00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 67-year-old retired firefighter visits the clinic complaining of recurring burning chest pain....

    Incorrect

    • A 67-year-old retired firefighter visits the clinic complaining of recurring burning chest pain. He reports that the pain worsens after consuming take-away food and alcohol, and he experiences increased belching. The patient has a medical history of high cholesterol, type two diabetes, and osteoarthritis. He is currently taking atorvastatin, metformin, gliclazide, naproxen, and omeprazole, which he frequently forgets to take. Which medication is the probable cause of his symptoms?

      Your Answer: Atorvastatin

      Correct Answer: Naproxen

      Explanation:

      Peptic ulcers can be caused by the use of NSAIDs as a medication. Symptoms of peptic ulcer disease include a burning pain in the chest, which may be accompanied by belching, alcohol consumption, and high-fat foods. However, it is important to rule out any cardiac causes of the pain, especially in patients with a medical history of high cholesterol and type two diabetes.

      Other medications that can cause peptic ulcer disease include aspirin and corticosteroids. Each medication has its own specific side effects, such as myalgia with atorvastatin, hypoglycemia with gliclazide, abdominal pain with metformin, and bradycardia with propranolol.

      Understanding Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and COX-2 Selective NSAIDs

      Non-steroidal anti-inflammatory drugs (NSAIDs) are medications that work by inhibiting the activity of cyclooxygenase enzymes, which are responsible for producing key mediators involved in inflammation such as prostaglandins. By reducing the production of these mediators, NSAIDs can help alleviate pain and reduce inflammation. Examples of NSAIDs include ibuprofen, diclofenac, naproxen, and aspirin.

      However, NSAIDs can also have important and common side-effects, such as peptic ulceration and exacerbation of asthma. To address these concerns, COX-2 selective NSAIDs were developed. These medications were designed to reduce the incidence of side-effects seen with traditional NSAIDs, particularly peptic ulceration. Examples of COX-2 selective NSAIDs include celecoxib and etoricoxib.

      Despite their potential benefits, COX-2 selective NSAIDs are not widely used due to ongoing concerns about cardiovascular safety. This led to the withdrawal of rofecoxib (‘Vioxx’) in 2004. As with any medication, it is important to discuss the potential risks and benefits of NSAIDs and COX-2 selective NSAIDs with a healthcare provider before use.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      475
      Seconds
  • Question 2 - Which one of the following is a recognised tributary of the retromandibular vein?...

    Correct

    • Which one of the following is a recognised tributary of the retromandibular vein?

      Your Answer: Maxillary vein

      Explanation:

      The retromandibular vein is created by the merging of the maxillary and superficial temporal veins.

      The Retromandibular Vein: Anatomy and Function

      The retromandibular vein is a blood vessel that is formed by the union of the maxillary vein and the superficial temporal vein. It descends through the parotid gland, which is a salivary gland located in front of the ear, and then bifurcates, or splits into two branches, within the gland. The anterior division of the retromandibular vein passes forward to join the facial vein, which drains blood from the face and scalp, while the posterior division is one of the tributaries, or smaller branches, of the external jugular vein, which is a major vein in the neck.

      The retromandibular vein plays an important role in the circulation of blood in the head and neck. It receives blood from the maxillary and superficial temporal veins, which drain the teeth, gums, and other structures in the face and scalp. The retromandibular vein then carries this blood through the parotid gland and into the larger veins of the neck, where it eventually returns to the heart. Understanding the anatomy and function of the retromandibular vein is important for healthcare professionals who work with patients who have conditions affecting the head and neck, such as dental infections, facial trauma, or head and neck cancer.

    • This question is part of the following fields:

      • Cardiovascular System
      8.3
      Seconds
  • Question 3 - A 50-year-old man has metastatic adenocarcinoma of the colon that has spread throughout...

    Incorrect

    • A 50-year-old man has metastatic adenocarcinoma of the colon that has spread throughout his body. Which of the following tumor markers is expected to be elevated?

      Your Answer: Beta HCG

      Correct Answer: Carcinoembryonic antigen

      Explanation:

      Using CEA as a screening tool for colonic cancer is not justifiable. While it is true that CEA levels are elevated in colonic cancer, this is also the case in non-malignant conditions such as cirrhosis and colitis. Additionally, the highest levels of CEA are typically seen in cases of metastatic disease. Therefore, CEA should not be used to monitor colitis patients for the development of colonic cancer. This information is supported by a study published in the BMJ in 2009.

      Diagnosis and Staging of Colorectal Cancer

      Diagnosis of colorectal cancer is typically done through a colonoscopy, which is considered the gold standard as long as it is complete and provides good mucosal visualization. Other options for diagnosis include double-contrast barium enema and CT colonography. Once a malignant diagnosis is made, patients will undergo staging using chest, abdomen, and pelvic CT scans. Patients with rectal cancer will also undergo evaluation of the mesorectum with pelvic MRI scanning. For examination purposes, the Dukes and TNM systems are preferred.

      Tumour Markers in Colorectal Cancer

      Carcinoembryonic antigen (CEA) is the main tumour marker in colorectal cancer. While not all tumours secrete CEA, it is still used as a marker for disease burden and is once again being used routinely in follow-up. However, it is important to note that CEA levels may also be raised in conditions such as IBD.

    • This question is part of the following fields:

      • Gastrointestinal System
      10.3
      Seconds
  • Question 4 - What is the accurate embryonic source of the stapes? ...

    Incorrect

    • What is the accurate embryonic source of the stapes?

      Your Answer: Third pharyngeal arch

      Correct Answer: Second pharyngeal arch

      Explanation:

      The stapes, which is a cartilaginous element in the ear, originates from the ectoderm covering the outer aspect of the second pharyngeal arch. This strip of ectoderm is located lateral to the metencephalic neural fold. Reicherts cartilage, which extends from the otic capsule to the midline on each side, is responsible for the formation of the stapes. The cartilages of the first and second pharyngeal arches articulate superior to the tubotympanic recess, with the malleus, incus, and stapes being formed from these cartilages. While the malleus is mostly formed from the first arch, the stapes is most likely to arise from the second arch.

      The Development and Contributions of Pharyngeal Arches

      During the fourth week of embryonic growth, a series of mesodermal outpouchings develop from the pharynx, forming the pharyngeal arches. These arches fuse in the ventral midline, while pharyngeal pouches form on the endodermal side between the arches. There are six pharyngeal arches, with the fifth arch not contributing any useful structures and often fusing with the sixth arch.

      Each pharyngeal arch has its own set of muscular and skeletal contributions, as well as an associated endocrine gland, artery, and nerve. The first arch contributes muscles of mastication, the maxilla, Meckel’s cartilage, and the incus and malleus bones. The second arch contributes muscles of facial expression, the stapes bone, and the styloid process and hyoid bone. The third arch contributes the stylopharyngeus muscle, the greater horn and lower part of the hyoid bone, and the thymus gland. The fourth arch contributes the cricothyroid muscle, all intrinsic muscles of the soft palate, the thyroid and epiglottic cartilages, and the superior parathyroids. The sixth arch contributes all intrinsic muscles of the larynx (except the cricothyroid muscle), the cricoid, arytenoid, and corniculate cartilages, and is associated with the pulmonary artery and recurrent laryngeal nerve.

      Overall, the development and contributions of pharyngeal arches play a crucial role in the formation of various structures in the head and neck region.

    • This question is part of the following fields:

      • Respiratory System
      4.6
      Seconds
  • Question 5 - A patient presents with difficulties with swallowing, muscle cramps, tiredness and fasciculations. A...

    Incorrect

    • A patient presents with difficulties with swallowing, muscle cramps, tiredness and fasciculations. A diagnosis of a motor neuron disease is made. Which is the most common type?

      Your Answer: Progressive bulbar palsy

      Correct Answer: Amyotrophic lateral sclerosis

      Explanation:

      The majority of individuals diagnosed with motor neuron disease suffer from amyotrophic lateral sclerosis, which is the prevailing form of the condition.

      Understanding the Different Types of Motor Neuron Disease

      Motor neuron disease is a neurological condition that affects both upper and lower motor neurons. It is a rare condition that usually occurs after the age of 40. There are different patterns of the disease, including amyotrophic lateral sclerosis, primary lateral sclerosis, progressive muscular atrophy, and progressive bulbar palsy. Some patients may also have a combination of these patterns.

      Amyotrophic lateral sclerosis is the most common type of motor neuron disease, accounting for 50% of cases. It typically presents with lower motor neuron signs in the arms and upper motor neuron signs in the legs. In familial cases, the gene responsible for the disease is located on chromosome 21 and codes for superoxide dismutase.

      Primary lateral sclerosis, on the other hand, presents with upper motor neuron signs only. Progressive muscular atrophy affects only the lower motor neurons and usually starts in the distal muscles before progressing to the proximal muscles. It carries the best prognosis among the different types of motor neuron disease.

      Finally, progressive bulbar palsy affects the muscles of the tongue, chewing and swallowing, and facial muscles due to the loss of function of brainstem motor nuclei. It carries the worst prognosis among the different types of motor neuron disease. Understanding the different types of motor neuron disease is crucial in providing appropriate treatment and care for patients.

    • This question is part of the following fields:

      • Neurological System
      11
      Seconds
  • Question 6 - A 35-year-old woman arrives at the emergency department complaining of worsening bone pain...

    Correct

    • A 35-year-old woman arrives at the emergency department complaining of worsening bone pain in her left hip over the past few days. She mentions feeling ill and feverish, but attributes it to a recent cold. The patient is a known IV drug user and has not traveled recently.

      During the examination, the left hip appears red and tender, and multiple track marks are visible.

      Which organism is most likely responsible for her symptoms?

      Your Answer: Staphylococcus aureus

      Explanation:

      Osteomyelitis is most commonly caused by Staphylococcus aureus in both adults and children. IV drug use is a known risk factor for this condition as it can introduce microorganisms directly into the bloodstream. While Escherichia coli can also cause osteomyelitis, it is more prevalent in children than adults. Mycobacterium tuberculosis can also lead to osteomyelitis, but it is less common than Staphylococcus aureus. Bone introduction typically occurs via the circulatory system from pulmonary tuberculosis. However, antitubercular therapy has reduced the incidence of tuberculosis, making bone introduction less likely than with Staphylococcus aureus, which is part of the normal skin flora. Salmonella enterica is the most common cause of osteomyelitis in individuals with sickle cell disease. As the patient is not known to have sickle cell, Staphylococcus aureus remains the most probable cause.

      Understanding Osteomyelitis: Types, Causes, and Treatment

      Osteomyelitis is a bone infection that can be classified into two types: haematogenous and non-haematogenous. Haematogenous osteomyelitis is caused by bacteria in the bloodstream and is usually monomicrobial. It is more common in children and can be caused by risk factors such as sickle cell anaemia, intravenous drug use, immunosuppression, and infective endocarditis. On the other hand, non-haematogenous osteomyelitis is caused by the spread of infection from adjacent soft tissues or direct injury to the bone. It is often polymicrobial and more common in adults, with risk factors such as diabetic foot ulcers, pressure sores, diabetes mellitus, and peripheral arterial disease.

      Staphylococcus aureus is the most common cause of osteomyelitis, except in patients with sickle-cell anaemia where Salmonella species are more prevalent. To diagnose osteomyelitis, MRI is the imaging modality of choice, with a sensitivity of 90-100%.

      The treatment for osteomyelitis involves a course of antibiotics for six weeks. Flucloxacillin is the preferred antibiotic, but clindamycin can be used for patients who are allergic to penicillin. Understanding the types, causes, and treatment of osteomyelitis is crucial in managing this bone infection.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      11.2
      Seconds
  • Question 7 - A 30-year-old rower comes to your clinic complaining of a painful shoulder that...

    Incorrect

    • A 30-year-old rower comes to your clinic complaining of a painful shoulder that has been bothering him for the past two weeks. The pain is dull and comes and goes, mainly affecting the posterior and lateral parts of his shoulder. Heavy exercises such as weightlifting and rowing exacerbate the pain, so he has been avoiding these activities. During the examination, you notice tenderness on the posterior aspect of the shoulder, and there is some weakness on shoulder abduction. Quadrangular space syndrome is a rare possibility for this presentation. Which of the following is not a border of the quadrangular space?

      Your Answer: Teres major

      Correct Answer: Infraspinatus

      Explanation:

      The correct answer is infraspinatus, which is located superior to the quadrangular space. The quadrangular space is a passage for nerves and vessels between the anterior and posterior regions of the shoulder, bordered by the inferior border of teres major, the lateral border of the surgical neck of the humerus, the medial border of the lateral margin of the long head of triceps brachii, and the superior border of the inferior margin of teres minor. The axillary nerve and posterior circumflex artery pass through this space. Quadrangular space syndrome is a rare condition that involves compression of these structures, typically in young adults without trauma. Symptoms may include shoulder pain during resisted abduction and external rotation, as well as wasting of the deltoid muscle.

      The shoulder joint is a shallow synovial ball and socket joint that is inherently unstable but capable of a wide range of movement. Stability is provided by the muscles of the rotator cuff. The glenoid labrum is a fibrocartilaginous rim attached to the free edge of the glenoid cavity. The fibrous capsule attaches to the scapula, humerus, and tendons of various muscles. Movements of the shoulder joint are controlled by different muscles. The joint is closely related to important anatomical structures such as the brachial plexus, axillary artery and vein, and various nerves and vessels.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      22.7
      Seconds
  • Question 8 - A 30-year-old man visits his doctor with a painless erythematous rash in the...

    Correct

    • A 30-year-old man visits his doctor with a painless erythematous rash in the shape of a target on his ankle. He mentions being bitten by a tick during a hiking trip a week ago. The doctor suspects lyme disease and prescribes doxycycline.

      What is the mechanism of action of this medication?

      Your Answer: Inhibits protein synthesis by binding to the 30S ribosomal subunit

      Explanation:

      Doxycycline is a type of tetracycline antibiotic that works by binding to the 30S ribosomal subunit, inhibiting bacterial protein synthesis. It is effective against both gram positive and gram negative infections and is considered bacteriostatic.

      Clarithromycin is a macrolide antibiotic that works by binding to the 50S ribosomal subunit, inhibiting bacterial protein synthesis. It is effective against both gram positive and gram negative infections.

      Benzylpenicillin is a type of penicillin antibiotic that works by inhibiting bacterial cell wall formation. It is effective against gram positive infections.

      Trimethoprim is a folate antagonist that works by binding to dihydrofolate reductase, inhibiting folate metabolism. It is effective against both gram positive and gram negative infections.

      Metronidazole is a nitroimidazole antibiotic that works by causing DNA strand breaks. It is effective against anaerobic infections.

      Antibiotics work in different ways to kill or inhibit the growth of bacteria. The commonly used antibiotics can be classified based on their gross mechanism of action. The first group inhibits cell wall formation by either preventing peptidoglycan cross-linking (penicillins, cephalosporins, carbapenems) or peptidoglycan synthesis (glycopeptides like vancomycin). The second group inhibits protein synthesis by acting on either the 50S subunit (macrolides, chloramphenicol, clindamycin, linezolid, streptogrammins) or the 30S subunit (aminoglycosides, tetracyclines) of the bacterial ribosome. The third group inhibits DNA synthesis (quinolones like ciprofloxacin) or damages DNA (metronidazole). The fourth group inhibits folic acid formation (sulphonamides and trimethoprim), while the fifth group inhibits RNA synthesis (rifampicin). Understanding the mechanism of action of antibiotics is important in selecting the appropriate drug for a particular bacterial infection.

    • This question is part of the following fields:

      • General Principles
      11.8
      Seconds
  • Question 9 - A 35-year-old female patient with a history of relapsing-remitting multiple sclerosis presents with...

    Incorrect

    • A 35-year-old female patient with a history of relapsing-remitting multiple sclerosis presents with new-onset double vision. She reports that in the last week, she has noticed double vision when trying to focus on objects on the left side of her visual field. She reports no double vision when looking to the right.

      During examination, asking the patient to track the examiner's finger and look to the left (i.e. left horizontal conjugate gaze) elicits double vision, with the patient reporting that images appear 'side by side.' Additionally, there is a failure of the right eye to adduct past the midline, and nystagmus is noted in the left eye. Asking the patient to look to the right elicits no symptoms or abnormal findings. Asking the patient to converge her eyes on a nearby, midline object elicits no abnormalities, and the patient can abduct both eyes.

      Which part of the nervous system is most likely responsible for this patient's symptoms?

      Your Answer: Nucleus of the oculomotor nerve

      Correct Answer: Paramedian area of midbrain and pons

      Explanation:

      The medial longitudinal fasciculus is a pathway located in the paramedian area of the midbrain and pons that coordinates horizontal conjugate gaze by connecting the abducens nerve nucleus (CN VI) with the contralateral oculomotor nerve nucleus (CN III). Lesions in the MLF can result in internuclear ophthalmoplegia (INO), which is commonly caused by demyelinating disorders like multiple sclerosis. Bilateral INO is often associated with multiple sclerosis.

      The other options listed in the vignette can also cause visual disturbances, but they are not the cause of the patient’s INO. Lesions in the occipital lobe can cause contralateral homonymous, macular-sparing quadrantanopia or hemianopia. Lateral medullary lesions (Wallenberg syndrome) can cause an ipsilateral Horner’s syndrome marked by ptosis, miosis, and anhidrosis. Optic neuritis, which is common in multiple sclerosis, can cause blurred vision, colour desaturation, and eye pain, but it would not result in binocular diplopia that improves on covering the unaffected eye. Lesions affecting the oculomotor nerve nucleus would also affect the ipsilateral eye’s ability to abduct on horizontal conjugate gaze, but the test of convergence can help distinguish this from an MLF lesion.

      Understanding Internuclear Ophthalmoplegia

      Internuclear ophthalmoplegia is a condition that affects the horizontal movement of the eyes. It is caused by a lesion in the medial longitudinal fasciculus (MLF), which is responsible for interconnecting the IIIrd, IVth, and VIth cranial nuclei. This area is located in the paramedian region of the midbrain and pons. The main feature of this condition is impaired adduction of the eye on the same side as the lesion, along with horizontal nystagmus of the abducting eye on the opposite side.

      The most common causes of internuclear ophthalmoplegia are multiple sclerosis and vascular disease. It is important to note that this condition can also be a sign of other underlying neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      63.1
      Seconds
  • Question 10 - A 68-year-old man with a long history of poorly controlled type-2 diabetes is...

    Correct

    • A 68-year-old man with a long history of poorly controlled type-2 diabetes is prescribed a new medication that increases urinary glucose excretion. The doctor informs him that it belongs to the SGLT-2 inhibitor drug class.

      Which of the following medications is classified as an SGLT-2 inhibitor?

      Your Answer: Dapagliflozin

      Explanation:

      SGLT2 inhibitors are known as gliflozins.

      Sulfonylurea refers to tolbutamide.

      GLP-1 receptor agonist is exenatide.

      DPP-4 inhibitor is linagliptin.

      Understanding SGLT-2 Inhibitors

      SGLT-2 inhibitors are medications that work by blocking the reabsorption of glucose in the kidneys, leading to increased excretion of glucose in the urine. This mechanism of action helps to lower blood sugar levels in patients with type 2 diabetes mellitus. Examples of SGLT-2 inhibitors include canagliflozin, dapagliflozin, and empagliflozin.

      However, it is important to note that SGLT-2 inhibitors can also have adverse effects. Patients taking these medications may be at increased risk for urinary and genital infections due to the increased glucose in the urine. Fournier’s gangrene, a rare but serious bacterial infection of the genital area, has also been reported. Additionally, there is a risk of normoglycemic ketoacidosis, a condition where the body produces high levels of ketones even when blood sugar levels are normal. Finally, patients taking SGLT-2 inhibitors may be at increased risk for lower-limb amputations, so it is important to closely monitor the feet.

      Despite these potential risks, SGLT-2 inhibitors can also have benefits. Patients taking these medications often experience weight loss, which can be beneficial for those with type 2 diabetes mellitus. Overall, it is important for patients to discuss the potential risks and benefits of SGLT-2 inhibitors with their healthcare provider before starting treatment.

    • This question is part of the following fields:

      • Endocrine System
      5.5
      Seconds
  • Question 11 - A 25-year-old female comes to you with a similar concern about her 'unsightly...

    Correct

    • A 25-year-old female comes to you with a similar concern about her 'unsightly toe'. She has been hesitant to wear open-toed shoes due to the appearance of her toe. After taking some clippings and sending them to the lab, the results confirm onychomycosis. You decide to prescribe a 6-month course of terbinafine.

      What is the mechanism of action of terbinafine?

      Your Answer: Squalene epoxidase inhibitor

      Explanation:

      Terbinafine causes cellular death by inhibiting the fungal enzyme squalene epoxidase, which is responsible for the biosynthesis of ergosterol – an essential component of fungal cell membranes.

      Rifampicin suppresses RNA synthesis and causes cell death by inhibiting DNA-dependent RNA polymerase.

      Digoxin, which is not an antibiotic, inhibits Na+K+ATPase.

      Quinolones prevent bacterial DNA from unwinding and duplicating by inhibiting DNA topoisomerase.

      Trimethoprim inhibits bacterial DNA synthesis by binding to dihydrofolate reductase and preventing the reduction of dihydrofolic acid (DHF) to tetrahydrofolic acid (THF), which is an essential precursor in the thymidine synthesis pathway.

      Antifungal agents are drugs used to treat fungal infections. There are several types of antifungal agents, each with a unique mechanism of action and potential adverse effects. Azoles work by inhibiting 14α-demethylase, an enzyme that produces ergosterol, a component of fungal cell membranes. However, they can also inhibit the P450 system in the liver, leading to potential liver toxicity. Amphotericin B binds with ergosterol to form a transmembrane channel that causes leakage of monovalent ions, but it can also cause nephrotoxicity and flu-like symptoms. Terbinafine inhibits squalene epoxidase, while griseofulvin interacts with microtubules to disrupt mitotic spindle. However, griseofulvin can induce the P450 system and is teratogenic. Flucytosine is converted by cytosine deaminase to 5-fluorouracil, which inhibits thymidylate synthase and disrupts fungal protein synthesis, but it can cause vomiting. Caspofungin inhibits the synthesis of beta-glucan, a major fungal cell wall component, and can cause flushing. Nystatin binds with ergosterol to form a transmembrane channel that causes leakage of monovalent ions, but it is very toxic and can only be used topically, such as for oral thrush.

    • This question is part of the following fields:

      • General Principles
      19.4
      Seconds
  • Question 12 - A 16-year-old boy is being evaluated for weight loss and increased thirst. During...

    Incorrect

    • A 16-year-old boy is being evaluated for weight loss and increased thirst. During a urine dipstick test, one of the parameters showed a +++ result. In which part of the nephron does the resorption of this solute primarily occur?

      Your Answer: Distal convoluted tubule

      Correct Answer: Proximal convoluted tubule

      Explanation:

      Glucose is primarily reabsorbed in the proximal convoluted tubule of the nephron. In individuals with type 1 diabetes, the level of circulating glucose exceeds the nephron’s capacity for reabsorption, resulting in glycosuria or glucose in the urine. The collecting duct system mainly reabsorbs water under the control of hormones such as ADH. The descending limb of the loop of Henle is primarily permeable to water, while the distal convoluted tubule mainly absorbs ions and water through active transport. The thick ascending limb of the loop of Henle is the main site of resorption for sodium, potassium, and chloride ions, creating a hypotonic filtrate.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      13.3
      Seconds
  • Question 13 - Which one of the following nerves conveys sensory information from the nasal mucosa?...

    Correct

    • Which one of the following nerves conveys sensory information from the nasal mucosa?

      Your Answer: Laryngeal branches of the vagus

      Explanation:

      The larynx receives sensory information from the laryngeal branches of the vagus.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      8.5
      Seconds
  • Question 14 - A 35-year-old woman comes to the clinic complaining of worsening tingling sensation in...

    Incorrect

    • A 35-year-old woman comes to the clinic complaining of worsening tingling sensation in her legs and difficulty maintaining balance. She has no significant medical history.

      During the examination, it is observed that her lower limbs have significantly reduced proprioception and vibration sense. She also experiences distal paraesthesia. Additionally, her knee reflexes are brisk.

      A blood film is taken, which shows macrocytic anaemia and hypersegmented neutrophils.

      Based on the symptoms, what parts of the spinal cord are likely to be affected?

      Your Answer: Spinothalamic tract and dorsal column

      Correct Answer: Dorsal column and lateral corticospinal tract

      Explanation:

      Subacute combined degeneration of the spinal cord affects the dorsal columns and lateral corticospinal tracts, as seen in this case with B12 deficiency. The loss of proprioception and vibration sense on examination, as well as brisk knee reflexes, are consistent with an upper motor neuron lesion finding. The anterior corticospinal tract, spinocerebellar tract, and spinothalamic tract are not typically affected in this condition. Therefore, the correct answer is the dorsal columns and lateral corticospinal tracts.

      Subacute Combined Degeneration of Spinal Cord

      Subacute combined degeneration of spinal cord is a condition that occurs due to a deficiency of vitamin B12. The dorsal columns and lateral corticospinal tracts are affected, leading to the loss of joint position and vibration sense. The first symptoms are usually distal paraesthesia, followed by the development of upper motor neuron signs in the legs, such as extensor plantars, brisk knee reflexes, and absent ankle jerks. If left untreated, stiffness and weakness may persist.

      This condition is a serious concern and requires prompt medical attention. It is important to maintain a healthy diet that includes sufficient amounts of vitamin B12 to prevent the development of subacute combined degeneration of spinal cord.

    • This question is part of the following fields:

      • Neurological System
      18.8
      Seconds
  • Question 15 - A 75-year-old man is having a left pneumonectomy for bronchial carcinoma. When the...

    Correct

    • A 75-year-old man is having a left pneumonectomy for bronchial carcinoma. When the surgeons reach the root of the lung, which structure will be the most anterior in the anatomical plane?

      Your Answer: Phrenic nerve

      Explanation:

      The lung root contains two nerves, with the phrenic nerve positioned in the most anterior location and the vagus nerve situated in the most posterior location.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      5.5
      Seconds
  • Question 16 - A 28-year-old man presents to the clinic with a complaint of whitish discharge...

    Correct

    • A 28-year-old man presents to the clinic with a complaint of whitish discharge from the urethra and a burning sensation during urination. He reports having multiple unprotected sexual encounters. gonorrhoeae is diagnosed after appropriate testing and he is treated with ceftriaxone intramuscularly. What is the mechanism of action of this drug?

      Your Answer: Inhibits cell wall formation

      Explanation:

      The main treatment for gonorrhoeae is a single dose of IM ceftriaxone, which belongs to the cephalosporin class of antibiotics that inhibit cell wall formation. Azithromycin may also be prescribed to treat co-infection with Chlamydia. Quinolones, which inhibit DNA synthesis, are not recommended due to increased resistance. Sulphonamides work by inhibiting folic acid formation, while macrolides, chloramphenicol, clindamycin, linezolid, streptogramins, aminoglycosides, and tetracyclines work by inhibiting protein synthesis. Although azithromycin may be used as an add-on therapy for co-infection with Chlamydia, it is not the primary treatment for gonorrhoeae and is administered orally. Rifampicin, on the other hand, works by inhibiting RNA synthesis.

      Antibiotics work in different ways to kill or inhibit the growth of bacteria. The commonly used antibiotics can be classified based on their gross mechanism of action. The first group inhibits cell wall formation by either preventing peptidoglycan cross-linking (penicillins, cephalosporins, carbapenems) or peptidoglycan synthesis (glycopeptides like vancomycin). The second group inhibits protein synthesis by acting on either the 50S subunit (macrolides, chloramphenicol, clindamycin, linezolid, streptogrammins) or the 30S subunit (aminoglycosides, tetracyclines) of the bacterial ribosome. The third group inhibits DNA synthesis (quinolones like ciprofloxacin) or damages DNA (metronidazole). The fourth group inhibits folic acid formation (sulphonamides and trimethoprim), while the fifth group inhibits RNA synthesis (rifampicin). Understanding the mechanism of action of antibiotics is important in selecting the appropriate drug for a particular bacterial infection.

    • This question is part of the following fields:

      • General Principles
      18.6
      Seconds
  • Question 17 - A 50-year-old male comes to the emergency department complaining of left sided vision...

    Correct

    • A 50-year-old male comes to the emergency department complaining of left sided vision loss, headache and scalp tenderness. During the examination, he has a fever of 38.5°C, jaw claudication and a relative afferent pupillary defect is observed. The medical team suspects giant cell arteritis and initiates high dose prednisone treatment.

      What structural abnormality is responsible for the relative afferent pupillary defect?

      Your Answer: Ischaemic optic neuropathy

      Explanation:

      A relative afferent pupillary defect is a sign that there may be an optic nerve lesion or a severe retinal disease. In cases of giant cell arteritis (GCA), an inflammatory process of the blood vessels in the head can lead to ischaemic optic neuropathy, which can cause a RAPD. However, blindness, corneal opacity, and photophobia alone are not enough to cause a RAPD. While optic neuritis can also result in a RAPD, this is not typically seen in GCA and may instead indicate a first presentation of multiple sclerosis.

      A relative afferent pupillary defect, also known as the Marcus-Gunn pupil, can be identified through the swinging light test. This condition is caused by a lesion that is located anterior to the optic chiasm, which can be found in the optic nerve or retina. When light is shone on the affected eye, it appears to dilate while the normal eye remains unchanged.

      The causes of a relative afferent pupillary defect can vary. For instance, it may be caused by a detachment of the retina or optic neuritis, which is often associated with multiple sclerosis. The pupillary light reflex pathway involves the afferent pathway, which starts from the retina and goes through the optic nerve, lateral geniculate body, and midbrain. The efferent pathway, on the other hand, starts from the Edinger-Westphal nucleus in the midbrain and goes through the oculomotor nerve.

    • This question is part of the following fields:

      • Neurological System
      17
      Seconds
  • Question 18 - A researcher plans to conduct a cohort study to compare the incidence of...

    Incorrect

    • A researcher plans to conduct a cohort study to compare the incidence of hypertension in individuals aged 40-50 years who consume high amounts of salt versus those who consume low amounts of salt. What statistical parameters should they calculate to determine the required sample size in each group for detecting a significant difference, if any?

      Your Answer: Positive predictive value

      Correct Answer: Power

      Explanation:

      Power refers to the likelihood of correctly rejecting the null hypothesis when it is false, thereby avoiding a type II error. The positive predictive value indicates the probability of individuals with a positive screening test actually having the disease, while the negative predictive value indicates the probability of individuals with a negative screening test not having the disease. Specificity refers to the proportion of individuals without the condition who receive a negative test result. A type I error, or false positive, occurs when a researcher erroneously rejects a true null hypothesis, while a type II error, or false negative, occurs when a researcher mistakenly accepts a false null hypothesis.

      Significance tests are used to determine the likelihood of a null hypothesis being true. The null hypothesis states that two treatments are equally effective, while the alternative hypothesis suggests that there is a difference between the two treatments. The p value is the probability of obtaining a result by chance that is at least as extreme as the observed result, assuming the null hypothesis is true. Two types of errors can occur during significance testing: type I, where the null hypothesis is rejected when it is true, and type II, where the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

    • This question is part of the following fields:

      • General Principles
      11.7
      Seconds
  • Question 19 - A 42-year-old man with schizophrenia undergoes his yearly physical examination. He is currently...

    Correct

    • A 42-year-old man with schizophrenia undergoes his yearly physical examination. He is currently taking risperidone as part of his medication regimen.

      What is the most common issue that can be linked to the use of risperidone in this patient?

      Your Answer: Galactorrhoea

      Explanation:

      Risperidone, an atypical antipsychotic, has the potential to increase prolactin levels. This is because it inhibits dopamine, which reduces dopamine-mediated inhibition of prolactin. Although elevated prolactin may not cause any symptoms, it can have adverse effects if persistently elevated. One of the major roles of prolactin is to stimulate milk production in the mammary glands. Therefore, any cause of raised prolactin can result in milk production, which is known as galactorrhoea. This can occur in both males and females due to raised prolactin levels. Galactorrhoea is the most likely side effect caused by risperidone.

      Raised prolactin levels can also lead to reduced libido and infertility in both sexes. However, it is unlikely to result in increased libido. Prolactin can interfere with other hormones, such as oestrogen and progesterone, which can cause irregular periods, but it does not specifically cause painful periods. Elevated levels of prolactin would not result in seizures. Risperidone is more likely to be associated with weight gain rather than weight loss, as it acts on the histamine receptor.

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      8.5
      Seconds
  • Question 20 - A 25-year-old male is experiencing abdominal pain and is undergoing an abdominal ultrasound...

    Incorrect

    • A 25-year-old male is experiencing abdominal pain and is undergoing an abdominal ultrasound scan. During the scan, the radiologist observes signs of splenic atrophy. What could be the probable cause of this condition?

      Your Answer: Niemann-Pick disease

      Correct Answer: Coeliac disease

      Explanation:

      In coeliac disease, the spleen may undergo atrophy and Howell-Jolly bodies may be observed in red blood cells. Histiocytosis X includes Letterer-Siwe disease, which involves the excessive growth of macrophages.

      The Anatomy and Function of the Spleen

      The spleen is an organ located in the left upper quadrant of the abdomen. Its size can vary depending on the amount of blood it contains, but the typical adult spleen is 12.5cm long and 7.5cm wide, with a weight of 150g. The spleen is almost entirely covered by peritoneum and is separated from the 9th, 10th, and 11th ribs by both diaphragm and pleural cavity. Its shape is influenced by the state of the colon and stomach, with gastric distension causing it to resemble an orange segment and colonic distension causing it to become more tetrahedral.

      The spleen has two folds of peritoneum that connect it to the posterior abdominal wall and stomach: the lienorenal ligament and gastrosplenic ligament. The lienorenal ligament contains the splenic vessels, while the short gastric and left gastroepiploic branches of the splenic artery pass through the layers of the gastrosplenic ligament. The spleen is in contact with the phrenicocolic ligament laterally.

      The spleen has two main functions: filtration and immunity. It filters abnormal blood cells and foreign bodies such as bacteria, and produces properdin and tuftsin, which help target fungi and bacteria for phagocytosis. The spleen also stores 40% of platelets, reutilizes iron, and stores monocytes. Disorders of the spleen include massive splenomegaly, myelofibrosis, chronic myeloid leukemia, visceral leishmaniasis, malaria, Gaucher’s syndrome, portal hypertension, lymphoproliferative disease, haemolytic anaemia, infection, infective endocarditis, sickle-cell, thalassaemia, and rheumatoid arthritis.

    • This question is part of the following fields:

      • Haematology And Oncology
      9.5
      Seconds
  • Question 21 - What is the name of the process where glucose is used as a...

    Correct

    • What is the name of the process where glucose is used as a fuel to produce pyruvate and yield ATP in most body cells?

      Your Answer: Glycolysis

      Explanation:

      The Process of Energy Production from Glucose in the Human Body

      The breakdown of fuel molecules, particularly glucose, is a crucial process in the human body. While fat and protein can also be used for fuel, glucose has the simplest method of metabolism. For this process to occur, nutrients from the diet must be absorbed and distributed to individual cells. Most cells in the body have the necessary machinery for producing ATP from glucose.

      The process of producing energy from glucose involves three main steps. First, glycolysis occurs, where the 6-carbon glucose molecule is split into two 3-carbon particles. Next, the Kreb cycle, also known as the tricarboxylic acid cycle, modifies 3-carbon containing acids in a series of steps to produce NADH. Finally, the electron transfer chain takes place inside mitochondria, where the NADH generated during the Kreb cycle is used to produce energy in the form of ATP through a series of redox reactions.

      In summary, the process of energy production from glucose is a fundamental process in the human body. It involves the breakdown of glucose into smaller particles, modification of these particles to produce NADH, and the use of NADH to produce ATP through a series of redox reactions.

    • This question is part of the following fields:

      • Clinical Sciences
      10.4
      Seconds
  • Question 22 - A 47-year-old woman is experiencing muscle spasticity due to relapsing-remitting multiple sclerosis. Baclofen...

    Incorrect

    • A 47-year-old woman is experiencing muscle spasticity due to relapsing-remitting multiple sclerosis. Baclofen is prescribed to alleviate the pain associated with spasticity.

      What is the mechanism of action of Baclofen?

      Your Answer: N-methyl-D-aspartate receptor (NMDA) receptor agonist

      Correct Answer: Gamma-aminobutyric acid (GABA) receptor agonist

      Explanation:

      Baclofen is a medication that acts as an agonist at GABA receptors in the central nervous system. It is primarily used as a muscle relaxant to treat spasticity conditions such as multiple sclerosis and cerebral palsy. It should be noted that baclofen is not a GABA antagonist like flumazenil, nor does it act as an NMDA agonist like the toxin responsible for Amanita muscaria poisoning. Additionally, baclofen does not exert its effects at muscarinic receptors like buscopan, which is commonly used to treat pain associated with bowel wall spasm and respiratory secretions during end-of-life care. Instead, baclofen specifically targets GABA receptors.

      Baclofen is a medication that is commonly prescribed to alleviate muscle spasticity in individuals with conditions like multiple sclerosis, cerebral palsy, and spinal cord injuries. It works by acting as an agonist of GABA receptors in the central nervous system, which includes both the brain and spinal cord. Essentially, this means that baclofen helps to enhance the effects of a neurotransmitter called GABA, which can help to reduce the activity of certain neurons and ultimately lead to a reduction in muscle spasticity. Overall, baclofen is an important medication for individuals with these conditions, as it can help to improve their quality of life and reduce the impact of muscle spasticity on their daily activities.

    • This question is part of the following fields:

      • Neurological System
      9.5
      Seconds
  • Question 23 - A pediatrician is conducting a study of asthma in her clinic's population, looking...

    Incorrect

    • A pediatrician is conducting a study of asthma in her clinic's population, looking at data over the past year. In total, the clinic has 1500 patients registered last year. Using the medical record searching system, she discovers that, in total, twenty patients registered to her practice are currently living with asthma. This includes ten new cases of asthma. Five patients have also died from the disease.

      What are the incidence and prevalence, respectively, per 100,000 people?

      Your Answer: 140 and 80

      Correct Answer: 80 and 140

      Explanation:

      Incidence measures the number of new cases, while prevalence is a snapshot of existing cases. The correct answers for the incidence and prevalence of lung cancer in the GP’s practice population, scaled up to 100,000 people, are 80 and 140 respectively. The figures of 20 and 35 are the incidence and prevalence for the practice population’s size, while the figures of 48 and 80 refer to the mortality rate and incidence per 100,000 people. The mortality rate is the number of deaths in a given unit of time, and in this case, it is 48 deaths per 100,000 people.

      Understanding Incidence and Prevalence

      Incidence and prevalence are two terms used to describe the frequency of a condition in a population. The incidence refers to the number of new cases per population in a given time period, while the prevalence refers to the total number of cases per population at a particular point in time. Prevalence can be further divided into point prevalence and period prevalence, depending on the time frame used to measure it.

      To calculate prevalence, one can use the formula prevalence = incidence * duration of condition. This means that in chronic diseases, the prevalence is much greater than the incidence, while in acute diseases, the prevalence and incidence are similar. For example, the incidence of the common cold may be greater than its prevalence.

      Understanding the difference between incidence and prevalence is important in epidemiology and public health, as it helps to identify the burden of a disease in a population and inform healthcare policies and interventions. By measuring both incidence and prevalence, researchers can track the spread of a disease over time and assess the effectiveness of prevention and treatment strategies.

    • This question is part of the following fields:

      • General Principles
      18.6
      Seconds
  • Question 24 - While on clinical placement, you attend a presentation by a pharmaceutical company representative...

    Incorrect

    • While on clinical placement, you attend a presentation by a pharmaceutical company representative who is promoting a new anticoagulant. They claim that a meta-analysis shows it to be superior to the current option at your hospital. However, you have reservations about publication bias and decide to review the paper cited by the representative.

      What method of data presentation can reveal the presence of this bias in the study?

      Your Answer: Pie chart

      Correct Answer: Funnel plot

      Explanation:

      Funnel plots are a type of graph that can reveal publication bias in meta-analyses. They plot trial size against reported effect size, and smaller trials may be more likely to show bias due to the pressure to publish significant results. If publication bias is present, the smaller trials may show a larger effect size than the larger trials. Flow diagrams show relationships between ideas, while forest plots combine data from multiple reports to give an overall value. Kaplan-Meier curves estimate survival over time, and pie charts show the relative proportions of different categories in a data set.

      Understanding Funnel Plots in Meta-Analyses

      Funnel plots are graphical representations used to identify publication bias in meta-analyses. These plots typically display treatment effects on the horizontal axis and study size on the vertical axis. The shape of the funnel plot can provide insight into the presence of publication bias. A symmetrical, inverted funnel shape suggests that publication bias is unlikely. On the other hand, an asymmetrical funnel shape indicates a relationship between treatment effect and study size, which may be due to publication bias or systematic differences between smaller and larger studies (known as small study effects).

      In summary, funnel plots are a useful tool for identifying potential publication bias in meta-analyses. By examining the shape of the plot, researchers can gain insight into the relationship between treatment effect and study size, and determine whether further investigation is necessary to ensure the validity of their findings.

    • This question is part of the following fields:

      • General Principles
      11.7
      Seconds
  • Question 25 - A consultant physician is presenting his innovative research on antibiotics to a group...

    Incorrect

    • A consultant physician is presenting his innovative research on antibiotics to a group of colleagues. He mentions that the antibiotics he is studying target the 50s ribosomal unit to inhibit protein synthesis.

      Which specific antibiotic is the consultant referring to?

      Your Answer: Quinolones

      Correct Answer: Tetracyclines

      Explanation:

      Tetracyclines, including doxycycline and lymecycline, hinder protein synthesis by binding to the 30S subunit of the ribosome, which prevents the binding of aminoacyl-tRNA.

      Rifampicin suppresses RNA synthesis and causes cell death by inhibiting DNA-dependent RNA polymerase.

      Trimethoprim inhibits dihydrofolate reductase, which is necessary for the synthesis of DNA.

      Cephalosporins hinder the synthesis of the peptidoglycan layer of bacterial cell walls by competing with penicillin-binding proteins, which are responsible for cross-linking the peptidoglycan layer. The peptidoglycan layer is crucial for maintaining the structural integrity of the cell wall.

      Quinolones, such as ciprofloxacin, prevent DNA synthesis by inhibiting DNA gyrase.

      Understanding Tetracyclines: Antibiotics Used in Clinical Practice

      Tetracyclines are a group of antibiotics that are commonly used in clinical practice. They work by inhibiting protein synthesis, specifically by binding to the 30S subunit and blocking the binding of aminoacyl-tRNA. However, bacteria can develop resistance to tetracyclines through increased efflux by plasmid-encoded transport pumps or ribosomal protection.

      Tetracyclines are used to treat a variety of conditions such as acne vulgaris, Lyme disease, Chlamydia, and Mycoplasma pneumoniae. However, they should not be given to children under 12 years of age or to pregnant or breastfeeding women due to the risk of discolouration of the infant’s teeth.

      While tetracyclines are generally well-tolerated, they can cause adverse effects such as photosensitivity, angioedema, and black hairy tongue. It is important to be aware of these potential side effects and to use tetracyclines only as prescribed by a healthcare professional.

    • This question is part of the following fields:

      • General Principles
      14.6
      Seconds
  • Question 26 - A 49-year-old man visits his GP with complaints of weakness in his arms...

    Incorrect

    • A 49-year-old man visits his GP with complaints of weakness in his arms and legs that he first noticed 3 weeks ago. The symptoms have been progressively worsening since then.

      Upon conducting a neurological examination, the doctor observes spastic weakness in all four limbs, slight muscle wasting, fasciculations, and hyperreflexia with up-going plantar reflexes. The patient's speech and eye movements are normal, and there is no evidence of ptosis. All sensation is intact.

      What is the most likely diagnosis for this patient based on the examination findings?

      Your Answer: Myasthenia gravis

      Correct Answer: Motor neuron disease

      Explanation:

      The patient’s symptoms suggest a diagnosis of motor neuron disease, specifically amyotrophic lateral sclerosis (ALS). This is supported by the presence of both upper and lower motor neuron signs, as well as the lack of sensory involvement. It is common for eye movements and bulbar muscles to be spared until late stages of the disease, which is consistent with the patient’s recent onset of symptoms. The patient’s age is also in line with the typical age of onset for MND.

      Huntington’s disease, which is characterized by chorea, is not likely to be the cause of the patient’s symptoms. Saccadic eye movements and personality changes are also associated with Huntington’s disease.

      Multiple sclerosis (MS) is a possible differential diagnosis for spastic weakness, but the patient’s symptoms alone do not meet the criteria for clinical diagnosis of MS. Additionally, MS would not explain the presence of lower motor neuron signs.

      Myasthenia gravis, which is characterized by fatigability and commonly involves the bulbar and extra-ocular muscles, is also a possible differential diagnosis. However, the patient’s symptoms do not suggest this diagnosis.

      Motor neuron disease is a neurological condition that is not yet fully understood. It can manifest with both upper and lower motor neuron signs and is rare before the age of 40. There are different patterns of the disease, including amyotrophic lateral sclerosis, progressive muscular atrophy, and bulbar palsy. Some of the clues that may indicate a diagnosis of motor neuron disease include fasciculations, the absence of sensory signs or symptoms, a combination of lower and upper motor neuron signs, and wasting of small hand muscles or tibialis anterior.

      Other features of motor neuron disease include the fact that it does not affect external ocular muscles and there are no cerebellar signs. Abdominal reflexes are usually preserved, and sphincter dysfunction is a late feature if present. The diagnosis of motor neuron disease is made based on clinical presentation, but nerve conduction studies can help exclude a neuropathy. Electromyography may show a reduced number of action potentials with increased amplitude. MRI is often used to rule out cervical cord compression and myelopathy as differential diagnoses. It is important to note that while vague sensory symptoms may occur early in the disease, sensory signs are typically absent.

    • This question is part of the following fields:

      • Neurological System
      23.8
      Seconds
  • Question 27 - What is the structure that extends downwards in the sagittal plane between the...

    Incorrect

    • What is the structure that extends downwards in the sagittal plane between the two cerebral hemispheres?

      Your Answer: The tentorium cerebelli

      Correct Answer: The falx cerebri

      Explanation:

      Dura Mater Structures in the Brain

      The brain is a complex organ that is protected by several layers of tissue. One of these layers is the dura mater, which is a thick, fibrous membrane that covers the brain and spinal cord. Within the dura mater, there are several structures that play important roles in the functioning of the brain.

      The falx cerebri is one such structure. It is a large sheet of dura mater that partially separates the two cerebral hemispheres. This separation helps to prevent damage to one hemisphere from affecting the other, and also provides support for the brain.

      Another important dura mater structure is the cavernous sinus. This structure is located within the middle cranial fossa and contains several important blood vessels and nerves. Damage to the cavernous sinus can lead to serious health problems, including vision loss and paralysis.

      The diaphragma sellae is a flat piece of dura mater that allows for the passage of the pituitary stalk. This structure is important for the regulation of hormones in the body, and damage to it can lead to hormonal imbalances and other health problems.

      Finally, the tentorium cerebelli is a structure that separates the cerebellum from the inferior areas of the occipital lobes. This separation helps to protect the cerebellum from damage and also provides support for the brain.

      Overall, the dura mater structures in the brain play important roles in protecting and supporting the brain, as well as regulating important bodily functions.

    • This question is part of the following fields:

      • Clinical Sciences
      5.2
      Seconds
  • Question 28 - Which of the following is most likely to affect the external validity of...

    Incorrect

    • Which of the following is most likely to affect the external validity of a study?

      Your Answer: Instrument obtrusiveness

      Correct Answer: Reactive effects of the research setting

      Explanation:

      Validity refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study. This means we are confident that the independent variable caused the observed change in the dependent variable, rather than other factors. There are several threats to internal validity, such as poor control of extraneous variables and loss of participants over time. External validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. Threats to external validity include the representativeness of the sample and the artificiality of the research setting. There are also other types of validity, such as face validity and content validity, which refer to the general impression and full content of a test, respectively. Criterion validity compares tests, while construct validity measures the extent to which a test measures the construct it aims to.

    • This question is part of the following fields:

      • General Principles
      7.8
      Seconds
  • Question 29 - A 50-year-old male is diagnosed with hypertension with a blood pressure reading of...

    Correct

    • A 50-year-old male is diagnosed with hypertension with a blood pressure reading of 180/100 mmHg during ambulatory blood pressure monitoring. The physician prescribes Ramipril, an ACE inhibitor. What is the most frequent adverse effect associated with this medication?

      Your Answer: A dry cough

      Explanation:

      Hypotension, particularly on the first dose, and deterioration of renal function are common side effects of ACE inhibitors in patients. Although angioedema is a rare side effect of ACE inhibitors, oedema is typically associated with calcium channel blockers. Diuretics may cause excessive urine output, while shortness of breath and headaches are uncommon.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      8.5
      Seconds
  • Question 30 - During a routine physical exam, a patient in their mid-40s was found to...

    Incorrect

    • During a routine physical exam, a patient in their mid-40s was found to have one eye drifting towards the midline when instructed to look straight. Subsequent MRI scans revealed a tumor pressing on one of the skull's foramina. Which foramen of the skull is likely affected by the tumor?

      Your Answer: Jugular

      Correct Answer: Superior orbital fissure

      Explanation:

      The correct answer is that the abducens nerve passes through the superior orbital fissure. This is supported by the patient’s symptoms, which suggest damage to the abducens nerve that innervates the lateral rectus muscle responsible for abducting the eye. The other options are incorrect as they do not innervate the eye or are located in anatomically less appropriate positions. It is important to understand the functions of the nerves and their corresponding foramina to correctly answer this question.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      11.1
      Seconds
  • Question 31 - A 32-year-old female patient visits the GP with a concern about her middle...

    Incorrect

    • A 32-year-old female patient visits the GP with a concern about her middle finger's inability to flex at the end. During the examination, it is observed that she cannot bend the distal interphalangeal joint of her middle finger.

      Which muscle is accountable for this movement?

      Your Answer: Flexor digitorum superficialis

      Correct Answer: Flexor digitorum profundus

      Explanation:

      The correct answer is that the flexor digitorum profundus muscle is responsible for flexing the distal interphalangeal joint. The other options, such as the flexor digitorum superficialis and flexor pollicis longus, are responsible for different movements and are therefore incorrect. The palmar interossei are also not responsible for flexion at the distal interphalangeal joint. Lastly, there is no such muscle as the flexor digiti medius.

      The forearm flexor muscles include the flexor carpi radialis, palmaris longus, flexor carpi ulnaris, flexor digitorum superficialis, and flexor digitorum profundus. These muscles originate from the common flexor origin and surrounding fascia, and are innervated by the median and ulnar nerves. Their actions include flexion and abduction of the carpus, wrist flexion, adduction of the carpus, and flexion of the metacarpophalangeal and interphalangeal joints.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      9.2
      Seconds
  • Question 32 - A 55-year-old woman comes to your clinic seeking help to quit smoking. She...

    Incorrect

    • A 55-year-old woman comes to your clinic seeking help to quit smoking. She has been using nicotine patches for 6 months but has not been successful in her attempts. You decide to prescribe bupropion.

      What is a typical side effect of bupropion?

      Your Answer: Hallucination

      Correct Answer: Gastrointestinal disturbance

      Explanation:

      Side Effects of Buproprion

      Buproprion is a medication that can cause aggression and hallucination in some patients. However, the more common side effects are gastrointestinal disturbances such as diarrhoea, nausea, and dry mouth. These side effects are often experienced by patients taking buproprion. It is important to be aware of the potential side effects of any medication and to speak with a healthcare provider if any concerns arise. Additional information on buproprion and its potential side effects can be found in the electronic Medicines Compendium and Medicines Complete.

    • This question is part of the following fields:

      • Respiratory System
      9.1
      Seconds
  • Question 33 - A 25-year-old male is admitted with non-severe community acquired pneumonia. You prescribe oral...

    Incorrect

    • A 25-year-old male is admitted with non-severe community acquired pneumonia. You prescribe oral amoxicillin for two days. Despite treatment, the patient's condition worsens. Serology confirms Mycoplasma pneumoniae infection.

      What could be the possible reason for this deterioration?

      Your Answer: Inadequate duration of treatment

      Correct Answer: The strain of the likely causative agent is intrinsically resistant to the antibiotic

      Explanation:

      Intrinsic resistance is observed in Mycoplasma pneumoniae, which is responsible for atypical pneumonia, as it lacks a cell wall and is not susceptible to beta-lactam antibiotics such as amoxicillin.

      Comparison of Legionella and Mycoplasma pneumonia

      Legionella and Mycoplasma pneumonia are both causes of atypical pneumonia, but they have some differences. Legionella is associated with outbreaks in buildings with contaminated water systems, while Mycoplasma pneumonia is more common in younger patients and is associated with epidemics every 4 years. Both diseases have flu-like symptoms, but Mycoplasma pneumonia has a more gradual onset and a dry cough. On x-ray, both diseases show bilateral consolidation. However, it is important to recognize Mycoplasma pneumonia as it may not respond to penicillins or cephalosporins due to it lacking a peptidoglycan cell wall.

      Complications of Mycoplasma pneumonia include cold autoimmune haemolytic anaemia, erythema multiforme, meningoencephalitis, and other immune-mediated neurological diseases. In contrast, Legionella can cause Legionnaires’ disease, which is a severe form of pneumonia that can lead to respiratory failure and death.

      Diagnosis of Legionella is generally by urinary antigen testing, while diagnosis of Mycoplasma pneumonia is generally by serology. Treatment for Legionella includes fluoroquinolones or macrolides, while treatment for Mycoplasma pneumonia includes doxycycline or a macrolide. Overall, while both diseases are causes of atypical pneumonia, they have some distinct differences in their epidemiology, symptoms, and complications.

    • This question is part of the following fields:

      • General Principles
      23.2
      Seconds
  • Question 34 - What is the hormone that controls the levels of calcium in the blood?...

    Correct

    • What is the hormone that controls the levels of calcium in the blood?

      Your Answer: Parathyroid hormone

      Explanation:

      The Importance of Parathyroid Hormone in Regulating Blood Calcium Levels

      Calcium plays a crucial role in various bodily functions, including bone support, blood clotting, muscle contraction, nervous transmission, and hormone production. However, excessively high or low levels of calcium in the blood and interstitial fluid can lead to serious health issues such as arrhythmias and cardiac arrest. This is where parathyroid hormone comes in.

      Parathyroid hormone is responsible for regulating blood calcium levels. It works directly on the bone, stimulating bone production or resorption depending on the concentration and duration of exposure. It also acts on the kidney, increasing the loss of phosphate in the urine, decreasing the loss of calcium in the urine, and promoting the activity of the enzyme 1-alpha hydroxylase, which activates vitamin D. Additionally, parathyroid hormone indirectly affects the gut through the action of activated vitamin D.

      Overall, the regulation of blood calcium levels is crucial for maintaining optimal bodily functions. Parathyroid hormone plays a vital role in this process by directly and indirectly affecting various organs and systems in the body.

    • This question is part of the following fields:

      • Clinical Sciences
      2.5
      Seconds
  • Question 35 - What role does the nucleolus play in eukaryotic cells? ...

    Incorrect

    • What role does the nucleolus play in eukaryotic cells?

      Your Answer: To produce RNA polymerases for ribosomal RNA transcription

      Correct Answer: To transcribe ribosomal RNA and assemble ribosomes

      Explanation:

      The Nucleolus: Structure and Function

      The nucleolus is a non-membrane-bound structure that takes up about a quarter of the nuclear volume. It is composed mainly of proteins and nucleic acids and is responsible for transcribing ribosomal RNA (rRNA) and assembling ribosomes in the cell. Nucleoli are formed in nucleolar organizing regions (NORs), which are also the regions of the genes for three of the four eukaryotic rRNAs.

      During ribosome assembly, ribosomal proteins enter the nucleolus from the cytoplasm and begin to assemble on an rRNA precursor. As the pre-rRNA is cleaved to produce 5.8S, 18S, and 28S rRNAs, additional ribosomal proteins and the 5S rRNA (which is synthesized elsewhere in the nucleus) assemble to form preribosomal subunits. These subunits then exit the nucleolus into the cytoplasm and combine to produce the final 40S and 60S ribosomal subunits.

      Overall, the nucleolus plays a crucial role in protein synthesis by producing the components necessary for ribosome assembly. Its unique structure and function make it an essential component of the cell’s machinery.

    • This question is part of the following fields:

      • Basic Sciences
      10
      Seconds
  • Question 36 - A 27-year-old female patient presents to her GP with a concern about experiencing...

    Correct

    • A 27-year-old female patient presents to her GP with a concern about experiencing bloody vomit on multiple occasions over the past 48 hours. She reports that the vomiting is causing her pain. During the examination, the GP observes that the patient's voice is hoarse, and she is wearing loose, baggy clothing despite the warm weather. Upon further inquiry, the patient reveals that she has been inducing vomiting for some time, but this is the first instance of bleeding. What is the most probable cause of the patient's haematemesis?

      Your Answer: Mallory-Weiss tear

      Explanation:

      The patient’s condition is caused by a mallory-weiss tear, which is likely due to their history of bulimia nervosa. Forceful vomiting can lead to this tear, resulting in painful episodes of vomiting blood.

      Peptic ulcers are more commonly seen in older patients or those experiencing abdominal pain and taking NSAIDs.

      Oesophageal varices are typically found in patients with a history of alcohol abuse and may present with signs of chronic liver disease.

      Gastric carcinoma is more likely to occur in high-risk patients, such as men over 55 who smoke, and may be accompanied by weight loss.

      Hereditary telangiectasia is characterized by a positive family history and the presence of telangiectasia around the lips, tongue, or mucus membranes. Epistaxis is a common symptom of this vascular malformation.

      Less Common Oesophageal Disorders

      Plummer-Vinson syndrome is a condition characterized by a triad of dysphagia, glossitis, and iron-deficiency anaemia. Dysphagia is caused by oesophageal webs, which are thin membranes that form in the oesophagus. Treatment for this condition includes iron supplementation and dilation of the webs.

      Mallory-Weiss syndrome is a disorder that occurs when severe vomiting leads to painful mucosal lacerations at the gastroesophageal junction, resulting in haematemesis. This condition is common in alcoholics.

      Boerhaave syndrome is a severe disorder that occurs when severe vomiting leads to oesophageal rupture. This condition requires immediate medical attention.

    • This question is part of the following fields:

      • Gastrointestinal System
      15.9
      Seconds
  • Question 37 - The arrangement of amphipathic phospholipids in the mammalian cell membrane, what is it...

    Correct

    • The arrangement of amphipathic phospholipids in the mammalian cell membrane, what is it like?

      Your Answer: A lipid bilayer with hydrophilic heads facing out and hydrophobic tails facing in

      Explanation:

      The Function and Structure of the Mammalian Cell Membrane

      The mammalian cell membrane serves as a protective barrier that separates the cytoplasm from the extracellular environment. It also acts as a filter for molecules that move across it. Unlike plant and prokaryotic cells, mammalian cells do not have a cell wall. The main component of the cell membrane is a bilayer of amphipathic lipids, which have a hydrophilic head and a hydrophobic tail. The phospholipids in the bilayer are oriented with their hydrophilic heads facing outward and their hydrophobic tails facing inward. This arrangement allows for the separation of the watery extracellular environment from the watery intracellular compartment.

      It is important to note that the cell membrane is not a monolayer and the phospholipids are not linked head-to-tail. This is in contrast to DNA, which has a helical chain formation. Overall, the structure and function of the mammalian cell membrane are crucial for maintaining the integrity and proper functioning of the cell.

    • This question is part of the following fields:

      • Basic Sciences
      8.9
      Seconds
  • Question 38 - Which of the following complications is the least commonly associated with ventricular septal...

    Incorrect

    • Which of the following complications is the least commonly associated with ventricular septal defects in pediatric patients?

      Your Answer: Aortic regurgitation

      Correct Answer: Atrial fibrillation

      Explanation:

      Understanding Ventricular Septal Defect

      Ventricular septal defect (VSD) is a common congenital heart disease that affects many individuals. It is caused by a hole in the wall that separates the two lower chambers of the heart. In some cases, VSDs may close on their own, but in other cases, they require specialized management.

      There are various causes of VSDs, including chromosomal disorders such as Down’s syndrome, Edward’s syndrome, Patau syndrome, and cri-du-chat syndrome. Congenital infections and post-myocardial infarction can also lead to VSDs. The condition can be detected during routine scans in utero or may present post-natally with symptoms such as failure to thrive, heart failure, hepatomegaly, tachypnea, tachycardia, pallor, and a pansystolic murmur.

      Management of VSDs depends on the size and symptoms of the defect. Small VSDs that are asymptomatic may require monitoring, while moderate to large VSDs may result in heart failure and require nutritional support, medication for heart failure, and surgical closure of the defect.

      Complications of VSDs include aortic regurgitation, infective endocarditis, Eisenmenger’s complex, right heart failure, and pulmonary hypertension. Eisenmenger’s complex is a severe complication that results in cyanosis and clubbing and is an indication for a heart-lung transplant. Women with pulmonary hypertension are advised against pregnancy as it carries a high risk of mortality.

      In conclusion, VSD is a common congenital heart disease that requires specialized management. Early detection and appropriate treatment can prevent severe complications and improve outcomes for affected individuals.

    • This question is part of the following fields:

      • Cardiovascular System
      14.5
      Seconds
  • Question 39 - A young woman presents with sudden palpitations and difficulty breathing, and her ECG...

    Incorrect

    • A young woman presents with sudden palpitations and difficulty breathing, and her ECG reveals tachycardia. Which cardiac component typically experiences the most rapid depolarization?

      Your Answer: Purkinje Fibres

      Correct Answer: Sino-atrial node

      Explanation:

      The heart’s conducting system is made up of specialized cardiac muscle cells and fibers that generate and rapidly transmit action potentials. This system is crucial for coordinating the contractions of the heart’s chambers during the cardiac cycle. When this system malfunctions due to conduction blockages or abnormal action potential sources, it can lead to arrhythmias.

      The conducting system has five main components:

      1. The sino-atrial (SAN) node, located in the right atrium, generates electrical signals.
      2. These signals stimulate the atria to contract and travel to the atrio-ventricular (AVN) node in the interatrial septum.
      3. After a delay, the stimulus diverges and is conducted through the left and right bundle of His.
      4. The conduction then passes to the respective Purkinje fibers for each side of the heart.
      5. Finally, the electrical signals reach the endocardium at the apex of the heart and the ventricular epicardium.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      8.4
      Seconds
  • Question 40 - A 63-year-old male with a lengthy history of schizophrenia presents at the clinic....

    Correct

    • A 63-year-old male with a lengthy history of schizophrenia presents at the clinic. He displays rapid darting movements of his tongue and appears to be grimacing. What is the mechanism of action of the medication that is most likely responsible for his symptoms?

      Your Answer: Long term dopamine receptor blockade causing hypersensitivity of dopamine receptors in the nigrostriatal pathway

      Explanation:

      Tardive dyskinesia is a condition that can occur as a result of long-term use of antipsychotic drugs, which is likely in this patient due to his history of mental illness. It is believed that blocking the dopamine receptor can cause hypersensitivity of the D2 receptor in the nigrostriatal pathway, leading to excessive movements.

      It should be noted that antiemetic medications that use dopamine antagonism in the chemoreceptor trigger zone are more likely to cause acute dystonias rather than tardive dyskinesia. Additionally, degeneration of dopaminergic neurons in the substantia nigra is associated with Parkinson’s disease and would not produce these symptoms. Abrupt withdrawal of dopaminergic agents is also not expected to result in tardive dyskinesia. Finally, carbidopa inhibits the conversion of L-DOPA into dopamine and does not cause tardive dyskinesia.

      Antipsychotics are a type of medication used to treat schizophrenia, psychosis, mania, and agitation. They are divided into two categories: typical and atypical antipsychotics. The latter were developed to address the extrapyramidal side-effects associated with the first generation of typical antipsychotics. Typical antipsychotics work by blocking dopaminergic transmission in the mesolimbic pathways through dopamine D2 receptor antagonism. However, they are known to cause extrapyramidal side-effects such as Parkinsonism, acute dystonia, akathisia, and tardive dyskinesia. These side-effects can be managed with procyclidine. Other side-effects of typical antipsychotics include antimuscarinic effects, sedation, weight gain, raised prolactin, impaired glucose tolerance, neuroleptic malignant syndrome, reduced seizure threshold, and prolonged QT interval. The Medicines and Healthcare products Regulatory Agency has issued specific warnings when antipsychotics are used in elderly patients due to an increased risk of stroke and venous thromboembolism.

    • This question is part of the following fields:

      • Psychiatry
      17.2
      Seconds
  • Question 41 - A 58-year-old woman with rheumatoid arthritis visits her GP for a routine check-up...

    Incorrect

    • A 58-year-old woman with rheumatoid arthritis visits her GP for a routine check-up of her symptoms and disease progression. She complains of a gradual onset of shortness of breath that exacerbates with physical exertion.

      Upon conducting tests, it is found that the patient is positive for rheumatoid factor, an autoantibody that attaches to the part of IgG that interacts with immune cells.

      Which part of IgG does this autoantibody bind to?

      Your Answer: Fragment antigen-binding (Fab) region

      Correct Answer: Fragment crystallisable (Fc) region

      Explanation:

      Immunoglobulins, also known as antibodies, are proteins produced by the immune system to help fight off infections and diseases. There are five types of immunoglobulins found in the body, each with their own unique characteristics.

      IgG is the most abundant type of immunoglobulin in blood serum and plays a crucial role in enhancing phagocytosis of bacteria and viruses. It also fixes complement and can be passed to the fetal circulation.

      IgA is the most commonly produced immunoglobulin in the body and is found in the secretions of digestive, respiratory, and urogenital tracts and systems. It provides localized protection on mucous membranes and is transported across the interior of the cell via transcytosis.

      IgM is the first immunoglobulin to be secreted in response to an infection and fixes complement, but does not pass to the fetal circulation. It is also responsible for producing anti-A, B blood antibodies.

      IgD’s role in the immune system is largely unknown, but it is involved in the activation of B cells.

      IgE is the least abundant type of immunoglobulin in blood serum and is responsible for mediating type 1 hypersensitivity reactions. It provides immunity to parasites such as helminths and binds to Fc receptors found on the surface of mast cells and basophils.

    • This question is part of the following fields:

      • General Principles
      12.8
      Seconds
  • Question 42 - A 39-year-old, with an elevated BMI and confirmed type II diabetes is attending...

    Incorrect

    • A 39-year-old, with an elevated BMI and confirmed type II diabetes is attending a clinic for a check-up on his glucose control.

      Despite being on treatment for a few months, his latest Hb1Ac and home blood glucose readings are still high. The healthcare provider decides to start the patient on gliclazide. The patient is informed that this medication may cause hypoglycaemia as a side effect by increasing insulin production and release.

      Which pancreatic cell membrane channels does gliclazide bind to?

      Your Answer: Dipeptidyl peptidase-4 (DDP)

      Correct Answer: ATP-dependent potassium

      Explanation:

      Gliclazide is a medication used to treat diabetes by increasing insulin release from pancreatic beta cells. It works by binding to ATP-dependent potassium channels on these cells, causing depolarization and an increase in intracellular calcium. This leads to the secretion of insulin.

      Dipeptidyl peptidase-4 (DDP) inhibitors are another type of medication used to manage diabetes. They work by increasing levels of incretin hormones such as GLP-1 and GIP, which stimulate insulin secretion and decrease blood glucose levels.

      Chloride channels are not affected by sulfonylureas, and they play a role in regulating fluid transport in various organs.

      Insulin binds to tyrosine kinase receptors on the cell membrane, which triggers a signal transduction pathway that activates enzymes and transcription factors within the cell. Sulfonylureas do not affect these receptors.

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      17.8
      Seconds
  • Question 43 - An 83-year-old man visits his GP complaining of weight loss and a change...

    Incorrect

    • An 83-year-old man visits his GP complaining of weight loss and a change in bowel habit that has been ongoing for the past 6 months. Following a colonoscopy and biopsy, he is diagnosed with a malignancy of the transverse colon. The transverse colon is connected to the posterior abdominal wall by a double fold of the peritoneum. Which other organ is also attached to similar double folds of the peritoneum?

      Your Answer: The tail of the pancreas

      Correct Answer: The stomach

      Explanation:

      The mesentery is present in the stomach and the first part of the duodenum as they are intraperitoneal structures.

      In the abdomen, organs are categorized as either intraperitoneal or retroperitoneal. The intraperitoneal organs include the stomach, spleen, liver, bulb of the duodenum, jejunum, ileum, transverse colon, and sigmoid colon. The retroperitoneal organs include the remaining part of the duodenum, the cecum and ascending colon, the descending colon, the pancreas, and the kidneys.

      The peritoneum has different functions in the abdomen and can be classified accordingly. It is called a mesentery when it anchors organs to the posterior abdominal wall and a ligament when it connects two different organs. The lesser and greater curvatures of the stomach have folds known as the lesser and greater omenta.

      The retroperitoneal structures are those that are located behind the peritoneum, which is the membrane that lines the abdominal cavity. These structures include the duodenum (2nd, 3rd, and 4th parts), ascending and descending colon, kidneys, ureters, aorta, and inferior vena cava. They are situated in the back of the abdominal cavity, close to the spine. In contrast, intraperitoneal structures are those that are located within the peritoneal cavity, such as the stomach, duodenum (1st part), jejunum, ileum, transverse colon, and sigmoid colon. It is important to note that the retroperitoneal structures are not well demonstrated in the diagram as the posterior aspect has been removed, but they are still significant in terms of their location and function.

    • This question is part of the following fields:

      • Gastrointestinal System
      17.9
      Seconds
  • Question 44 - You are interested in investigating the prevalence of side-effects associated with statins, as...

    Incorrect

    • You are interested in investigating the prevalence of side-effects associated with statins, as you suspect they are more widespread than commonly reported and often go unreported by patients. While conducting your research, you come across a study that examines the long-term effects of statin therapy, which was conducted post-market release. What kind of study design would this be?

      Your Answer: Clinical trial, Phase 3

      Correct Answer: Clinical trial, Phase 4

      Explanation:

      When a study has more than three phases, the final phase is typically postmarketing surveillance. This phase is responsible for monitoring the long-term effects of treatment.

      Phase 4 clinical trials are conducted after a treatment has been proven effective and licensed for use. These trials provide more detailed information about the treatment’s side effects and long-term risks and benefits when used on a larger scale.

      Pilot studies are preliminary investigations that aim to determine the feasibility of crucial components of a main study, usually a randomized controlled trial (RCT).

      In a case-control study, subjects with an outcome of interest are matched with those who do not have the outcome of interest. The prevalence of exposure to a potential risk factor is then compared between cases and controls. If the prevalence of exposure is more common among cases than controls, the exposure may be a risk factor for the outcome under investigation.

      Phase 3 trials are designed to test a drug’s efficacy, effectiveness, and safety in a sufficiently large sample population. At this stage, the drug is presumed to have some effect.

      Most phase 3 trials, and some phase 2 trials, are randomized. Phase 4 trials are less likely to be randomized as they require a very large sample size.

      Phases of Clinical Trials

      Clinical trials are conducted to determine the safety and efficacy of new treatments or drugs. These trials are commonly classified into four phases. The first phase involves determining the pharmacokinetics and pharmacodynamics of the drug, as well as any potential side effects. This phase is conducted on healthy volunteers.

      The second phase assesses the efficacy and dosage of the drug. It involves a small number of patients affected by a particular disease. This phase may be further subdivided into IIa, which assesses optimal dosing, and IIb, which assesses efficacy.

      The third phase involves assessing the effectiveness of the drug. This phase typically involves a larger number of people, often as part of a randomized controlled trial, comparing the new treatment with established treatments.

      The fourth and final phase is postmarketing surveillance. This phase monitors the long-term effectiveness and side effects of the drug after it has been approved and is on the market.

      Overall, the phases of clinical trials are crucial in determining the safety and efficacy of new treatments and drugs. They provide valuable information that can help improve patient outcomes and advance medical research.

    • This question is part of the following fields:

      • General Principles
      11.3
      Seconds
  • Question 45 - A 23-year-old man is in a physical altercation resulting in a skull fracture...

    Incorrect

    • A 23-year-old man is in a physical altercation resulting in a skull fracture and damage to the middle meningeal artery. After undergoing a craniotomy, the bleeding from the artery is successfully stopped through ligation near its origin. What sensory impairment is the patient most likely to experience after the operation?

      Your Answer: Parasthesia overlying the angle of the jaw

      Correct Answer: Parasthesia of the ipsilateral external ear

      Explanation:

      The middle meningeal artery is in close proximity to the auriculotemporal nerve, which could potentially be harmed in this situation. This nerve is responsible for providing sensation to the outer ear and the outer layer of the tympanic membrane. The C2,3 roots innervate the jaw angle and would not be impacted. The glossopharyngeal nerve is responsible for supplying the tongue.

      The Middle Meningeal Artery: Anatomy and Clinical Significance

      The middle meningeal artery is a branch of the maxillary artery, which is one of the two terminal branches of the external carotid artery. It is the largest of the three arteries that supply the meninges, the outermost layer of the brain. The artery runs through the foramen spinosum and supplies the dura mater. It is located beneath the pterion, where the skull is thin, making it vulnerable to injury. Rupture of the artery can lead to an Extradural hematoma.

      In the dry cranium, the middle meningeal artery creates a deep indentation in the calvarium. It is intimately associated with the auriculotemporal nerve, which wraps around the artery. This makes the two structures easily identifiable in the dissection of human cadavers and also easily damaged in surgery.

      Overall, understanding the anatomy and clinical significance of the middle meningeal artery is important for medical professionals, particularly those involved in neurosurgery.

    • This question is part of the following fields:

      • Neurological System
      16.1
      Seconds
  • Question 46 - A 75-year-old male presents with a non-healing ulcer on his left foot. Blood...

    Correct

    • A 75-year-old male presents with a non-healing ulcer on his left foot. Blood cultures grow MRSA. Which antibiotic would you consider in addition to vancomycin to cover this?

      Your Answer: Rifampicin

      Explanation:

      Other antibiotics may not be effective against MRSA due to its resistance.

      Understanding MRSA and its Screening and Treatment

      Methicillin-resistant Staphylococcus aureus (MRSA) is a type of bacteria that is resistant to many antibiotics. It is a dangerous organism that can cause hospital-acquired infections. To prevent the spread of MRSA, patients awaiting elective admissions and all emergency admissions are screened for the bacteria. The screening involves a nasal swab and examination of skin lesions or wounds. If a patient is identified as a carrier of MRSA, they can be treated with mupirocin for the nose and chlorhexidine gluconate for the skin. Antibiotics such as vancomycin, teicoplanin, and linezolid are commonly used to treat MRSA infections. However, newer antibiotics like linezolid, quinupristin/dalfopristin combinations, and tigecycline should be reserved for resistant cases. It is important to understand MRSA and its screening and treatment to prevent the spread of this dangerous organism.

    • This question is part of the following fields:

      • General Principles
      10.5
      Seconds
  • Question 47 - Which one of the following is not produced by the parietal cells? ...

    Correct

    • Which one of the following is not produced by the parietal cells?

      Your Answer: Mucus

      Explanation:

      The chief cells responsible for producing Pepsi cola are not to be confused with the chief cells found in the stomach. In the stomach, chief cells secrete pepsinogen, while parietal cells secrete HCl, Ca, Na, Mg, and intrinsic factor. Additionally, surface mucosal cells secrete mucus and bicarbonate.

      Understanding Gastric Secretions for Surgical Procedures

      A basic understanding of gastric secretions is crucial for surgeons, especially when dealing with patients who have undergone acid-lowering procedures or are prescribed anti-secretory drugs. Gastric acid, produced by the parietal cells in the stomach, has a pH of around 2 and is maintained by the H+/K+ ATPase pump. Sodium and chloride ions are actively secreted from the parietal cell into the canaliculus, creating a negative potential across the membrane. Carbonic anhydrase forms carbonic acid, which dissociates, and the hydrogen ions formed by dissociation leave the cell via the H+/K+ antiporter pump. This leaves hydrogen and chloride ions in the canaliculus, which mix and are secreted into the lumen of the oxyntic gland.

      There are three phases of gastric secretion: the cephalic phase, gastric phase, and intestinal phase. The cephalic phase is stimulated by the smell or taste of food and causes 30% of acid production. The gastric phase, which is caused by stomach distension, low H+, or peptides, causes 60% of acid production. The intestinal phase, which is caused by high acidity, distension, or hypertonic solutions in the duodenum, inhibits gastric acid secretion via enterogastrones and neural reflexes.

      The regulation of gastric acid production involves various factors that increase or decrease production. Factors that increase production include vagal nerve stimulation, gastrin release, and histamine release. Factors that decrease production include somatostatin, cholecystokinin, and secretin. Understanding these factors and their associated pharmacology is essential for surgeons.

      In summary, a working knowledge of gastric secretions is crucial for surgical procedures, especially when dealing with patients who have undergone acid-lowering procedures or are prescribed anti-secretory drugs. Understanding the phases of gastric secretion and the regulation of gastric acid production is essential for successful surgical outcomes.

    • This question is part of the following fields:

      • Gastrointestinal System
      3.5
      Seconds
  • Question 48 - Mrs. Smith presents to the clinic with a newly noticed lesion on her...

    Incorrect

    • Mrs. Smith presents to the clinic with a newly noticed lesion on her leg. Upon examination, concerning characteristics of malignancy are observed.

      What signs would be most indicative of an in situ malignant melanoma in Mrs. Smith, who is in her early 50s?

      Your Answer: A diameter of 4mm

      Correct Answer: Having multiple colours

      Explanation:

      When assessing a pigmented lesion, it is important to consider the ‘ABCDE’ criteria: Asymmetry, Border, Colour, Diameter, and Evolution. The British Association of Dermatologists (BAD) provides guidance on this assessment. According to BAD, a diameter of over 6mm is more indicative of a melanoma than a diameter of 4mm. A lesion’s color alone does not determine malignancy, as highly pigmented lesions can be benign. Rolled edges are more commonly associated with basal cell carcinoma than melanoma. However, the presence of multiple colors within a lesion, including different shades of black, brown, and pink, is a significant indicator of melanoma.

      Skin cancer is a type of cancer that affects the skin. There are three main types of skin cancer: basal cell cancer, squamous cell cancer, and malignant melanoma. The risk factors for skin cancer include sun exposure, iatrogenic factors such as PUVA and UVB phototherapy, exposure to arsenic, and immunosuppression following renal transplant. People who have undergone renal transplant are at a higher risk of developing squamous cell cancer and basal cell cancer, and this may be linked to human papillomavirus.

      Skin cancer is a type of cancer that affects the skin. It can be classified into three main types: basal cell cancer, squamous cell cancer, and malignant melanoma. The risk factors for skin cancer include exposure to the sun, iatrogenic factors such as PUVA and UVB phototherapy, exposure to arsenic, and immunosuppression following renal transplant. People who have undergone renal transplant are at a higher risk of developing squamous cell cancer and basal cell cancer, and this may be linked to human papillomavirus.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      9.4
      Seconds
  • Question 49 - What does the first heart sound indicate in terms of cardiac activity? ...

    Correct

    • What does the first heart sound indicate in terms of cardiac activity?

      Your Answer: Closing of the mitral/tricuspid valves

      Explanation:

      Valvular Sounds and the Cardiac Cycle

      Valvular sounds are the audible representation of the closure of the heart valves. The first heart sound occurs during systole, when the pressure in the ventricles increases and the mitral and tricuspid valves close, forcing blood through the aorta or pulmonary artery. As the ventricles empty and their pressure drops, the aortic or pulmonary valves close, creating the second heart sound. During diastole, the ventricles relax and their pressure decreases even further. When this pressure falls below that of the atria, the mitral and tricuspid valves open once again.

      the cardiac cycle and the sounds associated with it is crucial in diagnosing and treating heart conditions. By listening to the timing and quality of the valvular sounds, healthcare professionals can identify abnormalities in the heart’s function and structure. Additionally, monitoring changes in these sounds over time can help track the progression of certain conditions and guide treatment decisions.

      In summary, the valvular sounds of the heart represent the opening and closing of the heart valves during the cardiac cycle. These sounds are important indicators of heart health and can provide valuable information for healthcare professionals in diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Clinical Sciences
      8.9
      Seconds
  • Question 50 - A patient with familial hypercholesterolaemia who is 45 years old is undergoing treatment...

    Correct

    • A patient with familial hypercholesterolaemia who is 45 years old is undergoing treatment with high dose nicotinic acid, a derivative of vitamin B3 (niacin).

      What are the primary side effects that can be anticipated with this therapy?

      Your Answer: Flushing

      Explanation:

      The Functions and Uses of Nicotinic Acid

      Nicotinic acid is a medication used to treat dyslipidaemia, a condition characterized by abnormal levels of lipids in the blood. It works by increasing high-density lipoprotein cholesterol (HDLc) and reducing low-density lipoprotein cholesterol (LDLc). However, high doses of nicotinic acid can cause flushing, a side effect that can be improved by co-administering laropiprant. On the other hand, niacin deficiency can lead to anxiety, diarrhea, and skin rashes on sun-exposed sites, while muscle aches are common with statins, another group of lipid-lowering agents.

      Aside from its therapeutic uses, nicotinic acid and its derivatives have various functions within the body. It serves as a cofactor in cellular reactions, particularly in the metabolism of fatty acids and steroid hormones. It also acts as an antioxidant, protecting the liver against free radical damage. Moreover, niacin is required for DNA replication and repair, as well as for the synthesis of histone proteins that facilitate DNA storage, replication, and repair. Additionally, niacin plays a role in lipid metabolism and has been used as a lipid-lowering agent. Although poorly understood, niacin may also have a role in the regulation of blood sugar concentrations.

      Overall, nicotinic acid is a versatile medication with various functions and uses in the body. Its therapeutic benefits in dyslipidaemia are significant, but its side effects should also be considered. the different roles of niacin in the body can provide insights into its potential uses in other conditions.

    • This question is part of the following fields:

      • Clinical Sciences
      8.9
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Musculoskeletal System And Skin (1/5) 20%
Cardiovascular System (2/4) 50%
Gastrointestinal System (2/4) 50%
Respiratory System (2/4) 50%
Neurological System (1/8) 13%
General Principles (4/12) 33%
Endocrine System (2/3) 67%
Renal System (0/1) 0%
Haematology And Oncology (0/1) 0%
Clinical Sciences (4/5) 80%
Basic Sciences (1/2) 50%
Psychiatry (1/1) 100%
Passmed