-
Question 1
Incorrect
-
An 80-year-old patient who recently had a TIA is admitted to the vascular ward in preparation for a carotid endarterectomy tomorrow. During her pre-operative consultation, the surgeon explained that the artery will be tied during the procedure. The patient asks about the different arteries and their functions. You inform her that the internal carotid artery supplies the brain, while the external carotid artery divides into two arteries after ascending the neck. One of these arteries is the superficial temporal artery, but what is the other?
Your Answer: Deep temporal artery
Correct Answer: Maxillary artery
Explanation:The correct answer is the maxillary artery, which is one of the two terminal branches of the external carotid artery. It supplies deep structures of the face and usually bifurcates within the parotid gland to form the superficial temporal artery and maxillary artery. The facial artery supplies superficial structures in the face, while the lingual artery supplies the tongue. The middle meningeal artery is a branch of the maxillary artery and supplies the dura mater and calvaria. There are also two deep temporal arteries that arise from the maxillary artery and supply the temporalis muscle. The patient is scheduled to undergo carotid endarterectomy, a surgical procedure that involves removing atherosclerotic plaque from the common carotid artery to reduce the risk of subsequent ischaemic strokes or transient ischaemic attacks.
Anatomy of the External Carotid Artery
The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.
To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.
The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Incorrect
-
A 3-week-old male is brought to the paediatrician with concerns of inadequate feeding and weight gain. During cardiac examination, a continuous 'machine-like' murmur is detected. An echocardiogram confirms the presence of a patent ductus arteriosus (PDA).
What is the name of the structure that would remain if the PDA had closed at birth?Your Answer: Fossa ovalis
Correct Answer: Ligamentum arteriosum
Explanation:The ligamentum arteriosum is what remains of the ductus arteriosus after it typically closes at birth. If the ductus arteriosus remains open, known as a patent ductus arteriosus, it can cause infants to fail to thrive. The ventricles of the heart come from the bulbus cordis and primitive ventricle. The coronary sinus is formed by a group of cardiac veins merging together. The ligamentum venosum is the leftover of the ductus venosum. The fossa ovalis is created when the foramen ovale closes.
During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Incorrect
-
A 68-year-old man arrives at the emergency department complaining of intense abdominal pain that spreads to his back. His medical history shows that he has an abdominal aortic aneurysm. During a FAST scan, it is discovered that the abdominal aorta is widely dilated, with the most significant expansion occurring at the point where it divides into the iliac arteries. What vertebral level corresponds to the location of the most prominent dilation observed in the FAST scan?
Your Answer: L3
Correct Answer: L4
Explanation:The abdominal aorta divides into two branches at the level of the fourth lumbar vertebrae. At the level of T12, the coeliac trunk arises, while at L1, the superior mesenteric artery branches off. The testicular artery and renal artery originate at L2, and at L3, the inferior mesenteric artery is formed.
The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
A 26-year-old Afro-Caribbean woman comes to the Emergency Department complaining of dyspnoea and fatigue that has been going on for 2 days. She reports experiencing similar episodes repeatedly over the past few years. She has no other medical history.
During the examination, you observe sporadic erythematous lesions on her shins and detect a pansystolic murmur. You request a chest x-ray, which reveals bilateral hilar lymphadenopathy and an enlarged heart.
What additional symptom is linked to this ailment?Your Answer: Reduced ventricular ejection fraction
Explanation:Patients with reduced ejection fraction heart failure (HF-rEF) usually experience systolic dysfunction, which refers to the impaired ability of the myocardium to contract during systole.
Types of Heart Failure
Heart failure is a clinical syndrome where the heart cannot pump enough blood to meet the body’s metabolic needs. It can be classified in multiple ways, including by ejection fraction, time, and left/right side. Patients with heart failure may have a normal or abnormal left ventricular ejection fraction (LVEF), which is measured using echocardiography. Reduced LVEF is typically defined as < 35 to 40% and is termed heart failure with reduced ejection fraction (HF-rEF), while preserved LVEF is termed heart failure with preserved ejection fraction (HF-pEF). Heart failure can also be described as acute or chronic, with acute heart failure referring to an acute exacerbation of chronic heart failure. Left-sided heart failure is more common and may be due to increased left ventricular afterload or preload, while right-sided heart failure is caused by increased right ventricular afterload or preload. High-output heart failure is another type of heart failure that occurs when a normal heart is unable to pump enough blood to meet the body's metabolic needs. By classifying heart failure in these ways, healthcare professionals can better understand the underlying causes and tailor treatment plans accordingly. It is important to note that many guidelines for the management of heart failure only cover HF-rEF patients and do not address the management of HF-pEF patients. Understanding the different types of heart failure can help healthcare professionals provide more effective care for their patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Incorrect
-
A 67-year-old patient with well-controlled Parkinson's disease presents following several syncopal episodes. Each episode is preceded by a change in posture, typically when the patient gets out of bed in the morning. The patient feels dizzy and nauseous and falls. He recovers within seconds after the event. The neurologist states these symptoms are likely a side-effect of the patient's levodopa, and prescribes a medication to treat the condition.
What medication would be the most appropriate for managing the symptoms of this patient?Your Answer: Losartan
Correct Answer: Fludrocortisone
Explanation:Orthostatic hypotension can be treated with midodrine or fludrocortisone. Fludrocortisone is a synthetic mineralocorticoid that can replace low levels of aldosterone and is often used as an alternative to midodrine, which can cause side-effects such as hypertension and BPH in some patients. Atenolol is a beta-blocker used to treat angina and hypertension, while losartan is an angiotensin-II-receptor antagonist used to manage hypertension. Adenosine is a medication used to treat supraventricular tachycardias.
Understanding Orthostatic Hypotension
Orthostatic hypotension is a condition that is more commonly observed in older individuals and those who have neurodegenerative diseases such as Parkinson’s, diabetes, or hypertension. Additionally, certain medications such as alpha-blockers used for benign prostatic hyperplasia can also cause this condition. The primary feature of orthostatic hypotension is a sudden drop in blood pressure, usually more than 20/10 mm Hg, within three minutes of standing. This can lead to presyncope or syncope, which is a feeling of lightheadedness or fainting.
Fortunately, there are treatment options available for orthostatic hypotension. Midodrine and fludrocortisone are two medications that can be used to manage this condition. It is important to consult with a healthcare professional to determine the best course of treatment for each individual case. By understanding the causes, symptoms, and treatment options for orthostatic hypotension, individuals can take steps to manage this condition and improve their quality of life.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
How many valves are present between the right atrium and the superior vena cava (SVC)?
Your Answer: One
Correct Answer: None
Explanation:Inserting a CVP line from the internal jugular vein into the right atrium is relatively easy due to the absence of valves.
The Superior Vena Cava: Anatomy, Relations, and Developmental Variations
The superior vena cava (SVC) is a large vein that drains blood from the head and neck, upper limbs, thorax, and part of the abdominal walls. It is formed by the union of the subclavian and internal jugular veins, which then join to form the right and left brachiocephalic veins. The SVC is located in the anterior margins of the right lung and pleura, and is related to the trachea and right vagus nerve posteromedially, and the posterior aspects of the right lung and pleura posterolaterally. The pulmonary hilum is located posteriorly, while the right phrenic nerve and pleura are located laterally on the right side, and the brachiocephalic artery and ascending aorta are located laterally on the left side.
Developmental variations of the SVC are recognized, including anomalies of its connection and interruption of the inferior vena cava (IVC) in its abdominal course. In some individuals, a persistent left-sided SVC may drain into the right atrium via an enlarged orifice of the coronary sinus, while in rare cases, the left-sided vena cava may connect directly with the superior aspect of the left atrium, usually associated with an unroofing of the coronary sinus. Interruption of the IVC may occur in patients with left-sided atrial isomerism, with drainage achieved via the azygos venous system.
Overall, understanding the anatomy, relations, and developmental variations of the SVC is important for medical professionals in diagnosing and treating related conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Correct
-
Whilst in general practice, you review John, a 50-year-old patient with hypertension. Despite taking lisinopril, his blood pressure remains clinically elevated. Based on current guidelines you consider add-on therapy with a thiazide-like diuretic.
Which of the following electrolyte imbalances may arise with this new treatment?Your Answer: Hypokalaemia
Explanation:Hypokalaemia may be caused by thiazides
Thiazide diuretics can lead to hypokalaemia by stimulating aldosterone production and inhibiting the Na-Cl symporter. This inhibition results in more sodium being available to activate the Na/K-ATPase channel, leading to increased potassium loss in the urine and hypokalaemia.
Thiazide diuretics may also cause other side effects such as hypocalciuria, hypomagnesemia, and hyperlipidemia. The other options that describe the opposite of these disturbances are incorrect.
Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
A 45-year-old woman has varicose veins originating from the short saphenous vein. During mobilization of the vein near its origin, which structure is at the highest risk of injury?
Your Answer: Popliteal artery
Correct Answer: Sural nerve
Explanation:Litigation often arises from damage to the sural nerve, which is closely associated with this structure. While the other structures may also sustain injuries, the likelihood of such occurrences is comparatively lower.
Anatomy of the Popliteal Fossa
The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.
The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.
Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Correct
-
Which section of the ECG indicates atrial depolarization?
Your Answer: P wave
Explanation:The depolarization of the atria is represented by the P wave. It should be noted that the QRS complex makes it difficult to observe the repolarization of the atria.
Understanding the Normal ECG
The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.
The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.
Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
Ella, a 69-year-old female, arrives at the emergency department with abrupt tearing abdominal pain that radiates to her back.
Ella has a medical history of hypertension, hypercholesterolemia, and diabetes. Her body mass index is 31 kg/m². She smokes 10 cigarettes a day.
The emergency physician orders an ECG and MRI, which confirm the diagnosis of an aortic dissection.
Which layer or layers of the aorta are impacted?Your Answer: Tear in tunica intima, media and externa
Correct Answer: Tear in tunica intima
Explanation:An aortic dissection occurs when there is a tear in the innermost layer (tunica intima) of the aorta’s wall. This tear allows blood to flow into the space between the tunica intima and the middle layer (tunica media), causing pooling. The tear only affects the tunica intima layer and does not involve the outermost layer (tunica externa) or all three layers of the aortic wall.
Aortic dissection is a serious condition that can cause chest pain. It occurs when there is a tear in the inner layer of the aorta’s wall. Hypertension is the most significant risk factor, but it can also be associated with trauma, bicuspid aortic valve, and certain genetic disorders. Symptoms of aortic dissection include severe and sharp chest or back pain, weak or absent pulses, hypertension, and aortic regurgitation. Specific arteries’ involvement can cause other symptoms such as angina, paraplegia, or limb ischemia. The Stanford classification divides aortic dissection into type A, which affects the ascending aorta, and type B, which affects the descending aorta. The DeBakey classification further divides type A into type I, which extends to the aortic arch and beyond, and type II, which is confined to the ascending aorta. Type III originates in the descending aorta and rarely extends proximally.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Correct
-
A 32-year-old woman arrives at the emergency department with a sudden and severe headache, describing it as the worst she has ever experienced. She has a medical history of hypertension and polycystic kidney disease (PKD). The emergency physician diagnoses a subarachnoid hemorrhage, which is a common complication of her PKD.
What is the gold standard investigation for intracranial vascular disease?Your Answer: Cerebral angiography
Explanation:The gold standard investigation for intracranial vascular disease is cerebral angiography, which can diagnose intracranial aneurysms and other vascular diseases by visualizing arteries and veins using contrast dye injected into the bloodstream. This technique can also create 3-D reconstructed images that allow for a comprehensive view of the cerebral vessels and accompanying pathology from all angles.
Individuals with PKD are at an increased risk of cerebral aneurysms, which can lead to subarachnoid hemorrhages.
Flow-Sensitive MRI (FS MRI) is a useful tool that combines functional MRI with images of cerebrospinal fluid (CSF) flow. It can aid in planning the surgical removal of skull base tumors, spinal cord tumors, or tumors causing hydrocephalus.
While contrast and non-contrast CT scans are commonly used as the first line of investigation for intracranial lesions, they are not the gold standard and are superseded by cerebral angiography.
Understanding Cerebral Blood Flow and Angiography
Cerebral blood flow is regulated by the central nervous system, which can adjust its own blood supply. Various factors can affect cerebral pressure, including CNS metabolism, trauma, pressure, and systemic carbon dioxide levels. The most potent mediator is PaCO2, while acidosis and hypoxemia can also increase cerebral blood flow to a lesser degree. In patients with head injuries, increased intracranial pressure can impair blood flow. The Monro-Kelly Doctrine governs intracerebral pressure, which considers the brain as a closed box, and changes in pressure are offset by the loss of cerebrospinal fluid. However, when this is no longer possible, intracranial pressure rises.
Cerebral angiography is an invasive test that involves injecting contrast media into the carotid artery using a catheter. Radiographs are taken as the dye works its way through the cerebral circulation. This test can be used to identify bleeding aneurysms, vasospasm, and arteriovenous malformations, as well as differentiate embolism from large artery thrombosis. Understanding cerebral blood flow and angiography is crucial in diagnosing and treating various neurological conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Correct
-
Sophie, a 6-week-old baby, presents to the emergency department for evaluation. Her mother has observed that Sophie has been experiencing shortness of breath for the past 3 weeks, particularly during feeding. Sophie was born at 36 weeks and her mother reports no other issues since birth.
During the examination, a continuous machinery murmur with a left-sided sub-clavicular thrill is detected, and a diagnosis of patent ductus arteriosus is made. Surgery is not deemed necessary, but a medication that inhibits prostaglandin synthesis is recommended.
What is the most probable pharmacological treatment that will be offered?Your Answer: Indomethacin
Explanation:The inhibition of prostaglandin synthesis in infants with patent ductus arteriosus is achieved through the use of indomethacin. This medication (or ibuprofen) is effective in promoting closure of the ductus arteriosus by inhibiting prostaglandin synthesis.
Beta-blockers such as bisoprolol are not used in the management of PDA, making this answer incorrect.
Steroids like dexamethasone and prednisolone are not typically used in the treatment of PDA, although they may be given to the mother if premature delivery is expected. Therefore, these answers are also incorrect.
Understanding Patent Ductus Arteriosus
Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.
This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.
The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Correct
-
An 80-year-old man arrives at the emergency department with intense crushing chest pain. His ECG reveals ST-segment elevation in leads V1, V2, V3, and V4, and troponin levels are positive, indicating a provisional diagnosis of STEMI.
The following morning, nursing staff discovers that the patient has passed away.
Based on the timeline of his hospitalization, what is the probable cause of his death?Your Answer: Ventricular fibrillation (VF)
Explanation:The most likely cause of sudden death within the first 24 hours following a STEMI is ventricular fibrillation (VF). Histology findings during this time period include early coagulative necrosis, neutrophils, wavy fibers, and hypercontraction of myofibrils. Patients with these findings are at high risk of developing ventricular arrhythmia, heart failure, and cardiogenic shock. Acute mitral regurgitation, left ventricular free wall rupture, and pericardial effusion secondary to Dressler’s syndrome are less likely causes of sudden death in this time frame.
Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Correct
-
Which of the following is not a hepatic artery branch?
Your Answer: Pancreatic artery
Explanation:The Coeliac Axis and its Branches
The coeliac axis is a major artery that supplies blood to the upper abdominal organs. It has three main branches: the left gastric, hepatic, and splenic arteries. The hepatic artery further branches into the right gastric, gastroduodenal, right gastroepiploic, superior pancreaticoduodenal, and cystic arteries. Meanwhile, the splenic artery gives off the pancreatic, short gastric, and left gastroepiploic arteries. Occasionally, the coeliac axis also gives off one of the inferior phrenic arteries.
The coeliac axis is located anteriorly to the lesser omentum and is related to the right and left coeliac ganglia, as well as the caudate process of the liver and the gastric cardia. Inferiorly, it is in close proximity to the upper border of the pancreas and the renal vein.
Understanding the anatomy and branches of the coeliac axis is important in diagnosing and treating conditions that affect the upper abdominal organs, such as pancreatic cancer or gastric ulcers.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
The venous drainage of the heart is aided by the Thebesian veins. To which primary structure do they drain?
Your Answer: Small cardiac vein
Correct Answer: Atrium
Explanation:The surface of the heart is covered by numerous small veins known as thebesian veins, which drain directly into the heart, typically into the atrium.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Correct
-
A 65-year-old male comes to the GP complaining of mild chest pain and dyspnoea. The patient has no significant medical history but has a family history of heart disease, with his father passing away following a heart attack last year. The GP suspects atrial flutter and decides to perform an ECG to confirm the diagnosis. What ECG findings would you anticipate given the diagnosis?
Your Answer: Narrow complex tachycardia
Explanation:Atrial flutter is characterized by a sawtooth pattern on ECG and typically presents as a narrow complex tachycardia. The regular atrial activity in atrial flutter is typically 300 bpm, and the ventricular rate is a fraction of this. For example, a 2:1 block would result in a ventricular rate of 150/min, a 3:1 block would result in a ventricular rate of 100/min, and a 4:1 block would result in a ventricular rate of 75/min.
Atrial flutter is a type of supraventricular tachycardia that is characterized by a series of rapid atrial depolarization waves. This condition can be identified through ECG findings, which show a sawtooth appearance. The underlying atrial rate is typically around 300 beats per minute, which can affect the ventricular or heart rate depending on the degree of AV block. For instance, if there is a 2:1 block, the ventricular rate will be 150 beats per minute. Flutter waves may also be visible following carotid sinus massage or adenosine.
Managing atrial flutter is similar to managing atrial fibrillation, although medication may be less effective. However, atrial flutter is more sensitive to cardioversion, so lower energy levels may be used. For most patients, radiofrequency ablation of the tricuspid valve isthmus is curative.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
A middle-aged man is informed of his hypertension during routine check-ups. The physician clarifies that his age increases the likelihood of a secondary cause for his hypertension. What is the primary cause of secondary hypertension?
Your Answer: Endocrine disease
Correct Answer: Renal disease
Explanation:Secondary hypertension is primarily caused by renal disease, while other endocrine diseases like hyperaldosteronism, phaeochromocytoma, and acromegaly are less common culprits. Malignancy and pregnancy typically do not lead to hypertension, although pregnancy can result in pre-eclampsia, which is characterized by high blood pressure. Certain medications, such as NSAIDs and glucocorticoids, can also induce hypertension.
Secondary Causes of Hypertension
Hypertension, or high blood pressure, can be caused by various factors. While primary hypertension has no identifiable cause, secondary hypertension is caused by an underlying medical condition. The most common cause of secondary hypertension is primary hyperaldosteronism, which accounts for 5-10% of cases. Other causes include renal diseases such as glomerulonephritis, pyelonephritis, adult polycystic kidney disease, and renal artery stenosis. Endocrine disorders like phaeochromocytoma, Cushing’s syndrome, Liddle’s syndrome, congenital adrenal hyperplasia, and acromegaly can also result in increased blood pressure. Certain medications like steroids, monoamine oxidase inhibitors, the combined oral contraceptive pill, NSAIDs, and leflunomide can also cause hypertension. Pregnancy and coarctation of the aorta are other possible causes. Identifying and treating the underlying condition is crucial in managing secondary hypertension.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Incorrect
-
Where are the red hat pins most likely located based on the highest velocity measurements in different parts of a bovine heart during experimental research for a new drug for heart conduction disorders?
Your Answer: AV node
Correct Answer: Purkinje fibres
Explanation:Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
A 65-year-old man presents to the GP for a routine hypertension check-up. He has a medical history of hypertension, ischaemic heart disease, osteoarthritis, rheumatic fever and COPD.
During the physical examination, the GP hears a mid-late diastolic murmur that intensifies during expiration. The GP suspects that the patient may have mitral stenosis.
What is the primary cause of this abnormality?Your Answer: Ischaemic heart disease
Correct Answer: Rheumatic fever
Explanation:Understanding Mitral Stenosis
Mitral stenosis is a condition where the mitral valve, which controls blood flow from the left atrium to the left ventricle, becomes obstructed. This leads to an increase in pressure within the left atrium, pulmonary vasculature, and right side of the heart. The most common cause of mitral stenosis is rheumatic fever, but it can also be caused by other rare conditions such as mucopolysaccharidoses, carcinoid, and endocardial fibroelastosis.
Symptoms of mitral stenosis include dyspnea, hemoptysis, a mid-late diastolic murmur, a loud S1, and a low volume pulse. Severe cases may also present with an increased length of murmur and a closer opening snap to S2. Chest x-rays may show left atrial enlargement, while echocardiography can confirm a cross-sectional area of less than 1 sq cm for a tight mitral stenosis.
Management of mitral stenosis depends on the severity of the condition. Asymptomatic patients are monitored with regular echocardiograms, while symptomatic patients may undergo percutaneous mitral balloon valvotomy or mitral valve surgery. Patients with associated atrial fibrillation require anticoagulation, with warfarin currently recommended for moderate/severe cases. However, there is an emerging consensus that direct-acting anticoagulants may be suitable for mild cases with atrial fibrillation.
Overall, understanding mitral stenosis is important for proper diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
A 35-year-old man visits his GP complaining of feeling increasingly unwell for the past few weeks. He reports experiencing heavy night sweats, fatigue, and shortness of breath. Upon further questioning, he reveals a history of intravenous drug use for many years and has been using methadone exclusively for the last 2 months. During the physical examination, the GP observes splinter haemorrhages. What is the probable causative organism?
Your Answer: Streptococcus viridans
Correct Answer: Staphylococcus aureus
Explanation:The patient is exhibiting symptoms that are indicative of infective endocarditis and has a past of using intravenous drugs. Infective endocarditis can be caused by various factors, but in developed countries, S. aureus is the most prevalent cause. This is especially true for individuals who use intravenous drugs, as in this case.
Aetiology of Infective Endocarditis
Infective endocarditis is a condition that affects patients with previously normal valves, rheumatic valve disease, prosthetic valves, congenital heart defects, intravenous drug users, and those who have recently undergone piercings. The strongest risk factor for developing infective endocarditis is a previous episode of the condition. The mitral valve is the most commonly affected valve.
The most common cause of infective endocarditis is Staphylococcus aureus, particularly in acute presentations and intravenous drug users. Historically, Streptococcus viridans was the most common cause, but this is no longer the case except in developing countries. Coagulase-negative Staphylococci such as Staphylococcus epidermidis are commonly found in indwelling lines and are the most common cause of endocarditis in patients following prosthetic valve surgery. Streptococcus bovis is associated with colorectal cancer, with the subtype Streptococcus gallolyticus being most linked to the condition.
Culture negative causes of infective endocarditis include prior antibiotic therapy, Coxiella burnetii, Bartonella, Brucella, and HACEK organisms (Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, Kingella). It is important to note that systemic lupus erythematosus and malignancy, specifically marantic endocarditis, can also cause non-infective endocarditis.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 21
Incorrect
-
A 48-year-old man with a history of hypertension and type 2 diabetes mellitus arrives at the emergency department with loss of vision on the right side.
Which artery disease could be responsible for his symptoms?Your Answer: Middle meningeal artery
Correct Answer: Internal carotid artery
Explanation:The ophthalmic artery is the first branch of the internal carotid artery and supplies the orbit. If the internal carotid artery is affected by disease, it can lead to vision loss. However, disease of the external carotid artery, which supplies structures of the face and neck, or its branches such as the facial artery (which supplies skin and muscles of the face), lingual artery (which supplies the tongue and oral mucosa), or middle meningeal artery (which supplies the cranial dura), would not result in vision loss. Disease of the middle meningeal artery is commonly associated with extradural hematoma.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Correct
-
A 30-year-old man arrived at the emergency department following a syncopal episode during a game of basketball. He is typically healthy with no prior medical history, but he does mention experiencing occasional palpitations, which he believes may be due to alcohol or caffeine consumption. Upon further inquiry, he reveals that his father passed away suddenly at the age of 40 due to a heart condition. What is the underlying pathophysiological alteration in this patient?
Your Answer: Asymmetric septal hypertrophy
Explanation:When a young patient presents with symptoms of syncope and chest discomfort, along with a family history of hypertrophic cardiomyopathy (HOCM), it is important to consider the possibility of this condition. Asymmetric septal hypertrophy and systolic anterior movement (SAM) of the anterior leaflet of the mitral valve on echocardiogram or cMR are supportive of HOCM. This condition is caused by a genetic defect in the beta-myosin heavy chain protein gene. While Brugada syndrome may also be a consideration, it is not listed as a possible answer due to its underlying mechanism of sodium channelopathy.
Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 23
Incorrect
-
A 73-year-old woman is admitted to the acute surgical unit with profuse vomiting. Admission bloods show the following:
Na+ 131 mmol/l
K+ 2.2 mmol/l
Urea 3.1 mmol/l
Creatinine 56 mol/l
Glucose 4.3 mmol/l
What ECG feature is most likely to be seen in this patient?Your Answer: Flattened P waves
Correct Answer: U waves
Explanation:Hypokalaemia, a condition characterized by low levels of potassium in the blood, can be detected through ECG features. These include the presence of U waves, small or absent T waves (which may occasionally be inverted), a prolonged PR interval, ST depression, and a long QT interval. The ECG image provided shows typical U waves and a borderline PR interval. To remember these features, one user suggests the following rhyme: In Hypokalaemia, U have no Pot and no T, but a long PR and a long QT.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
A 55-year-old woman with resistant hypertension is currently on ramipril and amlodipine. The GP wants to add a diuretic that primarily acts on the distal convoluted tubule. What diuretic should be considered?
Your Answer: Furosemide (loop diuretic)
Correct Answer: Bendroflumethiazide (thiazide diuretic)
Explanation:Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 25
Correct
-
During surgery on her neck, a woman in her 50s suffers a vagus nerve injury where the nerve is cut near the exit from the skull. She wakes up with a high heart rate and high blood pressure due to loss of parasympathetic tone.
What other features would be expected with a vagus nerve injury?Your Answer: Hoarse voice
Explanation:The vagus (X) nerve is responsible for all innervation related to speech, meaning that any injuries to this nerve can lead to speech problems. It’s important to note that the vagus nerve has both autonomic and somatic effects, with the latter being the most crucial for speech. This involves the motor supply to the larynx through the recurrent laryngeal nerves, which are branches of the vagus. If one vagus nerve is damaged, it would have the same impact as damage to a single recurrent laryngeal nerve, resulting in a hoarse voice.
However, it’s worth noting that anal tone, erections, and urination are controlled by the sacral parasympathetics and would not be affected by the loss of the vagus nerve. Similarly, pupillary constriction is controlled by parasympathetics on the oculomotor nerve and would not be impacted by the loss of the vagus nerve.
The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.
The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.
The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 26
Correct
-
A 57-year-old woman comes to see her GP to discuss the findings of her ABPM, which revealed a blood pressure reading of 145/90 mmHg, leading to a diagnosis of stage 1 hypertension. What is the most common symptom experienced by patients with this condition?
Your Answer: None
Explanation:Symptoms are not typically caused by hypertension.
Hypertension is a common medical condition that refers to chronically raised blood pressure. It is a significant risk factor for cardiovascular disease such as stroke and ischaemic heart disease. Normal blood pressure can vary widely according to age, gender, and individual physiology, but hypertension is defined as a clinic reading persistently above 140/90 mmHg or a 24-hour blood pressure average reading above 135/85 mmHg.
Around 90-95% of patients with hypertension have primary or essential hypertension, which is caused by complex physiological changes that occur as we age. Secondary hypertension may be caused by a variety of endocrine, renal, and other conditions. Hypertension typically does not cause symptoms unless it is very high, but patients may experience headaches, visual disturbance, or seizures.
Diagnosis of hypertension involves 24-hour blood pressure monitoring or home readings using an automated sphygmomanometer. Patients with hypertension typically have tests to check for renal disease, diabetes mellitus, hyperlipidaemia, and end-organ damage. Management of hypertension involves drug therapy using antihypertensives, modification of other risk factors, and monitoring for complications. Common drugs used to treat hypertension include angiotensin-converting enzyme inhibitors, calcium channel blockers, thiazide type diuretics, and angiotensin II receptor blockers. Drug therapy is decided by well-established NICE guidelines, which advocate a step-wise approach.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 27
Incorrect
-
An 80-year-old man presents to the emergency department with complaints of chest pain, dizziness, and palpitations. He has a medical history of mitral stenosis and denies any alcohol or smoking habits. Upon conducting an ECG, it is observed that lead I shows positively directed sawtooth deflections, while leads II, III, and aVF show negatively directed sawtooth deflections. What pathology does this finding suggest?
Your Answer: Wolff-Parkinson-White syndrome
Correct Answer: Atrial flutter
Explanation:Atrial flutter is identified by a sawtooth pattern on the ECG and is a type of supraventricular tachycardia. It occurs when electrical activity from the sinoatrial node reenters the atria instead of being conducted to the ventricles. Valvular heart disease is a risk factor, and atrial flutter is managed similarly to atrial fibrillation.
Left bundle branch block causes a delayed contraction of the left ventricle and is identified by a W pattern in V1 and an M pattern in V6 on an ECG. It does not produce a sawtooth pattern on the ECG.
Ventricular fibrillation is characterized by chaotic electrical conduction in the ventricles, resulting in a lack of normal ventricular contraction. It can cause cardiac arrest and requires advanced life support management.
Wolff-Parkinson-White syndrome is caused by an accessory pathway between the atria and the ventricles and is identified by a slurred upstroke at the beginning of the QRS complex, known as a delta wave. It can present with symptoms such as palpitations, shortness of breath, and syncope.
Atrial flutter is a type of supraventricular tachycardia that is characterized by a series of rapid atrial depolarization waves. This condition can be identified through ECG findings, which show a sawtooth appearance. The underlying atrial rate is typically around 300 beats per minute, which can affect the ventricular or heart rate depending on the degree of AV block. For instance, if there is a 2:1 block, the ventricular rate will be 150 beats per minute. Flutter waves may also be visible following carotid sinus massage or adenosine.
Managing atrial flutter is similar to managing atrial fibrillation, although medication may be less effective. However, atrial flutter is more sensitive to cardioversion, so lower energy levels may be used. For most patients, radiofrequency ablation of the tricuspid valve isthmus is curative.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 28
Incorrect
-
A 72-year-old woman comes to her GP complaining of increasing dyspnoea, especially during physical activity. During the examination, the doctor observes a raised JVP and malar flush. On auscultation of the heart, a diastolic murmur is heard, which is most audible at the apex.
What is the most frequent cause of the likely diagnosis?Your Answer: Heart failure
Correct Answer: Rheumatic fever
Explanation:Understanding Mitral Stenosis
Mitral stenosis is a condition where the mitral valve, which controls blood flow from the left atrium to the left ventricle, becomes obstructed. This leads to an increase in pressure within the left atrium, pulmonary vasculature, and right side of the heart. The most common cause of mitral stenosis is rheumatic fever, but it can also be caused by other rare conditions such as mucopolysaccharidoses, carcinoid, and endocardial fibroelastosis.
Symptoms of mitral stenosis include dyspnea, hemoptysis, a mid-late diastolic murmur, a loud S1, and a low volume pulse. Severe cases may also present with an increased length of murmur and a closer opening snap to S2. Chest x-rays may show left atrial enlargement, while echocardiography can confirm a cross-sectional area of less than 1 sq cm for a tight mitral stenosis.
Management of mitral stenosis depends on the severity of the condition. Asymptomatic patients are monitored with regular echocardiograms, while symptomatic patients may undergo percutaneous mitral balloon valvotomy or mitral valve surgery. Patients with associated atrial fibrillation require anticoagulation, with warfarin currently recommended for moderate/severe cases. However, there is an emerging consensus that direct-acting anticoagulants may be suitable for mild cases with atrial fibrillation.
Overall, understanding mitral stenosis is important for proper diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Incorrect
-
A 56-year-old man visits his GP complaining of congestive heart failure, angina, and exertional syncope. During the examination, the doctor observes a forceful apex beat and a systolic ejection murmur at the upper right sternal border.
What condition is most likely causing these symptoms?Your Answer: Prolapsing mitral valve
Correct Answer: Aortic stenosis
Explanation:Symptoms and Diagnosis of Heart Valve Disorders
Heart valve disorders can cause a range of symptoms depending on the type and severity of the condition. Aortic stenosis, for example, can lead to obstruction of left ventricular emptying, resulting in slow rising carotid pulse and a palpated murmur that may radiate to the neck. Aortic valve replacement is necessary for symptomatic patients to prevent death within three years or those with severe valve narrowing on ECHO. On the other hand, aortic regurgitation may not show any symptoms for many years until dyspnoea and fatigue set in. A blowing early diastolic murmur is typically found at the left sternal edge, and a mid-diastolic murmur may also be present over the apex of the heart.
Mitral regurgitation, whether acute or chronic, can cause pulmonary oedema, exertional dyspnoea, and lethargy. A pansystolic murmur is audible at the apex. Mitral stenosis, meanwhile, initially presents with exertional dyspnoea, but haemoptysis and a productive cough may also occur. A rumbling mid-diastolic murmur is indicative of mitral stenosis. Finally, a prolapsing mitral valve is common in young women and is usually asymptomatic, although atypical chest pain may be present. Overall, proper diagnosis and treatment of heart valve disorders are crucial to prevent complications and improve quality of life.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 30
Correct
-
A 65-year-old man visits his doctor with complaints of shortness of breath and swelling in his lower limbs. To aid in diagnosis, the doctor orders a B-type natriuretic peptide test. What triggers the production of B-type natriuretic peptide in heart failure?
Your Answer: Increased ventricular filling pressure
Explanation:When the ventricles are under strain, they release B-type natriuretic peptide. Normally, increased ventricular filling pressures would result in a larger diastolic volume and cardiac output through the Frank-Starling mechanism. However, in heart failure, this mechanism is overwhelmed and the ventricles are stretched too much for a strong contraction.
To treat heart failure, ACE inhibitors are used to decrease the amount of BNP produced. A decrease in stroke volume is a sign of heart failure. The body compensates for heart failure by increasing activation of the renin-angiotensin-aldosterone system.
B-type natriuretic peptide (BNP) is a hormone that is primarily produced by the left ventricular myocardium in response to strain. Although heart failure is the most common cause of elevated BNP levels, any condition that causes left ventricular dysfunction, such as myocardial ischemia or valvular disease, may also raise levels. In patients with chronic kidney disease, reduced excretion may also lead to elevated BNP levels. Conversely, treatment with ACE inhibitors, angiotensin-2 receptor blockers, and diuretics can lower BNP levels.
BNP has several effects, including vasodilation, diuresis, natriuresis, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. Clinically, BNP is useful in diagnosing patients with acute dyspnea. A low concentration of BNP (<100 pg/mL) makes a diagnosis of heart failure unlikely, but elevated levels should prompt further investigation to confirm the diagnosis. Currently, NICE recommends BNP as a helpful test to rule out a diagnosis of heart failure. In patients with chronic heart failure, initial evidence suggests that BNP is an extremely useful marker of prognosis and can guide treatment. However, BNP is not currently recommended for population screening for cardiac dysfunction.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 31
Incorrect
-
A 54-year-old woman has been diagnosed with hypertension following ABPM which showed her blood pressure to be 152/91 mmHg. She is curious about her condition and asks her GP to explain the physiology of blood pressure. Can you tell me where the baroreceptors that detect blood pressure are located in the body?
Your Answer: Hypothalamus
Correct Answer: Carotid sinus
Explanation:The carotid sinus, located just above the point where the internal and external carotid arteries divide, houses baroreceptors that sense the stretching of the artery wall. These baroreceptors are connected to the glossopharyngeal nerve (cranial nerve IX). The nerve fibers then synapse in the solitary nucleus of the medulla, which regulates the activity of sympathetic and parasympathetic neurons. This, in turn, affects the heart and blood vessels, leading to changes in blood pressure.
Similarly, the aortic arch also has baroreceptors that are connected to the aortic nerve. This nerve combines with the vagus nerve (X) and travels to the solitary nucleus.
In contrast, the carotid body, located near the carotid sinus, contains chemoreceptors that detect changes in the levels of oxygen and carbon dioxide in the blood.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 32
Correct
-
A 25-year-old man is scheduled for a mitral valve repair to address mitral regurgitation. What characteristic is associated with the mitral valve?
Your Answer: Its closure is marked by the first heart sound
Explanation:To hear the mitral valve clearly, it is recommended to listen over the cardiac apex, as its closure produces the initial heart sound. The valve comprises two cusps that are connected to the ventricle wall by papillary muscles through chordae tendinae.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 33
Incorrect
-
A 55-year-old chronic smoker presents to the cardiology clinic with worsening chest pain during physical activity. After initial investigations, an outpatient coronary angiography is performed which reveals severe stenosis/atheroma in multiple vessels. The patient is informed that this condition is a result of various factors, including the detrimental effects of smoking on the blood vessels.
What is the ultimate stage in the development of this patient's condition?Your Answer: Endothelial dysfunction
Correct Answer: Smooth muscle proliferation and migration from the tunica media into the intima
Explanation:Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 34
Incorrect
-
A 70-year-old man arrives at the Emergency department displaying indications and symptoms of acute coronary syndrome. Among the following cardiac enzymes, which is the most probable to increase first after a heart attack?
Your Answer: Troponin I
Correct Answer: Myoglobin
Explanation:Enzyme Markers for Myocardial Infarction
Enzyme markers are used to diagnose myocardial infarction, with troponins being the most sensitive and specific. However, troponins are not the fastest to rise and are only measured 12 hours after the event. Myoglobin, although less sensitive and specific, is the earliest marker to rise. The rise of myoglobin occurs within 2 hours of the event, with a peak at 6-8 hours and a fall within 1-2 days. Creatine kinase rises within 4-6 hours, peaks at 24 hours, and falls within 3-4 days. LDH rises within 6-12 hours, peaks at 72 hours, and falls within 10-14 days. These enzyme markers are important in the diagnosis and management of myocardial infarction.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 35
Incorrect
-
A 25-year-old woman is having a trendelenberg procedure to treat her varicose veins. While dissecting the saphenofemoral junction, which structure is most susceptible to injury?
Your Answer: Femoral nerve
Correct Answer: Deep external pudendal artery
Explanation:The deep external pudendal artery is situated near the origin of the long saphenous vein and can be damaged. The highest risk of injury occurs during the flush ligation of the saphenofemoral junction. However, if an injury is detected and the vessel is tied off, it is rare for any significant negative consequences to occur.
The Anatomy of Saphenous Veins
The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.
On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.
Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 36
Incorrect
-
A 87-year-old male with chronic untreated hypertension arrives at the emergency department complaining of chest pain. Upon examination of his ECG, it is observed that there are tall QRS complexes throughout the entire ECG with elevated R-waves in the left-sided leads. What condition does this suggest?
Your Answer: Dilated cardiomyopathy
Correct Answer: Left ventricular hypertrophy (LVF)
Explanation:ST elevation is expected in the leads corresponding to the affected part of the heart in an STEMI, while ST depression, T wave inversion, or no change is expected in an NSTEMI or angina. Dilated cardiomyopathy does not have any classical ECG changes, and it is not commonly associated with hypertension as LVF. LVF, on the other hand, causes left ventricular hypertrophy due to prolonged hypertension, resulting in an increase in R-wave amplitude in leads 1, aVL, and V4-6, as well as an increase in S wave depth in leads III, aVR, and V1-3 on the right side.
ECG Indicators of Atrial and Ventricular Hypertrophy
Left ventricular hypertrophy is indicated on an ECG when the sum of the S wave in V1 and the R wave in V5 or V6 exceeds 40 mm. Meanwhile, right ventricular hypertrophy is characterized by a dominant R wave in V1 and a deep S wave in V6. In terms of atrial hypertrophy, left atrial enlargement is indicated by a bifid P wave in lead II with a duration of more than 120 ms, as well as a negative terminal portion in the P wave in V1. On the other hand, right atrial enlargement is characterized by tall P waves in both II and V1 that exceed 0.25 mV. These ECG indicators can help diagnose and monitor patients with atrial and ventricular hypertrophy.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 37
Incorrect
-
A 70-year-old man presents to the cardiology clinic with complaints of worsening shortness of breath and leg swelling over the past 3 months. Upon examination, there is pitting edema to his thighs bilaterally with palpable sacral edema. Bibasal crackles are heard upon auscultation. What medication can be prescribed to improve the prognosis of the underlying condition?
Your Answer: Furosemide
Correct Answer: Ramipril
Explanation:Ramipril is the correct medication for this patient with likely chronic heart failure. It is one of the few drugs that has been shown to improve the overall prognosis of heart failure, along with beta-blockers and aldosterone antagonists. Aspirin, digoxin, and furosemide are commonly used in the management of heart failure but do not offer prognostic benefit.
Chronic heart failure can be managed through drug treatment, according to updated guidelines issued by NICE in 2018. While loop diuretics are useful in managing fluid overload, they do not reduce mortality in the long term. The first-line treatment for all patients is a combination of an ACE-inhibitor and a beta-blocker, with clinical judgement used to determine which one to start first. Aldosterone antagonists are recommended as second-line treatment, but potassium levels should be monitored as both ACE inhibitors and aldosterone antagonists can cause hyperkalaemia. Third-line treatment should be initiated by a specialist and may include ivabradine, sacubitril-valsartan, hydralazine in combination with nitrate, digoxin, and cardiac resynchronisation therapy. Other treatments include annual influenzae and one-off pneumococcal vaccines. Those with asplenia, splenic dysfunction, or chronic kidney disease may require a booster every 5 years.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 38
Correct
-
An ENT surgeon is performing a radical neck dissection. She wishes to fully expose the external carotid artery. To do so she inserts a self retaining retractor close to its origin. Which one of the following structures lies posterolaterally to the external carotid at this point?
Your Answer: Internal carotid artery
Explanation:At its origin from the common carotid, the internal carotid artery is located at the posterolateral position in relation to the external carotid artery. Its anterior surface gives rise to the superior thyroid, lingual, and facial arteries.
Anatomy of the External Carotid Artery
The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.
To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.
The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 39
Incorrect
-
A 64-year-old woman is being monitored in the nurse-led heart failure clinic. She has left-sided heart failure and her recent echo revealed a reduced ejection fraction. She complains of nocturnal breathlessness and needing multiple pillows to sleep.
She is prescribed bisoprolol and another medication with the explanation that it will help decrease mortality.
What is the probable medication she has been prescribed?Your Answer: Spironolactone
Correct Answer: Ramipril
Explanation:In the treatment of heart failure, medications are used to improve the heart’s ability to pump blood effectively. Beta blockers, such as bisoprolol, are commonly prescribed to slow the heart rate and improve filling. The first-line drugs for heart failure are beta blockers and ACE inhibitors. Therefore, the patient in question will be prescribed an ACE inhibitor, such as ramipril, as the second drug. Ramipril works by reducing venous resistance, making it easier for the heart to pump blood out, and lowering arterial pressures, which increases the heart’s pre-load.
Carvedilol is not the correct choice for this patient. Although it can be used in heart failure, the patient is already taking a beta blocker, and adding another drug from the same class could cause symptomatic bradycardia or hypotension.
Digoxin is not the appropriate choice either. While it can be used in heart failure, it should only be initiated by a specialist.
Sacubitril-valsartan is also not the right choice for this patient. Although it is becoming more commonly used in heart failure patients, it should only be prescribed by a specialist after first and second-line treatment options have been exhausted.
Chronic heart failure can be managed through drug treatment, according to updated guidelines issued by NICE in 2018. While loop diuretics are useful in managing fluid overload, they do not reduce mortality in the long term. The first-line treatment for all patients is a combination of an ACE-inhibitor and a beta-blocker, with clinical judgement used to determine which one to start first. Aldosterone antagonists are recommended as second-line treatment, but potassium levels should be monitored as both ACE inhibitors and aldosterone antagonists can cause hyperkalaemia. Third-line treatment should be initiated by a specialist and may include ivabradine, sacubitril-valsartan, hydralazine in combination with nitrate, digoxin, and cardiac resynchronisation therapy. Other treatments include annual influenzae and one-off pneumococcal vaccines. Those with asplenia, splenic dysfunction, or chronic kidney disease may require a booster every 5 years.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 40
Incorrect
-
A 75-year-old man presents to the clinic with a chief complaint of dyspnea while in a supine position. Despite having a normal ejection fraction, what could be a potential cause for his symptoms?
Your Answer: He has increased atrial compliance
Correct Answer: He has diastolic dysfunction
Explanation:When there is systolic dysfunction, the ejection fraction decreases as the stroke volume decreases. However, in cases of diastolic dysfunction, ejection fraction is not a reliable indicator as both stroke volume and end-diastolic volume may be reduced. Diastolic dysfunction occurs when the heart’s compliance is reduced.
Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.
Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.
Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 41
Correct
-
A 67-year-old man presents to the emergency department with chest pain. He describes this as crushing central chest pain which is associated with nausea and sweating.
Blood results are as follows:
Hb 148 g/L Male: (135-180)
Female: (115 - 160)
Platelets 268 * 109/L (150 - 400)
WBC 14.6 * 109/L (4.0 - 11.0)
Na+ 136 mmol/L (135 - 145)
K+ 4.7 mmol/L (3.5 - 5.0)
Urea 6.2 mmol/L (2.0 - 7.0)
Creatinine 95 µmol/L (55 - 120)
Troponin 4058 ng/L (< 14 ng/L)
An ECG is performed which demonstrates:
Current ECG Sinus rhythm, QRS 168ms, dominant S wave in V1
Previous ECG 12 months ago No abnormality
Which part of the heart's conduction system is likely to be affected?Your Answer: Purkinje fibres
Explanation:The Purkinje fibres have the highest conduction velocities in the heart, and a prolonged QRS (>120ms) with a dominant S wave in V1 may indicate left bundle branch block (LBBB). If a patient presents with chest pain, a raised troponin, and a previously normal ECG, LBBB should be considered as a possible cause and managed as an acute STEMI. LBBB is caused by damage to the left bundle branch and its associated Purkinje fibres.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 42
Incorrect
-
A 50-year-old man visits the diabetic foot clinic and has his foot pulses checked. During the examination, the healthcare provider palpates the posterior tibial pulse and the dorsalis pedis pulse. What artery does the dorsalis pedis artery continue from?
Your Answer: Popliteal artery
Correct Answer: Anterior tibial artery
Explanation:The dorsalis pedis artery in the foot is a continuation of the anterior tibial artery.
At the level of the pelvis, the common iliac artery gives rise to the external iliac artery.
The lateral compartment of the leg is supplied by the peroneal artery, also known as the fibular artery.
A branch of the popliteal artery is the tibioperoneal trunk.
The anterior tibial artery is formed by the popliteal artery.
The anterior tibial artery starts opposite the lower border of the popliteus muscle and ends in front of the ankle, where it continues as the dorsalis pedis artery. As it descends, it runs along the interosseous membrane, the distal part of the tibia, and the front of the ankle joint. The artery passes between the tendons of the extensor digitorum and extensor hallucis longus muscles as it approaches the ankle. The deep peroneal nerve is closely related to the artery, lying anterior to the middle third of the vessel and lateral to it in the lower third.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 43
Incorrect
-
An 78-year-old man with a history of hypertension, ischaemic heart disease and peripheral vascular disease presents with palpitations and syncope. His ECG reveals an irregularly irregular pulse of 124 beats/min. What factor in his medical history will be given the most consideration when deciding whether or not to administer anticoagulation?
Your Answer: Congestive heart disease
Correct Answer: Age
Explanation:To determine the need for anticoagulation in patients with atrial fibrillation, it is necessary to conduct a CHA2DS2-VASc score assessment. This involves considering various factors, including age (which is weighted heaviest, with 2 points given for those aged 75 and over), hypertension (1 point), and congestive heart disease (1 point). Palpitations, however, are not included in the CHA2DS2-VASc tool.
Atrial fibrillation (AF) is a condition that requires careful management, including the use of anticoagulation therapy. The latest guidelines from NICE recommend assessing the need for anticoagulation in all patients with a history of AF, regardless of whether they are currently experiencing symptoms. The CHA2DS2-VASc scoring system is used to determine the most appropriate anticoagulation strategy, with a score of 2 or more indicating the need for anticoagulation. However, it is important to ensure a transthoracic echocardiogram has been done to exclude valvular heart disease, which is an absolute indication for anticoagulation.
When considering anticoagulation therapy, doctors must also assess the patient’s bleeding risk. NICE recommends using the ORBIT scoring system to formalize this risk assessment, taking into account factors such as haemoglobin levels, age, bleeding history, renal impairment, and treatment with antiplatelet agents. While there are no formal rules on how to act on the ORBIT score, individual patient factors should be considered. The risk of bleeding increases with a higher ORBIT score, with a score of 4-7 indicating a high risk of bleeding.
For many years, warfarin was the anticoagulant of choice for AF. However, the development of direct oral anticoagulants (DOACs) has changed this. DOACs have the advantage of not requiring regular blood tests to check the INR and are now recommended as the first-line anticoagulant for patients with AF. The recommended DOACs for reducing stroke risk in AF are apixaban, dabigatran, edoxaban, and rivaroxaban. Warfarin is now used second-line, in patients where a DOAC is contraindicated or not tolerated. Aspirin is not recommended for reducing stroke risk in patients with AF.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 44
Incorrect
-
A 58-year-old man has an out-of-hospital cardiac arrest and is pronounced dead at the scene. A post-mortem examination is carried out to determine the cause of death, which demonstrates 90% stenosis of the left anterior descending artery.
What is the ultimate stage in the development of this stenosis?Your Answer: Macrophages phagocytose oxidised low-density lipoprotein
Correct Answer: Smooth muscle proliferation and migration from the tunica media into the intima
Explanation:Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 45
Incorrect
-
What is the correct description of the cardiac cycle in the middle of diastole?
Your Answer: Second heart sound is heard
Correct Answer: Aortic pressure is falling
Explanation:the Cardiac Cycle
The cardiac cycle is a complex process that involves the contraction and relaxation of the heart muscles to pump blood throughout the body. One important aspect of this cycle is the changes in aortic pressure during diastole and systole. During diastole, the aortic pressure falls as the heart relaxes and fills with blood. This is represented by the second heart sound, which signals the closing of the aortic and pulmonary valves.
At the end of diastole and the beginning of systole, the mitral valve closes, marking the start of the contraction phase. This allows the heart to pump blood out of the left ventricle and into the aorta, increasing aortic pressure. the different phases of the cardiac cycle and the changes in pressure that occur during each phase is crucial for diagnosing and treating cardiovascular diseases. By studying the cardiovascular physiology concepts related to the cardiac cycle, healthcare professionals can better understand how the heart functions and how to maintain its health.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 46
Correct
-
A 75-year-old man presents to the emergency department following a syncopal episode. He has no significant medical history and denies any loss of bladder or bowel control or tongue biting.
During examination, an ejection systolic murmur is detected at the right sternal edge in the second intercostal space. The murmur is heard radiating to the carotids.
What intervention can be done to decrease the intensity of the murmur heard during auscultation?Your Answer: Valsalva manoeuvre
Explanation:The intensity of the ejection systolic murmur heard in aortic stenosis can be decreased by performing the Valsalva manoeuvre. On the other hand, the intensity of the murmur can be increased by administering amyl nitrite, raising legs, expiration, and squatting. These actions increase the volume of blood flow through the valve.
Aortic stenosis is a condition characterized by the narrowing of the aortic valve, which can lead to various symptoms. These symptoms include chest pain, dyspnea, syncope or presyncope, and a distinct ejection systolic murmur that radiates to the carotids. Severe aortic stenosis can cause a narrow pulse pressure, slow rising pulse, delayed ESM, soft/absent S2, S4, thrill, duration of murmur, and left ventricular hypertrophy or failure. The condition can be caused by degenerative calcification, bicuspid aortic valve, William’s syndrome, post-rheumatic disease, or subvalvular HOCM.
Management of aortic stenosis depends on the severity of the condition and the presence of symptoms. Asymptomatic patients are usually observed, while symptomatic patients require valve replacement. Surgical AVR is the preferred treatment for young, low/medium operative risk patients, while TAVR is used for those with a high operative risk. Balloon valvuloplasty may be used in children without aortic valve calcification and in adults with critical aortic stenosis who are not fit for valve replacement. If the valvular gradient is greater than 40 mmHg and there are features such as left ventricular systolic dysfunction, surgery may be considered even if the patient is asymptomatic.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 47
Incorrect
-
A 45-year-old male with no past medical history is recently diagnosed with hypertension. His GP prescribes him lisinopril and orders a baseline renal function blood test, which comes back normal. The GP schedules a follow-up appointment for two weeks later to check his renal function. At the follow-up appointment, the patient's blood test results show:
Na 137 mmol/l
K 4.7 mmol/l
Cl 98 mmol/l
Urea 12.2 mmol/l
Creatinine 250 mg/l
What is the most likely cause for the abnormal blood test results?Your Answer: Dehydration
Correct Answer: Bilateral stenosis of renal arteries
Explanation:Patients with renovascular disease should not be prescribed ACE inhibitors as their first line antihypertensive medication. This is because bilateral renal artery stenosis, a common cause of hypertension, can go undetected and lead to acute renal impairment when treated with ACE inhibitors. This occurs because the medication prevents the constriction of efferent arterioles, which is necessary to maintain glomerular pressure in patients with reduced blood flow to the kidneys. Therefore, further investigations such as a renal artery ultrasound scan should be conducted before prescribing ACE inhibitors to patients with hypertension.
Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.
While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.
Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.
The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 48
Correct
-
A newborn with Down's syndrome presents with a murmur at birth. Upon performing an echocardiogram, what is the most probable congenital cardiac abnormality that will be detected?
Your Answer: Atrio-ventricular septal defect
Explanation:Congenital Cardiac Anomalies in Down Syndrome
Down syndrome is a genetic disorder that is characterized by a range of congenital abnormalities. One of the most common abnormalities associated with Down syndrome is duodenal atresia. However, Down syndrome is also frequently associated with congenital cardiac anomalies. The most common cardiac anomaly in Down syndrome is an atrioventricular septal defect (AVSD), followed by ventricular septal defect (VSD), patent ductus arteriosus (PDA), tetralogy of Fallot, and atrial septal defect (ASD). These anomalies can cause a range of symptoms and complications, including heart failure, pulmonary hypertension, and developmental delays. It is important for individuals with Down syndrome to receive regular cardiac evaluations and appropriate medical care to manage these conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 49
Correct
-
A medical resident has been instructed by the geriatric consultant to review the medication chart of an elderly patient with a history of hypertension, heart failure, and biliary colic. The resident noticed a significant drop in systolic blood pressure upon standing and discontinued a medication that may have contributed to the postural hypotension. However, a few hours later, the patient's continuous cardiac monitoring showed tachycardia. Which medication cessation could have caused the tachycardia in this elderly patient?
Your Answer: Atenolol
Explanation:Abruptly stopping atenolol, a beta blocker, can lead to ‘rebound tachycardia’. None of the other drugs listed have been associated with this condition. While ramipril, an ace-inhibitor, may have contributed to the patient’s postural hypotension, it is not known to cause tachycardia upon cessation. Furosemide, a loop diuretic, can worsen postural hypotension by causing volume depletion, but it is not known to cause tachycardia upon discontinuation. Aspirin and clopidogrel, both antiplatelet drugs, are unlikely to be stopped abruptly and are not associated with either ‘rebound tachycardia’ or postural hypotension.
Beta-blockers are a class of drugs that are primarily used to manage cardiovascular disorders. They have a wide range of indications, including angina, post-myocardial infarction, heart failure, arrhythmias, hypertension, thyrotoxicosis, migraine prophylaxis, and anxiety. Beta-blockers were previously avoided in heart failure, but recent evidence suggests that certain beta-blockers can improve both symptoms and mortality. They have also replaced digoxin as the rate-control drug of choice in atrial fibrillation. However, their role in reducing stroke and myocardial infarction has diminished in recent years due to a lack of evidence.
Examples of beta-blockers include atenolol and propranolol, which was one of the first beta-blockers to be developed. Propranolol is lipid-soluble, which means it can cross the blood-brain barrier.
Like all drugs, beta-blockers have side-effects. These can include bronchospasm, cold peripheries, fatigue, sleep disturbances (including nightmares), and erectile dysfunction. There are also some contraindications to using beta-blockers, such as uncontrolled heart failure, asthma, sick sinus syndrome, and concurrent use with verapamil, which can precipitate severe bradycardia.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 50
Incorrect
-
A 20-year-old man undergoes a routine ECG during his employment health check. The ECG reveals sinus arrhythmia with varying P-P intervals and slight changes in the ventricular rate. The P waves exhibit normal morphology, and the P-R interval remains constant. The patient has a history of asthma and has been using inhalers more frequently due to an increase in running mileage. What is the probable cause of this rhythm, and how would you reassure the patient about the ECG results?
Your Answer: Use of salbutamol inhaler before appointment
Correct Answer: Ventricular rate changes with ventilation
Explanation:Sinus arrhythmia is a natural occurrence that is commonly observed in young and healthy individuals. It is characterized by a fluctuation in heart rate during breathing, with an increase in heart rate during inhalation and a decrease during exhalation. This is due to a decrease in vagal tone during inspiration and an increase during expiration. The P-R interval remains constant, indicating no heart block, while the varying P-P intervals reflect changes in the ventricular heart rate.
While anxiety may cause tachycardia, it cannot explain the fluctuation in P-P intervals. Similarly, salbutamol may cause a brief increase in heart rate, but this would not result in varying P-P and P-R intervals. In healthy and fit individuals, there should be no variation in the firing of the sino-atrial node.
Understanding the Normal ECG
The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.
The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.
Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 51
Incorrect
-
A 3-week old girl is presented to the GP by her mother who has noticed yellowish discharge from her umbilicus on a daily basis. The baby was born without any complications and is healthy otherwise.
Which embryological structure is most likely responsible for this issue?Your Answer: Umbilical vein
Correct Answer: Allantois
Explanation:If the allantois persists, it can result in a patent urachus, which may manifest as urine leakage from the belly button.
A patent urachus is a remnant of the allantois from embryonic development that links the bladder to the umbilicus, enabling urine to flow through and exit from the abdominal area.
When the vitelline duct fails to close, it can lead to the formation of a Meckel’s diverticulum.
The ductus venosus acts as a bypass for umbilical blood to avoid the liver in the fetus.
The umbilical vessels serve as a conduit for blood to and from the fetus during gestation. They are not connected to the bladder and would not cause daily leakage.
During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 52
Incorrect
-
A 50-year-old man presents to the emergency department with acute chest pain. His ECG reveals ST depression in leads II, III, & aVF, and his troponin levels are elevated. He is diagnosed with NSTEMI and prescribed ticagrelor as part of his treatment plan.
What is the mechanism of action of ticagrelor?Your Answer: Inhibits vitamin K epoxide reductase complex 1
Correct Answer: Inhibits ADP binding to platelet receptors
Explanation:Clopidogrel and ticagrelor have a similar mechanism of action in that they both inhibit the binding of ADP to platelet receptors. Heparin activates antithrombin III, which in turn inhibits factor Xa and IIa. DOACs like rivaroxaban directly inhibit factor Xa that is bound to the prothrombinase complex and associated with clots. Aspirin works by inhibiting the production of prostaglandins, while warfarin inhibits VKORC1, which is responsible for the activation of vitamin K.
ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 53
Correct
-
An individual who has been a lifelong smoker and is 68 years old arrives at the Emergency Department with a heart attack. During the explanation of his condition, a doctor mentions that the arteries supplying his heart have been narrowed and damaged. What substance is increased on endothelial cells after damage or oxidative stress, leading to the recruitment of monocytes to the vessel wall?
Your Answer: Vascular cell adhesion molecule-1
Explanation:VCAM-1 is a protein expressed on endothelial cells in response to pro-atherosclerotic conditions. It binds to lymphocytes, monocytes, and eosinophils, causing adhesion to the endothelium. Its expression is upregulated by cytokines and is critical in the development of atherosclerosis.
Understanding Acute Coronary Syndrome
Acute coronary syndrome (ACS) is a term used to describe various acute presentations of ischaemic heart disease. It includes ST elevation myocardial infarction (STEMI), non-ST elevation myocardial infarction (NSTEMI), and unstable angina. ACS usually develops in patients with ischaemic heart disease, which is the gradual build-up of fatty plaques in the walls of the coronary arteries. This can lead to a gradual narrowing of the arteries, resulting in less blood and oxygen reaching the myocardium, causing angina. It can also lead to sudden plaque rupture, resulting in a complete occlusion of the artery and no blood or oxygen reaching the area of myocardium, causing a myocardial infarction.
There are many factors that can increase the chance of a patient developing ischaemic heart disease, including unmodifiable risk factors such as increasing age, male gender, and family history, and modifiable risk factors such as smoking, diabetes mellitus, hypertension, hypercholesterolaemia, and obesity.
The classic and most common symptom of ACS is chest pain, which is typically central or left-sided and may radiate to the jaw or left arm. Other symptoms include dyspnoea, sweating, and nausea and vomiting. Patients presenting with ACS often have very few physical signs, and the two most important investigations when assessing a patient with chest pain are an electrocardiogram (ECG) and cardiac markers such as troponin.
Once a diagnosis of ACS has been made, treatment involves preventing worsening of the presentation, revascularising the vessel if occluded, and treating pain. For patients who’ve had a STEMI, the priority of management is to reopen the blocked vessel. For patients who’ve had an NSTEMI, a risk stratification tool is used to decide upon further management. Patients who’ve had an ACS require lifelong drug therapy to help reduce the risk of a further event, which includes aspirin, a second antiplatelet if appropriate, a beta-blocker, an ACE inhibitor, and a statin.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 54
Incorrect
-
A 55-year-old man with several cardiac risk factors arrives at the hospital with sudden onset chest pain in the center. The pain extends to his left arm and is accompanied by sweating and nausea.
The patient's ECG reveals widespread T-wave inversion, which is a new finding compared to his previous ECGs. The level of troponin I in his serum is measured and confirmed to be elevated. The patient is initiated on treatment for acute coronary syndrome and transferred to a cardiac center.
What is the target of this measured cardiac biomarker?Your Answer: Myoglobin
Correct Answer: Actin
Explanation:Troponin I is a cardiac biomarker that binds to actin, which holds the troponin-tropomyosin complex in place and regulates muscle contraction. It is the standard biomarker used in conjunction with ECGs and clinical findings to diagnose non-ST elevation myocardial infarction (NSTEMI). Troponin I is highly sensitive and specific for myocardial damage compared to other cardiac biomarkers. Troponin C, another subunit of troponin, plays a role in Ca2+-dependent regulation of muscle contraction and can also be used in the diagnosis of myocardial infarction, but it is less specific as it is found in both cardiac and skeletal muscle. Copeptin, an amino acid peptide, is released earlier than troponin during acute myocardial infarction but is not widely used in clinical practice and has no interaction with troponin. Myoglobin, an iron- and oxygen-binding protein found in both cardiac and skeletal muscle, has poor specificity for cardiac injury and is not involved in the troponin-tropomyosin complex.
Understanding Troponin: The Proteins Involved in Muscle Contraction
Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.
Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.
Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 55
Incorrect
-
A 32-year-old male engineer presents to the emergency department after falling at work while climbing a flight of stairs. He reports experiencing shortness of breath during exertion for the past week, but denies chest pain, vomiting, or coughing up blood. The symptoms are not affected by changes in position or respiration.
The patient has no significant medical history except for a recent bout of self-resolving diarrhea. He is not taking any regular medications and has no known drug allergies. There is no relevant family history. He was recently informed that asbestos has been found in his apartment complex, where he has lived for eight years.
During the examination, the patient appears comfortable at rest. His heart rate is 87 beats per minute, blood pressure is 124/94 mmHg, oxygen saturation is 99% on room air, respiratory rate is 16 breaths per minute, and temperature is 39.1ºC.
A systolic and diastolic murmur is audible throughout the praecordium, with radiations to the axilla. There is tenderness over both nipples where he recently had them pierced, but no pain over the ribs.
The patient has visible needle marks over his antecubital fossa and reports being in recovery from intravenous drug use for the past four years. He admits to recreational marijuana smoking and consuming 24 units of alcohol per week.
An ECG taken on admission shows regular sinus rhythm. An echocardiogram reveals vegetations over the aortic and mitral valve, and blood cultures are positive for Staphylococcus aureus.
Based on the likely diagnosis, which feature in the patient's history is a potential risk factor?Your Answer: Asbestos exposure
Correct Answer: New piercing
Explanation:Infective endocarditis is the likely diagnosis, which can be suspected if there is a fever and a murmur. The presence of vegetations on echo and positive blood cultures that meet Duke criteria can confirm the diagnosis. Of the given options, the only known risk factor for infective endocarditis is getting a new piercing. Alcohol binging can increase the risk of alcoholic liver disease and dilated cardiomyopathy, while asbestos exposure can lead to asbestosis and mesothelioma. Marijuana smoking may be associated with psychosis and paranoia.
Aetiology of Infective Endocarditis
Infective endocarditis is a condition that affects patients with previously normal valves, rheumatic valve disease, prosthetic valves, congenital heart defects, intravenous drug users, and those who have recently undergone piercings. The strongest risk factor for developing infective endocarditis is a previous episode of the condition. The mitral valve is the most commonly affected valve.
The most common cause of infective endocarditis is Staphylococcus aureus, particularly in acute presentations and intravenous drug users. Historically, Streptococcus viridans was the most common cause, but this is no longer the case except in developing countries. Coagulase-negative Staphylococci such as Staphylococcus epidermidis are commonly found in indwelling lines and are the most common cause of endocarditis in patients following prosthetic valve surgery. Streptococcus bovis is associated with colorectal cancer, with the subtype Streptococcus gallolyticus being most linked to the condition.
Culture negative causes of infective endocarditis include prior antibiotic therapy, Coxiella burnetii, Bartonella, Brucella, and HACEK organisms (Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, Kingella). It is important to note that systemic lupus erythematosus and malignancy, specifically marantic endocarditis, can also cause non-infective endocarditis.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 56
Incorrect
-
A 45-year-old patient has a cardiac output of 6 L/min and a heart rate of 60/min. Her end-diastolic left ventricular volume is 200ml. What is her left ventricular ejection fraction (LVEF)?
Your Answer: 25%
Correct Answer: 50%
Explanation:Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.
Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.
Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 57
Incorrect
-
A 25-year-old man is scheduled for cardiac catheterisation to repair a possible atrial septal defect. What is the typical oxygen saturation level in the right atrium for a person in good health?
Your Answer: 90%
Correct Answer: 70%
Explanation:Understanding Oxygen Saturation Levels in Cardiac Catheterisation
Cardiac catheterisation and oxygen saturation levels can be confusing, but with a few basic rules and logical deduction, it can be easily understood. Deoxygenated blood returns to the right side of the heart through the superior and inferior vena cava with an oxygen saturation level of around 70%. The right atrium, right ventricle, and pulmonary artery also have oxygen saturation levels of around 70%. The lungs oxygenate the blood to a level of around 98-100%, resulting in the left atrium, left ventricle, and aorta having oxygen saturation levels of 98-100%.
Different scenarios can affect oxygen saturation levels. For instance, in an atrial septal defect (ASD), the oxygenated blood in the left atrium mixes with the deoxygenated blood in the right atrium, resulting in intermediate levels of oxygenation from the right atrium onwards. In a ventricular septal defect (VSD), the oxygenated blood in the left ventricle mixes with the deoxygenated blood in the right ventricle, resulting in intermediate levels of oxygenation from the right ventricle onwards. In a patent ductus arteriosus (PDA), the higher pressure aorta connects with the lower pressure pulmonary artery, resulting in only the pulmonary artery having intermediate oxygenation levels.
Understanding the expected oxygen saturation levels in different scenarios can help in diagnosing and treating cardiac conditions. The table above shows the oxygen saturation levels that would be expected in different diagnoses, including VSD with Eisenmenger’s and ASD with Eisenmenger’s. By understanding these levels, healthcare professionals can provide better care for their patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 58
Incorrect
-
A 50-year-old man comes in with a lipoma situated at the back of the posterior border of the sternocleidomastoid muscle, about 4 cm above the middle third of the clavicle. While performing surgery to remove the growth, problematic bleeding is encountered. What is the most probable origin of the bleeding?
Your Answer: Vertebral artery
Correct Answer: External jugular vein
Explanation:The superficial fascia of the posterior triangle contains the external jugular vein, which runs diagonally and drains into the subclavian vein. Surgeons must be careful during exploration of this area to avoid injuring the external jugular vein and causing excessive bleeding. The internal jugular vein and carotid arteries are located in the anterior triangle, while the third part of the subclavian artery is found in the posterior triangle, not the second part.
The posterior triangle of the neck is an area that is bound by the sternocleidomastoid and trapezius muscles, the occipital bone, and the middle third of the clavicle. Within this triangle, there are various nerves, vessels, muscles, and lymph nodes. The nerves present include the accessory nerve, phrenic nerve, and three trunks of the brachial plexus, as well as branches of the cervical plexus such as the supraclavicular nerve, transverse cervical nerve, great auricular nerve, and lesser occipital nerve. The vessels found in this area are the external jugular vein and subclavian artery. Additionally, there are muscles such as the inferior belly of omohyoid and scalene, as well as lymph nodes including the supraclavicular and occipital nodes.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 59
Incorrect
-
A 30-year-old male arrives at the emergency department complaining of sudden dizziness and palpitations. His medical history reveals that he had infectious diarrhea a week ago and was prescribed a 10-day course of erythromycin. Upon examination, an ECG confirms fast atrial fibrillation. The physician decides to use amiodarone to convert the patient into sinus rhythm. What is one potential risk associated with the use of amiodarone in this patient?
Your Answer: Orange discoloration of body fluids
Correct Answer: Ventricular arrhythmias
Explanation:The risk of ventricular arrhythmias is increased when amiodarone and erythromycin are used together due to their ability to prolong the QT interval. Manufacturers advise against using multiple drugs that prolong QT interval to avoid this risk. WPW syndrome is a congenital condition that involves abnormal conductive cardiac tissue and can lead to reentrant tachycardia circuit in association with SVT. Amiodarone can cause a slate-grey appearance of the skin, while drugs like rifampicin can cause orange discoloration of body fluids. COPD is associated with multifocal atrial tachycardia.
Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 60
Incorrect
-
A patient in their 60s is diagnosed with first-degree heart block which is shown on their ECG by an elongated PR interval. The PR interval relates to a particular period in the electrical conductance of the heart.
What factors could lead to a decrease in the PR interval?Your Answer: Decreased conduction velocity of the SA node
Correct Answer: Increased conduction velocity across the AV node
Explanation:An increase in sympathetic activation leads to a faster heart rate by enhancing the conduction velocity of the AV node. The PR interval represents the time between the onset of atrial depolarization (P wave) and the onset of ventricular depolarization (beginning of QRS complex). While atrial conduction occurs at a speed of 1m/s, the AV node only conducts at 0.05m/s. Consequently, the AV node is the limiting factor, and a reduction in the PR interval is determined by the conduction velocity across the AV node.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 61
Correct
-
A 75-year-old man is experiencing symptoms of mesenteric ischemia. During his diagnostic evaluation, a radiologist is attempting to cannulate the coeliac axis from the aorta. Typically, at which vertebral level does this artery originate?
Your Answer: T12
Explanation:The coeliac trunk is a major artery that arises from the aorta and gives off three branches on the left-hand side: the left gastric, hepatic, and splenic arteries.
The Coeliac Axis and its Branches
The coeliac axis is a major artery that supplies blood to the upper abdominal organs. It has three main branches: the left gastric, hepatic, and splenic arteries. The hepatic artery further branches into the right gastric, gastroduodenal, right gastroepiploic, superior pancreaticoduodenal, and cystic arteries. Meanwhile, the splenic artery gives off the pancreatic, short gastric, and left gastroepiploic arteries. Occasionally, the coeliac axis also gives off one of the inferior phrenic arteries.
The coeliac axis is located anteriorly to the lesser omentum and is related to the right and left coeliac ganglia, as well as the caudate process of the liver and the gastric cardia. Inferiorly, it is in close proximity to the upper border of the pancreas and the renal vein.
Understanding the anatomy and branches of the coeliac axis is important in diagnosing and treating conditions that affect the upper abdominal organs, such as pancreatic cancer or gastric ulcers.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 62
Correct
-
A 63-year-old man arrives at the emergency department complaining of severe chest pain that feels like crushing. He is sweating heavily and feels nauseous. Upon conducting an ECG, you observe ST-segment elevation in multiple chest leads and sinus bradycardia. It is known that myocardial infarction can cause sinus bradycardia. Can you identify the arterial vessel that typically supplies blood to both the sinoatrial (SA) node and the atrioventricular (AV) node?
Your Answer: Right coronary artery
Explanation:The heart is supplied with blood by the coronary arteries, which branch off from the aorta. The right coronary artery supplies blood to the right side of the heart, while the left coronary artery supplies blood to the left side of the heart.
Occlusion, or blockage, of the right coronary artery can cause inferior myocardial infarction (MI), which is indicated on an electrocardiogram (ECG) by changes in leads II, III, and aVF. This type of MI is particularly associated with arrhythmias because the right coronary artery usually supplies the sinoatrial (SA) and atrioventricular (AV) nodes.
The left anterior descending artery (LAD) is one of the two branches of the left coronary artery. It runs along the front of the heart’s interventricular septum to reach the apex of the heart. One or more diagonal branches may arise from the LAD. Occlusion of the LAD can cause anteroseptal MI, which is evident on an ECG with changes in leads V1-V4.
The right marginal artery branches off from the right coronary artery near the bottom of the heart and continues along the heart’s bottom edge towards the apex.
The left circumflex artery is the other branch of the left coronary artery. It runs in the coronary sulcus around the base of the heart and gives rise to the left marginal artery. Occlusion of the left circumflex artery is typically associated with lateral MI.
The left marginal artery arises from the left circumflex artery and runs along the heart’s obtuse margin.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 63
Correct
-
As a certified physician, you are standing at the bus stop waiting to head to work. A 78-year-old woman is standing next to you and suddenly begins to express discomfort in her chest. She then collapses and loses consciousness. Fortunately, there is no threat to your safety. What steps do you take in this situation?
Your Answer: Perform basic life support for the lady, ask the husband to call 999
Explanation:In accordance with the Good Medical Practice 2013, it is your responsibility to provide assistance in the event of emergencies occurring in clinical settings or within the community. However, you must consider your own safety, level of expertise, and the availability of alternative care options before offering aid. This obligation encompasses providing basic life support and administering first aid. In situations where you are the sole individual present, it is incumbent upon you to fulfill this duty.
The 2015 Resus Council guidelines for adult advanced life support outline the steps to be taken in the event of a cardiac arrest. Patients are divided into those with ‘shockable’ rhythms (ventricular fibrillation/pulseless ventricular tachycardia) and ‘non-shockable’ rhythms (asystole/pulseless-electrical activity). Key points include the ratio of chest compressions to ventilation (30:2), continuing chest compressions while a defibrillator is charged, and delivering drugs via IV access or the intraosseous route. Adrenaline and amiodarone are recommended for non-shockable rhythms and VF/pulseless VT, respectively. Thrombolytic drugs should be considered if a pulmonary embolism is suspected. Atropine is no longer recommended for routine use in asystole or PEA. Following successful resuscitation, oxygen should be titrated to achieve saturations of 94-98%. The ‘Hs’ and ‘Ts’ outline reversible causes of cardiac arrest, including hypoxia, hypovolaemia, and thrombosis.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 64
Incorrect
-
A 63-year-old woman comes to a vascular clinic complaining of varicosities in the area supplied by the short saphenous vein.
Into which vessel does this vein directly empty?Your Answer: Dorsal venous arch of the foot
Correct Answer: Popliteal vein
Explanation:The correct answer is that the short saphenous vein passes posterior to the lateral malleolus and ascends between the two heads of the gastrocnemius muscle to empty directly into the popliteal vein. The long saphenous vein drains directly into the femoral vein and does not receive blood from the short saphenous vein. The dorsal venous arch drains the foot into the short and great saphenous veins but does not receive blood from either. The posterior tibial vein is part of the deep venous system but does not directly receive the short saphenous vein.
The Anatomy of Saphenous Veins
The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.
On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.
Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 65
Incorrect
-
A 57-year-old man needs long term parenteral nutrition and a PICC line is chosen for long term venous access. The insertion site is the elbow region of the basilic vein. During catheter advancement, which venous structure is the catheter tip most likely to pass into from the basilic vein?
Your Answer: Cephalic vein
Correct Answer: Axillary vein
Explanation:The most common site for a PICC line to end up in is the axillary vein, which is where the basilic vein drains into. While PICC lines can be placed in various locations, the posterior circumflex humeral vein is typically encountered before the axillary vein. However, due to its angle of entry into the basilic vein, it is unlikely for a PICC line to enter this structure.
The Basilic Vein: A Major Pathway of Venous Drainage for the Arm and Hand
The basilic vein is one of the two main pathways of venous drainage for the arm and hand, alongside the cephalic vein. It begins on the medial side of the dorsal venous network of the hand and travels up the forearm and arm. Most of its course is superficial, but it passes deep under the muscles midway up the humerus. Near the region anterior to the cubital fossa, the basilic vein joins the cephalic vein.
At the lower border of the teres major muscle, the anterior and posterior circumflex humeral veins feed into the basilic vein. It is often joined by the medial brachial vein before draining into the axillary vein. The basilic vein is continuous with the palmar venous arch distally and the axillary vein proximally. Understanding the path and function of the basilic vein is important for medical professionals in diagnosing and treating conditions related to venous drainage in the arm and hand.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 66
Incorrect
-
Where is troponin T located within the body?
Your Answer: Liver
Correct Answer: Heart
Explanation:Troponin and Its Significance in Cardiac Health
Troponin is an enzyme that is specific to the heart and is used to detect injury to the heart muscle. It is commonly measured in patients who present with chest pain that may be related to heart problems. Elevated levels of troponin can indicate a heart attack or other acute coronary syndromes. However, it is important to note that troponin levels may also be slightly elevated in other conditions such as renal failure, cardiomyopathy, myocarditis, and large pulmonary embolism.
Troponin is a crucial marker in the diagnosis and management of cardiac conditions. It is a reliable indicator of heart muscle damage and can help healthcare professionals determine the best course of treatment for their patients. Additionally, troponin levels can provide prognostic information, allowing doctors to predict the likelihood of future cardiac events. It is important for individuals to understand the significance of troponin in their cardiac health and to seek medical attention if they experience any symptoms of heart problems.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 67
Correct
-
A 26-year-old man collapses during a game of cricket. He has previously experienced chest pain and shortness of breath while running, which subsides on rest. Upon examination, he is found to have an ejection systolic murmur that intensifies with Valsalva maneuvers and diminishes with squatting. His echocardiogram reveals mitral regurgitation, asymmetric hypertrophy, and systolic anterior motion of the anterior mitral valve leaflet. What is the expected inheritance pattern for this diagnosis?
Your Answer: Autosomal dominant
Explanation:The inheritance pattern of HOCM is autosomal dominant, which means that it can be passed down from generation to generation. Symptoms of HOCM may include exertional dyspnoea, angina, syncope, and an ejection systolic murmur. It is important to note that there may be a family history of similar cardiac problems or sudden death due to ventricular arrhythmias. Autosomal recessive, mitochondrial inheritance, and X-linked dominant inheritance are not applicable to HOCM.
Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 68
Correct
-
A 68-year-old woman arrives at the emergency department with complaints of shortness of breath and palpitations. During the examination, you observe an irregularly irregular pulse. To check for signs of atrial fibrillation, you opt to conduct an ECG. In a healthy individual, where is the SA node located in the heart?
Your Answer: Right atrium
Explanation:The SA node is situated at the junction of the superior vena cava and the right atrium, and is responsible for initiating cardiac impulses in a healthy heart. The AV node, located in the atrioventricular septum, regulates the spread of excitation from the atria to the ventricles. The patient’s symptoms of palpitations and shortness of breath, along with an irregularly irregular pulse, strongly indicate atrial fibrillation. ECG findings consistent with atrial fibrillation include an irregularly irregular rhythm and the absence of P waves.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 69
Incorrect
-
As a curious fourth-year medical student, you observe the birth of a full-term baby delivered vaginally to a mother who has given birth once before. The infant's Apgar score is 9 at 1 minute and 10 at 10 minutes, and the delivery is uncomplicated. However, a postnatal examination reveals that the ductus arteriosus has not closed properly. Can you explain the process by which this structure normally closes?
Your Answer: Increased oxygen tension which increases the concentration of prostaglandins
Correct Answer: Decreased prostaglandin concentration
Explanation:The ductus arteriosus, which is a shunt connecting the pulmonary artery with the descending aorta in utero, closes with the first breaths of life. This is due to an increase in pulmonary blood flow, which helps to clear local vasodilating prostaglandins that keep the duct open during fetal development. The opening of the lung alveoli with the first breath of life leads to an increase in oxygen tension in the blood, but this is not the primary mechanism behind the closure of the ductus arteriosus. It is important to note that oxygen tension in the blood increases after birth when the infant breathes in air and no longer receives mixed oxygenated blood via the placenta.
Understanding Patent Ductus Arteriosus
Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.
This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.
The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 70
Incorrect
-
A 55-year-old male patient complains of sudden chest pain and is being evaluated for acute coronary syndrome. Upon fasting, his serum cholesterol level was found to be 7.1 mmol/L (<5.2). What is the best initial course of action for managing this patient?
Your Answer: Weight loss programme
Correct Answer: Statin therapy
Explanation:Statin Therapy for Hypercholesterolemia in Acute Coronary Syndrome
Hypercholesterolemia is a common condition in patients with acute coronary syndrome. The initial treatment approach for such patients is statin therapy, which includes drugs like simvastatin, atorvastatin, and rosuvastatin. Statins have been proven to reduce mortality in both primary and secondary prevention studies. The target cholesterol concentration for patients with hypercholesterolemia and acute coronary syndrome is less than 5 mmol/L.
According to NICE guidance, statins should be used more widely in conjunction with a QRISK2 score to stratify risk. This will help prevent cardiovascular disease and improve patient outcomes. The guidance recommends that statins be used in patients with a 10% or greater risk of developing cardiovascular disease within the next 10 years. By using statins in conjunction with risk stratification, healthcare professionals can provide more targeted and effective treatment for patients with hypercholesterolemia and acute coronary syndrome.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 71
Correct
-
A 72-year-old man undergoes a carotid endarterectomy and appears to be recovering well after the surgery. During a ward review after the operation, he reports experiencing hoarseness in his voice. What is the probable reason for this symptom?
Your Answer: Damage to the vagus
Explanation:Carotid surgery poses a risk of nerve injury, with the vagus nerve being the only one that could cause speech difficulties if damaged.
The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.
The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.
The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 72
Correct
-
A 60-year-old male is referred to the medical assessment unit by his physician suspecting a UTI. He has a permanent catheter in place due to urinary retention caused by benign prostatic hypertrophy. His blood test results reveal hypercalcemia. An ultrasound Doppler scan of his neck displays a distinct sonolucent signal indicating hyperactive parathyroid tissue and noticeable vasculature, which is likely the parathyroid veins. What is the structure that the parathyroid veins empty into?
Your Answer: Thyroid plexus of veins
Explanation:The veins of the parathyroid gland drain into the thyroid plexus of veins, as opposed to other possible drainage routes.
The cavernous sinus is a dural venous sinus that creates a cavity called the lateral sellar compartment, which is bordered by the temporal and sphenoid bones.
The brachiocephalic vein is formed by the merging of the subclavian and internal jugular veins, and also receives drainage from the left and right internal thoracic vein.
The external vertebral venous plexuses, which are most prominent in the cervical region, consist of anterior and posterior plexuses that freely anastomose with each other. The anterior plexuses are located in front of the vertebrae bodies, communicate with the basivertebral and intervertebral veins, and receive tributaries from the vertebral bodies. The posterior plexuses are situated partly on the posterior surfaces of the vertebral arches and their processes, and partly between the deep dorsal muscles.
The suboccipital venous plexus is responsible for draining deoxygenated blood from the back of the head, and is connected to the external vertebral venous plexuses.
Anatomy and Development of the Parathyroid Glands
The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.
The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 73
Correct
-
A 50-year-old man is having a lymph node biopsy taken from the posterior triangle of his neck. What structure creates the posterior boundary of this area?
Your Answer: Trapezius muscle
Explanation:The posterior triangle of the neck is an area that is bound by the sternocleidomastoid and trapezius muscles, the occipital bone, and the middle third of the clavicle. Within this triangle, there are various nerves, vessels, muscles, and lymph nodes. The nerves present include the accessory nerve, phrenic nerve, and three trunks of the brachial plexus, as well as branches of the cervical plexus such as the supraclavicular nerve, transverse cervical nerve, great auricular nerve, and lesser occipital nerve. The vessels found in this area are the external jugular vein and subclavian artery. Additionally, there are muscles such as the inferior belly of omohyoid and scalene, as well as lymph nodes including the supraclavicular and occipital nodes.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 74
Incorrect
-
A 50-year-old man is being investigated by cardiologists for worsening breathlessness, fatigue, and chest pain during exertion. Results from an echocardiogram reveal a thickened interventricular septum and reduced left ventricle filling. What is the most likely diagnosis based on these findings?
Your Answer: Restrictive cardiomyopathy
Correct Answer: Hypertrophic obstructive cardiomyopathy
Explanation:Hypertrophic obstructive cardiomyopathy is a condition where the heart muscle, particularly the interventricular septum, becomes thickened and less flexible, leading to diastolic dysfunction. In contrast, restrictive cardiomyopathy also results in reduced flexibility of the heart chamber walls, but without thickening of the myocardium. Dilated cardiomyopathy, on the other hand, is characterized by enlarged heart chambers with thin walls and a decreased ability to pump blood out of the heart.
Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 75
Incorrect
-
You perform venepuncture on the basilic vein in the cubital fossa.
At which point does this vein pass deep under muscle?Your Answer: At the axilla
Correct Answer: Midway up the humerus
Explanation:When the basilic vein is located halfway up the humerus, it travels beneath muscle. At the cubital fossa, the basilic vein connects with the median cubital vein, which in turn interacts with the cephalic vein. Contrary to popular belief, the basilic vein does not pass through the medial epicondyle. Meanwhile, the cephalic vein can be found in the deltopectoral groove.
The Basilic Vein: A Major Pathway of Venous Drainage for the Arm and Hand
The basilic vein is one of the two main pathways of venous drainage for the arm and hand, alongside the cephalic vein. It begins on the medial side of the dorsal venous network of the hand and travels up the forearm and arm. Most of its course is superficial, but it passes deep under the muscles midway up the humerus. Near the region anterior to the cubital fossa, the basilic vein joins the cephalic vein.
At the lower border of the teres major muscle, the anterior and posterior circumflex humeral veins feed into the basilic vein. It is often joined by the medial brachial vein before draining into the axillary vein. The basilic vein is continuous with the palmar venous arch distally and the axillary vein proximally. Understanding the path and function of the basilic vein is important for medical professionals in diagnosing and treating conditions related to venous drainage in the arm and hand.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 76
Incorrect
-
A 65-year-old man with heart failure visits his GP complaining of peripheral edema. Upon examination, he is diagnosed with fluid overload, leading to the release of atrial natriuretic peptide by the atrial myocytes. What is the mechanism of action of atrial natriuretic peptide?
Your Answer: Agonist of angiotensin I
Correct Answer: Antagonist of angiotensin II
Explanation:Angiotensin II is opposed by atrial natriuretic peptide, while B-type natriuretic peptides inhibit the renin-angiotensin-aldosterone system and sympathetic activity. Additionally, aldosterone is antagonized by atrial natriuretic peptide. Renin catalyzes the conversion of angiotensinogen into angiotensin I.
Atrial natriuretic peptide is a hormone that is primarily secreted by the myocytes of the right atrium and ventricle in response to an increase in blood volume. It is also secreted by the left atrium, although to a lesser extent. This peptide hormone is composed of 28 amino acids and acts through the cGMP pathway. It is broken down by endopeptidases.
The main actions of atrial natriuretic peptide include promoting the excretion of sodium and lowering blood pressure. It achieves this by antagonizing the actions of angiotensin II and aldosterone. Overall, atrial natriuretic peptide plays an important role in regulating fluid and electrolyte balance in the body.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 77
Incorrect
-
A 36-year-old woman is scheduled for a parathyroidectomy to treat her hyperparathyroidism. During the surgery, an enlarged inferior parathyroid gland is identified with a vessel located adjacent to it laterally. Which vessel is most likely to be in this location?
Your Answer: External carotid artery
Correct Answer: Common carotid artery
Explanation:The inferior parathyroid is located laterally to the common carotid artery.
Anatomy and Development of the Parathyroid Glands
The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.
The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 78
Incorrect
-
A 40-year-old male patient complains of shortness of breath, weight loss, and night sweats for the past six weeks. Despite being generally healthy, he is experiencing these symptoms. During the examination, the patient's fingers show clubbing, and his temperature is 37.8°C. His pulse is 88 beats per minute, and his blood pressure is 128/80 mmHg. Upon listening to his heart, a pansystolic murmur is audible. What signs are likely to be found in this patient?
Your Answer: Pulsus paradoxus
Correct Answer: Splinter haemorrhages
Explanation:Symptoms and Diagnosis of Infective Endocarditis
This individual has a lengthy medical history of experiencing night sweats and has developed clubbing of the fingers, along with a murmur. These symptoms are indicative of infective endocarditis. In addition to splinter hemorrhages in the nails, other symptoms that may be present include Roth spots in the eyes, Osler’s nodes and Janeway lesions in the palms and fingers of the hands, and splenomegaly instead of cervical lymphadenopathy. Cyanosis is not typically associated with clubbing and may suggest idiopathic pulmonary fibrosis or cystic fibrosis in younger individuals. However, this individual has no prior history of cystic fibrosis and has only been experiencing symptoms for six weeks.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 79
Incorrect
-
A 72-year-old man presents with biliary colic and an abdominal aortic aneurysm measuring 4.8 cm is discovered. Which of the following statements regarding this condition is false?
Your Answer: The majority are located inferior to the renal arteries
Correct Answer: The wall will be composed of dense fibrous tissue only
Explanation:These aneurysms are genuine and consist of all three layers of the arterial wall.
Understanding Abdominal Aortic Aneurysms
Abdominal aortic aneurysms occur when the elastic proteins in the extracellular matrix fail, causing the arterial wall to dilate. This is typically caused by degenerative disease and can be identified by a diameter of 3 cm or greater. The development of aneurysms is complex and involves the loss of the intima and elastic fibers from the media, which is associated with increased proteolytic activity and lymphocytic infiltration.
Smoking and hypertension are major risk factors for the development of aneurysms, while rare causes include syphilis and connective tissue diseases such as Ehlers Danlos type 1 and Marfan’s syndrome. It is important to understand the underlying causes and risk factors for abdominal aortic aneurysms in order to prevent and treat this potentially life-threatening condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 80
Incorrect
-
A 70-year-old male presents to the Emergency Department with a 3-hour history of tearing chest pain. He has a past medical history of poorly controlled hypertension. His observations show:
Respiratory rate of 20 breaths/min
Pulse of 95 beats/min
Temperature of 37.3ºC
Blood pressure of 176/148 mmHg
Oxygen saturations of 97% on room air
Auscultation of the heart identifies a diastolic murmur, heard loudest over the 2nd intercostal space, right sternal border.
What CT angiography findings would be expected in this patient's likely diagnosis?Your Answer: Thrombus in the right pulmonary artery
Correct Answer: False lumen of the ascending aorta
Explanation:A false lumen in the descending aorta is a significant indication of aortic dissection on CT angiography. This condition is characterized by tearing chest pain, hypertension, and aortic regurgitation, which can be detected through a diastolic murmur over the 2nd intercostal space, right sternal border. The false lumen is formed due to a tear in the tunica intima of the aortic wall, which fills with a large volume of blood and is easily visible on angiographic CT.
Ballooning of the aortic arch is an incorrect answer as it refers to an aneurysm, which is a condition where the artery walls weaken and abnormally bulge out or widen. Aneurysms are prone to rupture and can have varying effects depending on their location.
Blurring of the posterior wall of the descending aorta is also an incorrect answer as it is a sign of a retroperitoneal, contained rupture of an aortic aneurysm. This condition may present with hypovolemic shock, hypotension, tachycardia, and tachypnea, leading to collapse.
Total occlusion of the left anterior descending artery is another incorrect answer as it would likely result in ST-elevation myocardial infarction (STEMI). Although chest pain is a symptom of both conditions, the nature of the pain and investigation findings make aortic dissection more likely. It is important to note that coronary arteries can only be viewed through coronary angiography, which involves injecting contrast directly into the coronary arteries using a catheter, and not through CT angiography.
Aortic dissection is classified according to the location of the tear in the aorta. The Stanford classification divides it into type A, which affects the ascending aorta in two-thirds of cases, and type B, which affects the descending aorta distal to the left subclavian origin in one-third of cases. The DeBakey classification divides it into type I, which originates in the ascending aorta and propagates to at least the aortic arch and possibly beyond it distally, type II, which originates in and is confined to the ascending aorta, and type III, which originates in the descending aorta and rarely extends proximally but will extend distally.
To diagnose aortic dissection, a chest x-ray may show a widened mediastinum, but CT angiography of the chest, abdomen, and pelvis is the investigation of choice. However, the choice of investigations should take into account the patient’s clinical stability, as they may present acutely and be unstable. Transoesophageal echocardiography (TOE) is more suitable for unstable patients who are too risky to take to the CT scanner.
The management of type A aortic dissection is surgical, but blood pressure should be controlled to a target systolic of 100-120 mmHg while awaiting intervention. On the other hand, type B aortic dissection is managed conservatively with bed rest and IV labetalol to reduce blood pressure and prevent progression. Complications of a backward tear include aortic incompetence/regurgitation and MI, while complications of a forward tear include unequal arm pulses and BP, stroke, and renal failure. Endovascular repair of type B aortic dissection may have a role in the future.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 81
Incorrect
-
A 45-year-old man undergoes a routine medical exam and his blood pressure is measured at 155/95 mmHg, which is unusual as it has been normal for the past five annual check-ups. What could be the reason for this sudden change?
Your Answer: The patient talking during the reading
Correct Answer: An undersized blood pressure cuff
Explanation:Ensuring Accurate Blood Pressure Measurements
Blood pressure is a crucial physiological measurement in medicine, and it is essential to ensure that the values obtained are accurate. Inaccurate readings can occur due to various reasons, such as using the wrong cuff size, incorrect arm positioning, and unsupported arms. For instance, using a bladder that is too small can lead to an overestimation of blood pressure, while using a bladder that is too large can result in an underestimation of blood pressure. Similarly, lowering the arm below heart level can lead to an overestimation of blood pressure, while elevating the arm above heart level can result in an underestimation of blood pressure.
It is recommended to measure blood pressure in both arms when considering a diagnosis of hypertension. If there is a difference of more than 20 mmHg between the readings obtained from both arms, the measurements should be repeated. If the difference remains greater than 20 mmHg, subsequent blood pressures should be recorded from the arm with the higher reading. By following these guidelines, healthcare professionals can ensure that accurate blood pressure measurements are obtained, which is crucial for making informed medical decisions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 82
Incorrect
-
One of the elderly patients at your general practice was recently hospitalized and diagnosed with myeloma. It was discovered that they have severe chronic kidney disease. The patient comes in for an update on their condition. After reviewing their medications, you realize they are taking ramipril for hypertension, which is contraindicated in renal failure. What is the most accurate description of the effect of ACE inhibitors on glomerular filtration pressure?
Your Answer: Vasoconstriction of the afferent arteriole
Correct Answer: Vasodilation of the efferent arteriole
Explanation:The efferent arteriole experiences vasodilation as a result of ACE inhibitors and ARBs, which inhibit the production of angiotensin II and block its receptors. This leads to a decrease in glomerular filtration pressure and rate, particularly in individuals with renal artery stenosis. On the other hand, the afferent arteriole remains dilated due to the presence of prostaglandins. NSAIDs, which inhibit COX-1 and COX-2, can cause vasoconstriction of the afferent arteriole and a subsequent decrease in glomerular filtration pressure. In healthy individuals, the afferent arteriole remains dilated while the efferent arteriole remains constricted to maintain a balanced glomerular pressure. The patient in the scenario has been diagnosed with myeloma, a disease that arises from the malignant transformation of B-cells and is characterized by bone infiltration, hypercalcaemia, anaemia, and renal impairment.
Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.
While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.
Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.
The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 83
Incorrect
-
A 54-year-old man is undergoing the insertion of a long venous line through the femoral vein into the right atrium to measure CVP. The catheter is being passed through the IVC. At what level does this vessel enter the thorax?
Your Answer: T10
Correct Answer: T8
Explanation:The diaphragm is penetrated by the IVC at T8.
Anatomy of the Inferior Vena Cava
The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.
The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.
The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 84
Correct
-
Sarah is a 60-year-old female who has been recently diagnosed with hypertension. After a 3-month trial of improving diet and increasing exercise, her blood pressure is still elevated at 160/100 mmHg. Her doctor decides to start her on enalapril, an ACE inhibitor, to treat her hypertension.
At what location in the body is enalapril activated to its pharmacologically active compound?Your Answer: Under phase 1 metabolism in the liver
Explanation:ACE inhibitors are prodrugs that require activation through phase 1 metabolism in the liver, except for captopril and lisinopril which are administered as active drugs. The hepatic esterolysis process converts ACE inhibitors into their active metabolite, allowing them to function as subtype 1B prodrugs. It is important to note that ACE inhibitors are not activated at the site of therapeutic action, and belong to subtype 1A and 2C prodrugs that are activated intracellularly or extracellularly at the therapeutic site, respectively. Answer 3 is a distractor, as ACE inhibitors do not activate ACE in the lung, but rather inhibit its activity. Answer 5 is also incorrect, as most ACE inhibitors require activation through metabolism.
Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.
While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.
Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.
The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 85
Incorrect
-
A 56-year-old male comes to your clinic complaining of occasional chest pain that usually occurs after meals and typically subsides within a few hours. He has a medical history of bipolar disorder, osteoarthritis, gout, and hyperparathyroidism. Currently, he is undergoing a prolonged course of antibiotics for prostatitis.
During his visit, an ECG reveals a QT interval greater than 520 ms.
What is the most likely cause of the observed ECG changes?
- Lithium overdose
- Paracetamol use
- Hypercalcemia
- Erythromycin use
- Amoxicillin use
Explanation: The most probable cause of the prolonged QT interval is erythromycin use, which is commonly associated with this ECG finding. Given the patient's medical history, it is likely that he is taking erythromycin for his prostatitis. Amoxicillin is not known to cause QT prolongation. Lithium toxicity typically presents with symptoms such as vomiting, diarrhea, tremors, and agitation. Hypercalcemia is more commonly associated with a short QT interval, making it an unlikely cause. Paracetamol is not known to cause QT prolongation.Your Answer: Hypercalcaemia
Correct Answer: Erythromycin use
Explanation:The prolonged QT interval can be caused by erythromycin.
It is highly probable that the patient is taking erythromycin to treat his prostatitis, which is the reason for the prolonged QT interval.
Long QT syndrome (LQTS) is a genetic condition that causes a delay in the ventricles’ repolarization. This delay can lead to ventricular tachycardia/torsade de pointes, which can cause sudden death or collapse. The most common types of LQTS are LQT1 and LQT2, which are caused by defects in the alpha subunit of the slow delayed rectifier potassium channel. A normal corrected QT interval is less than 430 ms in males and 450 ms in females.
There are various causes of a prolonged QT interval, including congenital factors, drugs, and other conditions. Congenital factors include Jervell-Lange-Nielsen syndrome and Romano-Ward syndrome. Drugs that can cause a prolonged QT interval include amiodarone, sotalol, tricyclic antidepressants, and selective serotonin reuptake inhibitors. Other factors that can cause a prolonged QT interval include electrolyte imbalances, acute myocardial infarction, myocarditis, hypothermia, and subarachnoid hemorrhage.
LQTS may be detected on a routine ECG or through family screening. Long QT1 is usually associated with exertional syncope, while Long QT2 is often associated with syncope following emotional stress, exercise, or auditory stimuli. Long QT3 events often occur at night or at rest and can lead to sudden cardiac death.
Management of LQTS involves avoiding drugs that prolong the QT interval and other precipitants if appropriate. Beta-blockers are often used, and implantable cardioverter defibrillators may be necessary in high-risk cases. It is important to note that sotalol may exacerbate LQTS.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 86
Incorrect
-
A 65-year-old man presents to the Emergency Department with a 60-minute history of central chest pain that extends to his jaw. An ECG reveals an inferior ST-segment elevation myocardial infarction (STEMI). The QRS is positive in leads I and aVL but negative in leads II and aVF. What type of axis deviation is indicated by this finding?
Your Answer: Extreme right
Correct Answer: Left
Explanation:To estimate the heart’s axis, one method is the quadrant method, which involves analyzing leads I and aVF. If lead I is positive and lead aVF is negative, this suggests a possible left axis deviation. To confirm left axis deviation, a second method using lead II can be used. If lead II is also negative, then left axis deviation is confirmed. Other types of axis deviation can be determined by analyzing the polarity of leads I and aVF.
ECG Axis Deviation: Causes of Left and Right Deviation
Electrocardiogram (ECG) axis deviation refers to the direction of the electrical activity of the heart. A normal axis is between -30 and +90 degrees. Deviation from this range can indicate underlying cardiac or pulmonary conditions.
Left axis deviation (LAD) can be caused by left anterior hemiblock, left bundle branch block, inferior myocardial infarction, Wolff-Parkinson-White syndrome with a right-sided accessory pathway, hyperkalaemia, congenital heart defects such as ostium primum atrial septal defect (ASD) and tricuspid atresia, and minor LAD in obese individuals.
On the other hand, right axis deviation (RAD) can be caused by right ventricular hypertrophy, left posterior hemiblock, lateral myocardial infarction, chronic lung disease leading to cor pulmonale, pulmonary embolism, ostium secundum ASD, Wolff-Parkinson-White syndrome with a left-sided accessory pathway, and minor RAD in tall individuals. It is also normal in infants less than one year old.
It is important to note that Wolff-Parkinson-White syndrome is a common cause of both LAD and RAD, depending on the location of the accessory pathway. Understanding the causes of ECG axis deviation can aid in the diagnosis and management of underlying conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 87
Incorrect
-
A 67-year-old man is scheduled for surgery to treat transitional cell carcinoma of the left kidney. During the procedure, the surgeon needs to locate and dissect the left renal artery. Can you identify the vertebral level where the origin of this artery can be found?
Your Answer: L3
Correct Answer: L1
Explanation:The L1 level is where the left renal artery is located.
Located just below the superior mesenteric artery at L1, the left renal artery arises from the abdominal aorta. It is positioned slightly lower than the right renal artery.
At the T10 vertebral level, the vagal trunk accompanies the oesophagus as it passes through the diaphragm.
The T12 vertebral level marks the point where the aorta passes through the diaphragm, along with the thoracic duct and azygous veins. Additionally, this is where the coeliac trunk branches out.
The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 88
Correct
-
A 72-year-old man has been discharged after an elective laparoscopic cholecystectomy and his GP is reviewing his discharge letter. The patient has a history of atrial fibrillation and takes warfarin to reduce the risk of stroke. The GP notices an abnormality in the coagulation screen that was performed before surgery. The discharge letter confirms that this is expected with warfarin use.
What is the most likely abnormality on this patient's coagulation blood results?
Reference ranges:
International normalised ratio (INR) 0.9-1.2
Prothrombin time (PT) 10-14 secsYour Answer: PT 21 secs, INR 2.5
Explanation:Warfarin causes an increase in prothrombin-time (PT) and international normalised ratio (INR) by inhibiting vitamin K-dependent clotting factors. An increase in PT will cause an increase in INR, and a decrease in PT and INR is a prothrombotic state.
Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 89
Incorrect
-
A 75-year-old male presents with an ejection systolic murmur that is most audible over the aortic region. The patient also reports experiencing dyspnoea and angina. What is the probable diagnosis?
Your Answer: Aortic regurgitation
Correct Answer: Aortic stenosis
Explanation:Differentiating Aortic Stenosis from Other Cardiac Conditions
Aortic stenosis is a common cardiac condition that can be identified through auscultation. However, it is important to differentiate it from other conditions such as aortic sclerosis, HOCM, pulmonary stenosis, and aortic regurgitation. While aortic sclerosis may also present with an ejection systolic murmur, it is typically asymptomatic. The presence of dyspnoea, angina, or syncope would suggest a diagnosis of aortic stenosis instead. HOCM would not typically cause these symptoms, and pulmonary stenosis would not be associated with a murmur at the location of the aortic valve. Aortic regurgitation, on the other hand, would present with a wide pulse pressure and an early diastolic murmur. Therefore, careful consideration of symptoms and additional diagnostic tests may be necessary to accurately diagnose and differentiate between these cardiac conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 90
Incorrect
-
A 28-year-old male is being evaluated at the pre-operative assessment clinic. A murmur is detected in the 4th intercostal space adjacent to the left side of the sternum. What is the most probable source of the murmur?
Your Answer: Mitral valve
Correct Answer: Tricuspid valve
Explanation:The optimal location for auscultating the tricuspid valve is near the sternum, while the projected sound from the mitral area is most audible at the cardiac apex.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 91
Incorrect
-
A 29-year-old man is brought to the emergency surgical theatre with multiple stab wounds to his abdomen and is hypotensive despite resuscitative measures. During a laparotomy, a profusely bleeding vessel is found at a certain level of the lumbar vertebrae. The vessel is identified as the testicular artery and is ligated to stop the bleeding. At which vertebral level was the artery identified?
Your Answer: L6
Correct Answer: L2
Explanation:The testicular arteries originate from the abdominal aorta at the level of the second lumbar vertebrae (L2).
The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 92
Incorrect
-
A 50-year-old man is brought to the emergency department following a collapse on the street. Upon examination, he displays visual and oculomotor deficits, but his motor function remains intact. Digital subtraction angiography reveals a basilar artery occlusion at the point where the vertebral arteries merge to form the basilar artery. What anatomical feature corresponds to the location of the occlusion?
Your Answer: The apex of the midbrain
Correct Answer: The base of the pons
Explanation:The basilar artery is formed by the union of the vertebral arteries at the base of the pons.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 93
Correct
-
A 75-year-old man presents to the emergency department with acute chest pain that is radiating to his left shoulder. He has a medical history of a previous transient ischaemic attack three years ago and is currently taking aspirin 75mg OD.
Upon initial assessment, an ECG reveals ST-segment elevation in V1-V3. The patient undergoes percutaneous coronary intervention with a drug-eluting stent and is stable post-procedure. His treatment plan includes ramipril, ticagrelor, simvastatin, and atenolol.
What is the mechanism of action of the newly prescribed antiplatelet medication?Your Answer: Inhibit the binding of ADP to platelets
Explanation:Ticagrelor and clopidogrel have a similar mechanism of action in inhibiting ADP binding to platelet receptors, which prevents platelet aggregation. In patients with STEMI who undergo percutaneous coronary intervention with a drug-eluting stent, dual antiplatelet therapy, beta-blockers, ACE inhibitors, and anti-hyperlipidemic drugs are commonly used for secondary management.
Glycoprotein IIb/IIIa complex is a fibrinogen receptor found on platelets that, when activated, leads to platelet aggregation. Glycoprotein IIb/IIIa inhibitors, such as abciximab, bind to this receptor and prevent ligands like fibrinogen from accessing their binding site. Glycoprotein IIb/IIIa antagonists, like eptifibatide, compete with ligands for the receptor’s binding site, blocking the formation of thrombi.
Dipyridamole inhibits platelet cAMP-phosphodiesterase, leading to increased intra-platelet cAMP and decreased arachidonic acid release, resulting in reduced thromboxane A2 formation. It also inhibits adenosine reuptake by vascular endothelial cells and erythrocytes, leading to increased adenosine concentration, activation of adenyl cyclase, and increased cAMP production.
ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 94
Incorrect
-
A 72-year-old man is admitted to the renal ward with acute kidney injury following 3 days of diarrhoea and vomiting. Laboratory results reveal that his potassium levels are below normal limits, likely due to his gastrointestinal symptoms. You review his medications to ensure that none are exacerbating the situation and discover that he is taking diuretics for heart failure management. Which of the following diuretics is linked to hypokalaemia?
Your Answer: Spironolactone
Correct Answer: Bumetanide
Explanation:Hypokalaemia may be caused by loop diuretics such as bumetanide. It is important to note that spironolactone, triamterene, eplerenone, and amiloride are potassium-sparing diuretics and are more likely to cause hyperkalaemia. In this case, the patient has been admitted to the hospital with acute kidney injury (AKI) due to diarrhoea and vomiting, which are also possible causes of hypokalaemia. It is important to manage all of these factors. Symptoms of hypokalaemia include fatigue, muscle weakness, myalgia, muscle cramps, constipation, hyporeflexia, and in rare cases, paralysis.
Loop Diuretics: Mechanism of Action and Clinical Applications
Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.
Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 95
Correct
-
A 68-year-old man is prescribed clopidogrel to manage his peripheral artery disease-related claudication pain. What is the mechanism of action of this medication?
Your Answer: Inhibits ADP binding to platelet receptors
Explanation:Clopidogrel prevents clot formation by blocking the binding of ADP to platelet receptors. Factor Xa inhibitors like rivaroxaban directly inhibit factor Xa and are used to prevent and treat venous thromboembolism and atherothrombotic events. Dabigatran, a direct thrombin inhibitor, is used for prophylaxis and treatment of venous thromboembolism. Heparin/LMWH increase the effect of antithrombin and can be used to treat acute peripheral arterial occlusion, prevent and treat deep vein thrombosis and pulmonary embolism.
Clopidogrel: An Antiplatelet Agent for Cardiovascular Disease
Clopidogrel is a medication used to manage cardiovascular disease by preventing platelets from sticking together and forming clots. It is commonly used in patients with acute coronary syndrome and is now also recommended as a first-line treatment for patients following an ischaemic stroke or with peripheral arterial disease. Clopidogrel belongs to a class of drugs called thienopyridines, which work in a similar way. Other examples of thienopyridines include prasugrel, ticagrelor, and ticlopidine.
Clopidogrel works by blocking the P2Y12 adenosine diphosphate (ADP) receptor, which prevents platelets from becoming activated. However, concurrent use of proton pump inhibitors (PPIs) may make clopidogrel less effective. The Medicines and Healthcare products Regulatory Agency (MHRA) issued a warning in July 2009 about this interaction, and although evidence is inconsistent, omeprazole and esomeprazole are still cause for concern. Other PPIs, such as lansoprazole, are generally considered safe to use with clopidogrel. It is important to consult with a healthcare provider before taking any new medications or supplements.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 96
Incorrect
-
A 45-year-old woman presents to the cardiology clinic complaining of palpitations and shortness of breath for the past 6 weeks. She has a medical history of rheumatic fever and eczema.
During the physical examination, the patient exhibits a malar flush and a loud S1 with an opening snap is heard upon auscultation. Her heart rhythm is irregularly irregular. A chest x-ray is ordered and reveals a double heart border.
What other symptom is this patient likely to encounter?Your Answer: Arm and facial swelling
Correct Answer: Difficulty swallowing
Explanation:The statement about left atrial enlargement compressing the esophagus in mitral stenosis is correct. This can lead to difficulty swallowing. The patient’s medical history of rheumatic fever, along with clinical signs such as malar flush, a loud S1 with opening snap, and an irregularly irregular heart rhythm (likely atrial fibrillation), suggest a diagnosis of mitral stenosis. This condition obstructs the outflow of blood from the left atrium into the left ventricle, causing the left atrium to enlarge and compress surrounding structures. Left atrial enlargement can also increase the risk of developing arrhythmias like atrial fibrillation.
The statements about arm and facial swelling, constipation, and neck pain are incorrect. Arm and facial swelling occur due to compression of the superior vena cava, which is not caused by left atrial enlargement. Constipation is not a symptom of mitral stenosis, but patients may experience abdominal discomfort due to right-sided heart failure. Neck pain is not associated with mitral stenosis, but neck vein distention may be observed.
Understanding Mitral Stenosis
Mitral stenosis is a condition where the mitral valve, which controls blood flow from the left atrium to the left ventricle, becomes obstructed. This leads to an increase in pressure within the left atrium, pulmonary vasculature, and right side of the heart. The most common cause of mitral stenosis is rheumatic fever, but it can also be caused by other rare conditions such as mucopolysaccharidoses, carcinoid, and endocardial fibroelastosis.
Symptoms of mitral stenosis include dyspnea, hemoptysis, a mid-late diastolic murmur, a loud S1, and a low volume pulse. Severe cases may also present with an increased length of murmur and a closer opening snap to S2. Chest x-rays may show left atrial enlargement, while echocardiography can confirm a cross-sectional area of less than 1 sq cm for a tight mitral stenosis.
Management of mitral stenosis depends on the severity of the condition. Asymptomatic patients are monitored with regular echocardiograms, while symptomatic patients may undergo percutaneous mitral balloon valvotomy or mitral valve surgery. Patients with associated atrial fibrillation require anticoagulation, with warfarin currently recommended for moderate/severe cases. However, there is an emerging consensus that direct-acting anticoagulants may be suitable for mild cases with atrial fibrillation.
Overall, understanding mitral stenosis is important for proper diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 97
Correct
-
As a medical student observing a parathyroidectomy in the short-stay surgical theatre, you witness the ligation of blood vessels supplying the parathyroid glands. The ENT consultant requests you to identify the arteries responsible for supplying oxygenated blood to the parathyroid gland. Can you correctly name these arteries?
Your Answer: Superior and inferior thyroid arteries
Explanation:The superior and inferior thyroid arteries provide oxygenated blood supply to the parathyroid glands. The existence of inferior parathyroid arteries and superior parathyroid arteries is not supported by anatomical evidence. While a middle thyroid artery may exist in some individuals, it is a rare variation that is not relevant to the question at hand.
Anatomy and Development of the Parathyroid Glands
The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.
The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 98
Incorrect
-
As a medical student working in the emergency department, you come across a 75-year-old man with a medical history of hypertension, dyslipidaemia, and atrial fibrillation. He was brought in by ambulance after collapsing at home. During the examination, you notice that he is unable to raise his right arm and has reduced sensation on the right side of his body. The consultant suspects that the patient is having a stroke and orders an urgent CT head.
Upon reviewing the results, the consultant informs you that there is a significant area of ischaemia affecting the insula, somatosensory cortex, and part of the frontal cortex. Your task is to identify the artery that is most likely to be occluded by an infarct.Your Answer: Right anterior cerebral artery
Correct Answer: Left middle cerebral artery
Explanation:The correct blood vessel supplying the frontal, temporal, and parietal lobes is the left middle cerebral artery. This is evident from the patient’s symptoms of right-sided loss of sensation and weakness, which are controlled by the contralateral somatosensory and motor cortex. The other options, such as the anterior spinal artery and the anterior cerebral arteries, are incorrect as they do not supply the brain or the specific areas affected in this patient.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 99
Correct
-
A 7-year-old girl with Down Syndrome presents to her General Practitioner (GP) with complaints of getting tired easily while playing with her friends and experiencing shortness of breath. The mother informs the GP that the patient was born with an uncorrected cardiac defect. On examination, the GP observes clubbing and plethora.
What is the probable reason for the patient's current symptoms?Your Answer: Eisenmenger syndrome
Explanation:The presence of clubbing, cyanosis, and easy fatigue in this patient suggests Eisenmenger syndrome, which can occur as a result of an uncorrected VSD commonly seen in individuals with Down syndrome. The increased pulmonary blood flow caused by the VSD can lead to pulmonary hypertension and vascular remodeling, resulting in RV hypertrophy and a reversal of the shunt. In contrast, coarctation of the aorta typically presents with hypertension and pulse discrepancies, but not clubbing or plethora. Ebstein abnormality, caused by prenatal exposure to lithium, can cause fatigue and early tiring, but does not typically result in clubbing. Transposition of the great vessels would likely have been fatal without correction, making it an unlikely diagnosis in this case.
Understanding Eisenmenger’s Syndrome
Eisenmenger’s syndrome is a medical condition that occurs when a congenital heart defect leads to pulmonary hypertension, causing a reversal of a left-to-right shunt. This happens when the left-to-right shunt is not corrected, leading to the remodeling of the pulmonary microvasculature, which eventually obstructs pulmonary blood and causes pulmonary hypertension. The condition is commonly associated with ventricular septal defect, atrial septal defect, and patent ductus arteriosus.
The original murmur may disappear, and patients may experience cyanosis, clubbing, right ventricular failure, haemoptysis, and embolism. Management of Eisenmenger’s syndrome requires heart-lung transplantation. It is essential to diagnose and treat the condition early to prevent complications and improve the patient’s quality of life. Understanding the causes, symptoms, and management of Eisenmenger’s syndrome is crucial for healthcare professionals to provide appropriate care and support to patients with this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 100
Correct
-
A 20-year-old man has a tonsillectomy due to recurrent acute tonsillitis. During recovery, he experiences a postoperative bleeding. Which vessel is the most probable cause of the bleeding?
Your Answer: External palatine vein
Explanation:If the external palatine vein is harmed during tonsillectomy, it can result in reactionary bleeding and is located adjacent to the tonsil.
Tonsil Anatomy and Tonsillitis
The tonsils are located in the pharynx and have two surfaces, a medial and lateral surface. They vary in size and are usually supplied by the tonsillar artery and drained by the jugulodigastric and deep cervical nodes. Tonsillitis is a common condition that is usually caused by bacteria, with group A Streptococcus being the most common culprit. It can also be caused by viruses. In some cases, tonsillitis can lead to the development of an abscess, which can distort the uvula. Tonsillectomy is recommended for patients with recurrent acute tonsillitis, suspected malignancy, or enlargement causing sleep apnea. The preferred technique for tonsillectomy is dissection, but it can be complicated by hemorrhage, which is the most common complication. Delayed otalgia may also occur due to irritation of the glossopharyngeal nerve.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)