00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 35-year-old woman has remarried and desires to have children with her new...

    Incorrect

    • A 35-year-old woman has remarried and desires to have children with her new Caucasian husband. However, she already has a 5-year-old child with cystic fibrosis from her previous marriage. She is concerned about the likelihood of having another affected child with her new partner. Can you provide an estimated risk?

      Your Answer: 1 in 20 chance

      Correct Answer: 1 in 100 chance

      Explanation:

      Cystic Fibrosis Inheritance

      Cystic fibrosis is a genetic disorder that is inherited in an autosomal recessive pattern. This means that both copies of the gene in each cell have mutations. Individuals with only one copy of the mutated gene are carriers and typically do not show signs or symptoms of the condition.

      In the case of a female carrier for the CF gene, there is a 1 in 2 chance of producing a gamete carrying the CF gene. If her new partner is also a carrier, he has a 1 in 25 chance of having the CF gene and a 1 in 50 chance of producing a gamete with the CF gene. Therefore, the chance of producing a child with cystic fibrosis is 1 in 100.

      It is important to understand the inheritance pattern of cystic fibrosis to make informed decisions about family planning and genetic testing. This knowledge can help individuals and families better understand the risks and potential outcomes of having children with this condition.

    • This question is part of the following fields:

      • Clinical Sciences
      25
      Seconds
  • Question 2 - A 82-year-old woman named Mrs. Smith visits her GP complaining of constant fatigue....

    Incorrect

    • A 82-year-old woman named Mrs. Smith visits her GP complaining of constant fatigue. She has a medical history of hypothyroidism and takes oral levothyroxine. Her routine blood tests reveal the following results: Hb 87 g/L (115-160), MCV 108 fL (76-96), Platelets 136 ×109/L (150-400), TSH 3.6 (0.3-5), and T4 88 (70-150). What is the appropriate treatment plan for Mrs. Smith?

      Your Answer: Encourage to eat more iron-containing foods

      Correct Answer: Vitamin supplementation

      Explanation:

      Pernicious Anaemia: An Autoimmune Disease

      Pernicious anaemia is an autoimmune disease that occurs when the body produces antibodies against gastric parietal cells. These cells are responsible for producing intrinsic factor, which is necessary for the absorption of vitamin B12 in the terminal ileum. Vitamin B12 is essential for the synthesis of thymine, which is required for effective DNA synthesis. As a result, patients with pernicious anaemia may experience symptoms related to other cell lines, such as diarrhoea caused by gut mucosa turnover.

      The failure of DNA synthesis leads to a large mean cell volume in erythrocytes as they mature through the erythroid cell line. Treatment for pernicious anaemia involves the replacement of vitamin B12, usually through hydroxycobalamin injections. Blood transfusions are unnecessary unless the patient is severely compromised, as they do not address the underlying problem.

    • This question is part of the following fields:

      • Clinical Sciences
      100.5
      Seconds
  • Question 3 - What is the likely arrangement of openings in the cellular membrane? ...

    Correct

    • What is the likely arrangement of openings in the cellular membrane?

      Your Answer: A protein molecule in the membrane with a channel through it

      Explanation:

      Composition and Structure of the Cell Membrane

      The cell membrane is made up of a lipid matrix that primarily consists of phospholipids, cholesterol, and triglycerides. This lipid matrix is interspersed with large protein molecules that have channels running through them, which act as tiny pores. These pores allow for the selective transport of molecules in and out of the cell. The cell membrane is a crucial component of all living cells, as it serves as a barrier between the cell and its environment, regulating the flow of substances in and out of the cell. Its composition and structure are essential for maintaining the integrity and function of the cell.

    • This question is part of the following fields:

      • Clinical Sciences
      43.3
      Seconds
  • Question 4 - A 25-year-old farmer injures his hand on barbed wire and visits his GP...

    Correct

    • A 25-year-old farmer injures his hand on barbed wire and visits his GP after four days with a painful wound. The wound is swollen, tender, and hot to the touch. Which chemical mediator is responsible for increasing vascular permeability during acute inflammation?

      Your Answer: Leukotrienes C4, D4, E4 (LTC4, D4, E4)

      Explanation:

      Increased vascular permeability is a key aspect of acute inflammation, caused by chemical mediators such as histamine, serotonin, complement components C3a and C5a, leukotrienes, oxygen free radicals, and PAF. LTB4 causes chemotaxis of neutrophils, TNF causes fever, and glycine is an inhibitory neurotransmitter that does not affect vascular permeability.

    • This question is part of the following fields:

      • Clinical Sciences
      18.3
      Seconds
  • Question 5 - What is the medical term used to describe the existence of numerous small...

    Incorrect

    • What is the medical term used to describe the existence of numerous small tuberculous granulomas spread throughout the lungs?

      Your Answer: Latent tuberculosis

      Correct Answer: Miliary tuberculosis

      Explanation:

      The different manifestations of tuberculosis are crucial in diagnosing and treating the disease effectively. Tuberculosis can manifest in various ways depending on the site and stage of infection. When a person first contracts tuberculosis, it can cause mid-lower zone pneumonic consolidation, which is known as the Ghon focus. Bacteria and inflammatory cells then travel to perihilar lymph nodes, forming a Ghon complex.

      In most cases, the immune system will clear the active infection, leaving some dormant granulomas and asymptomatic mycobacteria in the lungs. This stage is called latent tuberculosis. However, some patients may develop a more severe form of the disease, known as primary tuberculous bronchopneumonia, where consolidation spreads from the Ghon focus to a more widespread bronchopneumonia. Other organs may also be affected.

      In most cases, latent tuberculosis remains dormant for the rest of a person’s life. However, certain factors such as immunosuppression can cause the infection to become active again, leading to primary tuberculosis. This can affect any organ, but often causes an upper lobe bronchopneumonia. Miliary tuberculosis is another manifestation of the disease, caused by the systemic dissemination of tuberculosis via haematogenous spread.

      This form of tuberculosis has a particular preference for forming multiple, small lesions throughout both lung fields and other organs.

    • This question is part of the following fields:

      • Clinical Sciences
      50.3
      Seconds
  • Question 6 - A 78-year-old man presents to his GP after experiencing dizziness while gardening. During...

    Incorrect

    • A 78-year-old man presents to his GP after experiencing dizziness while gardening. During the examination, the GP detects an ejection systolic murmur that radiates to the carotids. What could be the possible cause of this finding?

      Your Answer: Mitral regurgitation

      Correct Answer: Aortic stenosis

      Explanation:

      Valvular Murmurs: Systolic and Diastolic Classification

      Valvular murmurs are a common topic in medical examinations, and it is crucial to have a good of them. The easiest way to approach valvular murmurs is to classify them into systolic and diastolic.

      If the arterial valves, such as the aortic or pulmonary valves, are narrowed, ventricular contraction will cause turbulent flow, resulting in a systolic murmur. On the other hand, if these valves are incompetent or regurgitant, blood will leak back through the valve during diastole, causing a diastolic murmur.

      Similarly, the atrioventricular valves, such as the mitral and tricuspid valves, can be thought of in the same way. If these valves are regurgitant, blood will be forced back into the atria during systole, causing a systolic murmur. If they are narrowed, blood will not flow freely from the atria to the ventricles during diastole, causing a diastolic murmur.

      Therefore, a systolic murmur can indicate aortic/pulmonary stenosis or mitral/tricuspid regurgitation. Clinical signs and symptoms, such as presyncope and radiation to the carotids, can help identify aortic stenosis.

    • This question is part of the following fields:

      • Clinical Sciences
      59.2
      Seconds
  • Question 7 - What is the definition of kwashiorkor? ...

    Incorrect

    • What is the definition of kwashiorkor?

      Your Answer: Inadequate fat intake

      Correct Answer: Inadequate protein intake

      Explanation:

      Malnutrition: Types and Causes

      Malnutrition is a condition that can refer to both overnutrition (obesity) and undernutrition, but it is commonly used to describe the latter. Undernutrition can take different forms, with protein-energy malnutrition (PEM) being the most common. PEM can be further classified into kwashiorkor and marasmus, which are characterized by protein deficiency and inadequate consumption of both energy and protein, respectively. Kwashiorkor is associated with oedema, abdominal swelling, and fat accumulation in the liver, while marasmus leads to emaciation without oedema or abdominal swelling.

      Despite being distinct clinical scenarios, kwashiorkor and marasmus are both types of protein-energy undernutrition. It is not clear why some patients develop one form of undernutrition over the other, even when they have similar diets. Malnutrition can also result from isolated vitamin or mineral deficiencies. the different types and causes of malnutrition is crucial in addressing this global health issue.

    • This question is part of the following fields:

      • Clinical Sciences
      8.4
      Seconds
  • Question 8 - An aged patient is brought to the ER from a nursing home due...

    Incorrect

    • An aged patient is brought to the ER from a nursing home due to severe diarrhea and dehydration. She had received broad-spectrum antibiotics a week ago for a catheter-related infection, and it is suspected that she has been infected with Clostridium difficile. What would be the microscopic appearance of this organism?

      Your Answer: Gram negative rod

      Correct Answer: Gram positive spore-forming rod

      Explanation:

      Clostridium difficile and Gram Positive Bacteria

      Clostridium difficile is becoming a more frequent cause of iatrogenic infection, leading to pseudomembranous colitis or antibiotic-associated colitis. This anaerobic rod can be identified through selective media as a motile, spore-forming Gram positive bacteria. However, it is easier and quicker to detect through immunoassay of toxin in a fresh stool sample.

      Gram positive bacteria can be classified into rods or cocci. Rods include Bacillus, Listeria, and Clostridium species, which can be spore-forming or non-spore-forming. On the other hand, cocci species include Staphylococcus and Streptococcus species, while diplococcus includes Streptococcus and Enterococcus. the different types of Gram positive bacteria and their characteristics is crucial in identifying and treating infections caused by these microorganisms.

    • This question is part of the following fields:

      • Clinical Sciences
      89.5
      Seconds
  • Question 9 - Which cell type gives rise to all germ cells through differentiation? ...

    Incorrect

    • Which cell type gives rise to all germ cells through differentiation?

      Your Answer: Myotome

      Correct Answer: Epiblast

      Explanation:

      Embryonic Development and Tissue Formation

      During embryonic development, the epiblast layer, which originates from the inner cell mass, is located above the hypoblast. As the process of gastrulation occurs, the epiblast layer differentiates into three embryonic germ layers, namely the ectoderm, endoderm, and mesoderm. The ectoderm is responsible for forming various bodily systems such as the brain, retina, and anal canal. On the other hand, the mesoderm gives rise to the myotome, which is a tissue formed from somites that forms the body muscle wall. Additionally, the sclerotome, which is also part of the somite, develops to form most of the skull and vertebrae.

      Furthermore, a dermatome is an area of skin that is supplied by a single spinal nerve. These dermatomes are important in the diagnosis of certain medical conditions that affect the skin. the different tissues formed during embryonic development is crucial in comprehending the various bodily systems and functions.

    • This question is part of the following fields:

      • Clinical Sciences
      16
      Seconds
  • Question 10 - A 67-year-old woman is scheduled for a total hip replacement on her right...

    Incorrect

    • A 67-year-old woman is scheduled for a total hip replacement on her right side. The surgeon plans to use the lateral approach to access the hip joint, which involves dividing the tensor fascia lata, as well as the gluteus medius and minimus muscles. However, this approach poses a risk to the nerve supply of these muscles. Can you identify the nerve that innervates the tensor fascia lata and gluteus medius muscles?

      Your Answer:

      Correct Answer: Superior gluteal nerve

      Explanation:

      Nerves and Approaches to the Hip Joint

      The superior gluteal nerve originates from L4-S1 and exits the pelvis through the greater sciatic foramen. It provides innervation to the gluteus medius, gluteus minimus, and tensor fascia lata muscles. However, the nerves in danger depend on the approach used to access the hip joint.

      The posterior approach involves an incision through the deep fascia and gluteus maximus, followed by division of the external rotators. This approach puts the sciatic nerve at risk. On the other hand, the anterior approach involves the planes between tensor fascia lata and sartorius, and then rectus femoris and gluteus medius. This approach endangers the lateral femoral cutaneous nerve of the thigh.

      In summary, the nerves at risk during hip joint access depend on the approach used. The posterior approach puts the sciatic nerve in danger, while the anterior approach endangers the lateral femoral cutaneous nerve of the thigh. It is important for medical professionals to be aware of these potential risks to minimize complications during hip joint procedures.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 11 - You are participating in a seminar about eating disorders. What renal alteration is...

    Incorrect

    • You are participating in a seminar about eating disorders. What renal alteration is common in individuals with extreme malnourishment?

      Your Answer:

      Correct Answer: Reduced glomerular filtration rate

      Explanation:

      Renal Physiology Changes in Severe Malnutrition

      Patients with severe malnutrition experience changes in their renal physiology due to reduced food intake. These changes include an increased secretion of aldosterone and a reduced glomerular filtration rate (GFR), which alters the excretion patterns of many solutes, electrolytes, and drugs. As a result, there is an increased urinary excretion of potassium, calcium, magnesium, and phosphate, leading to a tendency for hypokalaemia, hypocalcaemia, hypomagnesaemia, and hypophosphataemia over time.

      Furthermore, the reduced muscle bulk in individuals with severe malnutrition causes low levels of production of urea and creatinine. However, reduced excretion causes plasma levels to remain normal or only slightly reduced. As muscle is broken down to provide substrates for gluconeogenesis, a negative nitrogen balance ensues. Additionally, urate excretion is reduced, causing a relative hyperuricaemia.

      In summary, severe malnutrition affects renal physiology, leading to altered excretion patterns of various solutes, electrolytes, and drugs. These changes can result in imbalances in potassium, calcium, magnesium, and phosphate levels. Furthermore, the breakdown of muscle tissue can cause a negative nitrogen balance, while reduced urate excretion can lead to hyperuricaemia.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 12 - A 65-year-old man visits the clinic with a complaint of experiencing blue vision....

    Incorrect

    • A 65-year-old man visits the clinic with a complaint of experiencing blue vision. He has started taking a high dose of Viagra to treat his erectile dysfunction, and you suspect that this medication may be the reason behind his visual changes. Which enzyme inhibition is primarily responsible for this side effect?

      Your Answer:

      Correct Answer: PDE-6

      Explanation:

      The Role of Phosphodiesterase-6 in Vision and the Side Effects of Viagra

      Phosphodiesterase-6 plays a crucial role in the transmission of visual signals from rod cells in the retina to electrical signals in the brain. This enzyme is activated by changes in rhodopsin, which occur in response to exposure to light. However, high doses of Viagra, which is an inhibitor of PDE-5, can also inhibit PDE-6, leading to side effects such as blue vision. Patients may choose to reduce their dosage or tolerate these side effects in exchange for the improved sexual function that Viagra provides.

      Overall, the role of PDE-6 in vision and the potential side effects of Viagra is important for both medical professionals and patients. By weighing the benefits and risks of this medication, individuals can make informed decisions about their sexual health and overall well-being.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 13 - Which blood vessel in the systemic circulation causes the highest amount of resistance...

    Incorrect

    • Which blood vessel in the systemic circulation causes the highest amount of resistance to blood flow?

      Your Answer:

      Correct Answer: Arterioles

      Explanation:

      Arterioles and Total Peripheral Vascular Resistance

      Arterioles play a crucial role in determining the total peripheral vascular resistance due to their small calibre, larger surface area, and higher tensile strength compared to capillaries. These vessels are responsible for regulating blood flow to the capillaries and organs by constricting or dilating. The constriction of arterioles increases resistance to blood flow, while dilation decreases resistance.

      The high tensile strength of arterioles allows them to withstand the pressure of blood flow and maintain their shape, which is important for regulating blood pressure. Additionally, their larger surface area allows for more precise control of blood flow to specific areas of the body. Overall, arterioles are essential in regulating blood flow and maintaining proper blood pressure throughout the body.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 14 - A pair visits the clinic to inquire about the likelihood of their future...

    Incorrect

    • A pair visits the clinic to inquire about the likelihood of their future offspring developing alpha thalassaemia. They both have thalassaemia trait. What is the accurate probability of their child being born with thalassaemia major?

      Your Answer:

      Correct Answer: 25% risk

      Explanation:

      Thalassaemia Trait and the Risk of Inheriting Thalassaemia Major

      Thalassaemia trait individuals, who are heterozygous for the condition, do not have thalassaemia themselves. However, if their partner is also a carrier, there is a high risk of having a child born with thalassaemia major, which occurs when both parents pass on the thalassaemia gene. The risk of this happening is 1 in 4.

      It is important to note that individuals with thalassaemia trait have a 50% chance of passing on the gene to their children, who will also be carriers. There is also a 1 in 4 chance of their children not inheriting the thalassaemia gene at all.

      It is worth mentioning that the terminology used to describe thalassaemias has changed in recent years. People with beta thalassaemia can now be grouped into transfusion dependent or independent categories. the risk of inheriting thalassaemia major is crucial for individuals with thalassaemia trait who are planning to have children. Genetic counseling can help them make informed decisions about their family planning.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 15 - Which statement accurately reflects the findings of the double-blind, randomised, placebo-controlled trial of...

    Incorrect

    • Which statement accurately reflects the findings of the double-blind, randomised, placebo-controlled trial of drug A for hypercholesterolaemia treatment?

      Your Answer:

      Correct Answer: The null hypothesis is that drug A is as effective as placebo

      Explanation:

      The Null Hypothesis in Testing for Differences between Variables

      In testing for differences between variables, the null hypothesis always assumes that there is no difference between the variables being tested. This means that the null hypothesis assumes that the variables are either equally effective or equally ineffective.

      For instance, in testing the cholesterol-reducing effect of drug A and placebo, the null hypothesis would assume that there is no difference between the two in terms of their effectiveness. Therefore, the null hypothesis would state that drug A and placebo are equally effective or equally ineffective in reducing cholesterol levels.

      It is important to establish the null hypothesis before conducting any statistical analysis because it provides a baseline for comparison. If the results of the analysis show that there is a significant difference between the variables, then the null hypothesis can be rejected, and it can be concluded that there is indeed a difference between the variables being tested. On the other hand, if the results do not show a significant difference, then the null hypothesis cannot be rejected, and it can be concluded that there is no difference between the variables being tested.

      In summary, the null hypothesis assumes that there is no difference between the variables being tested, and it serves as a baseline for comparison in statistical analysis.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 16 - How would you define vigorous exercise? ...

    Incorrect

    • How would you define vigorous exercise?

      Your Answer:

      Correct Answer: Exercising at 80% of maximal individual capacity

      Explanation:

      Exercise Intensity Levels

      Exercise intensity can be determined by comparing it to your maximum capacity or your typical resting state of activity. It is important to note that what may be considered moderate or intense for one person may differ for another based on their fitness and strength levels. Mild intensity exercise involves working at less than 3 times the activity at rest and 20-50% of your maximum capacity. Moderate intensity exercise involves working at 3-5.9 times the activity at rest or 50-60% of your maximum capacity. Examples of moderate intensity exercises include cycling on flat ground, walking fast, hiking, volleyball, and basketball. Vigorous intensity exercise involves working at 6-7 times the activity at rest or 70-80% of your maximum capacity. Examples of vigorous intensity exercises include running, swimming fast, cycling fast or uphill, hockey, martial arts, and aerobics. exercise intensity levels can help you tailor your workouts to your individual needs and goals.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 17 - Which statement accurately describes the results of a randomised controlled trial comparing the...

    Incorrect

    • Which statement accurately describes the results of a randomised controlled trial comparing the effectiveness of drug A and drug B in treating diabetes mellitus, where 100 patients were assigned to each group and the HbA1c levels were 72 mmol/mol in group A and 61 mmol/mol in group B with a p-value of 0.08?

      Your Answer:

      Correct Answer: The 95% confidence intervals of the HbA1c for group A and group B likely overlapped

      Explanation:

      Statistical Significance and Confidence Intervals

      When conducting statistical analyses, it is important to understand the concepts of statistical significance and confidence intervals. In general, statistical significance refers to the likelihood that the results of a study are not due to chance. This is typically determined by calculating a p value, which represents the probability of obtaining the observed results if the null hypothesis (i.e., no difference between groups) is true. If the p value is below a predetermined level of significance (usually 0.05 or 0.01), the results are considered statistically significant.

      Confidence intervals, on the other hand, provide a range of values within which the true population parameter (e.g., mean, proportion) is likely to fall. The width of the confidence interval is determined by the level of confidence (e.g., 95%, 90%) and the variability of the data. A narrower confidence interval indicates greater precision in the estimate.

      In the given statements, it is suggested that the p value and confidence intervals can provide insight into the likelihood of differences between groups. Specifically, if the p value is above 0.05, it is likely that the confidence intervals of the two groups overlap. Additionally, a 90% confidence interval will generally be narrower than a 95% confidence interval. Finally, if the p value is below 0.1, it is suggested that the 90% confidence intervals did not overlap, indicating a greater likelihood of differences between groups. However, it is important to note that the power of the study (i.e., the ability to detect true differences) is not known, so the possibility of a type II error (i.e., failing to detect a true difference) cannot be ruled out.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 18 - A 56-year-old man with advanced motor neuron disease is experiencing difficulty breathing, possibly...

    Incorrect

    • A 56-year-old man with advanced motor neuron disease is experiencing difficulty breathing, possibly due to weakened respiratory muscles.

      Which skeletal muscle is not fully utilized during inspiration?

      Your Answer:

      Correct Answer: Internal intercostals

      Explanation:

      The Muscles Involved in Breathing

      Breathing is a complex process that involves the contraction and relaxation of various muscles. The primary muscles responsible for inspiration are the external intercostal muscles and the diaphragm. These muscles work together to expand the chest cavity and create a negative pressure gradient, allowing air to flow into the lungs. In addition to these primary muscles, the sternocleidomastoid and the scalenes can also assist with inspiration.

      During quiet expiration, the lungs simply recoil back to their resting position due to their elastic properties. However, during forced expiration, the internal intercostal muscles come into play. These muscles contract to decrease the size of the chest cavity and increase the pressure within the lungs, forcing air out.

      the muscles involved in breathing is important for individuals with respiratory conditions, as well as athletes and performers who rely on proper breathing techniques for optimal performance. By strengthening and training these muscles, individuals can improve their breathing efficiency and overall respiratory health.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 19 - What is the main role of cholecystokinin? ...

    Incorrect

    • What is the main role of cholecystokinin?

      Your Answer:

      Correct Answer: Triggers gallbladder contraction

      Explanation:

      Hormones and their Functions in Digestion

      Cholecystokinin is a hormone that helps in digestion by neutralizing the partially digested food. It does this by stimulating the gallbladder to contract and the pancreas to release alkaline pancreatic fluid. This fluid helps to neutralize the acidic food and aids in the digestion process.

      Gastrin is another hormone that plays a crucial role in digestion. It increases the production of stomach acid and also increases the rate of gastric emptying. This helps to break down the food more efficiently and move it through the digestive system.

      Secretin is a hormone that reduces the production of stomach acid. It is released by the small intestine in response to the acidic food passing through it. This helps to prevent the stomach from becoming too acidic and causing discomfort.

      Leptin is a hormone that helps to regulate appetite. It is produced by fat cells and acts on the brain to suppress appetite. This helps to maintain a healthy weight and prevent overeating.

      In summary, hormones play a vital role in digestion by regulating the production of stomach acid, neutralizing acidic food, and suppressing appetite.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 20 - Which tumour suppressor gene experiences loss of function as a late event in...

    Incorrect

    • Which tumour suppressor gene experiences loss of function as a late event in the multistep development model of colorectal carcinogenesis?

      Your Answer:

      Correct Answer: p53

      Explanation:

      The Role of Tumor Suppressor Genes and Oncogenes in Colorectal Cancer

      Colorectal cancer is a type of cancer that develops through a series of changes in the epithelium, known as the adenoma-carcinoma sequence. This process involves the accumulation of mutations in tumor suppressor genes and oncogenes. One of the most important tumor suppressor genes is p53, which is activated by cellular damage and oncogene activation. When activated, p53 inhibits cell growth and induces senescence or apoptosis. However, loss of functional p53 is a late event in colorectal carcinogenesis.

      Another important tumor suppressor gene involved in the beta-catenin pathway is APC. It is mutated relatively early in the formation of colorectal cancers and is involved in regulating cell growth. On the other hand, Bcl-2 is an oncogene that promotes cell survival by inhibiting apoptosis. It is expressed in almost all cells as a constitutive survival factor.

      c-Myc is another oncogene that plays a role in the production of pro-growth genes. It is the end product of the beta-catenin pathway. Finally, kRAS is a tyrosine kinase oncogene that signals downstream from a number of growth-factor receptors, such as EGFR. It is mutated or somewhere in its pathway in almost all tumors.

      In summary, the development of colorectal cancer involves the accumulation of mutations in tumor suppressor genes and oncogenes. While p53 is the most important tumor suppressor gene, loss of its function is a late event in colorectal carcinogenesis. APC, Bcl-2, c-Myc, and kRAS are other important genes involved in regulating cell growth and survival in colorectal cancer.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 21 - Which electrolyte imbalance is frequently observed in individuals suffering from malnutrition? ...

    Incorrect

    • Which electrolyte imbalance is frequently observed in individuals suffering from malnutrition?

      Your Answer:

      Correct Answer: Hypokalaemia

      Explanation:

      Electrolyte Abnormalities in Malnourished Individuals

      Malnutrition can lead to various changes in the body’s systems and physiology, particularly in the levels of electrolytes. The most common electrolyte abnormalities in malnourished individuals are hypokalaemia, hypocalcaemia, hypophosphataemia, and hypomagnesaemia. Prolonged malnutrition can cause the body to adapt to a reduced dietary supply of minerals, resulting in changes in renal physiology such as increased aldosterone secretion and reduced glomerular filtration rate. This leads to increased urinary excretion of potassium, calcium, magnesium, and phosphate, which can cause a tendency towards electrolyte imbalances over time.

      Moreover, severe malnutrition can cause reduced muscle bulk, resulting in low levels of production of urea and creatinine. However, reduced excretion can cause plasma levels to be normal or slightly reduced. As muscle breaks down to provide substrates for gluconeogenesis, a negative nitrogen balance ensues. Therefore, patients with severe malnutrition are at risk of refeeding syndrome once they start eating again or are treated with parenteral nutrition. To prevent this, prophylaxis with B vitamins, folic acid, and minerals is recommended.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 22 - What is the primary function of niacin, also known as vitamin B3? ...

    Incorrect

    • What is the primary function of niacin, also known as vitamin B3?

      Your Answer:

      Correct Answer: Antioxidant function

      Explanation:

      The Many Functions of Niacin in the Body

      Niacin, also known as vitamin B3, plays a crucial role in various processes within the body. It acts as a cofactor in cellular reactions, aiding in the metabolism of fatty acids and steroid hormones. Additionally, niacin functions as an antioxidant, protecting the liver from free radical damage. It is also required for DNA replication and repair, as it is necessary for the synthesis of histone proteins that facilitate DNA storage, replication, and repair.

      Furthermore, niacin is involved in lipid metabolism and cholesterol regulation, with high doses of niacin being used as a lipid-lowering agent. Although not fully understood, niacin may also have a role in regulating blood sugar concentrations.

      Niacin can be obtained through the diet in two forms: nicotinic acid and nicotinamide. The body can also produce its own niacin from tryptophan, an amino acid found in protein-rich foods. With its numerous functions, niacin is an essential nutrient for maintaining optimal health.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 23 - Ms. Johnson is a 35-year-old asthmatic woman with severe community acquired pneumonia. She...

    Incorrect

    • Ms. Johnson is a 35-year-old asthmatic woman with severe community acquired pneumonia. She has been admitted to the intensive care unit for cardiovascular support. Currently, her blood pressure is 80/64 mmHg, heart rate is 128 bpm, and cardiac output is 3.2 L/min. Ms. Johnson is receiving 15 L/min of oxygen through a facemask and has oxygen saturations of 88% with a respiratory rate of 16. Her temperature is 39.6°C. What is the estimated stroke volume for Ms. Johnson?

      Your Answer:

      Correct Answer: 25 ml

      Explanation:

      Cardiac Output and its Relationship to Health Conditions

      Cardiac output is the product of heart rate and stroke volume. Stroke volume can be calculated by dividing cardiac output by heart rate. The average cardiac output is 5 liters per minute, with a normal stroke volume ranging from 50-85 milliliters per beat, depending on heart rate.

      When a person experiences poor oxygen saturation and a normal respiratory rate, it may indicate that they are becoming exhausted and unable to breathe rapidly. This, combined with low blood pressure, tachycardia, and a failure to maintain cardiac output, can be indicative of shock. Additionally, a high temperature may suggest severe sepsis secondary to pneumonia.

      cardiac output and its relationship to various health conditions can help medical professionals diagnose and treat patients more effectively. By monitoring heart rate, stroke volume, and other vital signs, healthcare providers can identify potential issues and intervene before they become life-threatening. Proper management of cardiac output is crucial for maintaining overall health and preventing serious complications.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 24 - A 23-year-old semi-professional rugby player is playing a game when he is tackled...

    Incorrect

    • A 23-year-old semi-professional rugby player is playing a game when he is tackled by other players and experiences a dislocation at the glenohumeral joint.

      What is the structure responsible for deepening the glenoid fossa?

      Your Answer:

      Correct Answer: Glenoid labrum

      Explanation:

      The Glenoid Labrum and Other Shoulder Joint Structures

      The glenoid labrum is a type of cartilage that helps to deepen the glenoid cavity, which is a shallow depression on the lateral border of the scapula bone. This cavity forms the glenohumeral joint with the humerus bone, and the labrum helps to stabilize this joint. If the labrum is injured, it can lead to recurrent dislocations of the shoulder joint.

      Another important structure in the shoulder joint is the conoid ligament, which is an extension of the coracoclavicular ligament. This ligament helps to connect the clavicle bone to the scapula bone and provides additional stability to the joint.

      The inferior and superior angles are two points on the scapula bone that refer to the lower and upper corners of the bone, respectively. These angles are important landmarks for identifying the position and orientation of the scapula in relation to other bones in the shoulder joint.

      Overall, the glenoid labrum, conoid ligament, and angles of the scapula are all important structures that contribute to the stability and function of the shoulder joint. these structures can help healthcare professionals diagnose and treat injuries and conditions that affect the shoulder joint.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 25 - A 10-year-old boy comes to the clinic complaining of an itchy right ear...

    Incorrect

    • A 10-year-old boy comes to the clinic complaining of an itchy right ear that has been bothering him for the past five days. During the examination, he winces in pain when the outer ear is touched. Can you identify which part of the ear is considered the outer ear?

      Your Answer:

      Correct Answer: Pinna

      Explanation:

      Earache: Types and Anatomy of the Ear

      Earache can be categorized into two types: otitis media and otitis externa. Otitis media refers to the inflammation of the middle ear, while otitis externa is the inflammation of the outer ear and/or canal. Pain on touch or gentle pulling of the outer ear is commonly associated with otitis externa.

      The outer ear is composed of the visible part of the ear, called the pinna, and the external auditory meatus near the tragus. The external auditory meatus extends from the pinna around 26 mm to the tympanic membrane. On the other hand, the middle ear reaches from the tympanic membrane to the oval window of the cochlea. This space contains three ossicles, namely the malleus, incus, and stapes, which transmit sound waves to the inner ear.

      The inner ear is made up of the cochlea, which is responsible for hearing, and the vestibular apparatus, which helps maintain balance. The vestibular apparatus consists of three semicircular canals and the vestibule.

      the anatomy of the ear and the different types of earache can help in identifying and treating ear problems. It is important to seek medical attention if experiencing ear pain or discomfort.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 26 - A young athlete preparing for the Olympics decides to train at high altitude....

    Incorrect

    • A young athlete preparing for the Olympics decides to train at high altitude. What are the physiological adaptations that occur during altitude training?

      Your Answer:

      Correct Answer: Vasoconstriction of pulmonary arterioles

      Explanation:

      Physiological Changes during Exercise at Altitude

      Exercising at high altitudes can lead to a number of physiological changes in the body. One of the most significant changes is the vasoconstriction of pulmonary arterioles, which occurs in response to the decrease in PaO2. This can result in an increase in pulmonary artery pressure, leading to pulmonary hypertension and right ventricular hypertrophy if prolonged. Additionally, exercising at altitude can cause an increase in cerebral blood flow, as well as an initial fall in blood volume, which triggers the production of renin and aldosterone.

      Another notable change is the increase in the rate and depth of respiration, which is necessary to compensate for the lower oxygen levels at high altitudes. This increase in respiration also causes the oxygen dissociation curve to shift to the left, resulting in increased oxygen saturation at any given PaO2 value. Furthermore, the kidneys respond to the lower oxygen levels by producing more erythropoietin, which leads to an increase in red blood cell mass.

      Finally, exercising at altitude can cause an increase in arterial pH due to the high respiratory rate, which causes an increase in the excretion of CO2. This results in a respiratory alkalosis, which the kidneys compensate for by retaining H+ ions. Overall, these physiological changes are necessary for the body to adapt to the lower oxygen levels at high altitudes and maintain proper functioning during exercise.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 27 - A 28-year-old female patient has come to your clinic with worries about her...

    Incorrect

    • A 28-year-old female patient has come to your clinic with worries about her selenium levels. She has recently begun taking a selenium supplement.

      What is the primary function of selenium in the human body?

      Your Answer:

      Correct Answer: Production of thyroid hormone, T3

      Explanation:

      The Importance of Selenium in the Body

      Selenium plays a crucial role in various bodily functions. One of its primary functions is the conversion of thyroid hormone T4 to T3, which requires a selenium-based enzyme called deiodinase. Additionally, selenium is an essential component of certain antioxidant enzymes, such as glutathione peroxidases, which help protect the body from oxidative damage. It also regulates cytokine production and cellular immune function, making it vital for maintaining a healthy immune system.

      Selenium can be found in various food sources, including tuna, sardines, liver, meat, fish, and wholegrain bread. However, some parts of the world have selenium-deficient soils, which can lead to a deficiency in crops and, subsequently, in individuals who consume them. Patients with inflammatory bowel diseases or pancreatic disorders are also at a higher risk of selenium deficiency than healthy individuals.

      A deficiency in selenium can result in poor immune strength, an increased risk of infection, heart failure, and muscle weakness. Therefore, it is crucial to ensure that the body receives an adequate amount of selenium to maintain optimal health.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 28 - Which bone structure forms the anterior cranial fossa? ...

    Incorrect

    • Which bone structure forms the anterior cranial fossa?

      Your Answer:

      Correct Answer: The lesser wing of the sphenoid

      Explanation:

      Formation of the Anterior Cranial Fossa

      The anterior cranial fossa is the front part of the skull base that houses the frontal lobes of the brain. It is formed by three bones: the frontal bone, the sphenoid bone, and the ethmoid bone. The orbital plate of the frontal bone makes up the front part of the fossa, while the lesser wing of the sphenoid bone forms the sides. The cribriform plate of the ethmoid bone makes up the back part of the fossa. These three bones come together to create a bony structure that protects the brain and supports the facial structures. The anterior cranial fossa is an important area of the skull as it contains the olfactory bulbs, which are responsible for the sense of smell. Any damage to this area can result in a loss of smell or other neurological deficits.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 29 - Which muscles are responsible for flexing the hip joint? ...

    Incorrect

    • Which muscles are responsible for flexing the hip joint?

      Your Answer:

      Correct Answer: Psoas

      Explanation:

      Muscles and their Functions in Joint Movement

      The hip joint has three main flexors, namely the iliacus, psoas, and rectus femoris muscles. These muscles are responsible for flexing the hip joint, which is the movement of bringing the thigh towards the abdomen. On the other hand, the gluteus maximus and medius muscles are involved in hip extension, which is the movement of bringing the thigh backward.

      Moving on to the elbow joint, the bicep femoris muscle is one of the primary flexors. This muscle is responsible for bending the elbow, which is the movement of bringing the forearm towards the upper arm. Lastly, the adductor brevis muscle is responsible for adducting the leg at the hip joint, which is the movement of bringing the leg towards the midline of the body.

      In summary, muscles play a crucial role in joint movement. the functions of these muscles can help in identifying and addressing issues related to joint movement and mobility.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds
  • Question 30 - A 10-year-old patient presents with recurrent skin cancer and is diagnosed with xeroderma...

    Incorrect

    • A 10-year-old patient presents with recurrent skin cancer and is diagnosed with xeroderma pigmentosum. What is the defective biochemical mechanism in this disease?

      Your Answer:

      Correct Answer: DNA excision repair

      Explanation:

      DNA and its Processes

      Deoxyribonucleic acid (DNA) found in the epidermal cells absorbs UV light, which results in the formation of pyrimidine dimers. These dimers are then removed through the process of excision repair, where the DNA is copied and re-annealed. Failure in this process can lead to mutations in tumour suppressor genes or oncogenes, which can cause malignancy.

      DNA polymerisation is the process of synthesizing DNA from nucleotides, which is driven by the enzyme DNA polymerase. On the other hand, mRNA splicing is the removal of introns from RNA to allow for exons to join together before coding. Lastly, nucleotide transition refers to a point mutation of nucleotides, such as in sickle cell anaemia. these processes is crucial in comprehending the role of DNA in the body and how it can affect our health.

    • This question is part of the following fields:

      • Clinical Sciences
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Clinical Sciences (2/9) 22%
Passmed