nerve path and palsy features. The oculomotor nerve has a large nucleus at the midbrain and its fibers pass through the red nucleus and the pyramidal tract, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience ptosis, eye down and out, and an inability to move the eye superiorly, inferiorly, or medially. The pupil may also become fixed and dilated.

      The trochlear nerve has the longest intracranial course and is the only nerve to exit the dorsal aspect of the brainstem. Its nucleus is located at the midbrain and it passes between the posterior cerebral and superior cerebellar arteries, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience vertical diplopia (diplopia on descending the stairs) and an inability to look down and in.

      The abducens nerve has its nucleus in the mid pons and is responsible for the convergence of eyes in primary position. When this nerve is affected, patients may experience lateral diplopia towards the side of the lesion and the eye may deviate medially. Understanding the nerve path and palsy features of the oculomotor system can aid in the diagnosis and treatment of disorders affecting this important system.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 70 - A 27-year-old male patient has a pelvic chondrosarcoma excision surgery, resulting in the...

    Incorrect

    • A 27-year-old male patient has a pelvic chondrosarcoma excision surgery, resulting in the sacrifice of the obturator nerve. Which muscle is the least likely to be affected by this procedure?

      Your Answer:

      Correct Answer: Sartorius

      Explanation:

      The accessory obturator nerve supplies the pectineus muscle in the population.

      Anatomy of the Obturator Nerve

      The obturator nerve is formed by branches from the ventral divisions of L2, L3, and L4 nerve roots, with L3 being the main contributor. It descends vertically in the posterior part of the psoas major muscle and emerges from its medial border at the lateral margin of the sacrum. After crossing the sacroiliac joint, it enters the lesser pelvis and descends on the obturator internus muscle to enter the obturator groove. The nerve lies lateral to the internal iliac vessels and ureter in the lesser pelvis and is joined by the obturator vessels lateral to the ovary or ductus deferens.

      The obturator nerve supplies the muscles of the medial compartment of the thigh, including the external obturator, adductor longus, adductor brevis, adductor magnus (except for the lower part supplied by the sciatic nerve), and gracilis. The cutaneous branch, which is often absent, supplies the skin and fascia of the distal two-thirds of the medial aspect of the thigh when present.

      The obturator canal connects the pelvis and thigh and contains the obturator artery, vein, and nerve, which divides into anterior and posterior branches. Understanding the anatomy of the obturator nerve is important in diagnosing and treating conditions that affect the medial thigh and pelvic region.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 71 - A 25-year-old man has his impacted 3rd molar surgically removed. After the procedure,...

    Incorrect

    • A 25-year-old man has his impacted 3rd molar surgically removed. After the procedure, he experiences numbness on the anterolateral part of his tongue. What is the probable cause of this?

      Your Answer:

      Correct Answer: Injury to the lingual nerve

      Explanation:

      A lingual neuropraxia may occur in some patients after surgical extraction of these teeth, resulting in anesthesia of the front part of the tongue on the same side. The teeth are innervated by the inferior alveolar nerve.

      Lingual Nerve: Sensory Nerve to the Tongue and Mouth

      The lingual nerve is a sensory nerve that provides sensation to the mucosa of the presulcal part of the tongue, floor of the mouth, and mandibular lingual gingivae. It arises from the posterior trunk of the mandibular nerve and runs past the tensor veli palatini and lateral pterygoid muscles. At this point, it is joined by the chorda tympani branch of the facial nerve.

      After emerging from the cover of the lateral pterygoid, the lingual nerve proceeds antero-inferiorly, lying on the surface of the medial pterygoid and close to the medial aspect of the mandibular ramus. At the junction of the vertical and horizontal rami of the mandible, it is anterior to the inferior alveolar nerve. The lingual nerve then passes below the mandibular attachment of the superior pharyngeal constrictor and lies on the periosteum of the root of the third molar tooth.

      Finally, the lingual nerve passes medial to the mandibular origin of mylohyoid and then passes forwards on the inferior surface of this muscle. Overall, the lingual nerve plays an important role in providing sensory information to the tongue and mouth.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 72 - A 26-year-old male is in a motorcycle crash and experiences a head injury....

    Incorrect

    • A 26-year-old male is in a motorcycle crash and experiences a head injury. Upon admission to the emergency department, it is determined that neuro-imaging is necessary. A CT scan reveals a haemorrhage resulting from damage to the bridging veins connecting the cortex and cavernous sinuses.

      What classification of haemorrhage does this fall under?

      Your Answer:

      Correct Answer: Subdural haemorrhage

      Explanation:

      Understanding Subdural Haemorrhage

      Subdural haemorrhage is a condition where blood accumulates beneath the dural layer of the meninges. This type of bleeding is not within the brain tissue and is referred to as an extra-axial or extrinsic lesion. Subdural haematomas can be classified into three types based on their age: acute, subacute, and chronic.

      Acute subdural haematomas are caused by high-impact trauma and are associated with other brain injuries. Symptoms and severity of presentation vary depending on the size of the compressive acute subdural haematoma and the associated injuries. CT imaging is the first-line investigation, and surgical options include monitoring of intracranial pressure and decompressive craniectomy.

      Chronic subdural haematomas, on the other hand, are collections of blood within the subdural space that have been present for weeks to months. They are caused by the rupture of small bridging veins within the subdural space, which leads to slow bleeding. Elderly and alcoholic patients are particularly at risk of subdural haematomas due to brain atrophy and fragile or taut bridging veins. Infants can also experience subdural haematomas due to fragile bridging veins rupturing in shaken baby syndrome.

      Chronic subdural haematomas typically present with a progressive history of confusion, reduced consciousness, or neurological deficit. CT imaging shows a crescentic shape, not restricted by suture lines, and compresses the brain. Unlike acute subdurals, chronic subdurals are hypodense compared to the substance of the brain. Treatment options depend on the size and severity of the haematoma, with conservative management or surgical decompression with burr holes being the main options.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 73 - A 25-year-old man is struck with a hammer on the right side of...

    Incorrect

    • A 25-year-old man is struck with a hammer on the right side of his head. He passes away upon arrival at the emergency department. What is the most probable finding during the post mortem examination?

      Your Answer:

      Correct Answer: Laceration of the middle meningeal artery

      Explanation:

      The given scenario involves a short delay before death, which is not likely to result in a supratentorial herniation. The other options are also less severe.

      Patients with head injuries should be managed according to ATLS principles and extracranial injuries should be managed alongside cranial trauma. Different types of traumatic brain injury include extradural hematoma, subdural hematoma, and subarachnoid hemorrhage. Primary brain injury may be focal or diffuse, while secondary brain injury occurs when cerebral edema, ischemia, infection, tonsillar or tentorial herniation exacerbates the original injury. Management may include IV mannitol/furosemide, decompressive craniotomy, and ICP monitoring. Pupillary findings can provide information on the location and severity of the injury.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 74 - A 38-year-old man visits his doctor with worries of having spinal muscular atrophy,...

    Incorrect

    • A 38-year-old man visits his doctor with worries of having spinal muscular atrophy, as his father has been diagnosed with the condition. He asks for a physical examination.

      What physical exam finding is indicative of the characteristic pattern observed in this disorder?

      Your Answer:

      Correct Answer: Reduced reflexes

      Explanation:

      Lower motor neuron lesions, such as spinal muscular atrophy, result in reduced reflexes and tone. Babinski’s sign is negative in these cases. Increased reflexes and tone are indicative of an upper motor neuron cause of symptoms, which may be seen in conditions such as stroke or Parkinson’s disease. Therefore, normal reflexes and tone are also incorrect findings in lower motor neuron lesions.

      The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.

      One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 75 - An 80-year-old man is recuperating after undergoing a right total hip replacement. During...

    Incorrect

    • An 80-year-old man is recuperating after undergoing a right total hip replacement. During a session with the physiotherapists, it is observed that his right foot is dragging on the ground while walking.

      Upon conducting a neurological examination of his lower limbs, it is found that his left leg is completely normal. However, his right leg has 0/5 power of dorsiflexion and knee flexion, a reduced ankle and plantar reflex, and no sensation over the lateral calf, sole, and dorsum of the foot.

      What is the nerve lesion that has occurred?

      Your Answer:

      Correct Answer: Sciatic nerve

      Explanation:

      Foot drop can be caused by a lesion to the sciatic nerve.

      When the sciatic nerve is damaged, it can result in various symptoms such as foot drop, loss of power below the knee, loss of knee flexion, loss of ankle jerk and plantar response. The sciatic nerve innervates the hamstring muscles in the posterior thigh and indirectly innervates other muscles via its two terminal branches: the tibial nerve and the common fibular nerve. The tibial nerve supplies the calf muscles and some intrinsic muscles of the foot, while the common fibular nerve supplies the muscles of the anterior and lateral leg, as well as the remaining intrinsic foot muscles. Although the sciatic nerve has no direct sensory inputs, it receives information from its two terminal branches, which supply the skin of various areas of the leg and foot.

      Sciatic nerve lesions can occur due to various reasons, such as neck of femur fractures and total hip replacement trauma. However, it is important to note that a femoral nerve lesion would cause different symptoms, such as weakness in anterior thigh muscles, reduced hip flexion and knee extension, and loss of sensation to the anteromedial thigh and medial leg and foot. Similarly, lesions to the lower gluteal nerve or superior gluteal nerve would cause weakness in specific muscles and no sensory loss.

      Understanding Foot Drop: Causes and Examination

      Foot drop is a condition that occurs when the foot dorsiflexors become weak. This can be caused by various factors, including a common peroneal nerve lesion, L5 radiculopathy, sciatic nerve lesion, superficial or deep peroneal nerve lesion, or central nerve lesions. However, the most common cause is a common peroneal nerve lesion, which is often due to compression at the neck of the fibula. This can be triggered by certain positions, prolonged confinement, recent weight loss, Baker’s cysts, or plaster casts to the lower leg.

      To diagnose foot drop, a thorough examination is necessary. If the patient has an isolated peroneal neuropathy, there will be weakness of foot dorsiflexion and eversion, and reflexes will be normal. Weakness of hip abduction is suggestive of an L5 radiculopathy. Bilateral symptoms, fasciculations, or other abnormal neurological findings are indications for specialist referral.

      If foot drop is diagnosed, conservative management is appropriate. Patients should avoid leg crossing, squatting, and kneeling. Symptoms typically improve over 2-3 months.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 76 - A 55-year-old woman is recuperating after a challenging mastectomy and axillary lymph node...

    Incorrect

    • A 55-year-old woman is recuperating after a challenging mastectomy and axillary lymph node dissection for breast cancer. She reports experiencing shoulder discomfort, and upon examination, her scapula is visibly winged. Which of the following is the most probable root cause of the loss of innervation?

      Your Answer:

      Correct Answer: Serratus anterior

      Explanation:

      Winging of the scapula is usually caused by long thoracic nerve injury, which may occur during axillary dissection. Rhomboid damage is a rare cause.

      The Long Thoracic Nerve and its Role in Scapular Winging

      The long thoracic nerve is derived from the ventral rami of C5, C6, and C7, which are located close to their emergence from intervertebral foramina. It runs downward and passes either anterior or posterior to the middle scalene muscle before reaching the upper tip of the serratus anterior muscle. From there, it descends on the outer surface of this muscle, giving branches into it.

      One of the most common symptoms of long thoracic nerve injury is scapular winging, which occurs when the serratus anterior muscle is weakened or paralyzed. This can happen due to a variety of reasons, including trauma, surgery, or nerve damage. In addition to long thoracic nerve injury, scapular winging can also be caused by spinal accessory nerve injury (which denervates the trapezius) or a dorsal scapular nerve injury.

      Overall, the long thoracic nerve plays an important role in the function of the serratus anterior muscle and the stability of the scapula. Understanding its anatomy and function can help healthcare professionals diagnose and treat conditions that affect the nerve and its associated muscles.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 77 - Which one of the following statements regarding cerebral palsy is inaccurate? ...

    Incorrect

    • Which one of the following statements regarding cerebral palsy is inaccurate?

      Your Answer:

      Correct Answer: Less than 5% of children will have epilepsy

      Explanation:

      Understanding Cerebral Palsy

      Cerebral palsy is a condition that affects movement and posture due to damage to the motor pathways in the developing brain. It is the most common cause of major motor impairment and affects 2 in 1,000 live births. The causes of cerebral palsy can be antenatal, intrapartum, or postnatal. Antenatal causes include cerebral malformation and congenital infections such as rubella, toxoplasmosis, and CMV. Intrapartum causes include birth asphyxia or trauma, while postnatal causes include intraventricular hemorrhage, meningitis, and head trauma.

      Children with cerebral palsy may exhibit abnormal tone in early infancy, delayed motor milestones, abnormal gait, and feeding difficulties. They may also have associated non-motor problems such as learning difficulties, epilepsy, squints, and hearing impairment. Cerebral palsy can be classified into spastic, dyskinetic, ataxic, or mixed types.

      Managing cerebral palsy requires a multidisciplinary approach. Treatments for spasticity include oral diazepam, oral and intrathecal baclofen, botulinum toxin type A, orthopedic surgery, and selective dorsal rhizotomy. Anticonvulsants and analgesia may also be required. Understanding cerebral palsy and its management is crucial in providing appropriate care and support for individuals with this condition.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 78 - A 50-year-old man presents to the physician with complaints of difficulty in making...

    Incorrect

    • A 50-year-old man presents to the physician with complaints of difficulty in making facial expressions such as smiling and frowning. Due to a family history of brain tumours, the doctor orders an MRI scan.

      In case a tumour is detected, which foramen of the skull is likely to be the site of the tumour?

      Your Answer:

      Correct Answer: Internal acoustic meatus

      Explanation:

      The correct answer is that the facial nerve passes through the internal acoustic meatus, along with the vestibulocochlear nerve. This nerve is responsible for facial expressions, which is consistent with the patient’s reported difficulties with smiling and frowning.

      The other options are incorrect because they do not match the patient’s symptoms. The mandibular nerve passes through the foramen ovale and is responsible for sensations around the jaw, but the patient does not report any problems with eating. The maxillary nerve passes through the foramen rotundum and provides sensation to the middle of the face, but the patient does not have any sensory deficits. The hypoglossal nerve passes through the hypoglossal canal and is responsible for tongue movement, but the patient does not report any difficulties with this. The glossopharyngeal, vagus, and accessory nerves pass through the jugular foramen and are responsible for various motor and sensory functions, but none of them innervate the facial muscles.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 79 - A 94-year-old male, previously diagnosed with Parkinson's disease, passed away due to aspirational...

    Incorrect

    • A 94-year-old male, previously diagnosed with Parkinson's disease, passed away due to aspirational pneumonia and underwent a post-mortem examination. As part of the examination, a histological analysis of the basal ganglia was conducted. What types of inclusion bodies are anticipated to be observed?

      Your Answer:

      Correct Answer: Lewy bodies

      Explanation:

      Lewy bodies are commonly associated with Parkinson’s disease, but they can also be present in other conditions. These bodies are characterized by the presence of neuromelanin pigment and are typically found in the remaining Dopaminergic neurons in the substantia nigra pars compacta (SNc). They can be identified through staining for various proteins, including a-synuclein and ubiquitin. While their exact function is not yet fully understood, it is believed that Lewy bodies may play a role in managing proteins that are not properly broken down due to protein dysfunction.

      Parkinson’s disease is a progressive neurodegenerative disorder that occurs due to the degeneration of dopaminergic neurons in the substantia nigra. This leads to a classic triad of symptoms, including bradykinesia, tremor, and rigidity, which are typically asymmetrical. The disease is more common in men and is usually diagnosed around the age of 65. Bradykinesia is characterized by a poverty of movement, shuffling steps, and difficulty initiating movement. Tremors are most noticeable at rest and typically occur in the thumb and index finger. Rigidity can be either lead pipe or cogwheel, and other features include mask-like facies, flexed posture, and drooling of saliva. Psychiatric features such as depression, dementia, and sleep disturbances may also occur. Diagnosis is usually clinical, but if there is difficulty differentiating between essential tremor and Parkinson’s disease, 123I‑FP‑CIT single photon emission computed tomography (SPECT) may be considered.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 80 - During a routine physical exam, a patient in their mid-40s was found to...

    Incorrect

    • During a routine physical exam, a patient in their mid-40s was found to have one eye drifting towards the midline when instructed to look straight. Subsequent MRI scans revealed a tumor pressing on one of the skull's foramina. Which foramen of the skull is likely affected by the tumor?

      Your Answer:

      Correct Answer: Superior orbital fissure

      Explanation:

      The correct answer is that the abducens nerve passes through the superior orbital fissure. This is supported by the patient’s symptoms, which suggest damage to the abducens nerve that innervates the lateral rectus muscle responsible for abducting the eye. The other options are incorrect as they do not innervate the eye or are located in anatomically less appropriate positions. It is important to understand the functions of the nerves and their corresponding foramina to correctly answer this question.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 81 - A 28-year-old woman visits her GP after experiencing a sudden deterioration of vision...

    Incorrect

    • A 28-year-old woman visits her GP after experiencing a sudden deterioration of vision in her left eye 10 days ago. She reports that her vision became blurry and has only partially improved since. Additionally, the patient describes intermittent sensations of pain and burning around her left eye. She has no significant medical history.

      During the examination, the direct pupillary light reflex is weaker in her left eye. Her left eye has a visual acuity of 6/12, while her right eye has a visual acuity of 6/6. The patient experiences pain when her left eye is abducted.

      What is the most frequent cause of this presentation?

      Your Answer:

      Correct Answer: Multiple sclerosis

      Explanation:

      Optic neuritis, which is characterized by unilateral vision loss and pain, is most commonly caused by multiple sclerosis. This is an inflammatory disease that affects the central nervous system and is more prevalent in individuals of white ethnicity living in northern latitudes. Behcet’s disease, a rare vasculitis, can also cause optic neuritis but is less strongly associated with the condition. Conjunctivitis, on the other hand, does not cause vision loss and is characterized by redness and irritation of the outer surface of the eye. Myasthenia gravis, an autoimmune condition that causes muscle weakness, does not cause optic neuritis but can affect ocular muscles and lead to symptoms such as drooping eyelids and double vision.

      Understanding Optic Neuritis: Causes, Features, Investigation, Management, and Prognosis

      Optic neuritis is a condition that causes a decrease in visual acuity in one eye over a period of hours or days. It is often associated with multiple sclerosis, diabetes, or syphilis. Other features of optic neuritis include poor discrimination of colors, pain that worsens with eye movement, relative afferent pupillary defect, and central scotoma.

      To diagnose optic neuritis, an MRI of the brain and orbits with gadolinium contrast is usually performed. High-dose steroids are the primary treatment for optic neuritis, and recovery typically takes 4-6 weeks.

      The prognosis for optic neuritis is dependent on the number of white-matter lesions found on an MRI. If there are more than three lesions, the five-year risk of developing multiple sclerosis is approximately 50%. Understanding the causes, features, investigation, management, and prognosis of optic neuritis is crucial for early diagnosis and effective treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 82 - A 62-year-old male is brought to the emergency room by the police. He...

    Incorrect

    • A 62-year-old male is brought to the emergency room by the police. He has a two-day history of increasing confusion, sweats, and aggression. He resides in a homeless hostel and has a history of alcohol abuse. However, he claims to have stopped drinking since being at the hostel in the last week.

      Upon examination, he appears markedly agitated, sweaty, and confused. He reports seeing things on the wall. Additionally, he exhibits slightly hyperreflexia and flexor plantar responses. What is the likely diagnosis?

      Your Answer:

      Correct Answer: Delirium tremens

      Explanation:

      The causes of septic shock are important to understand in order to provide appropriate treatment and improve patient outcomes. Septic shock can cause fever, hypotension, and renal failure, as well as tachypnea due to metabolic acidosis. However, it is crucial to rule out other conditions such as hyperosmolar hyperglycemic state or diabetic ketoacidosis, which have different symptoms and diagnostic criteria.

      While metformin can contribute to acidosis, it is unlikely to be the primary cause in this case. Diabetic patients may be prone to renal tubular acidosis, but this is not likely to be the cause of an acute presentation. Instead, a type IV renal tubular acidosis, characterized by hyporeninaemic hypoaldosteronism, may be a more likely association.

      Overall, it is crucial to carefully evaluate patients with septic shock and consider all possible causes of their symptoms. By ruling out other conditions and identifying the underlying cause of the acidosis, healthcare providers can provide targeted treatment and improve patient outcomes. Further research and education on septic shock and its causes can also help to improve diagnosis and treatment in the future.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 83 - Sarah is a 28-year-old teacher who has presented to the emergency department with...

    Incorrect

    • Sarah is a 28-year-old teacher who has presented to the emergency department with a sudden onset of a severe headache and visual disturbances. Her medical history is significant only for asthma. She does not take any medications, does not smoke nor drink alcohol.

      Upon examination, Sarah is alert and oriented but in obvious pain. Neurological examination reveals a fixed, dilated, non-reactive left pupil that is hypersensitive to light. All extra ocular movements are intact and there is no relative afferent pupillary defect. Systematic enquiry reveals no other abnormalities.

      What is the most likely cause of Sarah's symptoms?

      Your Answer:

      Correct Answer: Posterior communicating artery aneurysm

      Explanation:

      Understanding Third Nerve Palsy: Causes and Features

      Third nerve palsy is a neurological condition that affects the third cranial nerve, which controls the movement of the eye and eyelid. The condition is characterized by the eye being deviated ‘down and out’, ptosis, and a dilated pupil. In some cases, it may be referred to as a ‘surgical’ third nerve palsy due to the dilation of the pupil.

      There are several possible causes of third nerve palsy, including diabetes mellitus, vasculitis (such as temporal arteritis or SLE), uncal herniation through tentorium if raised ICP, posterior communicating artery aneurysm, and cavernous sinus thrombosis. In some cases, it may also be a false localizing sign. Weber’s syndrome, which is characterized by an ipsilateral third nerve palsy with contralateral hemiplegia, is caused by midbrain strokes. Other possible causes include amyloid and multiple sclerosis.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 84 - A 20-year-old patient comes to the clinic complaining of numbness in the dorsal...

    Incorrect

    • A 20-year-old patient comes to the clinic complaining of numbness in the dorsal web between the 1st and 2nd metacarpals. He reports sleeping with his arm hanging over the back of a chair all night.

      What nerve is most likely compressed in this case?

      Your Answer:

      Correct Answer: Radial

      Explanation:

      When someone falls asleep with their arm hanging over a chair, it can compress the radial nerve and cause wrist drop, which is commonly referred to as ‘Saturday night palsy’. However, because there are overlapping branches from other nerves, the resulting anesthesia is usually limited to a small area supplied by the radial nerve. It’s important to note that the other answers provided are incorrect because they do not provide sensation to the dorsal web between the thumb and index finger. For example, the axillary nerve only supplies the ‘regimental badge’ of skin over the lower part of the deltoid muscle, while the median nerve supplies the skin over the thenar eminence and provides sensation to the dorsal fingertips and palmar aspect of the lateral 3½ fingers. The musculocutaneous nerve, on the other hand, only supplies the skin of the lateral forearm, and the anterior interosseous nerve is a branch of the median nerve that has no cutaneous sensory fibers.

      The Radial Nerve: Anatomy, Innervation, and Patterns of Damage

      The radial nerve is a continuation of the posterior cord of the brachial plexus, with root values ranging from C5 to T1. It travels through the axilla, posterior to the axillary artery, and enters the arm between the brachial artery and the long head of triceps. From there, it spirals around the posterior surface of the humerus in the groove for the radial nerve before piercing the intermuscular septum and descending in front of the lateral epicondyle. At the lateral epicondyle, it divides into a superficial and deep terminal branch, with the deep branch crossing the supinator to become the posterior interosseous nerve.

      The radial nerve innervates several muscles, including triceps, anconeus, brachioradialis, and extensor carpi radialis. The posterior interosseous branch innervates supinator, extensor carpi ulnaris, extensor digitorum, and other muscles. Denervation of these muscles can lead to weakness or paralysis, with effects ranging from minor effects on shoulder stability to loss of elbow extension and weakening of supination of prone hand and elbow flexion in mid prone position.

      Damage to the radial nerve can result in wrist drop and sensory loss to a small area between the dorsal aspect of the 1st and 2nd metacarpals. Axillary damage can also cause paralysis of triceps. Understanding the anatomy, innervation, and patterns of damage of the radial nerve is important for diagnosing and treating conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 85 - A 55-year-old woman is involved in a car accident and is admitted to...

    Incorrect

    • A 55-year-old woman is involved in a car accident and is admitted to a neuro-rehabilitation ward for her recovery. During her cranial nerve examination, it is found that she has left-sided homonymous inferior quadrantanopia and difficulty reading. Her family reports that she can no longer read the newspaper or do sudokus, which she used to enjoy before the accident. Based on these symptoms, which area of the brain is likely to be damaged?

      Your Answer:

      Correct Answer: Parietal lobe

      Explanation:

      Alexia may be caused by lesions in the parietal lobe.

      This is because damage to the parietal lobe can result in various symptoms, including alexia, agraphia, acalculia, hemi-spatial neglect, and homonymous inferior quadrantanopia. Other possible symptoms may include loss of sensation, apraxias, or astereognosis.

      The cerebellum is not the correct answer, as damage to this region can cause symptoms such as dysdiadochokinesia, ataxia, nystagmus, intention tremor, scanning dysarthria, and positive heel-shin test.

      Similarly, the frontal lobe is not the correct answer, as damage to this region can result in anosmia, Broca’s dysphasia, changes in personality, and motor deficits.

      The occipital lobe is also not the correct answer, as damage to this region can cause visual disturbances.

      Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.

      In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 86 - A young woman presents with a bilateral intention tremor. She is also found...

    Incorrect

    • A young woman presents with a bilateral intention tremor. She is also found to have a range of other bilateral deficits, including dysdiadochokinesia, ataxia, nystagmus, and dysarthria. Which anatomical structure has likely been affected?

      Your Answer:

      Correct Answer: Cerebellar vermis

      Explanation:

      The individual has a defect in the cerebellar vermis, which is located between the two hemispheres of the cerebellum. As a result, they are experiencing bilateral cerebellar abnormalities, which is evident from their symptoms. Vermin lesions can be caused by conditions such as Joubert Syndrome, Dandy Walker malformation, and rhombencephalosynapsis. On the other hand, lesions in the spinocerebellar tract or one side of the cerebellar hemisphere would cause unilateral, ipsilateral symptoms, making these options incorrect.

      Spinal cord lesions can affect different tracts and result in various clinical symptoms. Motor lesions, such as amyotrophic lateral sclerosis and poliomyelitis, affect either upper or lower motor neurons, resulting in spastic paresis or lower motor neuron signs. Combined motor and sensory lesions, such as Brown-Sequard syndrome, subacute combined degeneration of the spinal cord, Friedrich’s ataxia, anterior spinal artery occlusion, and syringomyelia, affect multiple tracts and result in a combination of spastic paresis, loss of proprioception and vibration sensation, limb ataxia, and loss of pain and temperature sensation. Multiple sclerosis can involve asymmetrical and varying spinal tracts and result in a combination of motor, sensory, and ataxia symptoms. Sensory lesions, such as neurosyphilis, affect the dorsal columns and result in loss of proprioception and vibration sensation.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 87 - A 45-year-old woman arrives at the emergency department complaining of a sudden headache....

    Incorrect

    • A 45-year-old woman arrives at the emergency department complaining of a sudden headache. The doctor is evaluating her condition. Her BMI is 33 kgm2.

      During the cranial nerve examination, the doctor observes papilloedema on fundoscopy. The patient also reports a loss of taste in the back third of her tongue. Which of the following nerves could be responsible for this loss?

      Your Answer:

      Correct Answer: Glossopharyngeal nerve

      Explanation:

      The glossopharyngeal nerve mediates taste and sensation from the posterior one-third of the tongue, while the anterior two-thirds of the tongue receive taste input from the chorda tympani branch of the facial nerve and sensation input from the lingual branch of the mandibular division of the trigeminal nerve. The base of the tongue receives taste and sensation input from the internal branch of the superior laryngeal nerve, which is a branch of the vagus nerve.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 88 - A 35-year-old woman presents with a 2-day history of vision difficulty. She is...

    Incorrect

    • A 35-year-old woman presents with a 2-day history of vision difficulty. She is experiencing peripheral vision loss and feels nauseous and dizzy when attempting to look towards the sides. Two months ago, she had a tingling sensation in her left foot. During physical examination, there is a limitation in adduction of both eyes and nystagmus with lateral gaze. An MRI of the brain is scheduled.

      Based on the current clinical presentation and likely diagnosis, what is the expected location of lesions on the MRI scan?

      Your Answer:

      Correct Answer: Paramedian area of midbrain & pons

      Explanation:

      The medial longitudinal fasciculus is located in the midbrain and pons and connects cranial nerves III, IV, and VI to facilitate eye movements. Multiple sclerosis can affect this area, causing episodic neurological symptoms and bilateral internuclear ophthalmoplegia, which is characterized by the inability to adduct the affected eye and results in nystagmus and double vision.

      The oculomotor nucleus, located in the midbrain, controls the movement of several eye muscles. A lesion here can cause the eye to point downward and outward, resulting in diplopia and difficulty accommodating.

      The trochlear nerve nucleus, also located in the midbrain, controls the superior oblique muscle. A lesion here can cause diplopia, especially on downward gaze, and a characteristic head tilt towards the unaffected side.

      The abducens nerve nucleus, located in the pons, controls the lateral rectus muscle. A lesion here can cause the affected eye to be unable to abduct, resulting in nystagmus and diplopia.

      The facial nerve nucleus, located in the pons, controls the muscles of the face. A lesion here can cause facial muscle palsies.

      Understanding Internuclear Ophthalmoplegia

      Internuclear ophthalmoplegia is a condition that affects the horizontal movement of the eyes. It is caused by a lesion in the medial longitudinal fasciculus (MLF), which is responsible for interconnecting the IIIrd, IVth, and VIth cranial nuclei. This area is located in the paramedian region of the midbrain and pons. The main feature of this condition is impaired adduction of the eye on the same side as the lesion, along with horizontal nystagmus of the abducting eye on the opposite side.

      The most common causes of internuclear ophthalmoplegia are multiple sclerosis and vascular disease. It is important to note that this condition can also be a sign of other underlying neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 89 - A 27-year-old man comes to the hospital complaining of lower leg weakness and...

    Incorrect

    • A 27-year-old man comes to the hospital complaining of lower leg weakness and difficulty walking for the past two days. He had a recent episode of bloody diarrhea that was treated with oral ciprofloxacin after testing positive for Campylobacter jejuni.

      During the examination, the patient is fully alert and conscious. Neurological examination reveals reduced deep tendon reflexes and decreased tone in both lower legs up to the knee level. However, his sensation is intact, and there is no evidence of cartilage or tendon damage.

      What is the likely cause of the patient's diagnosis?

      Your Answer:

      Correct Answer: Autoimmunity

      Explanation:

      The correct cause of Guillain-Barre syndrome is autoimmunity, not an inherited neurological disorder, medication side effect, or nutritional deficiency. While it is often triggered by infection with Campylobacter jejuni, the syndrome is characterized by immune-mediated demyelination of peripheral nerves that occurs a few weeks after the trigger. Symptoms are bilateral, ascending, and symmetric, and can lead to respiratory failure and death if respiratory muscles are affected. Charcot-Marie-Tooth disease is an example of an inherited motor and sensory disorder affecting peripheral nerves, while B12 deficiency can lead to subacute combined degeneration of the cord. However, these conditions are not related to Guillain-Barre syndrome. Additionally, while ciprofloxacin can cause tendon damage or rupture in animal studies, this is rare in adults and not relevant to the patient’s symptoms.

      Understanding Guillain-Barre Syndrome and Miller Fisher Syndrome

      Guillain-Barre syndrome is a condition that affects the peripheral nervous system and is often triggered by an infection, particularly Campylobacter jejuni. The immune system attacks the myelin sheath that surrounds nerve fibers, leading to demyelination. This results in symptoms such as muscle weakness, tingling sensations, and paralysis.

      The pathogenesis of Guillain-Barre syndrome involves the cross-reaction of antibodies with gangliosides in the peripheral nervous system. Studies have shown a correlation between the presence of anti-ganglioside antibodies, particularly anti-GM1 antibodies, and the clinical features of the syndrome. In fact, anti-GM1 antibodies are present in 25% of patients with Guillain-Barre syndrome.

      Miller Fisher syndrome is a variant of Guillain-Barre syndrome that is characterized by ophthalmoplegia, areflexia, and ataxia. This syndrome typically presents as a descending paralysis, unlike other forms of Guillain-Barre syndrome that present as an ascending paralysis. The eye muscles are usually affected first in Miller Fisher syndrome. Studies have shown that anti-GQ1b antibodies are present in 90% of cases of Miller Fisher syndrome.

      In summary, Guillain-Barre syndrome and Miller Fisher syndrome are conditions that affect the peripheral nervous system and are often triggered by infections. The pathogenesis of these syndromes involves the cross-reaction of antibodies with gangliosides in the peripheral nervous system. While Guillain-Barre syndrome is characterized by muscle weakness and paralysis, Miller Fisher syndrome is characterized by ophthalmoplegia, areflexia, and ataxia.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 90 - A 39-year-old male patient is presented to the neurology outpatient department by his...

    Incorrect

    • A 39-year-old male patient is presented to the neurology outpatient department by his GP due to recurring episodes of déjà vu. Apart from this, he has no significant medical history.

      During the examination, the patient suddenly starts smacking his lips for about a minute. After the event, he experiences temporary difficulty in expressing himself fluently, which resolves on its own.

      Based on the symptoms, which area of the brain is likely to be affected?

      Your Answer:

      Correct Answer: Temporal lobe

      Explanation:

      Temporal lobe seizures can be identified by the presence of lip smacking and postictal dysphasia. These symptoms, along with a recurrent sense of déjà vu, suggest that the seizure is localized in the temporal lobe. Seizures in other parts of the brain, such as the frontal, occipital, or parietal lobes, typically present with different symptoms. Generalized seizures affecting the entire brain result in loss of consciousness and generalized tonic-clonic seizures.

      Localising Features of Focal Seizures in Epilepsy

      Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.

      On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 91 - A 73-year-old female is seen by an ophthalmologist for a follow-up after being...

    Incorrect

    • A 73-year-old female is seen by an ophthalmologist for a follow-up after being diagnosed with primary open-angle glaucoma. The patient is asymptomatic and has 20/20 vision with glasses. During the examination, it is noted that the patient's intraocular pressure remains significantly elevated despite consistent use of a prostaglandin analogue. The decision is made to initiate treatment with timolol eye drops.

      What is the main mode of action of timolol eye drops?

      Your Answer:

      Correct Answer: Reduces aqueous production

      Explanation:

      Timolol, a beta-blocker, is commonly used as a second-line treatment for primary open-angle glaucoma. It works by reducing the production of aqueous humor, which in turn lowers intraocular pressure. Mitotic agents like pilocarpine can cause pupil constriction and may be used in acute closed-angle glaucoma to increase space for aqueous drainage. However, this mechanism is not routinely used in open-angle glaucoma. Carbonic anhydrase inhibitors like acetazolamide can also reduce aqueous production but are taken orally and can cause systemic side effects. Increasing trabecular meshwork drainage is a mechanism used by drugs like pilocarpine, while increasing uveoscleral drainage is achieved by drugs like latanoprost, a prostaglandin analogue.

      Primary open-angle glaucoma is a type of optic neuropathy that is associated with increased intraocular pressure (IOP). It is classified based on whether the peripheral iris is covering the trabecular meshwork, which is important in the drainage of aqueous humour from the anterior chamber of the eye. In open-angle glaucoma, the iris is clear of the meshwork, but the trabecular network offers increased resistance to aqueous outflow, causing increased IOP. This condition affects 0.5% of people over the age of 40 and its prevalence increases with age up to 10% over the age of 80 years. Both males and females are equally affected. The main causes of primary open-angle glaucoma are increasing age and genetics, with first-degree relatives of an open-angle glaucoma patient having a 16% chance of developing the disease.

      Primary open-angle glaucoma is characterised by a slow rise in intraocular pressure, which is symptomless for a long period. It is typically detected following an ocular pressure measurement during a routine examination by an optometrist. Signs of the condition include increased intraocular pressure, visual field defect, and pathological cupping of the optic disc. Case finding and provisional diagnosis are done by an optometrist, and referral to an ophthalmologist is done via the GP. Final diagnosis is made through investigations such as automated perimetry to assess visual field, slit lamp examination with pupil dilatation to assess optic nerve and fundus for a baseline, applanation tonometry to measure IOP, central corneal thickness measurement, and gonioscopy to assess peripheral anterior chamber configuration and depth. The risk of future visual impairment is assessed using risk factors such as IOP, central corneal thickness (CCT), family history, and life expectancy.

      The majority of patients with primary open-angle glaucoma are managed with eye drops that aim to lower intraocular pressure and prevent progressive loss of visual field. According to NICE guidelines, the first line of treatment is a prostaglandin analogue (PGA) eyedrop, followed by a beta-blocker, carbonic anhydrase inhibitor, or sympathomimetic eyedrop as a second line of treatment. Surgery or laser treatment can be tried in more advanced cases. Reassessment is important to exclude progression and visual field loss and needs to be done more frequently if IOP is uncontrolled, the patient is high risk, or there

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 92 - A 32-year-old man is brought to the emergency department by his colleagues following...

    Incorrect

    • A 32-year-old man is brought to the emergency department by his colleagues following a brief episode of unusual behavior at work, lasting approximately 2 minutes. His colleagues observed him repeatedly smacking his lips during the episode. Afterward, he displayed mild speech difficulties and appeared to have difficulty understanding his colleagues.

      What is the probable site of the underlying condition?

      Your Answer:

      Correct Answer: Temporal lobe

      Explanation:

      Localising features of a temporal lobe seizure include postictal dysphasia and lip smacking.

      Localising Features of Focal Seizures in Epilepsy

      Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.

      On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 93 - Which one of the following is not a content of the cavernous sinus?...

    Incorrect

    • Which one of the following is not a content of the cavernous sinus?

      Your Answer:

      Correct Answer: Optic nerve

      Explanation:

      Cavernous sinus contents mnemonic: OTOM CAT

      Understanding the Cavernous Sinus

      The cavernous sinuses are a pair of structures located on the sphenoid bone, running from the superior orbital fissure to the petrous temporal bone. They are situated between the pituitary fossa and the sphenoid sinus on the medial side, and the temporal lobe on the lateral side. The cavernous sinuses contain several important structures, including the oculomotor, trochlear, ophthalmic, and maxillary nerves, as well as the internal carotid artery and sympathetic plexus, and the abducens nerve.

      The lateral wall components of the cavernous sinuses include the oculomotor, trochlear, ophthalmic, and maxillary nerves, while the contents of the sinus run from medial to lateral and include the internal carotid artery and sympathetic plexus, and the abducens nerve. The blood supply to the cavernous sinuses comes from the ophthalmic vein, superficial cortical veins, and basilar plexus of veins posteriorly. The cavernous sinuses drain into the internal jugular vein via the superior and inferior petrosal sinuses.

      In summary, the cavernous sinuses are important structures located on the sphenoid bone that contain several vital nerves and blood vessels. Understanding their location and contents is crucial for medical professionals in diagnosing and treating various conditions that may affect these structures.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 94 - A pregnant woman arrives at the ER with a concern about her facial...

    Incorrect

    • A pregnant woman arrives at the ER with a concern about her facial appearance since waking up this morning. What signs would indicate a diagnosis of Bell's palsy, specifically a unilateral LMN lesion of the facial nerve?

      Your Answer:

      Correct Answer: Unilateral facial weakness involving the forehead and unilateral failure of eye closure

      Explanation:

      When the facial nerve is unilaterally damaged, only the same side of the face is affected because this nerve does not cross over. Despite the fact that the facial nerve also transmits taste signals from the front two-thirds of the tongue, a lower motor neuron (LMN) injury only impacts the nerve’s motor function. This results in weakened facial expression muscles. The muscles in the forehead receive some innervation from the opposite side, so a LMN injury affects the forehead, while an upper motor neuron (UMN) injury does not affect the forehead.

      The facial nerve has a nucleus located in the ventrolateral pontine tegmentum, and its axons exit the ventral pons medial to the spinal trigeminal nucleus. Lesions affecting the corticobulbar tract are known as upper motor neuron lesions, while those affecting the individual branches of the facial nerve are lower motor neuron lesions. The lower motor neurons of the facial nerve can leave from either the left or right posterior or anterior facial motor nucleus, with the temporal branch receiving input from both hemispheres of the cerebral cortex, while the zygomatic, buccal, mandibular, and cervical branches receive input from only the contralateral hemisphere.

      In the case of an upper motor neuron lesion in the left hemisphere, the right mid- and lower-face would be paralyzed, while the forehead would remain unaffected. This is because the anterior facial motor nucleus receives only contralateral cortical input, while the posterior component receives input from both hemispheres. However, a lower motor neuron lesion affecting either the left or right side would paralyze the entire side of the face, as both the anterior and posterior routes on that side would be affected. This is because the nerves no longer have a means to receive compensatory contralateral input at a downstream decussation.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 95 - A 48-year-old woman arrives at the emergency department with symptoms of feeling unwell....

    Incorrect

    • A 48-year-old woman arrives at the emergency department with symptoms of feeling unwell. She reports having a headache and a stiff, painful neck. She is sensitive to light, feels nauseated, and has vomited twice. She experiences alternating sensations of hot and cold and is sweating. During the examination, her temperature is elevated, and Kernig's sign is positive. You decide to perform a lumbar puncture to obtain a sample of cerebrospinal fluid (CSF). In which ventricle is the choroid plexus, the structure responsible for producing the majority of CSF?

      Your Answer:

      Correct Answer: All four of the ventricles

      Explanation:

      The choroid plexus is a branching structure resembling sea coral, consisting of specialized ependymal cells that produce and release cerebrospinal fluid (CSF). It is present in all four ventricles of the brain, with the largest portion located in the lateral ventricles. The choroid plexus is also involved in removing waste products from the CSF.

      The patient described in the previous question displays symptoms and signs indicative of meningitis, including a positive Kernig’s sign. This test involves flexing the thigh and hip to 90 degrees, followed by extending the knee to elicit pain. Analysis of the CSF obtained through lumbar puncture can help identify the cause of meningitis and guide appropriate treatment.

      Cerebrospinal Fluid: Circulation and Composition

      Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.

      The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.

      The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 96 - A 30-year-old man presents to you with complaints of numbness and pain in...

    Incorrect

    • A 30-year-old man presents to you with complaints of numbness and pain in his hands and feet since this morning. He had visited for gastroenteritis 3 weeks ago. On examination, he has a bilateral reduction in power of 3/5 in his upper and lower limbs. His speech is normal, and he has no other medical conditions. What is the most probable diagnosis?

      Your Answer:

      Correct Answer: Guillain-Barre syndrome

      Explanation:

      Guillain-Barre syndrome is a condition where the immune system attacks the peripheral nervous system, leading to demyelination. It is often triggered by an infection and presents with rapidly advancing ascending motor neuropathy. Proximal muscles are more affected than distal muscles.

      A stroke or transient ischaemic attack usually has a sudden onset and causes unilateral symptoms such as facial droop, arm weakness, and slurred speech.

      Raynaud’s disease causes numbness and pain in the fingers and toes, typically in response to cold weather or stress.

      Guillain-Barre Syndrome: A Breakdown of its Features

      Guillain-Barre syndrome is a condition that occurs when the immune system attacks the peripheral nervous system, resulting in demyelination. This is often triggered by an infection, with Campylobacter jejuni being a common culprit. In the initial stages of the illness, around 65% of patients experience back or leg pain. However, the characteristic feature of Guillain-Barre syndrome is progressive, symmetrical weakness of all limbs, with the legs being affected first in an ascending pattern. Reflexes are reduced or absent, and sensory symptoms tend to be mild. Other features may include a history of gastroenteritis, respiratory muscle weakness, cranial nerve involvement, diplopia, bilateral facial nerve palsy, oropharyngeal weakness, and autonomic involvement, which can lead to urinary retention and diarrhea. Less common findings may include papilloedema, which is thought to be secondary to reduced CSF resorption. To diagnose Guillain-Barre syndrome, a lumbar puncture may be performed, which can reveal a rise in protein with a normal white blood cell count (albuminocytologic dissociation) in 66% of cases. Nerve conduction studies may also be conducted, which can show decreased motor nerve conduction velocity due to demyelination, prolonged distal motor latency, and increased F wave latency.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 97 - A 65-year-old patient reports to their physician with a complaint of taste loss....

    Incorrect

    • A 65-year-old patient reports to their physician with a complaint of taste loss. After taking a thorough medical history, the doctor notes no recent infections. However, the patient does mention being able to taste normally when only using the tip of their tongue, such as when licking ice cream.

      Which cranial nerve is impacted in this situation?

      Your Answer:

      Correct Answer: Glossopharyngeal nerve

      Explanation:

      The loss of taste in the posterior third of the tongue is due to a problem with the glossopharyngeal nerve (CN IX). This is because the patient can taste when licking the ice cream, indicating that the anterior two-thirds of the tongue are functioning normally. The facial nerve also provides taste sensation, but only to the anterior two-thirds of the tongue, so it is not responsible for the loss of taste in the posterior third. The hypoglossal nerve is not involved in taste sensation, but rather in motor innervation of the tongue. The olfactory nerve innervates the nose, not the tongue, and there is no indication of a problem with the patient’s sense of smell.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 98 - A 25-year-old woman is seeking your assistance in getting a referral to a...

    Incorrect

    • A 25-year-old woman is seeking your assistance in getting a referral to a clinical geneticist. She has a family history of Huntington's disease, with her grandfather having died from the condition and her father recently being diagnosed. She wants to learn more about the disease and its genetic inheritance. Which of the following statements is accurate?

      Your Answer:

      Correct Answer: Huntington's disease is caused by a defect on chromosome 4

      Explanation:

      The cause of Huntington’s disease is a flaw in the huntingtin gene located on chromosome 4, resulting in a degenerative and irreversible neurological disorder. It is inherited in an autosomal dominant pattern and affects both genders equally.

      Huntington’s disease is a genetic disorder that causes progressive and incurable neurodegeneration. It is inherited in an autosomal dominant manner and is caused by a trinucleotide repeat expansion of CAG in the huntingtin gene on chromosome 4. This can result in the phenomenon of anticipation, where the disease presents at an earlier age in successive generations. The disease leads to the degeneration of cholinergic and GABAergic neurons in the striatum of the basal ganglia, which can cause a range of symptoms.

      Typically, symptoms of Huntington’s disease develop after the age of 35 and can include chorea, personality changes such as irritability, apathy, and depression, intellectual impairment, dystonia, and saccadic eye movements. Unfortunately, there is currently no cure for Huntington’s disease, and it usually results in death around 20 years after the initial symptoms develop.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 99 - After a carotid endarterectomy, a woman experiences weakness in her tongue. Which nerve...

    Incorrect

    • After a carotid endarterectomy, a woman experiences weakness in her tongue. Which nerve is most likely to have been damaged in this process?

      Your Answer:

      Correct Answer: Hypoglossal

      Explanation:

      Carotid surgery poses a higher risk to the hypoglossal nerve, which is responsible for innervating the tongue.

      The internal carotid artery originates from the common carotid artery near the upper border of the thyroid cartilage and travels upwards to enter the skull through the carotid canal. It then passes through the cavernous sinus and divides into the anterior and middle cerebral arteries. In the neck, it is surrounded by various structures such as the longus capitis, pre-vertebral fascia, sympathetic chain, and superior laryngeal nerve. It is also closely related to the external carotid artery, the wall of the pharynx, the ascending pharyngeal artery, the internal jugular vein, the vagus nerve, the sternocleidomastoid muscle, the lingual and facial veins, and the hypoglossal nerve. Inside the cranial cavity, the internal carotid artery bends forwards in the cavernous sinus and is closely related to several nerves such as the oculomotor, trochlear, ophthalmic, and maxillary nerves. It terminates below the anterior perforated substance by dividing into the anterior and middle cerebral arteries and gives off several branches such as the ophthalmic artery, posterior communicating artery, anterior choroid artery, meningeal arteries, and hypophyseal arteries.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 100 - A 32-year-old male visits the GP complaining of a suddenly red eye. He...

    Incorrect

    • A 32-year-old male visits the GP complaining of a suddenly red eye. He has a past medical history of chronic back pain and has tested positive for the HLA-B27 antigen. What is the probable root cause of his symptoms?

      Your Answer:

      Correct Answer: Ankylosing spondylitis

      Explanation:

      Ankylosing spondylitis is a type of seronegative spondyloarthritides that often presents with various extra-articular manifestations. One of the most common ophthalmic symptoms is anterior uveitis, which is an inflammation of the anterior uveal tract. This condition can cause redness around the eye, sensitivity to light, blurred vision, and pain. The fact that the patient is a carrier for the HLA-B27 antigen is significant because it is typically associated with seronegative spondyloarthritides, and in this case, ankylosing spondylitis is the only option among the choices provided.

      Anterior uveitis, also known as iritis, is a type of inflammation that affects the iris and ciliary body in the front part of the uvea. This condition is often associated with HLA-B27 and may be linked to other conditions such as ankylosing spondylitis, reactive arthritis, ulcerative colitis, Crohn’s disease, Behcet’s disease, and sarcoidosis. Symptoms of anterior uveitis include sudden onset of eye discomfort and pain, small and irregular pupils, intense sensitivity to light, blurred vision, redness in the eye, tearing, and a ring of redness around the cornea. In severe cases, pus and inflammatory cells may accumulate in the front chamber of the eye, leading to a visible fluid level. Treatment for anterior uveitis involves urgent evaluation by an ophthalmologist, cycloplegic agents to relieve pain and photophobia, and steroid eye drops to reduce inflammation.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurological System (2/8) 25%
Passmed