-
Question 1
Correct
-
A study examines the effectiveness of adding a new antiplatelet drug to aspirin for patients over the age of 60 who have had a stroke. A total of 170 patients are enrolled, with 120 receiving the new drug in addition to aspirin and the remaining 50 receiving only aspirin. After 5 years, it is found that 18 patients who received the new drug experienced a subsequent stroke, while only 10 patients who received aspirin alone had a further stroke. What is the number needed to treat?
Your Answer: 20
Explanation:Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 2
Correct
-
The ICER is utilized in the following methods of economic evaluation:
Your Answer: Cost-effectiveness analysis
Explanation:The acronym ICER stands for incremental cost-effectiveness ratio.
Methods of Economic Evaluation
There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.
Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.
Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.
Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.
Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.
Costs in Economic Evaluation Studies
There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 3
Incorrect
-
A pilot program is implemented in a children's hospital that offers HIV testing for all new patients upon admission. As part of an economic analysis of the program, a researcher evaluates the expenses linked with providing the testing service. How should the potential stress encountered by children waiting for the test results be categorized?
Your Answer: Indirect cost
Correct Answer: Intangible cost
Explanation:Methods of Economic Evaluation
There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.
Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.
Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.
Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.
Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.
Costs in Economic Evaluation Studies
There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 4
Correct
-
Which of the following statements accurately describes the relationship between odds and odds ratio?
Your Answer: The odds ratio approximates to relative risk if the outcome of interest is rare
Explanation:Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 5
Correct
-
If a study has a Type I error rate of <0.05 and a Type II error rate of 0.2, what is the power of the study?
Your Answer: 0.8
Explanation:A study’s ability to correctly detect a true effect of difference may be calculated as Power = 1 – Type II error rate. In the given scenario, the power can be calculated as Power = 1 – 0.2 = 0.8. Type I error refers to a false positive, while Type II error refers to a false negative.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 6
Incorrect
-
If the new antihypertensive therapy is implemented for the secondary prevention of stroke, it would result in an absolute annual risk reduction of 0.5% compared to conventional therapy. However, the cost of the new treatment is £100 more per patient per year. Therefore, what would the cost of implementing the new therapy for each stroke prevented?
Your Answer: £50,000
Correct Answer: £20,000
Explanation:The new drug reduces the annual incidence of stroke by 0.5% and costs £100 more than conventional therapy. This means that for every 200 patients treated, one stroke would be prevented with the new drug compared to conventional therapy. The Number Needed to Treat (NNT) is 200 per year to prevent one stroke. Therefore, the annual cost of this treatment to prevent one stroke would be £20,000, which is the cost of treating 200 patients with the new drug (£100 x 200).
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 7
Correct
-
A new drug is trialled for the treatment of heart disease. Drug A is given to 500 people with early stage heart disease and a placebo is given to 450 people with the same condition. After 5 years, 300 people who received drug A had survived compared to 225 who received the placebo. What is the number needed to treat to save one life?
Your Answer: 10
Explanation:Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 8
Incorrect
-
You record the age of all of your students in your class. You notice that your data set is skewed. What method would you use to describe the typical age of your students?
Your Answer: Mode
Correct Answer: Median
Explanation:When dealing with a data set that is quantitative and measured on a ratio scale, the mean is typically the preferred measure of central tendency. However, if the data is skewed, the median may be a better choice as it is less affected by the skewness of the data.
Measures of Central Tendency
Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.
The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.
The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.
In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 9
Correct
-
How does the prevalence of a condition impact a particular aspect?
Your Answer: Positive predictive value
Explanation:The characteristics of precision, sensitivity, accuracy, and specificity are not influenced by the prevalence of the condition and remain stable. However, the positive predictive value is affected by the prevalence of the condition, particularly in cases where the prevalence is low. This is because a decrease in the prevalence of the condition leads to a decrease in the number of true positives, which in turn reduces the numerator of the PPV equation, resulting in a lower PPV. The formula for PPV is TP/(TP+FP).
Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 10
Incorrect
-
Which category does convenience sampling fall under?
Your Answer: Systematic sampling
Correct Answer: Non-probabilistic sampling
Explanation:Sampling Methods in Statistics
When collecting data from a population, it is often impractical and unnecessary to gather information from every single member. Instead, taking a sample is preferred. However, it is crucial that the sample accurately represents the population from which it is drawn. There are two main types of sampling methods: probability (random) sampling and non-probability (non-random) sampling.
Non-probability sampling methods, also known as judgement samples, are based on human choice rather than random selection. These samples are convenient and cheaper than probability sampling methods. Examples of non-probability sampling methods include voluntary sampling, convenience sampling, snowball sampling, and quota sampling.
Probability sampling methods give a more representative sample of the population than non-probability sampling. In each probability sampling technique, each population element has a known (non-zero) chance of being selected for the sample. Examples of probability sampling methods include simple random sampling, systematic sampling, cluster sampling, stratified sampling, and multistage sampling.
Simple random sampling is a sample in which every member of the population has an equal chance of being chosen. Systematic sampling involves selecting every kth member of the population. Cluster sampling involves dividing a population into separate groups (called clusters) and selecting a random sample of clusters. Stratified sampling involves dividing a population into groups (strata) and taking a random sample from each strata. Multistage sampling is a more complex method that involves several stages and combines two of more sampling methods.
Overall, probability sampling methods give a more representative sample of the population, but non-probability sampling methods are often more convenient and cheaper. It is important to choose the appropriate sampling method based on the research question and available resources.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 11
Correct
-
The Delphi method is used to evaluate what?
Your Answer: Expert consensus
Explanation:The Delphi Method: A Widely Used Technique for Achieving Convergence of Opinion
The Delphi method is a well-established technique for soliciting expert opinions on real-world knowledge within specific topic areas. The process involves multiple rounds of questionnaires, with each round building on the previous one to achieve convergence of opinion among the participants. However, there are potential issues with the Delphi method, such as the time-consuming nature of the process, low response rates, and the potential for investigators to influence the opinions of the participants. Despite these challenges, the Delphi method remains a valuable tool for generating consensus among experts in various fields.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 12
Correct
-
In a study, the null hypothesis posits that there is no disparity between the mean values of group A and group B. Upon analysis, the study discovers a difference and presents a p-value of 0.04. Which statement below accurately reflects this scenario?
Your Answer: Assuming the null hypothesis is correct, there is a 4% chance that the difference detected between A and B has arisen by chance
Explanation:Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 13
Correct
-
What is the approach that targets confounding variables during the study's design phase?
Your Answer: Randomisation
Explanation:Stats Confounding
A confounding factor is a factor that can obscure the relationship between an exposure and an outcome in a study. This factor is associated with both the exposure and the disease. For example, in a study that finds a link between coffee consumption and heart disease, smoking could be a confounding factor because it is associated with both drinking coffee and heart disease. Confounding occurs when there is a non-random distribution of risk factors in the population, such as age, sex, and social class.
To control for confounding in the design stage of an experiment, researchers can use randomization, restriction, of matching. Randomization aims to produce an even distribution of potential risk factors in two populations. Restriction involves limiting the study population to a specific group to ensure similar age distributions. Matching involves finding and enrolling participants who are similar in terms of potential confounding factors.
In the analysis stage of an experiment, researchers can control for confounding by using stratification of multivariate models such as logistic regression, linear regression, of analysis of covariance (ANCOVA). Stratification involves creating categories of strata in which the confounding variable does not vary of varies minimally.
Overall, controlling for confounding is important in ensuring that the relationship between an exposure and an outcome is accurately assessed in a study.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 14
Correct
-
Which studies are most susceptible to the Hawthorne effect?
Your Answer: Compliance with antipsychotic medication
Explanation:The Hawthorne effect is a phenomenon where individuals may alter their actions of responses when they are aware that they are being monitored of studied. Out of the given choices, the only one that pertains to a change in behavior is the adherence to medication. The remaining options related to outcomes that are not under conscious control.
Types of Bias in Statistics
Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.
There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 15
Correct
-
What is the calculation that the nurse performed to determine the patient's average daily calorie intake over a seven day period?
Your Answer: Arithmetic mean
Explanation:You don’t need to concern yourself with the specifics of the various means. Simply keep in mind that the arithmetic mean is the one utilized in fundamental biostatistics.
Measures of Central Tendency
Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.
The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.
The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.
In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 16
Correct
-
What does a relative risk of 10 indicate?
Your Answer: The risk of the event in the exposed group is higher than in the unexposed group
Explanation:Disease Rates and Their Interpretation
Disease rates are a measure of the occurrence of a disease in a population. They are used to establish causation, monitor interventions, and measure the impact of exposure on disease rates. The attributable risk is the difference in the rate of disease between the exposed and unexposed groups. It tells us what proportion of deaths in the exposed group were due to the exposure. The relative risk is the risk of an event relative to exposure. It is calculated by dividing the rate of disease in the exposed group by the rate of disease in the unexposed group. A relative risk of 1 means there is no difference between the two groups. A relative risk of <1 means that the event is less likely to occur in the exposed group, while a relative risk of >1 means that the event is more likely to occur in the exposed group. The population attributable risk is the reduction in incidence that would be observed if the population were entirely unexposed. It can be calculated by multiplying the attributable risk by the prevalence of exposure in the population. The attributable proportion is the proportion of the disease that would be eliminated in a population if its disease rate were reduced to that of the unexposed group.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 17
Incorrect
-
A team of scientists aims to perform a systematic review and meta-analysis of the effects of caffeine on sleep quality. They want to determine if there is any variation in the results across the studies they have gathered.
Which of the following is not a technique that can be employed to evaluate heterogeneity?Your Answer: Chi-square test
Correct Answer: Receiver operating characteristic curve
Explanation:The receiver operating characteristic (ROC) curve is a useful tool for evaluating the diagnostic accuracy of a test in distinguishing between healthy and diseased individuals. It helps to identify the optimal cut-off point between sensitivity and specificity.
Other methods, such as visual inspection of forest plots and Cochran’s Q test, can be used to assess heterogeneity in meta-analysis. Visual inspection of forest plots is a quick and easy method, while Cochran’s Q test is a more formal and widely accepted approach.
For more information on heterogeneity in meta-analysis, further reading is recommended.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 18
Incorrect
-
The Diagnostic Project between the UK and US revealed that the increased prevalence of schizophrenia in New York, as opposed to London, was due to what factor?
Your Answer: Chance
Correct Answer: Bias
Explanation:The US-UK Diagnostic Project found that the higher rates of schizophrenia in New York were due to diagnostic bias, as US psychiatrists used broader diagnostic criteria. However, the use of standardised clinical interviews and operationalised diagnostic criteria greatly reduced the variability of both incidence and prevalence rates of schizophrenia. This was demonstrated in a study by Sartorius et al. (1986) which examined early manifestations and first-contact incidence of schizophrenia in different cultures.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 19
Correct
-
If a patient follows a new healthy eating campaign for 2 years, with an average weight loss of 18 kg and a standard deviation of 3 kg, what is the probability that their weight loss will fall between 9 and 27 kg?
Your Answer: 99.70%
Explanation:The mean weight is 18kg with a standard deviation of 3kg. Three standard deviations below the mean is 9kg and three standard deviations above the mean is 27kg.
Standard Deviation and Standard Error of the Mean
Standard deviation (SD) and standard error of the mean (SEM) are two important statistical measures used to describe data. SD is a measure of how much the data varies, while SEM is a measure of how precisely we know the true mean of the population. The normal distribution, also known as the Gaussian distribution, is a symmetrical bell-shaped curve that describes the spread of many biological and clinical measurements.
68.3% of the data lies within 1 SD of the mean, 95.4% of the data lies within 2 SD of the mean, and 99.7% of the data lies within 3 SD of the mean. The SD is calculated by taking the square root of the variance and is expressed in the same units as the data set. A low SD indicates that data points tend to be very close to the mean.
On the other hand, SEM is an inferential statistic that quantifies the precision of the mean. It is expressed in the same units as the data and is calculated by dividing the SD of the sample mean by the square root of the sample size. The SEM gets smaller as the sample size increases, and it takes into account both the value of the SD and the sample size.
Both SD and SEM are important measures in statistical analysis, and they are used to calculate confidence intervals and test hypotheses. While SD quantifies scatter, SEM quantifies precision, and both are essential in understanding and interpreting data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 20
Incorrect
-
How do you calculate the positive predictive value accurately?
Your Answer: Sensitivity / (1 - specificity)
Correct Answer: TP / (TP + FP)
Explanation:Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 21
Incorrect
-
When conducting a literature review, it is advisable to do the following:
Your Answer: Do not include evidence from existing literature reviews on the same subject
Correct Answer: Include grey literature
Explanation:When conducting a literature review, it is important to broaden your search beyond traditional academic sources. This means including grey literature, such as reports, conference proceedings, and government documents. Additionally, it is crucial to consider both primary and secondary sources of evidence, as they can provide different perspectives and insights on your research topic. To ensure a comprehensive review, it is recommended to use multiple databases and search engines, rather than relying on a single source.
Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 22
Incorrect
-
What tool of method would be most effective in examining the relationship between a potential risk factor and a particular condition?
Your Answer: Point prevalence
Correct Answer: Incidence rate
Explanation:Measures of Disease Frequency: Incidence and Prevalence
Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.
Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.
It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.
Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 23
Correct
-
The prevalence of depressive disease in a village with an adult population of 1000 was assessed using a new diagnostic score. The results showed that out of 1000 adults, 200 tested positive for the disease and 800 tested negative. What is the prevalence of depressive disease in this population?
Your Answer: 20%
Explanation:The prevalence of the disease is 20% as there are currently 200 cases out of a total population of 1000.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 24
Incorrect
-
The national health organization has a team of analysts to compare the effectiveness of two different cancer treatments in terms of cost and patient outcomes. They have gathered data on the number of years of life gained by each treatment and are seeking your recommendation on what type of analysis to conduct next. What analysis would you suggest they undertake?
Your Answer:
Correct Answer: Cost utility analysis
Explanation:Cost utility analysis is a method used in health economics to determine the cost-effectiveness of a health intervention by comparing the cost of the intervention to the benefit it provides in terms of the number of years lived in full health. The cost is measured in monetary units, while the benefit is quantified using a measure that assigns values to different health states, including those that are less desirable than full health. In health technology assessments, this measure is typically expressed as quality-adjusted life years (QALYs).
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 25
Incorrect
-
What is the estimated range for the 95% confidence interval for the mean glucose levels in a population of people taking antipsychotics, given a sample mean of 7 mmol/L, a sample standard deviation of 6 mmol/L, and a sample size of 9 with a standard error of the mean of 2 mmol/L?
Your Answer:
Correct Answer: 3-11 mmol/L
Explanation:It is important to note that confidence intervals are derived from standard errors, not standard deviation, despite the common misconception. It is crucial to avoid mixing up these two terms.
Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 26
Incorrect
-
In what way can the study on depression be deemed as having limited applicability to the average patient population?
Your Answer:
Correct Answer: External validity
Explanation:When a study has good external validity, its findings can be applied to other populations with confidence.
Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 27
Incorrect
-
How would you rephrase the question to refer to the test's capacity to identify a person with a disease as positive?
Your Answer:
Correct Answer: Sensitivity
Explanation:Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 28
Incorrect
-
Calculate the median value from the following values:
1, 3, 3, 3, 4, 5, 5, 6, 6, 6, 6Your Answer:
Correct Answer: 5
Explanation:Measures of Central Tendency
Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.
The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.
The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.
In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 29
Incorrect
-
Which option is not a type of descriptive statistic?
Your Answer:
Correct Answer: Student's t-test
Explanation:A t-test is a statistical method used to determine if there is a significant difference between the means of two groups. It is a type of statistical inference.
Types of Statistics: Descriptive and Inferential
Statistics can be divided into two categories: descriptive and inferential. Descriptive statistics are used to describe and summarize data without making any generalizations beyond the data at hand. On the other hand, inferential statistics are used to make inferences about a population based on sample data.
Descriptive statistics are useful for identifying patterns and trends in data. Common measures used to describe a data set include measures of central tendency (such as the mean, median, and mode) and measures of variability of dispersion (such as the standard deviation of variance).
Inferential statistics, on the other hand, are used to make predictions of draw conclusions about a population based on sample data. These statistics are also used to determine the probability that observed differences between groups are reliable and not due to chance.
Overall, both descriptive and inferential statistics play important roles in analyzing and interpreting data. Descriptive statistics help us understand the characteristics of a data set, while inferential statistics allow us to make predictions and draw conclusions about larger populations.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 30
Incorrect
-
What is a correct statement about funnel plots?
Your Answer:
Correct Answer: Each dot represents a separate study result
Explanation:An asymmetric funnel plot may indicate the presence of publication bias, although this is not a definitive confirmation. The x-axis typically represents a measure of effect, such as the risk ratio of odds ratio, although other measures may also be used.
Stats Publication Bias
Publication bias refers to the tendency for studies with positive findings to be published more than studies with negative findings, leading to incomplete data sets in meta-analyses and erroneous conclusions. Graphical methods such as funnel plots, Galbraith plots, ordered forest plots, and normal quantile plots can be used to detect publication bias. Funnel plots are the most commonly used and offer an easy visual way to ensure that published literature is evenly weighted. The x-axis represents the effect size, and the y-axis represents the study size. A symmetrical, inverted funnel shape indicates that publication bias is unlikely, while an asymmetrical funnel indicates a relationship between treatment effect and study size, indicating either publication bias of small study effects.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 31
Incorrect
-
How do the incidence rate and cumulative incidence differ from each other?
Your Answer:
Correct Answer: The incidence rate is a more accurate estimate of the rate at which the outcome develops
Explanation:Measures of Disease Frequency: Incidence and Prevalence
Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.
Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.
It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.
Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 32
Incorrect
-
It has been proposed that individuals who develop schizophrenia may have subtle brain abnormalities present in utero, which predispose them to experiencing obstetric complications during birth. What term best describes this proposed explanation for the association between schizophrenia and birth complications?
Your Answer:
Correct Answer: Reverse causality
Explanation:Common Biases and Errors in Research
Reverse causality occurs when a risk factor appears to cause an illness, but in reality, it is a consequence of the illness. Information bias is a type of error that can occur in research. Two examples of information bias are observer bias and recall bias. Observer bias happens when the experimenter’s biases affect the study’s findings. Recall bias occurs when participants in the case and control groups have different levels of accuracy in their recollections.
There are two types of errors in research: Type I and Type II. A Type I error is when a true null hypothesis is incorrectly rejected, resulting in a false positive. A Type II error is when a false null hypothesis is not rejected, resulting in a false negative. It is essential to be aware of these biases and errors to ensure accurate and reliable research findings.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 33
Incorrect
-
What is the NNT for the following study data in a population of patients over the age of 65?
Medication Group vs Control Group
Events: 30 vs 80
Non-events: 120 vs 120
Total subjects: 150 vs 200.Your Answer:
Correct Answer: 5
Explanation:To calculate the event rates for the medication and control groups, we divide the number of events by the total number of subjects in each group. For the medication group, the event rate is 0.2 (30/150), and for the control group, it is 0.4 (80/200).
We can also calculate the absolute risk reduction (ARR) by subtracting the event rate in the medication group from the event rate in the control group: ARR = CER – EER = 0.4 – 0.2 = 0.2.
Finally, we can use the ARR to calculate the number needed to treat (NNT), which represents the number of patients who need to be treated with the medication to prevent one additional event compared to the control group. NNT = 1/ARR = 1/0.2 = 5.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 34
Incorrect
-
In a cohort study investigating the association between smoking and Alzheimer's dementia, what is the typical variable used to measure the outcome?
Your Answer:
Correct Answer: Relative risk
Explanation:The odds ratio is used in case-control studies to measure the association between exposure and outcome, while the relative risk is used in cohort studies to measure the risk of developing an outcome in the exposed group compared to the unexposed group. To convert the odds ratio to a relative risk, one can use the formula: relative risk = odds ratio / (1 – incidence in the unexposed group x odds ratio).
Types of Primary Research Studies and Their Advantages and Disadvantages
Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.
Type of Question Best Type of Study
Therapy Randomized controlled trial (RCT), cohort, case control, case series
Diagnosis Cohort studies with comparison to gold standard test
Prognosis Cohort studies, case control, case series
Etiology/Harm RCT, cohort studies, case control, case series
Prevention RCT, cohort studies, case control, case series
Cost Economic analysisStudy Type Advantages Disadvantages
Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 35
Incorrect
-
What statement accurately describes measures of dispersion?
Your Answer:
Correct Answer: The standard error indicates how close the statistical mean is to the population mean
Explanation:Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 36
Incorrect
-
The data collected represents the ratings given by students to the quality of teaching sessions provided by a consultant psychiatrist. The ratings are on a scale of 1-5, with 1 indicating extremely unsatisfactory and 5 indicating extremely satisfactory. The ratings are used to evaluate the effectiveness of the teaching sessions. How is this data best described?
Your Answer:
Correct Answer: Ordinal
Explanation:The data gathered will be measured on an ordinal scale, where each answer option is ranked. For instance, 2 is considered lower than 4, and 4 is lower than 5. In an ordinal scale, it is not necessary for the difference between 4 (satisfactory) and 2 (unsatisfactory) to be the same as the difference between 5 (extremely satisfactory) and 3 (neutral). This is because the numbers are not assigned for quantitative measurement but are used for labeling purposes only.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 37
Incorrect
-
One accurate statement about epidemiological measures is:
Your Answer:
Correct Answer: Cross-sectional surveys can be used to estimate the prevalence of a condition in the population
Explanation:Measures of Disease Frequency: Incidence and Prevalence
Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.
Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.
It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.
Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 38
Incorrect
-
What percentage of the data set falls below the second quartile when considering the interquartile range?
Your Answer:
Correct Answer: 50%
Explanation:The median value is equivalent to Q2 (the second quartile).
Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 39
Incorrect
-
A cohort study of 10,000 elderly individuals aimed to determine whether regular exercise has an effect on cognitive decline. Half of the participants engaged in regular exercise while the other half did not.
What is a limitation of conducting a cohort study in this scenario?Your Answer:
Correct Answer: When the outcome of interest is rare a very large sample size is needed
Explanation:Cohort studies involve following a group of individuals over a period of time to investigate whether exposure to a particular factor affects disease incidence. Although they are costly and time-consuming, they offer several benefits. For instance, they can examine rare exposure factors and are less prone to recall bias than case-control studies. Additionally, they can measure disease incidence and risk. Results are typically presented as the relative risk of developing the disease due to exposure to the factor.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 40
Incorrect
-
What is the probability that a person who tests negative on the new Mephedrone screening test does not actually use Mephedrone?
Your Answer:
Correct Answer: 172/177
Explanation:Negative predictive value = 172 / 177
Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 41
Incorrect
-
A team of scientists aimed to examine the prognosis of late-onset Alzheimer's disease using the available evidence. They intend to arrange the evidence in a hierarchy based on their study designs.
What study design would be placed at the top of their hierarchy?Your Answer:
Correct Answer: Systematic review of cohort studies
Explanation:When investigating prognosis, the hierarchy of study designs starts with a systematic review of cohort studies, followed by a cohort study, follow-up of untreated patients from randomized controlled trials, case series, and expert opinion. The strength of evidence provided by a study depends on its ability to minimize bias and maximize attribution. The Agency for Healthcare Policy and Research hierarchy of study types is widely accepted as reliable, with systematic reviews and meta-analyses of randomized controlled trials at the top, followed by randomized controlled trials, non-randomized intervention studies, observational studies, and non-experimental studies.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 42
Incorrect
-
What statement accurately describes dependent variables?
Your Answer:
Correct Answer: They are affected by changes of independent variables
Explanation:Understanding Stats Variables
Variables are characteristics, numbers, of quantities that can be measured of counted. They are also known as data items. Examples of variables include age, sex, business income and expenses, country of birth, capital expenditure, class grades, eye colour, and vehicle type. The value of a variable may vary between data units in a population. In a typical study, there are three main variables: independent, dependent, and controlled variables.
The independent variable is something that the researcher purposely changes during the investigation. The dependent variable is the one that is observed and changes in response to the independent variable. Controlled variables are those that are not changed during the experiment. Dependent variables are affected by independent variables but not by controlled variables, as these do not vary throughout the study.
For instance, a researcher wants to test the effectiveness of a new weight loss medication. Participants are divided into three groups, with the first group receiving a placebo (0mg dosage), the second group a 10 mg dose, and the third group a 40 mg dose. After six months, the participants’ weights are measured. In this case, the independent variable is the dosage of the medication, as that is what is being manipulated. The dependent variable is the weight, as that is what is being measured.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 43
Incorrect
-
The research team is studying the effectiveness of a new treatment for a certain medical condition. They have found that the brand name medication Y and its generic version Y1 have similar efficacy. They approach you for guidance on what type of analysis to conduct next. What would you suggest?
Your Answer:
Correct Answer: Cost minimisation analysis
Explanation:Cost minimisation analysis is employed to compare net costs when the observed effects of health care interventions are similar. To conduct this analysis, it is necessary to have clinical evidence that demonstrates the differences in health effects between alternatives are negligible of insignificant. This approach is commonly used by institutions like the National Institute for Health and Care Excellence (NICE).
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 44
Incorrect
-
What is necessary for a study to confidently assert causation?
Your Answer:
Correct Answer: Good internal validity
Explanation:In order to make assertions about causation, strong internal validity is necessary.
Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 45
Incorrect
-
What is the term used to describe a test that initially appears to measure what it is intended to measure?
Your Answer:
Correct Answer: Good face validity
Explanation:A test that seems to measure what it is intended to measure has strong face validity.
Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 46
Incorrect
-
Which p-value would provide the strongest evidence in favor of the alternative hypothesis?
Your Answer:
Correct Answer:
Explanation:Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 47
Incorrect
-
What methods are most effective in determining interobserver agreement?
Your Answer:
Correct Answer: Kappa
Explanation:Kappa is used to assess the consistency of reliability between different raters.
Understanding the Kappa Statistic for Measuring Interobserver Variation
The kappa statistic, also known as Cohen’s kappa coefficient, is a useful tool for quantifying the level of agreement between independent observers. This measure can be applied in any situation where multiple observers are evaluating the same thing, such as in medical diagnoses of research studies. The kappa coefficient ranges from 0 to 1, with 0 indicating complete disagreement and 1 indicating perfect agreement. By using the kappa statistic, researchers and practitioners can gain insight into the level of interobserver variation present in their data, which can help to improve the accuracy and reliability of their findings. Overall, the kappa statistic is a valuable tool for understanding and measuring interobserver variation in a variety of contexts.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 48
Incorrect
-
What is a true statement about searching in PubMed?
Your Answer:
Correct Answer: Truncation is generally not a recommended search technique for PubMed
Explanation:Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 49
Incorrect
-
A team of scientists aims to prevent bias in their study on the effectiveness of a new medication for elderly patients with hypertension. They randomly assign 80 patients to the treatment group, of which 60 complete the 12-week trial. Another 80 patients are assigned to the placebo group, with 75 completing the trial. The researchers agree to conduct an intention-to-treat (ITT) analysis using the LOCF method. What type of bias are they attempting to eliminate?
Your Answer:
Correct Answer: Attrition bias
Explanation:To address the issue of drop-outs in a study, an intention to treat (ITT) analysis can be employed. Drop-outs can lead to attrition bias, which creates systematic differences in attrition across treatment groups. In an ITT analysis, all patients are included in the groups they were initially assigned to through random allocation. To handle missing data, two common methods are last observation carried forward and worst case scenario analysis.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 50
Incorrect
-
What is the nature of the hypothesis that a researcher wants to test regarding the effect of a drug on a person's heart rate?
Your Answer:
Correct Answer: One-tailed alternative hypothesis
Explanation:A one-tailed hypothesis indicates a specific direction of association between groups. The researcher not only declares that there will be a distinction between the groups but also defines the direction in which the difference will occur.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 51
Incorrect
-
Which of the following is the correct description of construct validity?
Your Answer:
Correct Answer: A test has good construct validity if it has a high correlation with another test that measures the same construct
Explanation:Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 52
Incorrect
-
Which study design involves conducting an experiment?
Your Answer:
Correct Answer: A randomised control study
Explanation:Types of Primary Research Studies and Their Advantages and Disadvantages
Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.
Type of Question Best Type of Study
Therapy Randomized controlled trial (RCT), cohort, case control, case series
Diagnosis Cohort studies with comparison to gold standard test
Prognosis Cohort studies, case control, case series
Etiology/Harm RCT, cohort studies, case control, case series
Prevention RCT, cohort studies, case control, case series
Cost Economic analysisStudy Type Advantages Disadvantages
Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 53
Incorrect
-
What type of bias is commonly associated with case-control studies?
Your Answer:
Correct Answer: Recall bias
Explanation:Types of Bias in Statistics
Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.
There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 54
Incorrect
-
What method did the researchers use to ensure the accuracy and credibility of their findings in the qualitative study on antidepressants?
Your Answer:
Correct Answer: Member checking
Explanation:To ensure validity in qualitative studies, a technique called member checking of respondent validation is used. This involves interviewing a subset of the participants (typically around 11) to confirm that their perspectives align with the study’s findings.
Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 55
Incorrect
-
Which of the following statements accurately describes significance tests?
Your Answer:
Correct Answer: Chi-squared test is used to compare non-parametric data
Explanation:The chi-squared test is a statistical test that does not rely on any assumptions about the underlying distribution of the data, making it a non-parametric test.
Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 56
Incorrect
-
What statement accurately describes percentiles?
Your Answer:
Correct Answer: Q1 is the 25th percentile
Explanation:Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 57
Incorrect
-
What is the term used to describe the point at which a researcher chooses to reject a null hypothesis?
Your Answer:
Correct Answer: Alpha level
Explanation:If the p-value is lower than the predetermined alpha level of 0.05, the outcome is considered significant.
Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 58
Incorrect
-
What qualitative research approach aims to understand individuals' inner experiences and perspectives?
Your Answer:
Correct Answer: Phenomenology
Explanation:Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 59
Incorrect
-
What is the name of the database that focuses on literature created by non-traditional commercial of academic publishing and distribution channels?
Your Answer:
Correct Answer: OpenGrey
Explanation:SIGLE is a database that specializes in collecting and indexing grey literature.
Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 60
Incorrect
-
What statement accurately describes the mean?
Your Answer:
Correct Answer: Is sensitive to a change in any value in the data set
Explanation:Measures of Central Tendency
Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.
The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.
The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.
In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 61
Incorrect
-
What condition would make it inappropriate to use the Student's t-test for conducting a significance test?
Your Answer:
Correct Answer: Using it with data that is not normally distributed
Explanation:T-tests are appropriate for parametric data, which means that the data should conform to a normal distribution.
Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 62
Incorrect
-
Which odds ratio suggests that there is no significant variation in the odds between two groups?
Your Answer:
Correct Answer: 1
Explanation:Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 63
Incorrect
-
The QALY is utilized in which of the following approaches for economic assessment?
Your Answer:
Correct Answer: Cost-utility analysis
Explanation:Methods of Economic Evaluation
There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.
Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.
Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.
Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.
Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.
Costs in Economic Evaluation Studies
There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 64
Incorrect
-
Which of the following is an example of secondary evidence?
Your Answer:
Correct Answer: A Cochrane review on the evidence of exercise for reducing the duration of depression relapses
Explanation:Scientific literature can be classified into two main types: primary and secondary sources. Primary sources are original research studies that present data and analysis without any external evaluation of interpretation. Examples of primary sources include randomized controlled trials, cohort studies, case-control studies, case-series, and conference papers. Secondary sources, on the other hand, provide an interpretation and analysis of primary sources. These sources are typically removed by one of more steps from the original event. Examples of secondary sources include evidence-based guidelines and textbooks, meta-analyses, and systematic reviews.
Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 65
Incorrect
-
What is the accurate formula for determining the pre-test odds?
Your Answer:
Correct Answer: Pre-test probability/ (1 - pre-test probability)
Explanation:Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 66
Incorrect
-
What is another name for the incidence rate?
Your Answer:
Correct Answer: Incidence density
Explanation:Measures of Disease Frequency: Incidence and Prevalence
Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.
Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.
It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.
Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 67
Incorrect
-
A study is conducted to investigate whether a new exercise program has any impact on weight loss. A total of 300 participants are enrolled from various locations and are randomly assigned to either the exercise group of the control group. Weight measurements are taken at the beginning of the study and at the end of a six-month period.
What is the most effective method of visually presenting the data?Your Answer:
Correct Answer: Kaplan-Meier plot
Explanation:The Kaplan-Meier plot is the most effective graphical representation of survival probability. It presents the overall likelihood of an individual’s survival over time from a baseline, and the comparison of two lines on the plot can indicate whether there is a survival advantage. To determine if the distinction between the two groups is significant, a log rank test can be employed.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 68
Incorrect
-
In a study of a new statin therapy for primary prevention of ischaemic heart disease in a diabetic population over a five year period, 1000 patients were randomly assigned to receive the new therapy and 1000 were given a placebo. The results showed that 150 patients in the placebo group had a myocardial infarction (MI) compared to 100 patients in the statin group. What is the number needed to treat (NNT) to prevent one MI in this population?
Your Answer:
Correct Answer: 20
Explanation:– Treating 1000 patients with a new statin for five years prevented 50 MIs.
– The number needed to treat (NNT) to prevent one MI is 20 (1000/50).
– NNT provides information on treatment efficacy beyond statistical significance.
– Based on these data, treating as few as 20 patients over five years may prevent an infarct.
– Cost economic data can be calculated by factoring in drug costs and costs of treating and rehabilitating a patient with an MI. -
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 69
Incorrect
-
Which of the following methods is most effective in eliminating of managing confounding factors?
Your Answer:
Correct Answer: Randomisation
Explanation:The most effective way to eliminate of manage potential confounding factors is to randomize a large enough sample size. This approach addresses all potential confounders, regardless of whether they were measured in the study design. Matching involves pairing individuals who received a treatment of intervention with non-treated individuals who have similar observable characteristics. Post-hoc methods, such as stratification, regression analysis, and analysis of variance, can be used to evaluate the impact of known or suspected confounders.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 70
Incorrect
-
How would you rephrase the question Which of the following refers to the proportion of people scoring positive on a test that actually have the condition?
Your Answer:
Correct Answer: Positive predictive value
Explanation:Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 71
Incorrect
-
What value of NNT indicates the most positive result for an intervention?
Your Answer:
Correct Answer: NNT = 1
Explanation:An NNT of 1 indicates that every patient who receives the treatment experiences a positive outcome, while no patient in the control group experiences the same outcome. This represents an ideal outcome.
Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 72
Incorrect
-
Which odds ratio, along with its confidence interval, indicates a statistically significant reduction in the odds?
Your Answer:
Correct Answer: 0.7 (0.1 - 0.8)
Explanation:Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 73
Incorrect
-
How can the pre-test probability be expressed in another way?
Your Answer:
Correct Answer: The prevalence of a condition
Explanation:The prevalence refers to the percentage of individuals in a population who currently have a particular condition, while the incidence is the frequency at which new cases of the condition arise within a specific timeframe.
Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 74
Incorrect
-
Which data type does age in years belong to?
Your Answer:
Correct Answer: Ratio
Explanation:Age is a type of measurement that follows a ratio scale, which means that the values can be compared as multiples of each other. For instance, if someone is 20 years old, they are twice as old as someone who is 10 years old.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 75
Incorrect
-
Which of the following statements accurately describes significance tests?
Your Answer:
Correct Answer: The type I error level is not affected by sample size
Explanation:The α value, also known as the type I error, is the predetermined probability that is considered acceptable for making an error. If the P value is lower than the predetermined α value, then the null hypothesis (Ho) is rejected, and it is concluded that the observed difference, association, of correlation is statistically significant.
Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 76
Incorrect
-
A study reports that 76 percent of the subjects receiving fluvoxamine versus 29 percent of the placebo group were treatment responders. Based on this data, what is the number needed to treat?
Your Answer:
Correct Answer: 2.12
Explanation:To determine the number needed to treat (NNT), we first calculated the absolute risk reduction (ARR) using the formula ARR = CER – EER, where CER is the control event rate and EER is the experimental event rate. In this case, the ARR was 0.47, which is the reciprocal of the NNT. Therefore, the NNT was calculated as 2.12. This means that for every two patients treated with the active medication, at least one patient will have a better outcome compared to those treated with a placebo.
Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 77
Incorrect
-
What percentage of values fall within a range of 3 standard deviations above and below the mean?
Your Answer:
Correct Answer: 99.70%
Explanation:Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 78
Incorrect
-
A new treatment for elderly patients with hypertension is investigated. The study looks at the incidence of stroke after 1 year. The following data is obtained:
Number who had a stroke vs Number without a stroke
New drug: 40 vs 160
Placebo: 100 vs 300
What is the relative risk reduction?Your Answer:
Correct Answer: 20%
Explanation:Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 79
Incorrect
-
If you anticipate that a drug will result in more side-effects than a placebo, what would be your estimated relative risk of side-effects occurring in the group receiving the drug?
Your Answer:
Correct Answer: >1
Explanation:Disease Rates and Their Interpretation
Disease rates are a measure of the occurrence of a disease in a population. They are used to establish causation, monitor interventions, and measure the impact of exposure on disease rates. The attributable risk is the difference in the rate of disease between the exposed and unexposed groups. It tells us what proportion of deaths in the exposed group were due to the exposure. The relative risk is the risk of an event relative to exposure. It is calculated by dividing the rate of disease in the exposed group by the rate of disease in the unexposed group. A relative risk of 1 means there is no difference between the two groups. A relative risk of <1 means that the event is less likely to occur in the exposed group, while a relative risk of >1 means that the event is more likely to occur in the exposed group. The population attributable risk is the reduction in incidence that would be observed if the population were entirely unexposed. It can be calculated by multiplying the attributable risk by the prevalence of exposure in the population. The attributable proportion is the proportion of the disease that would be eliminated in a population if its disease rate were reduced to that of the unexposed group.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 80
Incorrect
-
Which variable classification is not included in Stevens' typology?
Your Answer:
Correct Answer: Ranked
Explanation:Stevens suggested that scales can be categorized into one of four types based on measurements.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 81
Incorrect
-
For which of the following research areas are qualitative methods least effective?
Your Answer:
Correct Answer: Treatment evaluation
Explanation:While quantitative methods are typically used for treatment evaluation, qualitative studies can also provide valuable insights by interpreting, qualifying, of illuminating findings. This is especially beneficial when examining unexpected results, as they can help to test the primary hypothesis.
Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 82
Incorrect
-
What is the purpose of using Cohen's kappa coefficient?
Your Answer:
Correct Answer: Inter-rater reliability
Explanation:Kappa is used to assess the consistency of agreement between different raters.
Understanding the Kappa Statistic for Measuring Interobserver Variation
The kappa statistic, also known as Cohen’s kappa coefficient, is a useful tool for quantifying the level of agreement between independent observers. This measure can be applied in any situation where multiple observers are evaluating the same thing, such as in medical diagnoses of research studies. The kappa coefficient ranges from 0 to 1, with 0 indicating complete disagreement and 1 indicating perfect agreement. By using the kappa statistic, researchers and practitioners can gain insight into the level of interobserver variation present in their data, which can help to improve the accuracy and reliability of their findings. Overall, the kappa statistic is a valuable tool for understanding and measuring interobserver variation in a variety of contexts.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 83
Incorrect
-
Which of the following is not a valid type of validity?
Your Answer:
Correct Answer: Inter-rater
Explanation:Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 84
Incorrect
-
Which variable has a zero value that is not arbitrary?
Your Answer:
Correct Answer: Ratio
Explanation:The key characteristic that sets ratio variables apart from interval variables is the presence of a meaningful zero point. On a ratio scale, this zero point signifies the absence of the measured attribute, while on an interval scale, the zero point is simply a point on the scale with no inherent significance.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 85
Incorrect
-
What is the most appropriate way to describe the method of data collection used for the Likert scale questionnaire created by the psychiatrist and administered to 100 community patients to better understand their religious needs?
Your Answer:
Correct Answer: Ordinal
Explanation:Likert scales are a type of ordinal scale used in surveys to measure attitudes of opinions. Respondents are presented with a series of statements of questions and asked to rate their level of agreement of frequency of occurrence on a scale of options. For instance, a Likert scale question might ask how often someone prays, with response options ranging from never to daily. While the responses are ordered in terms of frequency, the intervals between each option are not necessarily equal of quantifiable. Therefore, Likert scales are considered ordinal rather than interval scales.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 86
Incorrect
-
What is the significance of the cut off of 5 on the MDQ in diagnosing depression?
Your Answer:
Correct Answer: The optimal threshold
Explanation:The threshold score that results in the lowest misclassification rate, achieved by minimizing both false positive and false negative rates, is known as the optimal threshold. Based on the findings of the previous study, the ideal cut off for identifying caseness on the MDQ is five, making it the optimal threshold.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 87
Incorrect
-
Which of the following statements accurately describes the normal distribution?
Your Answer:
Correct Answer: Mean = mode = median
Explanation:The Normal distribution is a probability distribution that is continuous in nature.
Standard Deviation and Standard Error of the Mean
Standard deviation (SD) and standard error of the mean (SEM) are two important statistical measures used to describe data. SD is a measure of how much the data varies, while SEM is a measure of how precisely we know the true mean of the population. The normal distribution, also known as the Gaussian distribution, is a symmetrical bell-shaped curve that describes the spread of many biological and clinical measurements.
68.3% of the data lies within 1 SD of the mean, 95.4% of the data lies within 2 SD of the mean, and 99.7% of the data lies within 3 SD of the mean. The SD is calculated by taking the square root of the variance and is expressed in the same units as the data set. A low SD indicates that data points tend to be very close to the mean.
On the other hand, SEM is an inferential statistic that quantifies the precision of the mean. It is expressed in the same units as the data and is calculated by dividing the SD of the sample mean by the square root of the sample size. The SEM gets smaller as the sample size increases, and it takes into account both the value of the SD and the sample size.
Both SD and SEM are important measures in statistical analysis, and they are used to calculate confidence intervals and test hypotheses. While SD quantifies scatter, SEM quantifies precision, and both are essential in understanding and interpreting data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 88
Incorrect
-
In scientific research, what variable type has traditionally been used to record the age of study participants?
Your Answer:
Correct Answer: Binary
Explanation:Gender has traditionally been recorded as either male of female, creating a binary of dichotomous variable. Other categorical variables, such as eye color and ethnicity, can be grouped into two or more categories. Continuous variables, such as temperature, height, weight, and age, can be placed anywhere on a scale and have mathematical properties. Ordinal variables allow for ranking, but do not allow for direct mathematical comparisons between values.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 89
Incorrect
-
What is the accurate definition of the standardised mortality ratio?
Your Answer:
Correct Answer: The ratio between the observed number of deaths in a study population and the number of deaths that would be expected
Explanation:Calculation of Standardised Mortality Ratio (SMR)
To calculate the SMR, age and sex-specific death rates in the standard population are obtained. An estimate for the number of people in each category for both the standard and study populations is needed. The number of expected deaths in each age-sex group of the study population is calculated by multiplying the age-sex-specific rates in the standard population by the number of people in each category of the study population. The sum of all age- and sex-specific expected deaths gives the expected number of deaths for the whole study population. The observed number of deaths is then divided by the expected number of deaths to obtain the SMR.
The SMR can be standardised using the direct of indirect method. The direct method is used when the age-sex-specific rates for the study population and the age-sex-structure of the standard population are known. The indirect method is used when the age-specific rates for the study population are unknown of not available. This method uses the observed number of deaths in the study population and compares it to the number of deaths that would be expected if the age distribution was the same as that of the standard population.
The SMR can be interpreted as follows: an SMR less than 1.0 indicates fewer than expected deaths in the study population, an SMR of 1.0 indicates the number of observed deaths equals the number of expected deaths in the study population, and an SMR greater than 1.0 indicates more than expected deaths in the study population (excess deaths). It is sometimes expressed after multiplying by 100.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 90
Incorrect
-
What factors affect the statistical power of a study?
Your Answer:
Correct Answer: Sample size
Explanation:A study that has a greater sample size is considered to have higher power, meaning it is capable of detecting a significant difference of effect that is clinically relevant.
The Importance of Power in Statistical Analysis
Power is a crucial concept in statistical analysis as it helps researchers determine the number of participants needed in a study to detect a clinically significant difference of effect. It represents the probability of correctly rejecting the null hypothesis when it is false, which means avoiding a Type II error. Power values range from 0 to 1, with 0 indicating 0% and 1 indicating 100%. A power of 0.80 is generally considered the minimum acceptable level.
Several factors influence the power of a study, including sample size, effect size, and significance level. Larger sample sizes lead to more precise parameter estimations and increase the study’s ability to detect a significant effect. Effect size, which is determined at the beginning of a study, refers to the size of the difference between two means that leads to rejecting the null hypothesis. Finally, the significance level, also known as the alpha level, represents the probability of a Type I error. By considering these factors, researchers can optimize the power of their studies and increase the likelihood of detecting meaningful effects.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 91
Incorrect
-
What database is most suitable for finding scholarly material that has not undergone official publication?
Your Answer:
Correct Answer: SIGLE
Explanation:SIGLE is a database that contains unpublished of ‘grey’ literature, while CINAHL is a database that focuses on healthcare and biomedical journal articles. The Cochrane Library is a collection of databases that includes the Cochrane Reviews, which are systematic reviews and meta-analyses of medical research. EMBASE is a pharmacological and biomedical database, and PsycINFO is a database of abstracts from psychological literature that is created by the American Psychological Association.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 92
Incorrect
-
How can the negative predictive value of a screening test be calculated accurately?
Your Answer:
Correct Answer: TN / (TN + FN)
Explanation:Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 93
Incorrect
-
A team of scientists plans to carry out a randomized controlled study to assess the effectiveness of a new medication for treating anxiety in elderly patients. To prevent any potential biases, they intend to enroll participants through online portals, ensuring that neither the patients nor the researchers are aware of the group assignment. What type of bias are they seeking to eliminate?
Your Answer:
Correct Answer: Selection bias
Explanation:The use of allocation concealment is being implemented by the researchers to prevent interference from investigators of patients in the randomisation process. This is important as knowledge of group allocation can lead to patient refusal to participate of researchers manipulating the allocation process. By using distant call centres for allocation concealment, the risk of selection bias, which refers to systematic differences between comparison groups, is reduced.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 94
Incorrect
-
The national Health Department is concerned about reducing mortality rates among elderly patients with heart disease. They have tasked a team of researchers with comparing the effectiveness and economic costs of treatment options A and B in terms of life years gained. The researchers have collected data on the number of life years gained by each treatment option and are seeking advice on the next steps for analysis. What type of analysis would you recommend they undertake?
Your Answer:
Correct Answer: Cost effectiveness analysis
Explanation:Cost effectiveness analysis (CEA) is an economic evaluation method that compares the costs and outcomes of different courses of action. The outcomes of the interventions must be measurable using a single variable, such as life years gained, making it useful for comparing preventative treatments for fatal conditions.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 95
Incorrect
-
Which of the following is not a method used in qualitative research to evaluate validity?
Your Answer:
Correct Answer: Content analysis
Explanation:Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 96
Incorrect
-
What is the appropriate interpretation of a standardised mortality ratio of 120% (95% CI 90-130) for a cohort of patients diagnosed with antisocial personality disorder?
Your Answer:
Correct Answer: The result is not statistically significant
Explanation:The statistical significance of the result is questionable as the confidence interval encompasses values below 100. This implies that there is a possibility that the actual value could be lower than 100, which contradicts the observed value of 120 indicating a rise in mortality in this population.
Calculation of Standardised Mortality Ratio (SMR)
To calculate the SMR, age and sex-specific death rates in the standard population are obtained. An estimate for the number of people in each category for both the standard and study populations is needed. The number of expected deaths in each age-sex group of the study population is calculated by multiplying the age-sex-specific rates in the standard population by the number of people in each category of the study population. The sum of all age- and sex-specific expected deaths gives the expected number of deaths for the whole study population. The observed number of deaths is then divided by the expected number of deaths to obtain the SMR.
The SMR can be standardised using the direct of indirect method. The direct method is used when the age-sex-specific rates for the study population and the age-sex-structure of the standard population are known. The indirect method is used when the age-specific rates for the study population are unknown of not available. This method uses the observed number of deaths in the study population and compares it to the number of deaths that would be expected if the age distribution was the same as that of the standard population.
The SMR can be interpreted as follows: an SMR less than 1.0 indicates fewer than expected deaths in the study population, an SMR of 1.0 indicates the number of observed deaths equals the number of expected deaths in the study population, and an SMR greater than 1.0 indicates more than expected deaths in the study population (excess deaths). It is sometimes expressed after multiplying by 100.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 97
Incorrect
-
A new medication is being developed to treat hypertension in elderly patients. Several different drugs are being considered for their efficacy in reducing blood pressure. Which study design would require the largest number of participants to achieve a significant outcome?
Your Answer:
Correct Answer: Superiority trial
Explanation:Since a superiority trial involves comparing a new drug with an already existing treatment that can also reduce HbA1c levels, a substantial sample size is necessary to establish a significant distinction.
Study Designs for New Drugs: Options and Considerations
When launching a new drug, there are various study design options available. One common approach is a placebo-controlled trial, which can provide strong evidence but may be deemed unethical if established treatments are available. Additionally, it does not allow for a comparison with standard treatments. Therefore, statisticians must decide whether the trial aims to demonstrate superiority, equivalence, of non-inferiority to an existing treatment.
Superiority trials may seem like the obvious choice, but they require a large sample size to show a significant benefit over an existing treatment. Equivalence trials define an equivalence margin on a specified outcome, and if the confidence interval of the difference between the two drugs falls within this margin, the drugs are assumed to have a similar effect. Non-inferiority trials are similar to equivalence trials, but only the lower confidence interval needs to fall within the equivalence margin. These trials require smaller sample sizes, and once a drug has been shown to be non-inferior, larger studies may be conducted to demonstrate superiority.
It is important to note that drug companies may not necessarily aim to show superiority over an existing product. If they can demonstrate that their product is equivalent of even non-inferior, they may compete on price of convenience. Overall, the choice of study design depends on various factors, including ethical considerations, sample size, and the desired outcome.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 98
Incorrect
-
Which of the following options is not a possible value for Pearson's correlation coefficient?
Your Answer:
Correct Answer: 1.5
Explanation:Stats: Correlation and Regression
Correlation and regression are related but not interchangeable terms. Correlation is used to test for association between variables, while regression is used to predict values of dependent variables from independent variables. Correlation can be linear, non-linear, of non-existent, and can be strong, moderate, of weak. The strength of a linear relationship is measured by the correlation coefficient, which can be positive of negative and ranges from very weak to very strong. However, the interpretation of a correlation coefficient depends on the context and purposes. Correlation can suggest association but cannot prove of disprove causation. Linear regression, on the other hand, can be used to predict how much one variable changes when a second variable is changed. Scatter graphs are used in correlation and regression analyses to visually determine if variables are associated and to detect outliers. When constructing a scatter graph, the dependent variable is typically placed on the vertical axis and the independent variable on the horizontal axis.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 99
Incorrect
-
What is the term used to describe the proposed idea that a researcher is attempting to validate?
Your Answer:
Correct Answer: Alternative hypothesis
Explanation:Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 100
Incorrect
-
What is the statistical test that is represented by the F statistic?
Your Answer:
Correct Answer: ANOVA
Explanation:Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)