00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 75-year-old man presents to the Emergency Department with acute shortness of breath...

    Correct

    • A 75-year-old man presents to the Emergency Department with acute shortness of breath following a 4-day febrile illness. On initial assessment, his oxygen saturation is 70% on room air with a PaO2 of 4.2kpa on an arterial blood gas.

      What would be the anticipated physiological response in this patient?

      Your Answer: Pulmonary artery vasoconstriction

      Explanation:

      When faced with hypoxia, the pulmonary arteries undergo vasoconstriction, which redirects blood flow away from poorly oxygenated areas of the lungs and towards well-oxygenated regions. In cases where patients remain hypoxic despite optimal mechanical ventilation, inhaled nitric oxide can be used to induce pulmonary vasodilation and reverse this response.

      The statement that increased tidal volume with decreased respiratory rate is a response to hypoxia is incorrect. While an increase in tidal volume may occur, it is typically accompanied by an increase in respiratory rate.

      Pulmonary artery vasodilation is also incorrect. Hypoxia actually induces vasoconstriction in the pulmonary vasculature, as explained above.

      Similarly, reduced tidal volume with increased respiratory rate is not a direct response to hypoxia. While respiratory rate may increase, tidal volumes typically increase in response to hypoxia.

      In contrast to the pulmonary vessels, the systemic vasculature vasodilates in response to hypoxia.

      The Effects of Hypoxia on Pulmonary Arteries

      When the partial pressure of oxygen in the blood decreases, the pulmonary arteries undergo vasoconstriction. This means that the blood vessels narrow, allowing blood to be redirected to areas of the lung that are better aerated. This response is a natural mechanism that helps to improve the efficiency of gaseous exchange in the lungs. By diverting blood to areas with more oxygen, the body can ensure that the tissues receive the oxygen they need to function properly. Overall, hypoxia triggers a physiological response that helps to maintain homeostasis in the body.

    • This question is part of the following fields:

      • Respiratory System
      66.4
      Seconds
  • Question 2 - A middle-aged woman who is obese comes in with complaints of polyuria. She...

    Incorrect

    • A middle-aged woman who is obese comes in with complaints of polyuria. She has a history of squamous cell lung carcinoma. What could be the possible reason for her polyuria?

      Your Answer: Type 2 diabetes mellitus

      Correct Answer: Hyperparathyroidism

      Explanation:

      Polyuria is caused by all the options listed above, except for syndrome of inappropriate ADH secretion. However, the patient’s age does not match the typical onset of type 1 diabetes, which usually occurs in young individuals. Furthermore, squamous cell lung carcinoma is commonly associated with a paraneoplastic syndrome that results in the release of excess parathyroid hormone by the tumor, leading to hypercalcemia and subsequent polyuria, along with other symptoms such as renal and biliary stones, bone pain, abdominal discomfort, nausea, vomiting, depression, and anxiety.

      Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.

    • This question is part of the following fields:

      • Respiratory System
      24.9
      Seconds
  • Question 3 - Which of the following physiological changes does not take place after a tracheostomy?...

    Incorrect

    • Which of the following physiological changes does not take place after a tracheostomy?

      Your Answer: Anatomical dead space is reduced by 50%.

      Correct Answer: Work of breathing is increased.

      Explanation:

      HFNC is a popular option for weaning ventilated patients as it reduces work of breathing and humidified air helps to reduce mucous viscosity.

      Anatomy of the Trachea

      The trachea, also known as the windpipe, is a tube-like structure that extends from the C6 vertebrae to the upper border of the T5 vertebrae where it bifurcates into the left and right bronchi. It is supplied by the inferior thyroid arteries and the thyroid venous plexus, and innervated by branches of the vagus, sympathetic, and recurrent nerves.

      In the neck, the trachea is anterior to the isthmus of the thyroid gland, inferior thyroid veins, and anastomosing branches between the anterior jugular veins. It is also surrounded by the sternothyroid, sternohyoid, and cervical fascia. Posteriorly, it is related to the esophagus, while laterally, it is in close proximity to the common carotid arteries, right and left lobes of the thyroid gland, inferior thyroid arteries, and recurrent laryngeal nerves.

      In the thorax, the trachea is anterior to the manubrium, the remains of the thymus, the aortic arch, left common carotid arteries, and the deep cardiac plexus. Laterally, it is related to the pleura and right vagus on the right side, and the left recurrent nerve, aortic arch, and left common carotid and subclavian arteries on the left side.

      Overall, understanding the anatomy of the trachea is important for various medical procedures and interventions, such as intubation and tracheostomy.

    • This question is part of the following fields:

      • Respiratory System
      28.4
      Seconds
  • Question 4 - A 40-year-old woman visits her GP after being treated at the Emergency Department...

    Incorrect

    • A 40-year-old woman visits her GP after being treated at the Emergency Department for a foreign body lodged in her throat for 2 days. Although the object has been removed, she is experiencing difficulty swallowing. Upon further questioning, she mentions altered sensation while swallowing, describing it as a sensation of 'not feeling like food is being swallowed' during meals.

      Which nerve or nerves are likely to have been affected?

      Your Answer: Recurrent laryngeal nerve

      Correct Answer: Internal laryngeal nerve

      Explanation:

      The internal laryngeal nerve is responsible for providing sensory information to the supraglottis and branches off from the superior laryngeal nerve. It is important to note that the cervical plexus, external laryngeal nerve, recurrent laryngeal nerve, and superior laryngeal nerve do not perform the same function as the internal laryngeal nerve.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      22.6
      Seconds
  • Question 5 - A 70-year-old man is admitted to the respiratory ward with an exacerbation of...

    Correct

    • A 70-year-old man is admitted to the respiratory ward with an exacerbation of COPD. He has been experiencing increased breathlessness and a productive cough for the past week. He is currently on day three of his rescue medication regimen consisting of amoxicillin and prednisolone. According to his previous discharge summary, this patient has a history of carbon dioxide retention. He is currently receiving controlled oxygen therapy via a 28% venturi mask. What is the target oxygen saturation level for this patient?

      Your Answer: 88%-92%

      Explanation:

      As a junior doctor, you will often encounter patients who retain carbon dioxide and depend on their hypoxic drive to breathe. When using Venturi masks to deliver controlled oxygen, it is important to set a target that balances the patient’s need for oxygen with their reliance on hypoxia to stimulate breathing. Answer 4 is the correct choice in this scenario. Providing too much oxygen, as in answers 2 and 3, can cause the patient to lose their hypoxic drive and become drowsy or confused. Answer 5 does not provide enough oxygen to properly perfuse the tissues. Failing to set a target for these patients is not good clinical practice.

      Guidelines for Oxygen Therapy in Emergency Situations

      In 2017, the British Thoracic Society updated its guidelines for emergency oxygen therapy. The guidelines state that in critically ill patients, such as those experiencing anaphylaxis or shock, oxygen should be administered through a reservoir mask at a rate of 15 liters per minute. However, certain conditions, such as stable myocardial infarction, are excluded from this recommendation.

      The guidelines also provide specific oxygen saturation targets for different patient populations. Acutely ill patients should have a saturation level between 94-98%, while patients at risk of hypercapnia, such as those with COPD, should have a saturation level between 88-92%. Oxygen levels should be reduced in stable patients with satisfactory oxygen saturation.

      For COPD patients, a 28% Venturi mask at 4 liters per minute should be used prior to the availability of blood gases. The target oxygen saturation level for these patients should be 88-92% if they have risk factors for hypercapnia but no prior history of respiratory acidosis. If the patient’s pCO2 is normal, the target range should be adjusted to 94-98%.

      The guidelines also state that oxygen therapy should not be used routinely in certain situations where there is no evidence of hypoxia, such as in cases of myocardial infarction, acute coronary syndromes, stroke, obstetric emergencies, and anxiety-related hyperventilation.

      Overall, these guidelines provide important recommendations for the appropriate use of oxygen therapy in emergency situations, taking into account the specific needs of different patient populations.

    • This question is part of the following fields:

      • Respiratory System
      39.4
      Seconds
  • Question 6 - A woman in her 30s is stabbed in the chest to the right...

    Correct

    • A woman in her 30s is stabbed in the chest to the right of the manubriosternal angle. Which structure is least likely to be injured in this scenario?

      Your Answer: Right recurrent laryngeal nerve

      Explanation:

      The right vagus nerve gives rise to the right recurrent laryngeal nerve at a more proximal location, which then curves around the subclavian artery in a posterior direction. Therefore, out of the given structures, it is the least susceptible to injury.

      The mediastinum is the area located between the two pulmonary cavities and is covered by the mediastinal pleura. It extends from the thoracic inlet at the top to the diaphragm at the bottom. The mediastinum is divided into four regions: the superior mediastinum, middle mediastinum, posterior mediastinum, and anterior mediastinum.

      The superior mediastinum is the area between the manubriosternal angle and T4/5. It contains important structures such as the superior vena cava, brachiocephalic veins, arch of aorta, thoracic duct, trachea, oesophagus, thymus, vagus nerve, left recurrent laryngeal nerve, and phrenic nerve. The anterior mediastinum contains thymic remnants, lymph nodes, and fat. The middle mediastinum contains the pericardium, heart, aortic root, arch of azygos vein, and main bronchi. The posterior mediastinum contains the oesophagus, thoracic aorta, azygos vein, thoracic duct, vagus nerve, sympathetic nerve trunks, and splanchnic nerves.

      In summary, the mediastinum is a crucial area in the thorax that contains many important structures and is divided into four regions. Each region contains different structures that are essential for the proper functioning of the body.

    • This question is part of the following fields:

      • Respiratory System
      30.4
      Seconds
  • Question 7 - A 50-year-old man visits the GP clinic for a routine hearing examination. He...

    Correct

    • A 50-year-old man visits the GP clinic for a routine hearing examination. He reports no issues with his hearing and has no significant medical history or medication use. After conducting Rinne and Weber tests on the patient, you determine that his hearing is within normal limits.

      What are the test findings for this patient?

      Your Answer: Rinne: air conduction > bone conduction bilaterally; Weber: equal in both ears

      Explanation:

      The patient’s hearing exam results indicate normal hearing. The Rinne test showed more air conduction than bone conduction in both ears, which is typical for normal hearing. The Weber test also showed equal results in both ears, indicating no significant difference in hearing between the ears.

      Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness

      Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.

      Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.

      The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.

      Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.

    • This question is part of the following fields:

      • Respiratory System
      103.3
      Seconds
  • Question 8 - A 78-year-old man comes to your clinic with a complaint of hoarseness in...

    Incorrect

    • A 78-year-old man comes to your clinic with a complaint of hoarseness in his voice for the past 2 months. He is unsure if he had a viral infection prior to this and has attempted using over-the-counter remedies with no improvement. How would you approach managing this patient?

      Your Answer: Routine referral to ENT

      Correct Answer: Red flag referral to ENT

      Explanation:

      An urgent referral to an ENT specialist is necessary when a person over the age of 45 experiences persistent hoarseness without any apparent cause. In this case, the patient has been suffering from a hoarse voice for 8 weeks, which warrants an urgent referral. A routine referral would not be sufficient as it may not be quick enough to address the issue. Although it could be a viral or bacterial infection, the duration of the hoarseness suggests that there may be an underlying serious condition. Merely informing the patient that their voice may not return is not helpful and may overlook the possibility of a more severe problem.

      Hoarseness can be caused by various factors such as overusing the voice, smoking, viral infections, hypothyroidism, gastro-oesophageal reflux, laryngeal cancer, and lung cancer. It is important to investigate the underlying cause of hoarseness, and a chest x-ray may be necessary to rule out any apical lung lesions.

      If laryngeal cancer is suspected, it is recommended to refer the patient to an ENT specialist through a suspected cancer pathway. This referral should be considered for individuals who are 45 years old and above and have persistent unexplained hoarseness or an unexplained lump in the neck. Early detection and treatment of laryngeal cancer can significantly improve the patient’s prognosis.

    • This question is part of the following fields:

      • Respiratory System
      30
      Seconds
  • Question 9 - A 25-year-old male patient complains of sore throat, malaise, and fatigue for the...

    Incorrect

    • A 25-year-old male patient complains of sore throat, malaise, and fatigue for the past 5 days. During the examination, a significant peritonsillar abscess is observed. What is the probable causative organism responsible for this infection?

      Your Answer: Moraxella catarrhalis

      Correct Answer: Streptococcus pyogenes

      Explanation:

      Streptococcal organisms are the most frequent cause of bacterial tonsillitis, which can lead to quinsy.

      Understanding Acute Tonsillitis

      Acute tonsillitis is a condition that is characterized by pharyngitis, fever, malaise, and lymphadenopathy. It is caused by bacterial infections in over half of all cases, with Streptococcus pyogenes being the most common organism. The tonsils become swollen and may have yellow or white pustules. It is important to note that infectious mononucleosis may mimic the symptoms of acute tonsillitis.

      Treatment for bacterial tonsillitis involves the use of penicillin-type antibiotics. Failure to treat bacterial tonsillitis may result in the formation of a local abscess known as quinsy.

    • This question is part of the following fields:

      • Respiratory System
      161.5
      Seconds
  • Question 10 - A 25-year-old man comes to the doctor complaining of frequent urination, unquenchable thirst,...

    Correct

    • A 25-year-old man comes to the doctor complaining of frequent urination, unquenchable thirst, and recent weight loss of around 5 kilograms in the last 2 months. The patient reports feeling extremely tired, although he acknowledges that work has been stressful lately, and his eating habits have been poor. The patient has a medical history of cystic fibrosis, with a Pseudomonas aeruginosa flare-up last year that required a brief hospital stay.

      What could be the probable reason for this patient's clinical presentation?

      Your Answer: Diabetes mellitus

      Explanation:

      Cystic fibrosis can lead to the development of a unique type of diabetes mellitus known as cystic fibrosis-related diabetes mellitus. This is caused by the destruction of pancreatic islets due to abnormal chloride channel function, which leads to thickened bodily secretions that damage the exocrine pancreas over time. As a result, there is a gradual reduction in islet cell function and relative insulin deficiency, which can cause symptoms such as polydipsia, polyuria, fatigue, and weight loss.

      It is important to note that this type of diabetes is distinct from type 1 or type 2 diabetes. Additionally, it is not associated with other conditions such as diabetes insipidus, primary hyperparathyroidism, or prostatitis, which have their own unique symptoms and causes.

      Understanding Cystic Fibrosis: Symptoms and Other Features

      Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.

      Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.

    • This question is part of the following fields:

      • Respiratory System
      49.9
      Seconds
  • Question 11 - A 68-year-old man arrives at the Emergency Department complaining of sharp and stabbing...

    Correct

    • A 68-year-old man arrives at the Emergency Department complaining of sharp and stabbing central chest pain that radiates to his back, neck, and left shoulder. He reports feeling feverish and states that sitting forward relieves the pain while lying down worsens it. The patient also mentions a recent hospitalization for a heart attack three weeks ago. During auscultation at the left sternal border, a scratchy sound is heard while the patient leans forward and holds his breath. His ECG shows widespread ST-segment saddle elevation and PR-segment depression. Can you identify the nerve responsible for his shoulder pain?

      Your Answer: Phrenic nerve

      Explanation:

      The referred pain to the shoulder in this case is likely caused by Dressler’s syndrome, a type of pericarditis that occurs after a heart attack. The scratchy sound heard during auscultation is a pericardial friction rub, which is a common characteristic of pericarditis. The phrenic nerve, which supplies the pericardium, travels from the neck down through the thoracic cavity and can cause referred pain to the shoulder in cases of pericarditis.

      The axillary nerve is responsible for innervating the teres minor and deltoid muscles, and dysfunction of this nerve can result in loss of sensation or movement in the shoulder area.

      While the accessory nerve does innervate muscles in the neck that attach to the shoulder, it has a purely motor function and is not responsible for sensory input. Additionally, the referred pain in this case is not typical of musculoskeletal pain, but rather a result of pericarditis.

      Injuries involving the long thoracic nerve often result in winging of the scapula and are commonly caused by axillary surgery.

      Although the vagus nerve does supply parasympathetic innervation to the heart, it is not responsible for the referred pain in this case, as the pericardium is innervated by the phrenic nerve.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      46.9
      Seconds
  • Question 12 - A 29-year-old pregnant woman is admitted to the hospital and delivers a baby...

    Incorrect

    • A 29-year-old pregnant woman is admitted to the hospital and delivers a baby girl at 32 weeks gestation. The newborn displays signs of distress including tachypnoea, tachycardia, expiratory grunting, nasal flaring, and chest wall recession.

      What is the cell type responsible for producing the substance that the baby is lacking?

      Your Answer: Goblet cells

      Correct Answer: Type 2 pneumocytes

      Explanation:

      Types of Pneumocytes and Their Functions

      Pneumocytes are specialized cells found in the lungs that play a crucial role in gas exchange. There are two main types of pneumocytes: type 1 and type 2. Type 1 pneumocytes are very thin squamous cells that cover around 97% of the alveolar surface. On the other hand, type 2 pneumocytes are cuboidal cells that secrete surfactant, a substance that reduces surface tension in the alveoli and prevents their collapse during expiration.

      Type 2 pneumocytes start to develop around 24 weeks gestation, but adequate surfactant production does not take place until around 35 weeks. This is why premature babies are prone to respiratory distress syndrome. In addition, type 2 pneumocytes can differentiate into type 1 pneumocytes during lung damage, helping to repair and regenerate damaged lung tissue.

      Apart from pneumocytes, there are also club cells (previously termed Clara cells) found in the bronchioles. These non-ciliated dome-shaped cells have a varied role, including protecting against the harmful effects of inhaled toxins and secreting glycosaminoglycans and lysozymes. Understanding the different types of pneumocytes and their functions is essential in comprehending the complex mechanisms involved in respiration.

    • This question is part of the following fields:

      • Respiratory System
      30.2
      Seconds
  • Question 13 - A 49-year-old patient presents to the rheumatology clinic with weight loss, fever, and...

    Incorrect

    • A 49-year-old patient presents to the rheumatology clinic with weight loss, fever, and night sweats. The individual is also experiencing shortness of breath. The following blood test results are obtained:

      - Hemoglobin (Hb): 140 g/l
      - Platelets: 192 * 109/l
      - White cell count (WCC): 5.3 * 109/l
      - Creatinine: 154 umol/l
      - Urea: 9 mmol/l
      - cANCA positive

      The white cell differential count is reported as normal. What is the most likely diagnosis?

      Your Answer: Microscopic polyangiitis

      Correct Answer: Granulomatosis with polyangiitis

      Explanation:

      The most likely diagnosis for this patient is granulomatosis with polyangiitis, as indicated by the presence of cANCA and the involvement of multiple organs including the lungs, skin, kidneys, and upper respiratory tract. This condition is known to cause inflammation in the glomeruli, leading to renal impairment. Churg-Strauss disease and Alport’s syndrome are unlikely due to normal eosinophil levels and cANCA positivity, respectively. Goodpasture’s syndrome is also unlikely as the patient does not present with haematuria or haemoptysis.

      Granulomatosis with Polyangiitis: An Autoimmune Condition

      Granulomatosis with polyangiitis, previously known as Wegener’s granulomatosis, is an autoimmune condition that affects the upper and lower respiratory tract as well as the kidneys. It is characterized by a necrotizing granulomatous vasculitis. The condition presents with various symptoms such as epistaxis, sinusitis, nasal crusting, dyspnoea, haemoptysis, and rapidly progressive glomerulonephritis. Other symptoms include a saddle-shape nose deformity, vasculitic rash, eye involvement, and cranial nerve lesions.

      To diagnose granulomatosis with polyangiitis, doctors perform various investigations such as cANCA and pANCA tests, chest x-rays, and renal biopsies. The cANCA test is positive in more than 90% of cases, while the pANCA test is positive in 25% of cases. Chest x-rays show a wide variety of presentations, including cavitating lesions. Renal biopsies reveal epithelial crescents in Bowman’s capsule.

      The management of granulomatosis with polyangiitis involves the use of steroids, cyclophosphamide, and plasma exchange. Cyclophosphamide has a 90% response rate. The median survival rate for patients with this condition is 8-9 years.

    • This question is part of the following fields:

      • Respiratory System
      75.4
      Seconds
  • Question 14 - A 25-year-old patient is undergoing routine pulmonary function testing to assess her chronic...

    Incorrect

    • A 25-year-old patient is undergoing routine pulmonary function testing to assess her chronic condition. The results are compared to a standardised predicted value and presented in the table below:

      FEV1 75% of predicted
      FVC 70% of predicted
      FEV1/FVC 105%

      What is the probable condition that this patient is suffering from, which can account for the above findings?

      Your Answer: Bronchiectasis

      Correct Answer: Neuromuscular disorder

      Explanation:

      The patient’s pulmonary function tests indicate a restrictive pattern, as both FEV1 and FVC are reduced. This suggests a possible neuromuscular disorder, as all other options would result in an obstructive pattern on the tests. Asthma, bronchiectasis, and COPD are unlikely diagnoses for a 20-year-old and would not match the test results. Pneumonia may affect the patient’s ability to perform the tests, but it is typically an acute condition that requires immediate treatment with antibiotics.

      Understanding Pulmonary Function Tests

      Pulmonary function tests are a useful tool in determining whether a respiratory disease is obstructive or restrictive. These tests measure various aspects of lung function, such as forced expiratory volume in one second (FEV1) and forced vital capacity (FVC). By analyzing the results of these tests, doctors can diagnose and monitor conditions such as asthma, COPD, pulmonary fibrosis, and neuromuscular disorders.

      In obstructive lung diseases, such as asthma and COPD, the FEV1 is significantly reduced, while the FVC may be reduced or normal. The FEV1% (FEV1/FVC) is also reduced. On the other hand, in restrictive lung diseases, such as pulmonary fibrosis and asbestosis, the FEV1 is reduced, but the FVC is significantly reduced. The FEV1% (FEV1/FVC) may be normal or increased.

      It is important to note that there are many conditions that can affect lung function, and pulmonary function tests are just one tool in diagnosing and managing respiratory diseases. However, understanding the results of these tests can provide valuable information for both patients and healthcare providers.

    • This question is part of the following fields:

      • Respiratory System
      27.8
      Seconds
  • Question 15 - A patient on the medical ward was waiting for a cardiac procedure. On...

    Correct

    • A patient on the medical ward was waiting for a cardiac procedure. On discussing the procedure with the consultant before the procedure, the patient started to feel anxious and had difficulty breathing. The resident obtained an arterial blood gas:

      pH 7.55
      pCO2 2.7kPa
      pO2 11.2kPa
      HCO3 24mmol/l

      What is the most appropriate interpretation of these results?

      Your Answer: Respiratory alkalosis

      Explanation:

      The respiratory alkalosis observed in the arterial blood gas results is most likely a result of hyperventilation, as indicated by the patient’s medical history.

      Arterial Blood Gas Interpretation: A 5-Step Approach

      Arterial blood gas interpretation is a crucial aspect of patient care, particularly in critical care settings. The Resuscitation Council (UK) recommends a 5-step approach to interpreting arterial blood gas results. The first step is to assess the patient’s overall condition. The second step is to determine if the patient is hypoxaemic, with a PaO2 on air of less than 10 kPa. The third step is to assess if the patient is acidaemic (pH <7.35) or alkalaemic (pH >7.45).

      The fourth step is to evaluate the respiratory component of the arterial blood gas results. A PaCO2 level greater than 6.0 kPa suggests respiratory acidosis, while a PaCO2 level less than 4.7 kPa suggests respiratory alkalosis. The fifth step is to assess the metabolic component of the arterial blood gas results. A bicarbonate level less than 22 mmol/l or a base excess less than -2mmol/l suggests metabolic acidosis, while a bicarbonate level greater than 26 mmol/l or a base excess greater than +2mmol/l suggests metabolic alkalosis.

      To remember the relationship between pH, PaCO2, and bicarbonate, the acronym ROME can be used. Respiratory acidosis or alkalosis is opposite to the pH level, while metabolic acidosis or alkalosis is equal to the pH level. This 5-step approach and the ROME acronym can aid healthcare professionals in interpreting arterial blood gas results accurately and efficiently.

    • This question is part of the following fields:

      • Respiratory System
      31.8
      Seconds
  • Question 16 - A 45-year-old man presents to the emergency department with fever, productive cough, and...

    Correct

    • A 45-year-old man presents to the emergency department with fever, productive cough, and shortness of breath. He has no medical history and takes no regular medications.

      Upon examination, coarse crackles and bronchial breathing are heard at the right lung base.

      Chest radiography reveals consolidation in the lower right zone.

      Arterial blood gas results are as follows:

      pH 7.36 (7.35-7.45)
      pO2 7.2 kPa (11-13)
      pCO2 4.1 kPa (4-6)
      SaO2 87% (94-98)

      Based on the likely diagnosis, what is the expected initial physiological response?

      Your Answer: Vasoconstriction of the pulmonary arteries

      Explanation:

      When hypoxia is present, the pulmonary arteries undergo vasoconstriction, which is the appropriate response. The patient is exhibiting symptoms of pneumonia and type 1 respiratory failure, as evidenced by clinical and radiographic findings. Vasoconstriction of the small pulmonary arteries helps to redirect blood flow from poorly ventilated regions of the lung to those with better ventilation, resulting in improved gas exchange efficiency between the alveoli and blood.

      The Effects of Hypoxia on Pulmonary Arteries

      When the partial pressure of oxygen in the blood decreases, the pulmonary arteries undergo vasoconstriction. This means that the blood vessels narrow, allowing blood to be redirected to areas of the lung that are better aerated. This response is a natural mechanism that helps to improve the efficiency of gaseous exchange in the lungs. By diverting blood to areas with more oxygen, the body can ensure that the tissues receive the oxygen they need to function properly. Overall, hypoxia triggers a physiological response that helps to maintain homeostasis in the body.

    • This question is part of the following fields:

      • Respiratory System
      69.2
      Seconds
  • Question 17 - A 67-year-old man visits the respiratory clinic for spirometry testing to investigate possible...

    Correct

    • A 67-year-old man visits the respiratory clinic for spirometry testing to investigate possible COPD. The clinician observes that his breathing appears to be shallow even at rest.

      What specific lung volume would accurately describe the clinician's observation?

      Your Answer: Tidal volume (TV)

      Explanation:

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      36.1
      Seconds
  • Question 18 - A 25-year-old man presents to the Emergency department with acute onset of shortness...

    Incorrect

    • A 25-year-old man presents to the Emergency department with acute onset of shortness of breath during a basketball game. He reports no history of trauma and is typically healthy. Upon examination, he appears tall and lean, and respiratory assessment reveals reduced breath sounds and hyper-resonant percussion notes on the right side. The trachea remains centrally located. A chest x-ray confirms a diagnosis of a collapsed lung due to a right-sided pneumothorax. What is the reason for the lung's failure to re-expand?

      Your Answer: Decrease in intrapleural pressure

      Correct Answer: Increase in intrapleural pressure

      Explanation:

      The process of lung expansion relies on the negative pressure in the intrapleural space between the visceral and parietal pleura, which is present throughout respiration. This negative pressure pulls the lung towards the chest wall, allowing it to expand. However, if air enters the intrapleural space, the negative pressure is lost and the lung cannot fully reinflate. It is important to note that the intrapleural space is a potential space between the pleural surfaces, and there is typically no actual space present under normal circumstances.

      Management of Pneumothorax: BTS Guidelines

      Pneumothorax is a condition where air accumulates in the pleural space, causing the lung to collapse. The British Thoracic Society (BTS) has published guidelines for the management of spontaneous pneumothorax, which can be primary or secondary. Primary pneumothorax occurs without any underlying lung disease, while secondary pneumothorax is associated with lung disease.

      The BTS recommends that patients with a rim of air less than 2 cm and no shortness of breath may be discharged, while those with a larger rim of air or shortness of breath should undergo aspiration or chest drain insertion. For secondary pneumothorax, patients over 50 years old with a rim of air greater than 2 cm or shortness of breath should undergo chest drain insertion. Aspiration may be attempted for those with a rim of air between 1-2 cm, but chest drain insertion is recommended if aspiration fails.

      Patients with iatrogenic pneumothorax, which is caused by medical procedures, have a lower likelihood of recurrence than those with spontaneous pneumothorax. Observation is usually sufficient, but chest drain insertion may be required in some cases. Ventilated patients and those with chronic obstructive pulmonary disease (COPD) may require chest drain insertion.

      Patients with pneumothorax should be advised to avoid smoking to reduce the risk of further episodes. They should also be aware of restrictions on air travel and scuba diving. The CAA recommends a waiting period of two weeks after successful drainage before air travel, while the BTS advises against scuba diving unless the patient has undergone bilateral surgical pleurectomy and has normal lung function and chest CT scan postoperatively.

      In summary, the BTS guidelines provide a comprehensive approach to the management of pneumothorax, taking into account the type of pneumothorax and the patient’s individual circumstances. Early intervention and appropriate follow-up can help prevent complications and improve outcomes.

    • This question is part of the following fields:

      • Respiratory System
      57.1
      Seconds
  • Question 19 - A 27-year-old male admitted to the ICU after a car accident has a...

    Correct

    • A 27-year-old male admitted to the ICU after a car accident has a pneumothorax. Using a bedside spirometer, his inspiratory and expiratory volumes were measured. What is the typical tidal volume for a male of his age?

      Your Answer: 500ml

      Explanation:

      The amount of air that is normally breathed in and out without any extra effort is called tidal volume, which is 500ml in males and 350ml in females.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      15.8
      Seconds
  • Question 20 - A 35-year-old female smoker presents with acute severe asthma.

    The patient's SaO2 levels...

    Correct

    • A 35-year-old female smoker presents with acute severe asthma.

      The patient's SaO2 levels are at 91% even with 15 L of oxygen, and her pO2 is at 8.2 kPa (10.5-13). There is widespread expiratory wheezing throughout her chest.

      The medical team administers IV hydrocortisone, 100% oxygen, and 5 mg of nebulised salbutamol and 500 micrograms of nebulised ipratropium, but there is little response. Nebulisers are repeated 'back-to-back,' but the patient remains tachypnoeic with wheezing, although there is good air entry.

      What should be the next step in the patient's management?

      Your Answer: IV Magnesium

      Explanation:

      Acute Treatment of Asthma

      When dealing with acute asthma, the initial approach should be SOS, which stands for Salbutamol, Oxygen, and Steroids (IV). It is also important to organize a CXR to rule out pneumothorax. If the patient is experiencing bronchoconstriction, further efforts to treat it should be considered. If the patient is tiring or has a silent chest, ITU review may be necessary. Magnesium is recommended at a dose of 2 g over 30 minutes to promote bronchodilation, as low magnesium levels in bronchial smooth muscle can favor bronchoconstriction. IV theophylline may also be considered, but magnesium is typically preferred. While IV antibiotics may be necessary, promoting bronchodilation should be the initial focus. IV potassium may also be required as beta agonists can push down potassium levels. Oral prednisolone can wait, as IV hydrocortisone is already part of the SOS approach. Non-invasive ventilation is not recommended for the acute management of asthma.

    • This question is part of the following fields:

      • Respiratory System
      46.2
      Seconds
  • Question 21 - A 65-year-old male with a history of chronic obstructive pulmonary disease (COPD) has...

    Incorrect

    • A 65-year-old male with a history of chronic obstructive pulmonary disease (COPD) has been admitted and treated for infective exacerbations of COPD three times in the past year. Despite his respiratory issues, he continues to smoke. He is currently receiving only short-acting beta2-agonist therapy. During his COPD patient review with the nurse practitioner at his local general practice, spirometry results reveal a drop in his FEV1 from 65% to 58%.

      What is the most effective approach to manage his condition and prevent further decline in his FEV1?

      Your Answer: Add a long-acting beta2-agonist and an inhaled corticosteroid

      Correct Answer: Smoking cessation

      Explanation:

      The most effective intervention to slow the decrease in FEV1 experienced by patients with COPD is to stop smoking. If the patient has no asthmatic/steroid-responsive features, the next step in management would be to add a long-acting beta2-agonist (LABA) and a long-acting muscarinic antagonist. If the patient has asthmatic/steroid-responsive features, the next step would be to add a LABA and an inhaled corticosteroid. Oral theophylline is only considered if inhaled therapy is not possible, and oral prednisolone is only used during acute infective exacerbations of COPD to help with inflammation and is not a long-term solution to slow the reduction of FEV1.

      The National Institute for Health and Care Excellence (NICE) updated its guidelines on the management of chronic obstructive pulmonary disease (COPD) in 2018. The guidelines recommend general management strategies such as smoking cessation advice, annual influenzae vaccination, and one-off pneumococcal vaccination. Pulmonary rehabilitation is also recommended for patients who view themselves as functionally disabled by COPD.

      Bronchodilator therapy is the first-line treatment for patients who remain breathless or have exacerbations despite using short-acting bronchodilators. The next step is determined by whether the patient has asthmatic features or features suggesting steroid responsiveness. NICE suggests several criteria to determine this, including a previous diagnosis of asthma or atopy, a higher blood eosinophil count, substantial variation in FEV1 over time, and substantial diurnal variation in peak expiratory flow.

      If the patient does not have asthmatic features or features suggesting steroid responsiveness, a long-acting beta2-agonist (LABA) and long-acting muscarinic antagonist (LAMA) should be added. If the patient is already taking a short-acting muscarinic antagonist (SAMA), it should be discontinued and switched to a short-acting beta2-agonist (SABA). If the patient has asthmatic features or features suggesting steroid responsiveness, a LABA and inhaled corticosteroid (ICS) should be added. If the patient remains breathless or has exacerbations, triple therapy (LAMA + LABA + ICS) should be offered.

      NICE only recommends theophylline after trials of short and long-acting bronchodilators or to people who cannot use inhaled therapy. Azithromycin prophylaxis is recommended in select patients who have optimised standard treatments and continue to have exacerbations. Mucolytics should be considered in patients with a chronic productive cough and continued if symptoms improve.

      Cor pulmonale features include peripheral oedema, raised jugular venous pressure, systolic parasternal heave, and loud P2. Loop diuretics should be used for oedema, and long-term oxygen therapy should be considered. Smoking cessation, long-term oxygen therapy in eligible patients, and lung volume reduction surgery in selected patients may improve survival in patients with stable COPD. NICE does not recommend the use of ACE-inhibitors, calcium channel blockers, or alpha blockers

    • This question is part of the following fields:

      • Respiratory System
      42
      Seconds
  • Question 22 - A 7-year-old boy is brought to the clinic by his father, who is...

    Correct

    • A 7-year-old boy is brought to the clinic by his father, who is worried about his son's hearing. The father has noticed that his son frequently asks him to repeat himself and tends to turn up the volume on the TV. During Weber's test, the patient indicates that the sound is louder on the right side. What conclusion can be drawn from this finding?

      Your Answer: Can not tell which side is affected.

      Explanation:

      The Weber test alone cannot determine which side of the patient’s hearing is affected. The test involves placing a tuning fork on the forehead and asking the patient to report if the sound is symmetrical or louder on one side. If the sound is louder on the left side, it could indicate a conductive hearing loss on the left or a sensorineural hearing loss on the right. To obtain more information, the Weber test should be performed in conjunction with the Rinne test, which involves comparing air conduction and bone conduction.

      Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness

      Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.

      Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.

      The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.

      Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.

    • This question is part of the following fields:

      • Respiratory System
      50.2
      Seconds
  • Question 23 - A 35-year-old pregnant woman undergoes an ABG test. What is the anticipated outcome...

    Correct

    • A 35-year-old pregnant woman undergoes an ABG test. What is the anticipated outcome for a healthy pregnant woman?

      Your Answer: Compensated respiratory alkalosis

      Explanation:

      During pregnancy, a woman’s increased tidal volume leads to a decrease in carbon dioxide levels, resulting in alkalosis. This is because carbon dioxide generates acid, and reduced levels of it lead to a decrease in acid. The kidneys eventually adapt to this change by reducing the amount of alkaline bicarbonate in the body. Therefore, pregnancy causes a compensated respiratory alkalosis.

      If a woman’s bicarbonate levels remain normal, she would have simple respiratory alkalosis.

      On the other hand, if a woman produces excess acid, she would have metabolic acidosis, which is the opposite of what occurs during pregnancy.

      Arterial Blood Gas Interpretation: A 5-Step Approach

      Arterial blood gas interpretation is a crucial aspect of patient care, particularly in critical care settings. The Resuscitation Council (UK) recommends a 5-step approach to interpreting arterial blood gas results. The first step is to assess the patient’s overall condition. The second step is to determine if the patient is hypoxaemic, with a PaO2 on air of less than 10 kPa. The third step is to assess if the patient is acidaemic (pH <7.35) or alkalaemic (pH >7.45).

      The fourth step is to evaluate the respiratory component of the arterial blood gas results. A PaCO2 level greater than 6.0 kPa suggests respiratory acidosis, while a PaCO2 level less than 4.7 kPa suggests respiratory alkalosis. The fifth step is to assess the metabolic component of the arterial blood gas results. A bicarbonate level less than 22 mmol/l or a base excess less than -2mmol/l suggests metabolic acidosis, while a bicarbonate level greater than 26 mmol/l or a base excess greater than +2mmol/l suggests metabolic alkalosis.

      To remember the relationship between pH, PaCO2, and bicarbonate, the acronym ROME can be used. Respiratory acidosis or alkalosis is opposite to the pH level, while metabolic acidosis or alkalosis is equal to the pH level. This 5-step approach and the ROME acronym can aid healthcare professionals in interpreting arterial blood gas results accurately and efficiently.

    • This question is part of the following fields:

      • Respiratory System
      9.9
      Seconds
  • Question 24 - A 15-year-old boy presents to his GP with a painless swelling in his...

    Incorrect

    • A 15-year-old boy presents to his GP with a painless swelling in his neck. The mass is located centrally just below the hyoid bone and does not cause any difficulty in swallowing or breathing. Upon examination, the GP notes that the mass moves with protrusion of the tongue and with swallowing. The GP diagnoses the boy with a benign thyroglossal cyst, which is caused by a persistent thyroglossal duct, and advises surgical removal. Where is the thyroglossal duct attached to the tongue?

      Your Answer: Palatoglossal arch

      Correct Answer: Foramen cecum

      Explanation:

      The thyroglossal duct connects the thyroid gland to the tongue via the foramen caecum during embryonic development. The terminal sulcus, median sulcus, palatoglossal arch, and epiglottis are not connected to the thyroid gland.

      Understanding Thyroglossal Cysts

      Thyroglossal cysts are named after the thyroid and tongue, which are the two structures involved in their development. During embryology, the thyroid gland develops from the floor of the pharynx and descends into the neck, connected to the tongue by the thyroglossal duct. The foramen cecum is the point of attachment of the thyroglossal duct to the tongue. Normally, the thyroglossal duct atrophies, but in some people, it may persist and give rise to a thyroglossal duct cyst.

      Thyroglossal cysts are more common in patients under 20 years old and are usually midline, between the isthmus of the thyroid and the hyoid bone. They move upwards with protrusion of the tongue and may be painful if infected. Understanding the embryology and presentation of thyroglossal cysts is important for proper diagnosis and treatment.

    • This question is part of the following fields:

      • Respiratory System
      37.9
      Seconds
  • Question 25 - A 65-year-old man is having a left pneumonectomy for bronchogenic carcinoma. When the...

    Incorrect

    • A 65-year-old man is having a left pneumonectomy for bronchogenic carcinoma. When the surgeons reach the root of the lung, which structure will be situated furthest back in the anatomical plane?

      Your Answer: Main bronchus

      Correct Answer: Vagus nerve

      Explanation:

      At the lung root, the phrenic nerve is situated in the most anterior position while the vagus nerve is located at the posterior end.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      23.5
      Seconds
  • Question 26 - A 26-year-old man is brought to the emergency department after being rescued at...

    Correct

    • A 26-year-old man is brought to the emergency department after being rescued at sea following a sailing accident. He is currently unresponsive with a Glasgow Coma Score of 9 (E2 V3 M4).

      His vital signs include a heart rate of 110 beats per minute, blood pressure of 110/76 mmHg, oxygen saturation of 93%, and temperature of 34.8 ºC. An ECG is unremarkable and venous blood indicates type 2 respiratory failure. The patient's oxygen dissociation curve shows a leftward shift.

      What is the cause of the leftward shift in this 26-year-old patient's oxygen dissociation curve?

      Your Answer: Hypothermia

      Explanation:

      The only answer that causes a leftward shift in the oxygen dissociation curve is hypothermia. When tissues undergo aerobic respiration, they generate heat, which changes the shape of the haemoglobin molecule and reduces its affinity for oxygen. This results in the release of oxygen at respiring tissues. In contrast, lower temperatures in the lungs cause a leftward shift in the oxygen dissociation curve, which increases the binding of oxygen to haemoglobin.

      Hypercapnia is not the correct answer because it causes a rightward shift in the oxygen dissociation curve. Hypercapnia lowers blood pH, which changes the shape of haemoglobin and reduces its affinity for oxygen.

      Hypoxaemia is not the correct answer because the partial pressure of oxygen does not affect the oxygen dissociation curve. The partial pressure of oxygen does not change the affinity of haemoglobin for oxygen.

      Increased concentration of 2,3-diphosphoglycerate (2,3-DPG) is not the correct answer because higher concentrations of 2,3-DPG reduce haemoglobin’s affinity for oxygen, causing a right shift in the oxygen dissociation curve.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      38
      Seconds
  • Question 27 - A 9-month-old girl is brought to the emergency department by her mother due...

    Incorrect

    • A 9-month-old girl is brought to the emergency department by her mother due to difficulty in breathing. The mother reports that her daughter has been restless, with a runny nose, feeling warm and a dry cough for the past 4 days. However, the mother is now quite worried because her daughter has not eaten since last night and her breathing seems to have worsened throughout the morning.

      During the examination, the infant has a respiratory rate of 70/min, heart rate of 155/min, oxygen saturation of 92% and a temperature of 37.9ºC. The infant shows signs of nasal flaring and subcostal recession while breathing. On auscultation, widespread wheezing is heard. The infant is admitted, treated with humidified oxygen via nasal cannula and discharged home after 2 days.

      What is the probable causative agent of this infant's illness?

      Your Answer: Streptococcus pneumoniae

      Correct Answer: Respiratory syncytial virus

      Explanation:

      Bronchiolitis typically presents with symptoms such as coryza and increased breathing effort, leading to feeding difficulties in children under one year of age. The majority of cases of bronchiolitis are caused by respiratory syncytial virus, while adenovirus is a less frequent culprit. On the other hand, croup is most commonly caused by parainfluenza virus.

      Understanding Bronchiolitis

      Bronchiolitis is a condition that is characterized by inflammation of the bronchioles. It is a serious lower respiratory tract infection that is most common in children under the age of one year. The pathogen responsible for 75-80% of cases is respiratory syncytial virus (RSV), while other causes include mycoplasma and adenoviruses. Bronchiolitis is more serious in children with bronchopulmonary dysplasia, congenital heart disease, or cystic fibrosis.

      The symptoms of bronchiolitis include coryzal symptoms, dry cough, increasing breathlessness, and wheezing. Fine inspiratory crackles may also be present. Children with bronchiolitis may experience feeding difficulties associated with increasing dyspnoea, which is often the reason for hospital admission.

      Immediate referral to hospital is recommended if the child has apnoea, looks seriously unwell to a healthcare professional, has severe respiratory distress, central cyanosis, or persistent oxygen saturation of less than 92% when breathing air. Clinicians should consider referring to hospital if the child has a respiratory rate of over 60 breaths/minute, difficulty with breastfeeding or inadequate oral fluid intake, or clinical dehydration.

      The investigation for bronchiolitis involves immunofluorescence of nasopharyngeal secretions, which may show RSV. Management of bronchiolitis is largely supportive, with humidified oxygen given via a head box if oxygen saturations are persistently < 92%. Nasogastric feeding may be needed if children cannot take enough fluid/feed by mouth, and suction is sometimes used for excessive upper airway secretions.

    • This question is part of the following fields:

      • Respiratory System
      116
      Seconds
  • Question 28 - An 85-year-old woman visits her doctor with a complaint of worsening breathlessness in...

    Correct

    • An 85-year-old woman visits her doctor with a complaint of worsening breathlessness in the past 6 months. She has been smoking 10 cigarettes a day for the last 40 years. The doctor suspects that she may have chronic obstructive pulmonary disease. What is one of the mechanisms by which smoking damages the lungs and leads to emphysema?

      Your Answer: Inactivation of alpha-1 antitrypsin

      Explanation:

      The function of alpha-1 antitrypsin is to inhibit elastase. However, smoke has a negative impact on this protein in the lungs, resulting in increased activity of elastases and the breakdown of elastic tissue, which leads to emphysema.

      Contrary to popular belief, smoke actually activates polymorphonuclear leucocytes, which contributes to the development of emphysema.

      Mucous gland hyperplasia, basal cell metaplasia, and basement membrane thickening are all examples of how smoke affects the lungs to cause chronic bronchitis, not emphysema.

      COPD, or chronic obstructive pulmonary disease, can be caused by a variety of factors. The most common cause is smoking, which can lead to inflammation and damage in the lungs over time. Another potential cause is alpha-1 antitrypsin deficiency, a genetic condition that can result in lung damage. Additionally, exposure to certain substances such as cadmium (used in smelting), coal, cotton, cement, and grain can also contribute to the development of COPD. It is important to identify and address these underlying causes in order to effectively manage and treat COPD.

    • This question is part of the following fields:

      • Respiratory System
      38.9
      Seconds
  • Question 29 - A 63-year-old man arrives at the ER with a recent onset of left-sided...

    Incorrect

    • A 63-year-old man arrives at the ER with a recent onset of left-sided facial paralysis. He reports experiencing a painful rash around his ear on the affected side for the past five days. Your suspicion is Ramsay Hunt syndrome. What virus is responsible for this condition?

      Your Answer: Epstein Barr virus

      Correct Answer: Varicella zoster virus

      Explanation:

      The geniculate ganglion of the facial nerve (CN VII) reactivates the varicella-zoster virus, causing Ramsay Hunt syndrome.

      Infectious mononucleosis (glandular fever) is primarily linked to the Epstein-Barr virus.

      Viral warts are commonly caused by human papillomavirus (HPV), with certain types being associated with gynaecological malignancy. Vaccines are now available to protect against the carcinogenic strains of HPV.

      Oral or genital herpes infections are caused by the herpes simplex virus.

      Understanding Ramsay Hunt Syndrome

      Ramsay Hunt syndrome, also known as herpes zoster oticus, is a condition that occurs when the varicella zoster virus reactivates in the geniculate ganglion of the seventh cranial nerve. The first symptom of this syndrome is often auricular pain, followed by facial nerve palsy and a vesicular rash around the ear. Other symptoms may include vertigo and tinnitus.

      To manage Ramsay Hunt syndrome, doctors typically prescribe oral acyclovir and corticosteroids. These medications can help reduce the severity of symptoms and prevent complications.

    • This question is part of the following fields:

      • Respiratory System
      17.1
      Seconds
  • Question 30 - How many fissures can be found in the right lung?

    At what age...

    Correct

    • How many fissures can be found in the right lung?

      At what age do these fissures typically develop?

      Your Answer: Two

      Explanation:

      The oblique and horizontal fissures are present in the right lung. The lower lobe is separated from the middle and upper lobes by the upper oblique fissure. The superior and middle lobes are separated by the short horizontal fissure.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      9.7
      Seconds
  • Question 31 - A 20-year-old male arrives at the emergency department with a sudden worsening of...

    Incorrect

    • A 20-year-old male arrives at the emergency department with a sudden worsening of his asthma symptoms. He is experiencing difficulty in speaking and breathing, with cyanosis of the lips and a respiratory rate of 33 breaths per minute. He reports feeling lightheaded. Although his airways are open, his chest sounds are faint upon auscultation. The patient is administered oxygen, nebulized salbutamol, and intravenous aminophylline.

      What is the mechanism of action of aminophylline?

      Your Answer: Activates phosphodiesterase inhibitor resulting in smooth muscle relaxation

      Correct Answer: Binds to adenosine receptors and blocks adenosine-mediated bronchoconstriction

      Explanation:

      Aminophylline works by binding to adenosine receptors and preventing adenosine-induced bronchoconstriction. This mode of action is different from antihistamines like loratadine, which is an incorrect option. Theophylline, a shorter acting form of aminophylline, competitively inhibits type III and type IV phosphodiesterase enzymes responsible for breaking down cyclic AMP in smooth muscle cells, leading to possible bronchodilation. Additionally, theophylline binds to the adenosine A2B receptor and blocks adenosine-mediated bronchoconstriction. In inflammatory conditions, theophylline activates histone deacetylase, which prevents the transcription of inflammatory genes that require histone acetylation for transcription to begin. Therefore, the last three options are incorrect. (Source: Drugbank)

      Aminophylline infusions are utilized to manage acute asthma and COPD. In patients who have not received xanthines (theophylline or aminophylline) before, a loading dose of 5 mg/kg is administered through a slow intravenous injection lasting at least 20 minutes. For the maintenance infusion, 1g of aminophylline is mixed with 1 litre of normal saline to create a solution of 1 mg/ml. The recommended dose is 500-700 mcg/kg/hour, or 300 mcg/kg/hour for elderly patients. It is important to monitor plasma theophylline concentrations.

    • This question is part of the following fields:

      • Respiratory System
      42.4
      Seconds
  • Question 32 - A 67-year-old female smoker with a two-month history of worsening shortness of breath...

    Correct

    • A 67-year-old female smoker with a two-month history of worsening shortness of breath presents for evaluation. On examination, she appears comfortable at rest with a regular pulse of 72 bpm, respiratory rate of 16/min, and blood pressure of 128/82 mmHg. Physical findings include reduced expansion on the left lower zone, dullness to percussion over this area, and absent breath sounds over the left lower zone with bronchial breath sounds just above this region. What is the likely clinical diagnosis?

      Your Answer: Pleural effusion

      Explanation:

      Pleural Effusion and its Investigation

      Pleural effusion is a condition where there is an abnormal accumulation of fluid in the pleural space, which is the space between the lungs and the chest wall. This can be caused by various factors such as post-infection, carcinoma, or emboli. To determine the cause of the pleural effusion, a pleural tap is the most appropriate investigation. The sample obtained from the pleural tap is sent for cytology, protein concentration, and culture.

      A normal pleural tap would have clear appearance, pH of 7.60-7.64, protein concentration of less than 2%, white blood cells count of less than 1000/mm³, glucose level similar to that of plasma, LDH level of less than 50% of plasma concentration, amylase level of 30-110 U/L, triglycerides level of less than 2 mmol/l, and cholesterol level of 3.5-6.5 mmol/l.

      A transudative tap is associated with conditions such as congestive heart failure, liver cirrhosis, severe hypoalbuminemia, and nephrotic syndrome. On the other hand, an exudative tap is associated with malignancy, infection (such as empyema due to bacterial pneumonia), trauma, pulmonary infarction, and pulmonary embolism.

      In summary, pleural effusion can be caused by various factors and a pleural tap is the most appropriate investigation to determine the cause. The results of the pleural tap can help differentiate between transudative and exudative effusions, which can provide important information for diagnosis and treatment.

    • This question is part of the following fields:

      • Respiratory System
      34
      Seconds
  • Question 33 - A 50-year-old man suffers a closed head injury and experiences a decline in...

    Incorrect

    • A 50-year-old man suffers a closed head injury and experiences a decline in consciousness upon arrival at the hospital. To monitor his intracranial pressure, an ICP monitor is inserted. What is the normal range for intracranial pressure?

      Your Answer: 35 - 45mm Hg

      Correct Answer: 7 - 15mm Hg

      Explanation:

      The typical range for intracranial pressure is 7 to 15 mm Hg, with the brain able to tolerate increases up to 24 mm Hg before displaying noticeable clinical symptoms.

      Understanding the Monro-Kelly Doctrine and Autoregulation in the CNS

      The Monro-Kelly doctrine governs the pressure within the cranium by considering the skull as a closed box. The loss of cerebrospinal fluid (CSF) can accommodate increases in mass until a critical point is reached, usually at 100-120ml of CSF lost. Beyond this point, intracranial pressure (ICP) rises sharply, and pressure will eventually equate with mean arterial pressure (MAP), leading to neuronal death and herniation.

      The central nervous system (CNS) has the ability to autoregulate its own blood supply through vasoconstriction and dilation of cerebral blood vessels. However, extreme blood pressure levels can exceed this capacity, increasing the risk of stroke. Additionally, metabolic factors such as hypercapnia can cause vasodilation, which is crucial in ventilating head-injured patients.

      It is important to note that the brain can only metabolize glucose, and a decrease in glucose levels can lead to impaired consciousness. Understanding the Monro-Kelly doctrine and autoregulation in the CNS is crucial in managing intracranial pressure and preventing neurological damage.

    • This question is part of the following fields:

      • Respiratory System
      26.2
      Seconds
  • Question 34 - Samantha is a 67-year-old woman who visits her doctor complaining of muscle weakness...

    Incorrect

    • Samantha is a 67-year-old woman who visits her doctor complaining of muscle weakness and blurred vision. She works as a librarian, drinks about 15 units of alcohol per week, and has smoked about 25 cigarettes a day for 35 years.

      During the examination, her blood pressure is found to be elevated at 152/98 mmHg. There are reduced breath sounds over the area of the right lower lobe. Some of her blood test results are as follows:

      - Hb 120 g/L (Female: 115-160)
      - Platelets 420 * 109/L (150-400)
      - WBC 9.1 * 109/L (4.0-11.0)
      - Na+ 148 mmol/L (135-145)
      - K+ 3.2 mmol/L (3.5-5.0)
      - Urea 8.5 mmol/L (2.0-7.0)
      - Creatinine 150 µmol/L (55-120)
      - 24-hour urine free cortisol 260 ug/l (10-100)
      - Glucose 17.8 mmol/l (4.0-7.0)

      She mentions that, aside from a persistent cough due to smoking, which occasionally produces blood, she feels fine.

      What is the most probable diagnosis?

      Your Answer: Cushing's disease

      Correct Answer: Small cell lung carcinoma

      Explanation:

      A small cell lung carcinoma that secretes ACTH can lead to Cushing’s syndrome, as seen in this patient. The history and examination findings suggest lung cancer, and the raised cortisol level can be explained by the paraneoplastic syndrome caused by ACTH release. Muscle weakness and blurred vision are typical symptoms of Cushing’s syndrome. Squamous cell lung carcinoma and adrenal adenoma are less likely causes, while Cushing’s disease is not applicable in this case.

      Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.

    • This question is part of the following fields:

      • Respiratory System
      673.8
      Seconds
  • Question 35 - A 15-year-old girl presents with difficulty breathing and is unable to speak in...

    Correct

    • A 15-year-old girl presents with difficulty breathing and is unable to speak in full sentences due to panic. She has a history of asthma. Upon examination, her respiratory rate is 28 breaths/minute, heart rate is 105 beats/minute, and her chest is silent. What is the most concerning feature in this girl's history?

      Your Answer: Silent chest

      Explanation:

      Identify the life-threatening features of an asthma attack.

      Assessing the severity of asthma attacks in children is crucial for effective management. The 2016 BTS/SIGN guidelines provide criteria for assessing the severity of asthma in general practice. These criteria include measuring SpO2 levels, PEF (peak expiratory flow) rates, heart rate, respiratory rate, use of accessory neck muscles, and other symptoms such as breathlessness, agitation, altered consciousness, and cyanosis.

      A severe asthma attack is characterized by a SpO2 level below 92%, PEF rates between 33-50% of the best or predicted, being too breathless to talk or feed, and a high heart and respiratory rate. On the other hand, a life-threatening asthma attack is indicated by a SpO2 level below 92%, PEF rates below 33% of the best or predicted, a silent chest, poor respiratory effort, use of accessory neck muscles, agitation, altered consciousness, and cyanosis.

      It is important for healthcare professionals to be familiar with these criteria to ensure prompt and appropriate management of asthma attacks in children. Early recognition of the severity of an asthma attack can help prevent complications and reduce the risk of hospitalization or death.

    • This question is part of the following fields:

      • Respiratory System
      16
      Seconds
  • Question 36 - A 55-year-old Caucasian man presents to the ENT clinic with complaints of gradual...

    Correct

    • A 55-year-old Caucasian man presents to the ENT clinic with complaints of gradual hearing loss over the past year. He reports having to turn up the volume on his television to the maximum to hear it comfortably. There are no associated symptoms such as tinnitus or dizziness, and the patient has no significant medical history.

      Upon examination, a Weber and Rinne test reveal conductive hearing loss in the left ear. Otoscope examination shows no signs of middle ear effusion or tympanic membrane involvement in either ear. A pure tone audiometry confirms conductive hearing loss in the left ear, with a Carhart's notch present.

      The physician diagnoses the patient with otosclerosis and discusses treatment options.

      What is the underlying pathology of otosclerosis?

      Your Answer: Replacement of normal bone by vascular spongy bone

      Explanation:

      Otosclerosis is a condition where normal bone is replaced by spongy bone with a high vascularity. This leads to progressive conductive hearing loss, without any other neurological impairments. The replacement of the normal endochondral layer of the bony labyrinth by spongy bone affects the ability of the stapes to act as a piston, resulting in the conduction of sound from the middle ear to the inner ear being affected. Caucasians are most commonly affected by this condition.

      Benign paroxysmal positional vertigo (BPPV) is caused by the dislodgement of otoliths into the semicircular canals. This condition results in vertiginous dizziness upon positional changes, but does not affect auditory function.

      Meniere’s disease is caused by endolymphatic hydrops, which is the accumulation of fluid in the inner ear. The pathophysiology of this condition is not well understood, but it leads to vertigo, tinnitus, hearing loss, and aural fullness.

      Cholesteatoma is caused by the accumulation of desquamated, stratified squamous epithelium. This leads to the formation of a mass that can gradually enlarge and erode the ossicle chain, resulting in conductive hearing loss.

      Presbycusis is a type of sensorineural hearing loss that occurs as a result of aging. The degeneration of the organ of Corti is one of the underlying pathological mechanisms that causes this condition. This leads to the destruction of outer hair cells and a decrease in hearing sensitivity.

      Understanding Otosclerosis: A Progressive Conductive Deafness

      Otosclerosis is a medical condition that occurs when normal bone is replaced by vascular spongy bone. This condition leads to a progressive conductive deafness due to the fixation of the stapes at the oval window. It is an autosomal dominant condition that typically affects young adults, with onset usually occurring between the ages of 20-40 years.

      The main features of otosclerosis include conductive deafness, tinnitus, a normal tympanic membrane, and a positive family history. In some cases, patients may also experience a flamingo tinge, which is caused by hyperemia and affects around 10% of patients.

      Management of otosclerosis typically involves the use of a hearing aid or stapedectomy. A hearing aid can help to improve hearing, while a stapedectomy involves the surgical removal of the stapes bone and replacement with a prosthesis.

      Overall, understanding otosclerosis is important for individuals who may be at risk of developing this condition. Early diagnosis and management can help to improve hearing and prevent further complications.

    • This question is part of the following fields:

      • Respiratory System
      96.3
      Seconds
  • Question 37 - Which of the following paraneoplastic manifestations is the LEAST frequent in individuals diagnosed...

    Incorrect

    • Which of the following paraneoplastic manifestations is the LEAST frequent in individuals diagnosed with squamous cell lung carcinoma?

      Your Answer: Hypertrophic pulmonary osteoarthropathy

      Correct Answer: Lambert-Eaton syndrome

      Explanation:

      Small cell lung cancer is strongly associated with Lambert-Eaton syndrome, while squamous cell lung cancer is more commonly associated with paraneoplastic features such as PTHrp, clubbing, and HPOA.

      Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.

    • This question is part of the following fields:

      • Respiratory System
      56
      Seconds
  • Question 38 - A 25-year-old female patient visits your clinic complaining of hearing loss. According to...

    Incorrect

    • A 25-year-old female patient visits your clinic complaining of hearing loss. According to her, her hearing has been declining for about two years, with her left ear being worse than the right. She struggles to hear her partner when he is on her left side. Additionally, she has been experiencing tinnitus in her left ear for a year. She mentions that her mother also has hearing difficulties and uses hearing aids on both ears. During the examination, the Rinne test shows a negative result on the left and a positive result on the right. On the other hand, the Weber test indicates that the sound is louder on the left. What is the probable impairment?

      Your Answer: Sensorineural hearing loss on the left.

      Correct Answer: Conductive hearing loss on the left.

      Explanation:

      Based on the results of the Weber and Rinne tests, the patient in the question is likely experiencing conductive hearing loss on the left side. The Weber test revealed that the patient hears sound better on the left side, which could indicate a conductive hearing loss or sensorineural hearing loss on the right side. However, the Rinne test was negative on the left side, indicating a conductive hearing loss. This is further supported by the patient’s reported symptoms of hearing loss in the left ear. This presentation, along with a family history of hearing loss, suggests a possible diagnosis of otosclerosis, a condition that affects the stapes bone and can lead to severe or total hearing loss.

      Understanding the Different Causes of Deafness

      Deafness can be caused by various factors, with ear wax, otitis media, and otitis externa being the most common. However, there are other conditions that can lead to hearing loss, each with its own characteristic features. Presbycusis, for instance, is age-related sensorineural hearing loss that often makes it difficult for patients to follow conversations. Otosclerosis, on the other hand, is an autosomal dominant condition that replaces normal bone with vascular spongy bone, causing conductive deafness, tinnitus, and a flamingo tinge in the tympanic membrane. Glue ear, also known as otitis media with effusion, is the most common cause of conductive hearing loss in children, while Meniere’s disease is characterized by recurrent episodes of vertigo, tinnitus, and sensorineural hearing loss. Drug ototoxicity, noise damage, and acoustic neuroma are other factors that can lead to deafness.

      Understanding the different causes of deafness is crucial in diagnosing and treating the condition. By knowing the characteristic features of each condition, healthcare professionals can determine the appropriate interventions to help patients manage their hearing loss. It is also important for individuals to protect their hearing by avoiding exposure to loud noises and seeking medical attention when they experience any symptoms of hearing loss. With proper care and management, people with deafness can still lead fulfilling lives.

    • This question is part of the following fields:

      • Respiratory System
      51
      Seconds
  • Question 39 - A 29-year-old man visits his GP with a complaint of a persistent cough....

    Correct

    • A 29-year-old man visits his GP with a complaint of a persistent cough. He reports coughing up large amounts of yellow sputum and occasionally blood on a daily basis for the past few years. Lately, he has noticed that his clothes seem loose on him and he frequently feels fatigued.

      What is the most probable underlying condition responsible for this patient's symptoms?

      Your Answer: Kartagener's syndrome

      Explanation:

      Kartagener’s syndrome is a condition that can lead to bronchiectasis due to a defect in the cilia, which impairs the lungs’ ability to clear mucus. Bronchiectasis is diagnosed when a person produces large amounts of sputum daily, experiences haemoptysis, and loses weight. While other conditions may cause tiredness, weight loss, or haemoptysis, they are not typically associated with bronchiectasis.

      Understanding Kartagener’s Syndrome

      Kartagener’s syndrome, also known as primary ciliary dyskinesia, is a rare genetic disorder that was first described in 1933. It is often associated with dextrocardia, which can be detected through quiet heart sounds and small volume complexes in lateral leads during examinations. The pathogenesis of Kartagener’s syndrome is caused by a dynein arm defect, which results in immotile cilia.

      The features of Kartagener’s syndrome include dextrocardia or complete situs inversus, bronchiectasis, recurrent sinusitis, and subfertility. The latter is due to diminished sperm motility and defective ciliary action in the fallopian tubes. It is important to note that Kartagener’s syndrome is a rare disorder, and diagnosis can be challenging. However, early detection and management can help improve the quality of life for those affected by this condition.

    • This question is part of the following fields:

      • Respiratory System
      34.4
      Seconds
  • Question 40 - A 70-year-old man visits his primary care physician with complaints of hearing difficulties....

    Incorrect

    • A 70-year-old man visits his primary care physician with complaints of hearing difficulties. He states that he has been increasingly struggling to hear his wife's conversations for the past six months. He is concerned that this problem will worsen and eventually lead to complete hearing loss, making it difficult for him to communicate with his children over the phone. His wife is also distressed by the situation, as he frequently asks her to turn up the volume on the television. The man has no history of exposure to loud noises and has well-controlled hypertension. He is a retired police officer and currently resides with his wife. What is the primary pathology underlying this man's most likely diagnosis?

      Your Answer: Damage to the organ of Corti stereocilia

      Correct Answer: Degeneration of the cells at the cochlear base

      Explanation:

      The patient has a gradual-onset hearing loss, which is most likely due to presbycusis, an aging-related sensorineural hearing loss. This condition has multiple causes, including environmental factors like noise pollution and biological factors like genetics and oxidative stress. Damage to the organ of Corti stereocilia from exposure to sudden loud noises can also cause hearing loss, which is typically sudden and associated with a history of exposure to loud noises. Other conditions that can cause hearing loss include cholesteatoma, which is due to the accumulation of keratin debris in the middle ear, and otosclerosis, which is characterized by the overgrowth of bone in the middle ear.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      51.5
      Seconds
  • Question 41 - A 36-year-old male patient complains of fever, malaise, weight loss, dyspnoea, and shoulder...

    Incorrect

    • A 36-year-old male patient complains of fever, malaise, weight loss, dyspnoea, and shoulder & hip joint pain. He has raised erythematous lesions on both legs. His blood tests reveal elevated calcium levels and serum ACE levels. A chest x-ray shows bilateral hilar lymphadenopathy.

      What is the probable diagnosis?

      Your Answer: Multiple myeloma

      Correct Answer: Sarcoidosis

      Explanation:

      If a patient presents with raised serum ACE levels, sarcoidosis should be considered as a possible diagnosis. The combination of erythema nodosum and bilateral hilar lymphadenopathy on a chest x-ray is pathognomonic of sarcoidosis. Lung cancer is unlikely in a young patient without a significant smoking history, and tuberculosis would require recent foreign travel to a TB endemic country. Multiple myeloma would not cause the same symptoms as sarcoidosis. Exposure to organic material would not be a likely cause of raised serum ACE levels.

      Understanding Sarcoidosis: A Multisystem Disorder

      Sarcoidosis is a condition that affects multiple systems in the body and is characterized by the presence of non-caseating granulomas. The exact cause of this disorder is unknown, but it is more commonly seen in young adults and individuals of African descent.

      The symptoms of sarcoidosis can vary depending on the severity of the condition. Acute symptoms may include erythema nodosum, bilateral hilar lymphadenopathy, swinging fever, and polyarthralgia. On the other hand, insidious symptoms may include dyspnea, non-productive cough, malaise, and weight loss. Additionally, some individuals may develop skin symptoms such as lupus pernio, while others may experience hypercalcemia due to increased conversion of vitamin D to its active form.

      Sarcoidosis is also associated with several syndromes, including Lofgren’s syndrome, Mikulicz syndrome, and Heerfordt’s syndrome. Lofgren’s syndrome is an acute form of the disease that typically presents with bilateral hilar lymphadenopathy, erythema nodosum, fever, and polyarthralgia. Mikulicz syndrome is characterized by enlargement of the parotid and lacrimal glands due to sarcoidosis, tuberculosis, or lymphoma. Finally, Heerfordt’s syndrome, also known as uveoparotid fever, presents with parotid enlargement, fever, and uveitis secondary to sarcoidosis.

      In conclusion, sarcoidosis is a complex disorder that can affect multiple systems in the body. While the exact cause is unknown, early diagnosis and treatment can help manage symptoms and improve outcomes.

    • This question is part of the following fields:

      • Respiratory System
      34.5
      Seconds
  • Question 42 - Sophie, a 4-year-old patient with Down's syndrome, is brought to the general practitioner...

    Incorrect

    • Sophie, a 4-year-old patient with Down's syndrome, is brought to the general practitioner by her father. He is worried as Sophie has been crying more than usual and has started holding her right ear. She is diagnosed with acute bacterial otitis media.

      What is the most probable bacteria responsible for this infection?

      Your Answer: Treponema pallidum

      Correct Answer: Haemophilus influenzae

      Explanation:

      Haemophilus influenzae is a frequent culprit behind bacterial otitis media, a common ear infection.

      The majority of cases of acute bacterial otitis media are caused by Streptococcus pneumoniae, Haemophilus influenzae, or Moraxella.

      Genital gonorrhoeae is caused by N. gonorrhoeae, a sexually transmitted infection that presents with discharge and painful urination.

      Meningococcal sepsis, a life-threatening condition, is caused by N. meningitides.

      Staph. aureus is responsible for superficial skin infections like impetigo.

      Syphilis, which typically manifests as a painless genital sore called a chancre, is caused by T. pallidum.

      Acute otitis media is a common condition in young children, often caused by bacterial infections following viral upper respiratory tract infections. Symptoms include ear pain, fever, and hearing loss, and diagnosis is based on criteria such as the presence of a middle ear effusion and inflammation of the tympanic membrane. Antibiotics may be prescribed in certain cases, and complications can include perforation of the tympanic membrane, hearing loss, and more serious conditions such as meningitis and brain abscess.

    • This question is part of the following fields:

      • Respiratory System
      19
      Seconds
  • Question 43 - A 25-year-old female presents to the emergency department with complaints of shortness of...

    Correct

    • A 25-year-old female presents to the emergency department with complaints of shortness of breath that started 2 hours ago. She has no medical history. The results of her arterial blood gas (ABG) test are as follows:

      Normal range
      pH: 7.49 (7.35 - 7.45)
      pO2: 12.2 (10 - 14)kPa
      pCO2: 3.4 (4.5 - 6.0)kPa
      HCO3: 22 (22 - 26)mmol/l
      BE: +2 (-2 to +2)mmol/l

      Her temperature is 37ºC, and her pulse is 98 beats/minute and regular. Based on this information, what is the most likely diagnosis?

      Your Answer: Anxiety hyperventilation

      Explanation:

      The patient is exhibiting symptoms and ABG results consistent with respiratory alkalosis. However, it is important to conduct a thorough history and physical examination to rule out any underlying pulmonary pathology or infection. Based on the patient’s history, anxiety-induced hyperventilation is the most probable cause of her condition.

      Respiratory Alkalosis: Causes and Examples

      Respiratory alkalosis is a condition that occurs when the blood pH level rises above the normal range due to excessive breathing. This can be caused by various factors, including anxiety, pulmonary embolism, CNS disorders, altitude, and pregnancy. Salicylate poisoning can also lead to respiratory alkalosis, but it may also cause metabolic acidosis in the later stages. In this case, the respiratory centre is stimulated early, leading to respiratory alkalosis, while the direct acid effects of salicylates combined with acute renal failure may cause acidosis later on. It is important to identify the underlying cause of respiratory alkalosis to determine the appropriate treatment. Proper management can help prevent complications and improve the patient’s overall health.

    • This question is part of the following fields:

      • Respiratory System
      25.6
      Seconds
  • Question 44 - A 10-year-old boy comes to your clinic with a complaint of ear pain...

    Correct

    • A 10-year-old boy comes to your clinic with a complaint of ear pain that started last night and kept him awake. He missed school today because of the pain and reports muffled sounds on the affected side. During otoscopy, you observe a bulging tympanic membrane with visible fluid behind it, indicating a middle ear infection. Can you identify which nerves pass through the middle ear?

      Your Answer: Chorda tympani

      Explanation:

      The chorda tympani is the correct answer. It is a branch of the seventh cranial nerve, the facial nerve, and carries parasympathetic and taste fibers. It passes through the middle ear before exiting and joining with the lingual nerve to reach the tongue and salivary glands.

      The vestibulocochlear nerve is the eighth cranial nerve and carries balance and hearing information.

      The maxillary nerve is the second division of the fifth cranial nerve and carries sensation from the upper teeth, nasal cavity, and skin.

      The mandibular nerve is the third division of the fifth cranial nerve and carries sensation from the lower teeth, tongue, mandible, and skin. It also carries motor fibers to certain muscles.

      The glossopharyngeal nerve is the ninth cranial nerve and carries taste and sensation from the posterior one-third of the tongue, as well as sensation from various areas. It also carries motor and parasympathetic fibers.

      The patient in the question has ear pain, likely due to otitis media, as evidenced by a bulging tympanic membrane and fluid level on otoscopy.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      25.9
      Seconds
  • Question 45 - A 50-year-old woman comes to see you at the clinic with progressive muscle...

    Incorrect

    • A 50-year-old woman comes to see you at the clinic with progressive muscle weakness, numbness, and tingling in her left arm. She reports experiencing neck and shoulder pain on the left side as well. She has no significant medical history and is generally healthy. She denies any recent injuries or trauma. Based on your clinical assessment, you suspect that she may have thoracic outlet syndrome.

      What additional physical finding is most likely to confirm your suspicion of thoracic outlet syndrome in this patient?

      Your Answer: Bounding pulse

      Correct Answer: Absent radial pulse

      Explanation:

      Compression of the subclavian artery by a cervical rib can result in an absent radial pulse, which is a common symptom of thoracic outlet syndrome. Adson’s test can be used to diagnose this condition, which can be mistaken for cervical radiculopathy. Flapping tremors are typically observed in patients with encephalopathy caused by liver failure or carbon dioxide retention. An irregular pulse may indicate an arrhythmia like atrial fibrillation or heart block. Aortic stenosis, which is characterized by an ejection systolic murmur, often causes older patients to experience loss of consciousness during physical activity. A bounding pulse, on the other hand, is a sign of strong myocardial contractions that may be caused by heart failure, arrhythmias, pregnancy, or thyroid disease.

      Cervical ribs are a rare anomaly that affects only 0.2-0.4% of the population. They are often associated with neurological symptoms and are caused by an anomalous fibrous band that originates from the seventh cervical vertebrae and may arc towards the sternum. While most cases are congenital and present around the third decade of life, some cases have been reported to occur following trauma. Bilateral cervical ribs are present in up to 70% of cases. Compression of the subclavian artery can lead to absent radial pulse and a positive Adsons test, which involves lateral flexion of the neck towards the symptomatic side and traction of the symptomatic arm. Treatment is usually only necessary when there is evidence of neurovascular compromise, and the traditional operative method for excision is a transaxillary approach.

    • This question is part of the following fields:

      • Respiratory System
      27.9
      Seconds
  • Question 46 - A 29-year-old man comes to your clinic with a complaint of ear pain...

    Correct

    • A 29-year-old man comes to your clinic with a complaint of ear pain that has been bothering him for the past 2 days. He reports no hearing loss or discharge and feels generally healthy. During the physical examination, you observe that he has no fever. When you palpate the tragus of the affected ear, he experiences pain. Upon otoscopy, you notice that the external auditory canal is red. The tympanic membrane is not bulging, and there is no visible fluid level. Which bone can you see pressing against the tympanic membrane?

      Your Answer: Malleus

      Explanation:

      The ossicle that is in contact with the tympanic membrane is called the malleus. The middle ear contains three bones known as ossicles, which are arranged from lateral to medial. The malleus is the most lateral ossicle and its handle and lateral process attach to the tympanic membrane, making it visible during otoscopy. The head of the malleus articulates with the incus. The incus is located between the other two ossicles and articulates with both. The body of the incus articulates with the malleus, while the long limb of the bone articulates with the stapes. The Latin word for ‘hammer’ is used to describe the malleus, while the Latin word for ‘anvil’ is used to describe the incus.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      27.3
      Seconds
  • Question 47 - A 72-year-old male has unfortunately been diagnosed with lung cancer after a brief...

    Correct

    • A 72-year-old male has unfortunately been diagnosed with lung cancer after a brief illness during which he visited his GP with a cough and loss of weight. The GP has received the histology report after a recent bronchoscopy, which revealed a squamous cell carcinoma. What symptoms would you anticipate in this patient based on the diagnosis?

      Your Answer: Clubbing

      Explanation:

      Hypertrophic pulmonary osteoarthropathy (HPOA) is linked to squamous cell carcinoma, while small cell carcinoma of the lung is associated with excessive secretion of ADH and may also cause hypertension, hyperglycemia, and hypokalemia due to excessive ACTH secretion (although this is not typical). Lambert-Eaton syndrome is also linked to small cell carcinoma, while adenocarcinoma of the lung is associated with gynecomastia.

      Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.

    • This question is part of the following fields:

      • Respiratory System
      89.6
      Seconds
  • Question 48 - During a clinical trial examining oxygen consumption during exercise, participants aged 50 and...

    Incorrect

    • During a clinical trial examining oxygen consumption during exercise, participants aged 50 and above engage in high-intensity interval training exercises for 20 minutes while physiological measurements are recorded. What is the primary factor that is likely to restrict oxygen supply to tissues after the training session?

      Your Answer: Metabolic acidosis

      Correct Answer: Low pCO2

      Explanation:

      When the pCO2 is low, the oxygen dissociation curve shifts to the left, which increases the affinity of haemoglobin for oxygen. This can limit the amount of oxygen available to tissues. On the other hand, high levels of pCO2 (hypercarbia) shift the curve to the right, decreasing the affinity of haemoglobin for oxygen and increasing oxygen availability to tissues.

      In acidosis, the concentration of 2,3-diphosphoglycerate (DPG) increases, which binds to deoxyhaemoglobin and shifts the oxygen dissociation curve to the right. This results in increased oxygen release from the blood into tissues.

      Hyperthermia also shifts the oxygen dissociation curve to the right, while the performance-enhancing substance myo-inositol trispyrophosphate (ITPP) has a similar effect.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      30.9
      Seconds
  • Question 49 - A 12-year-old girl is referred to a respiratory specialist due to persistent episodes...

    Incorrect

    • A 12-year-old girl is referred to a respiratory specialist due to persistent episodes of shortness of breath. She also suffers from severe hay fever and eczema. After undergoing a peak expiratory flow test, signs of outflow obstruction of her lungs are detected. The doctor prescribes beclomethasone and salbutamol for her and advises her mother to keep her away from dust, as asthma is often linked to hypersensitivity to dust. Which type of hypersensitivity is associated with asthma?

      Your Answer: Type 4 hypersensitivity

      Correct Answer: Type 1 hypersensitivity

      Explanation:

      Asthma is linked to type 1 hypersensitivity, which is caused by the binding of IgE to Mast cells, resulting in an inflammatory reaction. Other types of hypersensitivity include type 2, which involves the binding of IgG or IgM to cell surface antigens, type 3, which is immune complex-mediated, and type 4, which is T-cell mediated.

      Asthma is a common respiratory disorder that affects both children and adults. It is characterized by chronic inflammation of the airways, resulting in reversible bronchospasm and airway obstruction. While asthma can develop at any age, it typically presents in childhood and may improve or resolve with age. However, it can also persist into adulthood and cause significant morbidity, with around 1,000 deaths per year in the UK.

      Several risk factors can increase the likelihood of developing asthma, including a personal or family history of atopy, antenatal factors such as maternal smoking or viral infections, low birth weight, not being breastfed, exposure to allergens and air pollution, and the hygiene hypothesis. Patients with asthma may also suffer from other atopic conditions such as eczema and hay fever, and some may be sensitive to aspirin. Occupational asthma is also a concern for those exposed to allergens in the workplace.

      Symptoms of asthma include coughing, dyspnea, wheezing, and chest tightness, with coughing often worse at night. Signs may include expiratory wheezing on auscultation and reduced peak expiratory flow rate. Diagnosis is typically made through spirometry, which measures the volume and speed of air during exhalation and inhalation.

      Management of asthma typically involves the use of inhalers to deliver drug therapy directly to the airways. Short-acting beta-agonists such as salbutamol are the first-line treatment for relieving symptoms, while inhaled corticosteroids like beclometasone dipropionate and fluticasone propionate are used for daily maintenance therapy. Long-acting beta-agonists like salmeterol and leukotriene receptor antagonists like montelukast may also be used in combination with other medications. Maintenance and reliever therapy (MART) is a newer approach that combines ICS and a fast-acting LABA in a single inhaler for both daily maintenance and symptom relief. Recent guidelines recommend offering a leukotriene receptor antagonist instead of a LABA for patients on SABA + ICS whose asthma is not well controlled, and considering MART for those with poorly controlled asthma.

    • This question is part of the following fields:

      • Respiratory System
      41.5
      Seconds
  • Question 50 - A 49-year-old woman of African descent visits her primary care physician with concerns...

    Correct

    • A 49-year-old woman of African descent visits her primary care physician with concerns about a lump in her neck that has been present for a week. She reports no significant increase in size and denies any pain or difficulty swallowing. The patient has no notable medical history, except for a visit to the eye doctor last year for a red-eye that required treatment with topical steroid drops. During the examination, the doctor observes some red, tender nodules on the patient's shin, which the patient says come and go and do not cause much discomfort. A chest x-ray reveals bilateral hilar lymphadenopathy with no other significant findings. What is typically linked to this patient's condition?

      Your Answer: Elevated angiotensin-converting enzyme levels

      Explanation:

      Sarcoidosis is likely in this patient based on their symptoms and examination findings, including a neck lump, tender nodules on the shin, and a history of red-eye. Bilateral lymphadenopathy on chest X-ray further supports the diagnosis, as does the presence of elevated angiotensin-converting enzyme levels, which are commonly seen in sarcoidosis. Hypercalcemia, fatigue, and uveitis are also associated with sarcoidosis, while exposure to silica is not supported by this patient’s presentation.

      Investigating Sarcoidosis

      Sarcoidosis is a disease that does not have a single diagnostic test, and therefore, diagnosis is mainly based on clinical observations. Although ACE levels may be used to monitor disease activity, they are not reliable in diagnosing sarcoidosis due to their low sensitivity and specificity. Routine blood tests may show hypercalcemia and a raised ESR.

      A chest x-ray is a common investigation for sarcoidosis and may reveal different stages of the disease. Stage 0 is normal, stage 1 shows bilateral hilar lymphadenopathy (BHL), stage 2 shows BHL and interstitial infiltrates, stage 3 shows diffuse interstitial infiltrates only, and stage 4 shows diffuse fibrosis. Other investigations, such as spirometry, may show a restrictive defect, while a tissue biopsy may reveal non-caseating granulomas. However, the Kveim test, which involves injecting part of the spleen from a patient with known sarcoidosis under the skin, is no longer performed due to concerns about cross-infection.

      In addition, a gallium-67 scan is not routinely used to investigate sarcoidosis. CT scans may also be used to investigate sarcoidosis, and they may show diffuse areas of nodularity predominantly in a peribronchial distribution with patchy areas of consolidation, particularly in the upper lobes. Ground glass opacities may also be present, but there are no gross reticular changes to suggest fibrosis.

      Overall, investigating sarcoidosis involves a combination of clinical observations, blood tests, chest x-rays, and other investigations such as spirometry and tissue biopsy. CT scans may also be used to provide more detailed information about the disease.

    • This question is part of the following fields:

      • Respiratory System
      46.6
      Seconds
  • Question 51 - A 25-year-old man is shot in the chest during a robbery. The right...

    Incorrect

    • A 25-year-old man is shot in the chest during a robbery. The right lung is lacerated and is bleeding. An emergency thoracotomy is performed. The surgeons place a clamp over the hilum of the right lung. Which one of the following structures lies most anteriorly at this level?

      Your Answer: Descending aorta

      Correct Answer: Phrenic nerve

      Explanation:

      At this location, the phrenic nerve is situated in front. The vagus nerve runs in front and then curves backwards just above the base of the left bronchus, releasing the recurrent laryngeal nerve as it curves.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      563.3
      Seconds
  • Question 52 - Which one of the following does not cause a normal anion gap acidosis?...

    Incorrect

    • Which one of the following does not cause a normal anion gap acidosis?

      Your Answer: Acetazolamide

      Correct Answer: Uraemia

      Explanation:

      Normal Gap Acidosis can be remembered using the acronym HARDUP, which stands for Hyperalimentation/hyperventilation, Acetazolamide, and R (which is currently blank).

      Disorders of Acid-Base Balance

      The acid-base nomogram is a useful tool for categorizing the various disorders of acid-base balance. Metabolic acidosis is the most common surgical acid-base disorder, characterized by a reduction in plasma bicarbonate levels. This can be caused by a gain of strong acid or loss of base, and is classified according to the anion gap. A normal anion gap indicates hyperchloraemic metabolic acidosis, which can be caused by gastrointestinal bicarbonate loss, renal tubular acidosis, drugs, or Addison’s disease. A raised anion gap indicates lactate, ketones, urate, or acid poisoning. Metabolic alkalosis, on the other hand, is usually caused by a rise in plasma bicarbonate levels due to a loss of hydrogen ions or a gain of bicarbonate. It is mainly caused by problems of the kidney or gastrointestinal tract. Respiratory acidosis is characterized by a rise in carbon dioxide levels due to alveolar hypoventilation, while respiratory alkalosis is caused by hyperventilation resulting in excess loss of carbon dioxide. These disorders have various causes, such as COPD, sedative drugs, anxiety, hypoxia, and pregnancy.

    • This question is part of the following fields:

      • Respiratory System
      7.1
      Seconds
  • Question 53 - A 75-year-old man is having a left pneumonectomy for bronchial carcinoma. When the...

    Correct

    • A 75-year-old man is having a left pneumonectomy for bronchial carcinoma. When the surgeons reach the root of the lung, which structure will be the most anterior in the anatomical plane?

      Your Answer: Phrenic nerve

      Explanation:

      The lung root contains two nerves, with the phrenic nerve positioned in the most anterior location and the vagus nerve situated in the most posterior location.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      9.9
      Seconds
  • Question 54 - A 25-year-old man is receiving an endotracheal intubation. At which vertebral level does...

    Incorrect

    • A 25-year-old man is receiving an endotracheal intubation. At which vertebral level does the trachea originate?

      Your Answer: C4

      Correct Answer: C6

      Explanation:

      The trachea starts at the sixth cervical vertebrae and ends at the fifth thoracic vertebrae (or sixth in individuals with a tall stature during deep inhalation).

      Anatomy of the Trachea

      The trachea, also known as the windpipe, is a tube-like structure that extends from the C6 vertebrae to the upper border of the T5 vertebrae where it bifurcates into the left and right bronchi. It is supplied by the inferior thyroid arteries and the thyroid venous plexus, and innervated by branches of the vagus, sympathetic, and recurrent nerves.

      In the neck, the trachea is anterior to the isthmus of the thyroid gland, inferior thyroid veins, and anastomosing branches between the anterior jugular veins. It is also surrounded by the sternothyroid, sternohyoid, and cervical fascia. Posteriorly, it is related to the esophagus, while laterally, it is in close proximity to the common carotid arteries, right and left lobes of the thyroid gland, inferior thyroid arteries, and recurrent laryngeal nerves.

      In the thorax, the trachea is anterior to the manubrium, the remains of the thymus, the aortic arch, left common carotid arteries, and the deep cardiac plexus. Laterally, it is related to the pleura and right vagus on the right side, and the left recurrent nerve, aortic arch, and left common carotid and subclavian arteries on the left side.

      Overall, understanding the anatomy of the trachea is important for various medical procedures and interventions, such as intubation and tracheostomy.

    • This question is part of the following fields:

      • Respiratory System
      17.7
      Seconds
  • Question 55 - A patient is being anaesthetised for a minor bowel surgery. Sarah, a second...

    Correct

    • A patient is being anaesthetised for a minor bowel surgery. Sarah, a second year medical student is present and is asked to assist the anaesthetist during intubation. The anaesthetist inserts a laryngoscope in the patient's mouth and asks Sarah to identify the larynx.

      Which one of the following anatomical landmarks corresponds to the position of the structure being identified by the student?

      Your Answer: C3-C6

      Explanation:

      The larynx is located in the front of the neck, specifically at the level of the vertebrae C3-C6. This area also includes important anatomical landmarks such as the Atlas and Axis vertebrae (C1-C2), the thyroid cartilage (C5), and the pulmonary hilum (T5-T7).

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      21
      Seconds
  • Question 56 - A 75-year-old man visits his doctor complaining of a productive cough that has...

    Correct

    • A 75-year-old man visits his doctor complaining of a productive cough that has lasted for 5 days. He has also been feeling generally unwell and has had a fever for the past 2 days. The doctor suspects a bacterial respiratory tract infection and orders a blood panel, sputum microscopy, and culture. What is the most likely abnormality to be found in the blood results?

      Your Answer: Neutrophils

      Explanation:

      Neutrophils are typically elevated during an acute bacterial infection, while eosinophils are commonly elevated in response to parasitic infections and allergies. Lymphocytes tend to increase during acute viral infections and chronic inflammation. IgE levels are raised in cases of allergic asthma, malaria, and type 1 hypersensitivity reactions. Anti-CCP antibody is a diagnostic tool for Rheumatoid arthritis.

      Pneumonia is a common condition that affects the alveoli of the lungs, usually caused by a bacterial infection. Other causes include viral and fungal infections. Streptococcus pneumoniae is the most common organism responsible for pneumonia, accounting for 80% of cases. Haemophilus influenzae is common in patients with COPD, while Staphylococcus aureus often occurs in patients following influenzae infection. Mycoplasma pneumoniae and Legionella pneumophilia are atypical pneumonias that present with dry cough and other atypical symptoms. Pneumocystis jiroveci is typically seen in patients with HIV. Idiopathic interstitial pneumonia is a group of non-infective causes of pneumonia.

      Patients who develop pneumonia outside of the hospital have community-acquired pneumonia (CAP), while those who develop it within hospitals are said to have hospital-acquired pneumonia. Symptoms of pneumonia include cough, sputum, dyspnoea, chest pain, and fever. Signs of systemic inflammatory response, tachycardia, reduced oxygen saturations, and reduced breath sounds may also be present. Chest x-ray is used to diagnose pneumonia, with consolidation being the classical finding. Blood tests, such as full blood count, urea and electrolytes, and CRP, are also used to check for infection.

      Patients with pneumonia require antibiotics to treat the underlying infection and supportive care, such as oxygen therapy and intravenous fluids. Risk stratification is done using a scoring system called CURB-65, which stands for confusion, respiration rate, blood pressure, age, and is used to determine the management of patients with community-acquired pneumonia. Home-based care is recommended for patients with a CRB65 score of 0, while hospital assessment is recommended for all other patients, particularly those with a CRB65 score of 2 or more. The CURB-65 score also correlates with an increased risk of mortality at 30 days.

    • This question is part of the following fields:

      • Respiratory System
      18.3
      Seconds
  • Question 57 - An 80-year-old woman visits her doctor complaining of a persistent cough. She has...

    Incorrect

    • An 80-year-old woman visits her doctor complaining of a persistent cough. She has been smoking 20 cigarettes a day for the past 30 years and is worried that this might be the reason for her symptom. The doctor diagnoses her with chronic obstructive pulmonary disease (COPD) which is likely caused by chronic bronchitis. Can you provide the definition of chronic bronchitis?

      Your Answer: Enlargement of air spaces distal to the terminal bronchioles

      Correct Answer: Chronic productive cough for at least 3 months in at least 2 years

      Explanation:

      Chronic bronchitis is characterized by a persistent cough with sputum production for a minimum of 3 months in two consecutive years, after excluding other causes of chronic cough. Emphysema, on the other hand, is defined by the enlargement of air spaces beyond the terminal bronchioles. None of the remaining options are considered as definitions of COPD.

      COPD, or chronic obstructive pulmonary disease, can be caused by a variety of factors. The most common cause is smoking, which can lead to inflammation and damage in the lungs over time. Another potential cause is alpha-1 antitrypsin deficiency, a genetic condition that can result in lung damage. Additionally, exposure to certain substances such as cadmium (used in smelting), coal, cotton, cement, and grain can also contribute to the development of COPD. It is important to identify and address these underlying causes in order to effectively manage and treat COPD.

    • This question is part of the following fields:

      • Respiratory System
      70.9
      Seconds
  • Question 58 - A 38-year-old male presents to the hospital with recurrent nose bleeds, joint pain,...

    Incorrect

    • A 38-year-old male presents to the hospital with recurrent nose bleeds, joint pain, chronic sinusitis, and haemoptysis for the past 3 days. During the examination, the doctor observes a saddle-shaped nose and a necrotic, purpuric, and blistering plaque on his wrist. The patient reports that he had a small blister a few weeks ago, which has now progressed to this. The blood test results suggest a possible diagnosis of granulomatosis with polyangiitis, and the patient is referred for a renal biopsy. What biopsy findings would confirm the suspected diagnosis?

      Your Answer: Podocyte foot effacement

      Correct Answer: Epithelial crescents in Bowman's capsule

      Explanation:

      Glomerulonephritis is a condition that affects the kidneys and can present with various pathological changes. In rapidly progressive glomerulonephritis, patients may present with respiratory tract symptoms and cutaneous manifestations of vasculitis. Renal biopsy will show epithelial crescents in Bowman’s capsule, indicating severe glomerular injury. Mesangioproliferative glomerulonephritis is characterized by a diffuse increase in mesangial cells and is not associated with respiratory tract symptoms or cutaneous manifestations of vasculitis. Membranoproliferative glomerulonephritis involves deposits in the intraglomerular mesangium and is associated with activation of the complement pathway and glomerular damage. It is unlikely to be the diagnosis in the scenario as it is not associated with vasculitis symptoms. A normal nephron architecture would not explain the patient’s symptoms and is an incorrect answer.

      Granulomatosis with Polyangiitis: An Autoimmune Condition

      Granulomatosis with polyangiitis, previously known as Wegener’s granulomatosis, is an autoimmune condition that affects the upper and lower respiratory tract as well as the kidneys. It is characterized by a necrotizing granulomatous vasculitis. The condition presents with various symptoms such as epistaxis, sinusitis, nasal crusting, dyspnoea, haemoptysis, and rapidly progressive glomerulonephritis. Other symptoms include a saddle-shape nose deformity, vasculitic rash, eye involvement, and cranial nerve lesions.

      To diagnose granulomatosis with polyangiitis, doctors perform various investigations such as cANCA and pANCA tests, chest x-rays, and renal biopsies. The cANCA test is positive in more than 90% of cases, while the pANCA test is positive in 25% of cases. Chest x-rays show a wide variety of presentations, including cavitating lesions. Renal biopsies reveal epithelial crescents in Bowman’s capsule.

      The management of granulomatosis with polyangiitis involves the use of steroids, cyclophosphamide, and plasma exchange. Cyclophosphamide has a 90% response rate. The median survival rate for patients with this condition is 8-9 years.

    • This question is part of the following fields:

      • Respiratory System
      37.5
      Seconds
  • Question 59 - A 70-year-old man visits a respiratory clinic complaining of shortness of breath even...

    Correct

    • A 70-year-old man visits a respiratory clinic complaining of shortness of breath even with minimal activity. Upon conducting a thorough assessment, you suspect that he may have idiopathic pulmonary fibrosis. To aid in your diagnosis, you decide to review his previous medical records. You come across the following spirometry results:

      Measurement volume (ml)
      Vital Capacity (VC) 4400
      Inspiratory Reserve Volume (IRV) 3000
      Functional Residual Capacity (FRC) 2800
      Residual Volume (RV) 1200

      What is the total lung capacity (TLC) of this patient?

      Your Answer: 5600ml

      Explanation:

      The correct answer is 5600ml, which represents the total lung capacity. This value is obtained by adding the vital capacity, which is the maximum amount of air that can be breathed out after a deep inhalation, to the residual volume, which is the amount of air that remains in the lungs after a maximal exhalation. The vital capacity is composed of three volumes: the inspiratory reserve volume, the tidal volume, and the expiratory reserve volume. Other formulas are available to calculate different lung volumes, but they are not as commonly used.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      116.7
      Seconds
  • Question 60 - A 3-year-old male toddler of Asian descent is referred to a paediatrician by...

    Correct

    • A 3-year-old male toddler of Asian descent is referred to a paediatrician by his GP due to recurrent respiratory infections and failure to thrive. The doctor orders a sweat test, which comes back positive. What are the potential complications associated with the likely diagnosis?

      Your Answer: Steatorrhea

      Explanation:

      Cystic fibrosis can lead to steatorrhea, which is caused by the malabsorption of fat in the intestines. This is a common symptom of the disease and requires specialist management. While patients with CF may have a slightly increased risk of sensorineural hearing loss, this is mainly due to the side effects of certain drugs used to treat the disease. Melaena, which is the passage of dark faeces due to partially digested blood from the upper gastrointestinal system, is a rare symptom in patients with CF. There is no association between CF and intellectual disability. Although some studies suggest an increased incidence of pulmonary emboli in patients with CF, the associated risk is small and mainly due to the use of central venous catheters and liver dysfunction or vitamin K deficiency.

      Understanding Cystic Fibrosis: Symptoms and Other Features

      Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.

      Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.

    • This question is part of the following fields:

      • Respiratory System
      22.4
      Seconds
  • Question 61 - Which of the structures listed below are not located within the mediastinum? ...

    Incorrect

    • Which of the structures listed below are not located within the mediastinum?

      Your Answer: Thymus

      Correct Answer: Vertebral bodies

      Explanation:

      Both the lungs and vertebral bodies are located outside of the mediastinum.

      The mediastinum is the area located between the two pulmonary cavities and is covered by the mediastinal pleura. It extends from the thoracic inlet at the top to the diaphragm at the bottom. The mediastinum is divided into four regions: the superior mediastinum, middle mediastinum, posterior mediastinum, and anterior mediastinum.

      The superior mediastinum is the area between the manubriosternal angle and T4/5. It contains important structures such as the superior vena cava, brachiocephalic veins, arch of aorta, thoracic duct, trachea, oesophagus, thymus, vagus nerve, left recurrent laryngeal nerve, and phrenic nerve. The anterior mediastinum contains thymic remnants, lymph nodes, and fat. The middle mediastinum contains the pericardium, heart, aortic root, arch of azygos vein, and main bronchi. The posterior mediastinum contains the oesophagus, thoracic aorta, azygos vein, thoracic duct, vagus nerve, sympathetic nerve trunks, and splanchnic nerves.

      In summary, the mediastinum is a crucial area in the thorax that contains many important structures and is divided into four regions. Each region contains different structures that are essential for the proper functioning of the body.

    • This question is part of the following fields:

      • Respiratory System
      13.1
      Seconds
  • Question 62 - Which one of the following statements relating to the root of the spine...

    Incorrect

    • Which one of the following statements relating to the root of the spine is false?

      Your Answer: The roots and trunks of the Brachial plexus lie between scalenus anterior and scalenus medius muscles

      Correct Answer: The subclavian artery arches over the first rib anterior to scalenus anterior

      Explanation:

      The suprapleural membrane, also known as Sibson’s fascia, is located above the pleural cavity. The scalenus anterior muscle is positioned in front of the subclavian vein, while the subclavian artery is situated behind it.

      Thoracic Outlet: Where the Subclavian Artery and Vein and Brachial Plexus Exit the Thorax

      The thoracic outlet is the area where the subclavian artery and vein and the brachial plexus exit the thorax and enter the arm. This passage occurs over the first rib and under the clavicle. The subclavian vein is the most anterior structure and is located immediately in front of scalenus anterior and its attachment to the first rib. Scalenus anterior has two parts, and the subclavian artery leaves the thorax by passing over the first rib and between these two portions of the muscle. At the level of the first rib, the lower cervical nerve roots combine to form the three trunks of the brachial plexus. The lowest trunk is formed by the union of C8 and T1, and this trunk lies directly posterior to the artery and is in contact with the superior surface of the first rib.

      Thoracic outlet obstruction can cause neurovascular compromise.

    • This question is part of the following fields:

      • Respiratory System
      1
      Seconds
  • Question 63 - Which one of the following muscles is supplied by the external laryngeal nerve?...

    Incorrect

    • Which one of the following muscles is supplied by the external laryngeal nerve?

      Your Answer: Oblique arytenoid

      Correct Answer: Cricothyroid

      Explanation:

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      8.9
      Seconds
  • Question 64 - A 24-year-old man is being evaluated at the respiratory clinic for possible bronchiectasis....

    Incorrect

    • A 24-year-old man is being evaluated at the respiratory clinic for possible bronchiectasis. He has a history of recurrent chest infections since childhood and has difficulty maintaining a healthy weight. Despite using inhalers, he has not experienced any significant improvement. Genetic testing has been ordered to investigate the possibility of cystic fibrosis.

      What is the typical role of the cystic fibrosis transmembrane conductance regulator?

      Your Answer: Signalling molecule

      Correct Answer: Chloride channel

      Explanation:

      The chloride channel, specifically a cyclic-AMP regulated chloride channel, is the correct answer. Cystic fibrosis can be caused by various mutations, but they all affect the same gene, the cystic fibrosis transmembrane conductance regulator gene. This gene encodes a chloride channel that, when dysfunctional, results in increased viscosity of secretions and the development of cystic fibrosis.

      Understanding Cystic Fibrosis

      Cystic fibrosis is a genetic disorder that causes thickened secretions in the lungs and pancreas. It is an autosomal recessive condition that occurs due to a defect in the cystic fibrosis transmembrane conductance regulator gene (CFTR), which regulates a chloride channel. In the UK, 80% of CF cases are caused by delta F508 on chromosome 7, and the carrier rate is approximately 1 in 25.

      CF patients are at risk of colonization by certain organisms, including Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia (previously known as Pseudomonas cepacia), and Aspergillus. These organisms can cause infections and exacerbate symptoms in CF patients. It is important for healthcare providers to monitor and manage these infections to prevent further complications.

      Overall, understanding cystic fibrosis and its associated risks can help healthcare providers provide better care for patients with this condition.

    • This question is part of the following fields:

      • Respiratory System
      66.9
      Seconds
  • Question 65 - A 60-year-old diabetic patient presents to the clinic with a chief complaint of...

    Incorrect

    • A 60-year-old diabetic patient presents to the clinic with a chief complaint of hearing loss. After conducting a Webber’s and Rinne’s test, the following results were obtained:

      - Webber’s test: lateralizes to the left ear
      - Rinne’s test (left ear): bone conduction > air conduction
      - Rinne’s test (right ear): air conduction > bone conduction

      Based on these findings, what is the probable cause of the patient's hearing loss?

      Your Answer: Diabetic sensory neuropathy

      Correct Answer: Otitis media with effusion

      Explanation:

      The Weber test lateralises to the side with bone conduction > air conduction, indicating conductive hearing loss on that side. The options given include acoustic neuroma (sensorineural hearing loss), otitis media with effusion (conductive hearing loss), temporal lobe epilepsy (no conductive hearing loss), and Meniere’s disease (vertigo, tinnitus, and fluctuating hearing loss). The correct answer is otitis media with effusion.

      Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness

      Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.

      Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.

      The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.

      Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.

    • This question is part of the following fields:

      • Respiratory System
      90
      Seconds
  • Question 66 - A 60-year-old man visits his GP with worries about his hearing in recent...

    Incorrect

    • A 60-year-old man visits his GP with worries about his hearing in recent months. He has difficulty understanding conversations in noisy environments and his spouse has commented on his need for the television to be turned up to maximum volume.

      During the examination, the GP conducts some basic tests and finds:

      Rinne's Test - Air conduction > bone conduction in both ears
      Weber's Test - Lateralises to the left ear

      What can be inferred from these test results?

      Your Answer: Left conductive hearing loss

      Correct Answer: Left sensorineural hearing loss

      Explanation:

      The patient has left sensorineural hearing loss, as indicated by the normal Rinne result (air conduction > bone conduction bilaterally) and abnormal Weber result (lateralising to the unaffected ear). In contrast, if the patient had conductive hearing loss, Rinne’s test would show bone conduction > air conduction, and Weber’s test would localise to the worse ear in bilateral conductive hearing loss or the affected ear in unilateral conductive hearing loss. For right sensorineural hearing loss, Rinne’s test would be normal, but Weber’s test would localise to the left ear.

      Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness

      Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.

      Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.

      The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.

      Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.

    • This question is part of the following fields:

      • Respiratory System
      30.6
      Seconds
  • Question 67 - A 6-year-old girl is playing with some small ball bearings. Regrettably, she inhales...

    Correct

    • A 6-year-old girl is playing with some small ball bearings. Regrettably, she inhales one. In which of the following lung regions is the ball expected to settle?

      Your Answer: Right lower lobe

      Explanation:

      Due to the angle of the right main bronchus from the trachea, small objects are more likely to get stuck in the most dependent part of the right lung. This makes the right lung the preferred location for most objects to enter.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      18.4
      Seconds
  • Question 68 - A 25-year-old man with a history of asthma since childhood visited his doctor...

    Incorrect

    • A 25-year-old man with a history of asthma since childhood visited his doctor for his routine check-up. He is planning to go on a hiking trip with his friends in a month and wants to ensure that it is safe for him. Can you describe the scenarios that accurately depict the hemoglobin saturation of blood and the ability of body tissues to extract oxygen from the blood in response to different situations?

      Your Answer: If the hiking involves areas of relatively high altitude the hemoglobin saturation of blood after flowing through body tissues will be higher

      Correct Answer: If the man is not able to breathe properly and, his blood carbon dioxide level increases, this will cause his body tissues to extract more oxygen from his blood

      Explanation:

      Hypercapnia causes a shift in the oxygen dissociation curve to the right. This means that for the same partial pressure of oxygen, the hemoglobin saturation will be less. Other factors that can cause a right shift in the curve include high altitudes, anaerobic metabolism resulting in the production of lactic acid, physical activity, and an increase in temperature. These shifts allow the body tissues to extract more oxygen from the blood, resulting in a lower hemoglobin saturation of the blood leaving the body tissues. Carbon dioxide is also known to produce a right shift in the curve, further contributing to this effect.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      52
      Seconds
  • Question 69 - A 29-year-old man visits his primary care physician with complaints of a malodorous...

    Incorrect

    • A 29-year-old man visits his primary care physician with complaints of a malodorous discharge from his right ear for the past 3 weeks. The patient also reports experiencing ear pain for the past 2 weeks and occasional mild dizziness. Upon examination, the skin around the ear and pinna appear normal, but the ear canal is filled with debris. After removing the debris, a small perforation and waxy debris are observed on the tympanic membrane.

      The Rinne test indicates that bone conduction is better than air conduction on the right, and the Weber test shows sound lateralization to the right. The patient has no significant medical history and has never presented with an ear problem before.

      What is the most likely condition based on this patient's clinical presentation?

      Your Answer: Otitis media

      Correct Answer: Cholesteatoma

      Explanation:

      Cholesteatoma is a growth of non-cancerous squamous epithelium that can be observed as an ‘attic crust’ during otoscopy. This patient is displaying symptoms consistent with cholesteatoma, including ear discharge, earache, conductive hearing loss, and dizziness, which suggests that the inner ear has also been affected. It is important to distinguish cholesteatoma from otitis externa, as failure to diagnose cholesteatoma can lead to serious complications. Cholesteatoma can erode the ossicles bones, damage the inner ear and vestibulocochlear nerve, and even result in brain infections if it erodes through the skull bone.

      Otitis externa is an inflammation of the outer ear canal that causes ear pain, which worsens with movement of the outer ear. It is often caused by the use of earplugs or swimming in unclean water. Otitis media is an inflammation of the middle ear that can lead to fluid accumulation and perforation of the tympanic membrane. It is common in children and often follows a viral upper respiratory tract infection. Myringitis is a condition associated with otitis media that causes small vesicles or cysts to form on the surface of the eardrum, resulting in severe pain and hearing impairment. It is caused by viral or bacterial infections and is treated with pain relief and antibiotics.

      Understanding Cholesteatoma

      Cholesteatoma is a benign growth of squamous epithelium that can cause damage to the skull base. It is most commonly found in individuals between the ages of 10 and 20 years old. Those born with a cleft palate are at a higher risk of developing cholesteatoma, with a 100-fold increase in risk.

      The main symptoms of cholesteatoma include a persistent discharge with a foul odor and hearing loss. Other symptoms may occur depending on the extent of the growth, such as vertigo, facial nerve palsy, and cerebellopontine angle syndrome.

      During otoscopy, a characteristic attic crust may be seen in the uppermost part of the eardrum.

      Management of cholesteatoma involves referral to an ear, nose, and throat specialist for surgical removal. Early detection and treatment are important to prevent further damage to the skull base and surrounding structures.

      In summary, cholesteatoma is a non-cancerous growth that can cause significant damage if left untreated. It is important to be aware of the symptoms and seek medical attention promptly if they occur.

    • This question is part of the following fields:

      • Respiratory System
      43.2
      Seconds
  • Question 70 - A 35-year-old female presents with recurrent episodes of severe vertigo that have been...

    Correct

    • A 35-year-old female presents with recurrent episodes of severe vertigo that have been disabling. She experiences these episodes multiple times a day, with each one lasting for about 10-20 minutes. Along with the vertigo, she also experiences ringing in both ears, nausea, and vomiting. She has noticed a change in her hearing in both ears, with difficulty hearing at times and normal hearing at other times. Additionally, she reports increased pressure in her ears. During the examination, you notice a painless rash behind her ear that has been present for many years.

      What is the most likely diagnosis?

      Your Answer: Meniere’s disease

      Explanation:

      Suspect Meniere’s disease in a patient presenting with vertigo, tinnitus, and fluctuating sensorineural hearing loss. Acoustic neuroma would present with additional symptoms such as facial numbness and loss of corneal reflex. Herpes Zoster Oticus (Ramsey Hunt syndrome) would present with facial palsy and a painless rash. Vestibular neuronitis would have longer episodes of vertigo, nausea, and vomiting, but no hearing loss. Benign paroxysmal positional vertigo would have brief episodes of vertigo after sudden head movements.

      Meniere’s disease is a condition that affects the inner ear and its cause is unknown. It is more commonly seen in middle-aged adults but can occur at any age and affects both men and women equally. The condition is characterized by the excessive pressure and progressive dilation of the endolymphatic system. The main symptoms of Meniere’s disease are recurrent episodes of vertigo, tinnitus, and sensorineural hearing loss. Vertigo is usually the most prominent symptom, but patients may also experience a sensation of aural fullness or pressure, nystagmus, and a positive Romberg test. These episodes can last from minutes to hours and are typically unilateral, but bilateral symptoms may develop over time.

      The natural history of Meniere’s disease is that symptoms usually resolve in the majority of patients after 5-10 years. However, most patients will be left with some degree of hearing loss, and psychological distress is common. ENT assessment is required to confirm the diagnosis, and patients should inform the DVLA as the current advice is to cease driving until satisfactory control of symptoms is achieved. Acute attacks can be managed with buccal or intramuscular prochlorperazine, and admission to the hospital may be required. Prevention strategies include the use of betahistine and vestibular rehabilitation exercises, which may be beneficial.

    • This question is part of the following fields:

      • Respiratory System
      170.3
      Seconds
  • Question 71 - Which of the following muscles is not innervated by the ansa cervicalis? ...

    Correct

    • Which of the following muscles is not innervated by the ansa cervicalis?

      Your Answer: Mylohyoid

      Explanation:

      The muscles of the ansa cervicalis are: GenioHyoid, ThyroidHyoid, Superior Omohyoid, SternoThyroid, SternoHyoid, and Inferior Omohyoid. The mylohyoid muscle is innervated by the mylohyoid branch of the inferior alveolar nerve. A mnemonic to remember these muscles is GHost THought SOmeone Stupid Shot Irene.

      The ansa cervicalis is a nerve that provides innervation to the sternohyoid, sternothyroid, and omohyoid muscles. It is composed of two roots: the superior root, which branches off from C1 and is located anterolateral to the carotid sheath, and the inferior root, which is derived from the C2 and C3 roots and passes posterolateral to the internal jugular vein. The inferior root enters the inferior aspect of the strap muscles, which are located in the neck, and should be divided in their upper half when exposing a large goitre. The ansa cervicalis is situated in front of the carotid sheath and is an important nerve for the proper functioning of the neck muscles.

    • This question is part of the following fields:

      • Respiratory System
      5.8
      Seconds
  • Question 72 - A senior woman with a history of chronic obstructive pulmonary disease (COPD) arrives...

    Incorrect

    • A senior woman with a history of chronic obstructive pulmonary disease (COPD) arrives at the hospital complaining of worsening shortness of breath and a productive cough. As part of the initial evaluation, a chest X-ray is requested.

      What radiographic feature would you anticipate observing on her chest X-ray?

      Your Answer: Empyema

      Correct Answer: Flattened diaphragm

      Explanation:

      The diaphragm of patients with COPD often appears flattened on a chest X-ray due to the chronic expiratory airflow obstruction causing dynamic hyperinflation of the lungs. Pleural effusions are commonly associated with infection, malignancy, or heart failure, while empyema is a result of pus accumulation in the pleural space caused by an infection.

      Understanding COPD: Symptoms and Diagnosis

      Chronic obstructive pulmonary disease (COPD) is a common medical condition that includes chronic bronchitis and emphysema. Smoking is the leading cause of COPD, and patients with mild disease may only need occasional use of a bronchodilator, while severe cases may result in frequent hospital admissions due to exacerbations. Symptoms of COPD include a productive cough, dyspnea, wheezing, and in severe cases, right-sided heart failure leading to peripheral edema.

      To diagnose COPD, doctors may recommend post-bronchodilator spirometry to demonstrate airflow obstruction, a chest x-ray to check for hyperinflation, bullae, and flat hemidiaphragm, and to exclude lung cancer. A full blood count may also be necessary to exclude secondary polycythemia, and body mass index (BMI) calculation is important. The severity of COPD is categorized using the FEV1, with a ratio of less than 70% indicating airflow obstruction. The grading system has changed following the 2010 NICE guidelines, with Stage 1 – mild now including patients with an FEV1 greater than 80% predicted but with a post-bronchodilator FEV1/FVC ratio of less than 0.7. Measuring peak expiratory flow is of limited value in COPD, as it may underestimate the degree of airflow obstruction.

      In summary, COPD is a common condition caused by smoking that can result in a range of symptoms and severity. Diagnosis involves various tests to check for airflow obstruction, exclude lung cancer, and determine the severity of the disease.

    • This question is part of the following fields:

      • Respiratory System
      8435.2
      Seconds
  • Question 73 - You are on call for the pediatric ward at night and are urgently...

    Correct

    • You are on call for the pediatric ward at night and are urgently called to a child who is choking on a piece of hot dog visible in their oropharynx. The child is in extremis with saturations of 87% and there is no effective cough.

      What is the most appropriate immediate management for this pediatric patient?

      Your Answer: Back blows

      Explanation:

      Resuscitation Council (UK) Recommendations for Choking Emergencies

      When faced with a choking emergency, the Resuscitation Council (UK) recommends a specific course of action. If the patient is able to cough effectively, encourage them to do so. If not, but they are conscious, try five back blows followed by five abdominal thrusts (Heimlich manoeuvre) and repeat if necessary. However, if the patient becomes unconscious, begin CPR immediately. It is important to note that a finger sweep is no longer recommended as it can push the obstruction further into the airway. Additionally, high flow oxygen is necessary for breathing, but nasopharyngeal airways will not help in this situation. Removal with forceps is also not recommended as it can be hazardous. If the Heimlich manoeuvre fails, a cricothyroidotomy should be considered. While this procedure is recommended in the US and UK, it is not encouraged in some countries like Australia due to the risk of internal injury from over-vigorous use.

    • This question is part of the following fields:

      • Respiratory System
      28.3
      Seconds
  • Question 74 - A 57-year-old man comes to his GP complaining of worsening shortness of breath...

    Incorrect

    • A 57-year-old man comes to his GP complaining of worsening shortness of breath during physical activity over the past year. He has never smoked and reports no history of occupational exposure to asbestos, dust, or fumes. His BMI is calculated to be 40 kg/m². Upon examination, there is decreased chest expansion bilaterally, but the lungs are clear upon auscultation. The GP orders spirometry, which reveals a decreased expiratory reserve volume.

      Can you provide the definition of this particular lung volume?

      Your Answer: Maximum volume of air that can be inspired at the end of a normal tidal inspiration

      Correct Answer: Maximum volume of air that can be expired at the end of a normal tidal expiration

      Explanation:

      The expiratory reserve volume refers to the maximum amount of air that can be exhaled after a normal breath out. It is important to note that this volume can be reduced in conditions that limit lung expansion, such as obesity and ascites. Obesity, in particular, can cause a restrictive pattern on spirometry, where the FEV1/FVC ratio is ≥0.8. Other restrictive lung conditions include idiopathic pulmonary fibrosis, pleural effusion, ascites, and neuromuscular disorders that limit chest expansion. On the other hand, obstructive disorders like asthma and COPD lead to a FEV1/FVC ratio of <0.7, limiting the amount of air that can be exhaled in one second. It is essential to understand the different lung volumes and capacities, including inspiratory reserve volume, tidal volume, expiratory reserve volume, residual volume, inspiratory capacity, vital capacity, functional residual capacity, and total lung capacity. Understanding Lung Volumes in Respiratory Physiology In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured. Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml. Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration. Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV. Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume. Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      53.3
      Seconds
  • Question 75 - A 35-year-old woman presents to the medical assessment unit with sudden onset shortness...

    Correct

    • A 35-year-old woman presents to the medical assessment unit with sudden onset shortness of breath. She reports no cough or fever and has no other associated symptoms. She recently returned from a hiking trip in France and takes the oral contraceptive pill but no other regular medications. She smokes 10 cigarettes a day but drinks no alcohol. On examination, she is tachypnoeic and tachycardic with an elevated JVP. Her calves are soft and non-tender with no pitting oedema. Initial blood tests show a positive D-dimer and elevated CRP. What is the appropriate treatment for this patient?

      Your Answer: Low molecular weight heparin

      Explanation:

      Treatment for Suspected Pulmonary Embolism

      When a patient presents with risk factors for pulmonary embolism (PE) such as recent travel and oral contraceptive pill use, along with symptoms like tachypnea, tachycardia, and hypoxia, it is important to consider the possibility of a significant PE. In such cases, treatment with low molecular weight heparin should be given promptly to prevent further complications. A low-grade fever is also common in venothromboembolic disease. Elevated JVP signifies significant right heart strain due to a significant PE, but maintained blood pressure is a positive sign.

      The most common ECG finding in PE is an isolated sinus tachycardia, while the CXR may be clear, but prominent pulmonary arteries reflect pulmonary hypertension due to clot load in the pulmonary tree. A D-dimer test is recommended if the Wells score for PE is less than 4.

      According to NICE guidelines on venous thromboembolic diseases, low molecular weight heparin is the appropriate initial treatment for suspected PE. It is important not to delay treatment to await CTPA unless it can be performed immediately. There is no evidence of pneumonia to warrant IV antibiotics. Unfractionated heparin may be considered for patients with an eGFR of less than 30, high risk of bleeding, or those undergoing thrombolysis, but this is not the case with this patient. Thrombolysis is not indicated unless there is haemodynamic instability, even in suspected large PEs.

      In summary, prompt treatment with low molecular weight heparin is crucial in suspected cases of PE, and other treatment options should be considered based on individual patient factors.

    • This question is part of the following fields:

      • Respiratory System
      60.2
      Seconds
  • Question 76 - A 68-year-old woman has been diagnosed with laryngeal cancer and has quit smoking....

    Correct

    • A 68-year-old woman has been diagnosed with laryngeal cancer and has quit smoking. Surgery is planned to remove the cancer through a laryngectomy. What vertebral level/levels will the organ be located during the procedure?

      Your Answer: C3 to C6

      Explanation:

      The larynx is situated in the front of the neck at the level of the C3-C6 vertebrae. This is the correct location for accessing the larynx during a laryngectomy. The larynx is not located at the C1-C2 level, as these are the atlas bones. It is also not located at the C2-C3 level, which is where the hyoid bone can be found. The C7 level is where the isthmus of the thyroid gland is located, not the larynx.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      25.8
      Seconds
  • Question 77 - A 65-year-old man with a 45-pack-year history arrives at the hospital complaining of...

    Incorrect

    • A 65-year-old man with a 45-pack-year history arrives at the hospital complaining of increased difficulty breathing and cachexia. Upon examination, a chest X-ray reveals an elevated left hemidiaphragm, enlarged hilar lymph nodes, and a significant opacification. Which structure is most likely to have been affected?

      Your Answer: Left hemidiaphragm

      Correct Answer: Left phrenic nerve

      Explanation:

      It is unlikely that direct injury would result in the elevation of the left hemidiaphragm, especially since there is no history of trauma or surgery. However, damage to the long thoracic nerve could cause winging of the scapula due to weakened serratus anterior muscle. On the other hand, injury to the thoracodorsal nerve, which innervates the latissimus dorsi muscle, can lead to weakened shoulder adduction and is a common complication of axillary surgery.

      The Phrenic Nerve: Origin, Path, and Supplies

      The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.

      The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.

      Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.

    • This question is part of the following fields:

      • Respiratory System
      20.9
      Seconds
  • Question 78 - A 10-year-old boy is recuperating the day after a tonsillectomy. His parents report...

    Correct

    • A 10-year-old boy is recuperating the day after a tonsillectomy. His parents report that he hasn't had anything to eat for 6 hours prior to the surgery and he is feeling famished. However, he is declining any attempts to consume food or water. There are no prescribed medications or known drug allergies listed on his medical records.

      What would be the most appropriate first step to take?

      Your Answer: Prescribe analgesia and encourage oral intake

      Explanation:

      Effective pain management is crucial after a tonsillectomy to promote the consumption of food and fluids.

      Prescribing analgesics and encouraging oral intake is the best course of action. This will alleviate pain and enable the patient to eat and drink, which is essential for a speedy recovery.

      Starting maintenance fluids or partial nutritional feeds, obtaining IV access, or waiting for two hours before reviewing the patient are not the most appropriate options. Analgesia should be the primary consideration to facilitate oral fluid therapy and promote healing.

      Tonsillitis and Tonsillectomy: Complications and Indications

      Tonsillitis is a condition that can lead to various complications, including otitis media, peritonsillar abscess, and, in rare cases, rheumatic fever and glomerulonephritis. Tonsillectomy, the surgical removal of the tonsils, is a controversial procedure that should only be considered if the person meets specific criteria. According to NICE, surgery should only be considered if the person experiences sore throats due to tonsillitis, has five or more episodes of sore throat per year, has been experiencing symptoms for at least a year, and the episodes of sore throat are disabling and prevent normal functioning. Other established indications for a tonsillectomy include recurrent febrile convulsions, obstructive sleep apnoea, stridor, dysphagia, and peritonsillar abscess if unresponsive to standard treatment.

      Despite the benefits of tonsillectomy, the procedure also carries some risks. Primary complications, which occur within 24 hours of the surgery, include haemorrhage and pain. Secondary complications, which occur between 24 hours to 10 days after the surgery, include haemorrhage (most commonly due to infection) and pain. Therefore, it is essential to weigh the benefits and risks of tonsillectomy before deciding to undergo the procedure.

    • This question is part of the following fields:

      • Respiratory System
      79.3
      Seconds
  • Question 79 - Which one of the following does not decrease the functional residual capacity? ...

    Incorrect

    • Which one of the following does not decrease the functional residual capacity?

      Your Answer: Laparoscopic surgery

      Correct Answer: Upright position

      Explanation:

      When a patient is in an upright position, the functional residual capacity (FRC) can increase due to less pressure from the diaphragm and abdominal organs on the lung bases. This increase in FRC can also be caused by emphysema and asthma. On the other hand, factors such as abdominal swelling, pulmonary edema, reduced muscle tone of the diaphragm, and aging can lead to a decrease in FRC. Additionally, laparoscopic surgery, obesity, and muscle relaxants can also contribute to a reduction in FRC.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      22.4
      Seconds
  • Question 80 - A 9-year-old boy is rushed to the emergency department following a fish bone...

    Incorrect

    • A 9-year-old boy is rushed to the emergency department following a fish bone choking incident during dinner. The patient is not experiencing any airway obstruction and has been given sufficient pain relief.

      After being referred for laryngoscopy, a fish bone is discovered in the piriform recess. What is the potential structure that could be harmed due to the location of the fish bone?

      Your Answer: Glossopharyngeal nerve

      Correct Answer: Internal laryngeal nerve

      Explanation:

      Foreign objects lodged in the piriform recess can cause damage to the internal laryngeal nerve, which is in close proximity to this area. The internal laryngeal nerve is responsible for providing sensation to the laryngeal mucosa. The ansa cervicalis, external laryngeal nerve, glossopharyngeal nerve, and superior laryngeal nerve are not at high risk of injury from foreign bodies in the piriform recess.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      22
      Seconds
  • Question 81 - A 25-year-old man who is an avid cyclist has been admitted to the...

    Correct

    • A 25-year-old man who is an avid cyclist has been admitted to the hospital with a severe asthma attack. He is currently in the hospital for two days and is able to speak in complete sentences. His bedside oxygen saturation is at 98%, and he has a heart rate of 58 bpm, blood pressure of 110/68 mmHg, and a respiratory rate of 14 bpm. He is not experiencing any fever. Upon physical examination, there are no notable findings. The blood gas results show a PaO2 of 5.4 kPa (11.3-12.6), PaCO2 of 6.0 kPa (4.7-6.0), pH of 7.38 (7.36-7.44), and HCO3 of 27 mmol/L (20-28). What could be the possible explanation for these results?

      Your Answer: Venous sample

      Explanation:

      Suspecting Venous Blood Sample with Low PaO2 and Good Oxygen Saturation

      A low PaO2 level accompanied by a good oxygen saturation reading may indicate that the blood sample was taken from a vein rather than an artery. This suspicion is further supported if the patient appears to be in good health. It is unlikely that a faulty pulse oximeter is the cause of the discrepancy in readings. Therefore, it is important to consider the possibility of a venous blood sample when interpreting these results. Proper identification of the type of blood sample is crucial in accurately diagnosing and treating the patient’s condition.

    • This question is part of the following fields:

      • Respiratory System
      76.2
      Seconds
  • Question 82 - A 70-year-old man with lung cancer is having a left pneumonectomy. The left...

    Correct

    • A 70-year-old man with lung cancer is having a left pneumonectomy. The left main bronchus is being divided. Which thoracic vertebrae is located behind this structure?

      Your Answer: T6

      Explanation:

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      16
      Seconds
  • Question 83 - A 35-year-old female patient presents to the GP with complaints of headaches, nasal...

    Incorrect

    • A 35-year-old female patient presents to the GP with complaints of headaches, nasal congestion, and facial pain that worsens upon leaning forward. Sinusitis is suspected. Which sinus is typically affected in this condition?

      Your Answer: Ethmoidal

      Correct Answer: Maxillary

      Explanation:

      The maxillary sinus is susceptible to infections due to its drainage from the top. This sinus is the most frequently affected in cases of sinusitis. While frontal sinusitis can lead to intracranial complications, it is still less common than maxillary sinusitis.

      The petrosal sinus is not a bone cavity, but rather a venous structure situated beneath the brain.

      Acute sinusitis is a condition where the mucous membranes of the paranasal sinuses become inflamed. This inflammation is usually caused by infectious agents such as Streptococcus pneumoniae, Haemophilus influenzae, and rhinoviruses. Certain factors can predispose individuals to this condition, including nasal obstruction, recent local infections, swimming/diving, and smoking. Symptoms of acute sinusitis include facial pain, nasal discharge, and nasal obstruction. Treatment options include analgesia, intranasal decongestants or nasal saline, and intranasal corticosteroids. Oral antibiotics may be necessary for severe presentations, but they are not typically required. In some cases, an initial viral sinusitis can worsen due to secondary bacterial infection, which is known as double-sickening.

    • This question is part of the following fields:

      • Respiratory System
      19.4
      Seconds
  • Question 84 - A 48-year-old male presents for a preoperative evaluation for an inguinal hernia repair....

    Correct

    • A 48-year-old male presents for a preoperative evaluation for an inguinal hernia repair. During the assessment, you observe a loculated left pleural effusion on his chest x-ray. Upon further inquiry, the patient discloses that he worked as a builder three decades ago. What is the probable reason for the effusion?

      Your Answer: Mesothelioma

      Explanation:

      Due to his profession as a builder, this individual is at risk of being exposed to asbestos. Given the 30-year latent period and the presence of a complex effusion, it is highly probable that the underlying cause is mesothelioma.

      Understanding Mesothelioma

      Mesothelioma is a type of cancer that affects the mesothelial layer of the pleural cavity, which is commonly linked to asbestos exposure. Although it is rare, other mesothelial layers in the abdomen may also be affected. Symptoms of mesothelioma include dyspnoea, weight loss, chest wall pain, and clubbing. In some cases, patients may present with painless pleural effusion. It is important to note that only 20% of patients have pre-existing asbestosis, but 85-90% have a history of asbestos exposure, with a latent period of 30-40 years.

      Diagnosis of mesothelioma is typically made through a chest x-ray, which may show pleural effusion or pleural thickening. A pleural CT is then performed to confirm the diagnosis. If a pleural effusion is present, fluid is sent for MC&S, biochemistry, and cytology. However, cytology is only helpful in 20-30% of cases. Local anaesthetic thoracoscopy is increasingly used to investigate cytology negative exudative effusions as it has a high diagnostic yield of around 95%. If an area of pleural nodularity is seen on CT, an image-guided pleural biopsy may be used.

      Management of mesothelioma is mainly symptomatic, with industrial compensation available for those who have been exposed to asbestos. Chemotherapy and surgery may be options for those who are operable. Unfortunately, the prognosis for mesothelioma is poor, with a median survival of only 12 months.

    • This question is part of the following fields:

      • Respiratory System
      23.2
      Seconds
  • Question 85 - A 30-year-old woman comes to see her GP with persistent tinnitus and hearing...

    Incorrect

    • A 30-year-old woman comes to see her GP with persistent tinnitus and hearing loss in both ears. This is her first time experiencing these symptoms, but she mentions that her older sister has had similar issues. During the examination, the doctor notices a pinkish hue to her eardrums. Audiometry tests confirm that she has conductive deafness. What is the most probable diagnosis?

      Your Answer: Meniere's disease

      Correct Answer: Otosclerosis

      Explanation:

      Nausea and vomiting often accompany migraines, which are characterized by severe headaches that can last for hours or even days. Other symptoms may include sensitivity to light and sound, as well as visual disturbances such as flashing lights or blind spots. Migraines can be triggered by a variety of factors, including stress, certain foods, hormonal changes, and changes in sleep patterns. Treatment options may include medication, lifestyle changes, and alternative therapies.

      Understanding Otosclerosis: A Progressive Conductive Deafness

      Otosclerosis is a medical condition that occurs when normal bone is replaced by vascular spongy bone. This condition leads to a progressive conductive deafness due to the fixation of the stapes at the oval window. It is an autosomal dominant condition that typically affects young adults, with onset usually occurring between the ages of 20-40 years.

      The main features of otosclerosis include conductive deafness, tinnitus, a normal tympanic membrane, and a positive family history. In some cases, patients may also experience a flamingo tinge, which is caused by hyperemia and affects around 10% of patients.

      Management of otosclerosis typically involves the use of a hearing aid or stapedectomy. A hearing aid can help to improve hearing, while a stapedectomy involves the surgical removal of the stapes bone and replacement with a prosthesis.

      Overall, understanding otosclerosis is important for individuals who may be at risk of developing this condition. Early diagnosis and management can help to improve hearing and prevent further complications.

    • This question is part of the following fields:

      • Respiratory System
      23.6
      Seconds
  • Question 86 - A 26-year-old man has been experiencing a chronic cough and wheeze since starting...

    Incorrect

    • A 26-year-old man has been experiencing a chronic cough and wheeze since starting a new job. He has noticed that his peak flow measurements are significantly reduced while at work but improve on the weekends. What substance is commonly linked to this type of asthma?

      Your Answer: Diesel fumes

      Correct Answer: Isocyanates

      Explanation:

      Occupational Asthma: Causes and Symptoms

      Occupational asthma is a type of asthma that is caused by exposure to certain chemicals in the workplace. Patients may experience worsening asthma symptoms while at work or notice an improvement in symptoms when away from work. The most common cause of occupational asthma is exposure to isocyanates, which are found in spray painting and foam moulding using adhesives. Other chemicals associated with occupational asthma include platinum salts, soldering flux resin, glutaraldehyde, flour, epoxy resins, and proteolytic enzymes.

      To diagnose occupational asthma, it is recommended to measure peak expiratory flow at work and away from work. If there is a significant difference in peak expiratory flow, referral to a respiratory specialist is necessary. Treatment may include avoiding exposure to the triggering chemicals and using medications to manage asthma symptoms. It is important for employers to provide a safe working environment and for employees to report any concerns about potential exposure to harmful chemicals.

    • This question is part of the following fields:

      • Respiratory System
      18.7
      Seconds
  • Question 87 - A father brings his 9-year-old daughter to your general practice, as he is...

    Incorrect

    • A father brings his 9-year-old daughter to your general practice, as he is worried about her hearing. He notices that he has to repeat himself when talking to her, and thinks she is often 'in her own little world'. During the examination, the Rinne test is positive on the left and negative on the right. What conclusions can be drawn from this?

      Your Answer: Conductive hearing loss on the left.

      Correct Answer: Can not tell if both sides are affected.

      Explanation:

      The Rinne and Weber tests are used to diagnose hearing loss. The Rinne test involves comparing air and bone conduction, with a positive result indicating a healthy or sensorineural loss and a negative result indicating a conductive loss. The Weber test involves placing a tuning fork on the forehead and determining if the sound is symmetrical or louder on one side, with a conductive loss resulting in louder sound on the affected side and a sensorineural loss resulting in louder sound on the non-affected side. When used together, these tests can provide more information about the type and affected side of hearing loss.

      Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness

      Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.

      Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.

      The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.

      Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.

    • This question is part of the following fields:

      • Respiratory System
      33.6
      Seconds
  • Question 88 - A 44-year-old woman is scheduled for a thyroidectomy due to symptomatic tracheal compression....

    Incorrect

    • A 44-year-old woman is scheduled for a thyroidectomy due to symptomatic tracheal compression. She has a history of hyperthyroidism that was controlled with carbimazole. However, she was deemed a suitable candidate for thyroidectomy after presenting to the emergency department with dyspnoea and stridor.

      As a surgical resident assisting the ENT surgeon, you need to ligate the superior thyroid artery before removing the thyroid glands to prevent excessive bleeding. However, the superior laryngeal artery, a branch of the superior thyroid artery, is closely related to a structure that, if injured, can lead to loss of sensation in the laryngeal mucosa.

      What is the correct identification of this structure?

      Your Answer: Inferior laryngeal artery

      Correct Answer: Internal laryngeal nerve

      Explanation:

      The internal laryngeal nerve and the superior laryngeal artery are closely associated with each other. The superior laryngeal artery travels alongside the internal laryngeal branch of the superior laryngeal nerve, beneath the thyrohyoid muscle. It originates from the superior thyroid artery near its separation from the external carotid artery.

      If the internal laryngeal nerve is damaged, it can result in a loss of sensation to the laryngeal mucosa. The nerve is situated beneath the mucous membrane of the piriform recess, making it vulnerable to injury from sharp objects like fish and chicken bones that may become stuck in the recess.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      60.2
      Seconds
  • Question 89 - A 27-year-old man with a history of epilepsy is admitted to the hospital...

    Incorrect

    • A 27-year-old man with a history of epilepsy is admitted to the hospital after experiencing a tonic-clonic seizure. He is currently taking sodium valproate as his only medication. A venous blood gas is obtained immediately.

      What are the expected venous blood gas results for this patient?

      Your Answer: Normal pH, normal lactate, normal SaO2

      Correct Answer: Low pH, high lactate, low SaO2

      Explanation:

      Acidosis shifts the oxygen dissociation curve to the right, which enhances oxygen delivery to the tissues by causing more oxygen to dissociate from Hb. postictal lactic acidosis is a common occurrence in patients with tonic-clonic seizures, and it is typically managed by monitoring for spontaneous resolution. During a seizure, tissue hypoxia can cause lactic acidosis. Therefore, a venous blood gas test for this patient should show low pH, high lactate, and low SaO2.

      If the venous blood gas test shows a high pH, normal lactate, and low SaO2, it would not be consistent with postictal lactic acidosis. This result indicates alkalosis, which can be caused by gastrointestinal losses, renal losses, or Cushing syndrome.

      A high pH, normal lactate, and normal SaO2 would also be inconsistent with postictal lactic acidosis because tissue hypoxia would cause an increase in lactate levels.

      Similarly, low pH, high lactate, and normal SaO2 would not be expected in postictal lactic acidosis because acidosis would shift the oxygen dissociation curve to the right, decreasing the oxygen saturation of haemoglobin.

      Finally, normal pH, normal lactate, and normal SaO2 are unlikely to be found in this patient shortly after a seizure. However, if the venous blood gas test was taken days after the seizure following an uncomplicated clinical course, these findings would be more plausible.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      26.7
      Seconds
  • Question 90 - A 29-year-old cyclist is brought to the emergency department by air ambulance following...

    Incorrect

    • A 29-year-old cyclist is brought to the emergency department by air ambulance following a car collision. She was intubated at the scene and currently has a Glasgow Coma Score of 8. Where is the control and regulation of the respiratory centers located?

      Your Answer: Parietal lobe

      Correct Answer: Brainstem

      Explanation:

      The brainstem houses the respiratory centres, which are responsible for regulating various aspects of breathing. These centres are located in the upper pons, lower pons and medulla oblongata.

      The thalamus plays a role in sensory, motor and cognitive functions, and its axons connect with the cerebral cortex. The cerebellum coordinates voluntary movements and helps maintain balance and posture. The parietal lobe processes sensory information, including discrimination and body orientation. The primary visual cortex is located in the occipital lobe.

      The Control of Ventilation in the Human Body

      The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.

      The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.

      Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.

      Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.

    • This question is part of the following fields:

      • Respiratory System
      26.2
      Seconds
  • Question 91 - A seven-year-old boy who was born in Germany presents to paediatrics with a...

    Incorrect

    • A seven-year-old boy who was born in Germany presents to paediatrics with a history of recurrent chest infections, steatorrhoea, and poor growth. He has a significant medical history of meconium ileus. Following a thorough evaluation, the suspected diagnosis is confirmed through a chloride sweat test. The paediatrician informs the parents that their son will have an elevated risk of infertility in adulthood. What is the pathophysiological basis for the increased risk of infertility in this case?

      Your Answer: Increased likelihood of retrograde ejaculation

      Correct Answer: Absent vas deferens

      Explanation:

      Men with cystic fibrosis are at risk of infertility due to the absence of vas deferens. Unfortunately, this condition often goes undetected in infancy as Germany does not perform neonatal testing for it. Hypogonadism, which can cause infertility, is typically caused by genetic factors like Kallmann syndrome, but not cystic fibrosis. Retrograde ejaculation is most commonly associated with complicated urological surgery, while an increased risk of testicular cancer can be caused by factors like cryptorchidism. However, cystic fibrosis is also a risk factor for testicular cancer.

      Understanding Cystic Fibrosis: Symptoms and Other Features

      Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.

      Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.

    • This question is part of the following fields:

      • Respiratory System
      263.9
      Seconds
  • Question 92 - A 35-year-old patient has been experiencing breathing difficulties for the past year. He...

    Incorrect

    • A 35-year-old patient has been experiencing breathing difficulties for the past year. He finds it challenging to climb small hills, has developed a persistent cough, and has had two chest infections that were treated effectively by his doctor. He has never smoked, and his mother had comparable symptoms when she was his age. Based on his spirometry results, which indicate an FEV1/FVC ratio of 60%, his doctor suspects that his symptoms are caused by a genetic disorder. What is the molecular mechanism that underlies his probable condition?

      Your Answer: Promotion of the breakdown of neutrophil elastase

      Correct Answer: Failure to break down neutrophil elastase

      Explanation:

      The patient’s medical history suggests that they may be suffering from alpha-1 antitrypsin deficiency.

      When there is a shortage of alpha-1 antitrypsin, neutrophil elastase is not inhibited and can break down proteins in the lung interstitium. Although neutrophil elastase is a crucial part of the innate immune system, its unregulated activity can lead to excessive breakdown of extracellular proteins like elastin, collagen, fibronectin, and fibrin. This results in reduced pulmonary elasticity, which can cause emphysema and COPD.

      Alpha-1 antitrypsin (A1AT) deficiency is a genetic condition that occurs when the liver does not produce enough of a protein called protease inhibitor (Pi). This protein is responsible for protecting cells from enzymes like neutrophil elastase. A1AT deficiency is inherited in an autosomal recessive or co-dominant manner and is located on chromosome 14. The alleles are classified by their electrophoretic mobility, with M being normal, S being slow, and Z being very slow. The normal genotype is PiMM, while heterozygous individuals have PiMZ. Homozygous PiSS individuals have 50% normal A1AT levels, while homozygous PiZZ individuals have only 10% normal A1AT levels.

      A1AT deficiency is most commonly associated with panacinar emphysema, which is a type of chronic obstructive pulmonary disease (COPD). This is especially true for patients with the PiZZ genotype. Emphysema is more likely to occur in non-smokers with A1AT deficiency, but they may still pass on the gene to their children. In addition to lung problems, A1AT deficiency can also cause liver issues such as cirrhosis and hepatocellular carcinoma in adults, and cholestasis in children.

      Diagnosis of A1AT deficiency involves measuring A1AT concentrations and performing spirometry to assess lung function. Management of the condition includes avoiding smoking and receiving supportive care such as bronchodilators and physiotherapy. Intravenous alpha1-antitrypsin protein concentrates may also be used. In severe cases, lung volume reduction surgery or lung transplantation may be necessary.

    • This question is part of the following fields:

      • Respiratory System
      39.3
      Seconds
  • Question 93 - A 26-year-old man has been referred to ENT by his doctor as he...

    Incorrect

    • A 26-year-old man has been referred to ENT by his doctor as he has swallowed a small chicken bone that feels stuck in his throat. During laryngoscopy, a chicken bone is observed lodged in the piriform recess. Which of the following nerves is most likely to be affected by the chicken bone?

      Your Answer: Inferior laryngeal nerve

      Correct Answer: Internal laryngeal nerve

      Explanation:

      When foreign objects get stuck in the piriform recess, particularly sharp items like bones from fish or chicken, they can harm the internal laryngeal nerve that lies beneath the mucous membrane in that area. Retrieving these objects also poses a risk of damaging the internal laryngeal nerve. However, the other nerves are not likely to be impacted.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      16.3
      Seconds
  • Question 94 - A 56-year-old woman comes to the clinic complaining of a persistent cough and...

    Incorrect

    • A 56-year-old woman comes to the clinic complaining of a persistent cough and increased production of sputum over the past year. She also reports feeling fatigued and experiencing shortness of breath. The patient mentions having had four chest infections in the last 12 months, all of which were treated with antibiotics. She has no personal or family history of lung issues and has never smoked.

      The healthcare provider suspects that bronchiectasis may be the underlying cause of her symptoms and orders appropriate tests.

      Which test is most likely to provide a definitive diagnosis?

      Your Answer: Pulmonary function test

      Correct Answer: High-resolution computerised tomography

      Explanation:

      Bronchiectasis can be diagnosed through various methods, including chest radiography, histopathology, and pulmonary function tests.

      Chest radiography can reveal thickened bronchial walls, cystic lesions with fluid levels, collapsed areas with crowded pulmonary vasculature, and scarring, which are characteristic features of bronchiectasis.

      Histopathology, which is a more invasive investigation often done through autopsy or surgery, can show irreversible dilation of bronchial airways and bronchial wall thickening.

      However, high-resolution computerised tomography is a more favorable imaging technique as it is less invasive than histopathology.

      Pulmonary function tests are commonly used to diagnose bronchiectasis, but they should be used in conjunction with other investigations as they are not sensitive or specific enough to provide sufficient diagnostic evidence on their own. An obstructive pattern is the most common pattern encountered, but a restrictive pattern is also possible.

      Understanding the Causes of Bronchiectasis

      Bronchiectasis is a condition characterized by the permanent dilation of the airways due to chronic inflammation or infection. There are various factors that can lead to this condition, including post-infective causes such as tuberculosis, measles, pertussis, and pneumonia. Cystic fibrosis, bronchial obstruction caused by lung cancer or foreign bodies, and immune deficiencies like selective IgA and hypogammaglobulinaemia can also contribute to bronchiectasis. Additionally, allergic bronchopulmonary aspergillosis (ABPA), ciliary dyskinetic syndromes like Kartagener’s syndrome and Young’s syndrome, and yellow nail syndrome are other potential causes. Understanding the underlying causes of bronchiectasis is crucial in developing effective treatment plans for patients.

    • This question is part of the following fields:

      • Respiratory System
      43.7
      Seconds
  • Question 95 - A 32-year-old male presents to the GP clinic complaining of vertigo. He mentions...

    Incorrect

    • A 32-year-old male presents to the GP clinic complaining of vertigo. He mentions having a mild upper respiratory tract infection one week prior. Which structure is most likely responsible for the accompanying nausea?

      Your Answer: Pons

      Correct Answer: Vestibular system of the inner ear

      Explanation:

      Based on the symptoms presented, it is probable that the patient is experiencing viral labyrinthitis, which is a common condition that occurs after an upper respiratory tract infection. This condition causes inflammation in the vestibular system of the inner ear, leading to confusion or failure of proprioceptive signals to the brain, resulting in vertigo.

      During retching, the antrum of the stomach contracts while the cardia and fundus relax. Although vagal stimulation can arise from the stomach, it does not cause the spinning sensation associated with vertigo.

      The area postrema is located in the medulla and contains the chemoreceptor trigger zone, which is involved in receiving and transmitting signals related to the vomiting reflex. However, the specific signal for vertigo arises from the vestibular system. The pons also plays a role in communicating sensory inputs related to vomiting.

      Vertigo is a condition characterized by a false sensation of movement in the body or environment. There are various causes of vertigo, each with its own unique characteristics. Viral labyrinthitis, for example, is typically associated with a recent viral infection, sudden onset, nausea and vomiting, and possible hearing loss. Vestibular neuronitis, on the other hand, is characterized by recurrent vertigo attacks lasting hours or days, but with no hearing loss. Benign paroxysmal positional vertigo is triggered by changes in head position and lasts for only a few seconds. Meniere’s disease, meanwhile, is associated with hearing loss, tinnitus, and a feeling of fullness or pressure in the ears. Elderly patients with vertigo may be experiencing vertebrobasilar ischaemia, which is accompanied by dizziness upon neck extension. Acoustic neuroma, which is associated with hearing loss, vertigo, and tinnitus, is also a possible cause of vertigo. Other causes include posterior circulation stroke, trauma, multiple sclerosis, and ototoxicity from medications like gentamicin.

    • This question is part of the following fields:

      • Respiratory System
      14.7
      Seconds
  • Question 96 - A 67-year-old woman presents to the clinic with a gradual onset of dyspnea...

    Incorrect

    • A 67-year-old woman presents to the clinic with a gradual onset of dyspnea on exertion over the past 6 months. She has a medical history of severe COPD and is currently receiving long-term oxygen therapy. During the examination, you observe pitting edema up to the mid-thighs, an elevated JVP with a prominent V wave, a precordial heave, and a loud P2. What is the most probable mechanism involved in this diagnosis?

      Your Answer: Pulmonary arteries vasoconstriction due to hypercapnia

      Correct Answer: Pulmonary arteries vasoconstriction due to hypoxia

      Explanation:

      Hypoxia causes vasoconstriction of pulmonary arteries, leading to a diagnosis of right heart failure secondary to hypoxic lung disease, also known as cor pulmonale.

      The Effects of Hypoxia on Pulmonary Arteries

      When the partial pressure of oxygen in the blood decreases, the pulmonary arteries undergo vasoconstriction. This means that the blood vessels narrow, allowing blood to be redirected to areas of the lung that are better aerated. This response is a natural mechanism that helps to improve the efficiency of gaseous exchange in the lungs. By diverting blood to areas with more oxygen, the body can ensure that the tissues receive the oxygen they need to function properly. Overall, hypoxia triggers a physiological response that helps to maintain homeostasis in the body.

    • This question is part of the following fields:

      • Respiratory System
      31.6
      Seconds
  • Question 97 - A respiratory specialist is conducting a bronchoscopy to determine a suitable biopsy for...

    Incorrect

    • A respiratory specialist is conducting a bronchoscopy to determine a suitable biopsy for histological evaluation of suspected bronchial carcinoma in a pediatric patient.

      While performing the procedure, the bronchoscope is erroneously inserted through the diaphragm at the T10 level.

      Which structure is at the highest risk of being harmed as a result of this error?

      Your Answer: Inferior vena cava

      Correct Answer: Oesophagus

      Explanation:

      The oesophagus passes through the diaphragm at the level of T10 along with the vagal trunk, which is the most likely structure to have been damaged. The aorta, on the other hand, perforates the diaphragm at T12 and supplies oxygenated blood to the lower body, while the azygous vein also perforates the diaphragm at T12 and drains the right side of the thorax into the superior vena cava.

      Structures Perforating the Diaphragm

      The diaphragm is a dome-shaped muscle that separates the thoracic and abdominal cavities. It plays a crucial role in breathing by contracting and relaxing to create negative pressure in the lungs. However, there are certain structures that perforate the diaphragm, allowing them to pass through from the thoracic to the abdominal cavity. These structures include the inferior vena cava at the level of T8, the esophagus and vagal trunk at T10, and the aorta, thoracic duct, and azygous vein at T12.

      To remember these structures and their corresponding levels, a helpful mnemonic is I 8(ate) 10 EGGS AT 12. This means that the inferior vena cava is at T8, the esophagus and vagal trunk are at T10, and the aorta, thoracic duct, and azygous vein are at T12. Knowing these structures and their locations is important for medical professionals, as they may need to access or treat them during surgical procedures or diagnose issues related to them.

    • This question is part of the following fields:

      • Respiratory System
      21.6
      Seconds
  • Question 98 - A 24-year-old male patient arrives at the Emergency Department complaining of abdominal pain,...

    Incorrect

    • A 24-year-old male patient arrives at the Emergency Department complaining of abdominal pain, nausea, vomiting, and a decreased level of consciousness. Upon examination, the patient exhibits Kussmaul respiration and an acetone-like breath odor.

      What type of metabolic disturbance is most consistent with the symptoms and presentation of this patient?

      Your Answer: Metabolic acidosis, oxygen dissociation curve not affected

      Correct Answer: Metabolic acidosis, oxygen dissociation curve shifts to the right

      Explanation:

      The correct answer is that metabolic acidosis shifts the oxygen dissociation curve to the right. This is seen in the condition described in the question, diabetic ketoacidosis, which is associated with metabolic acidosis. Acidosis causes more oxygen to be unloaded from haemoglobin, leading to a rightward shift in the curve. The other answer options are incorrect, as they either describe a different type of acidosis or an incorrect direction of the curve shift.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      41.9
      Seconds
  • Question 99 - A 50-year-old female presents to her GP with complaints of shortness of breath...

    Incorrect

    • A 50-year-old female presents to her GP with complaints of shortness of breath and weakness during mild-moderate exercise. She reports that these episodes have been getting progressively worse and now often result in dizziness. The patient has no significant medical history but was a previous smoker for 15 years, smoking 15 cigarettes per day. Spirometry testing reveals a restrictive lung pattern. What is the most probable diagnosis?

      Your Answer: Chronic obstructive pulmonary disease (COPD)

      Correct Answer: Myasthenia gravis

      Explanation:

      Myasthenia gravis can result in a restrictive pattern of lung disease due to weakness of the respiratory muscles, which causes difficulty in breathing air in. Asthma and COPD are incorrect as they cause an obstructive pattern on spirometry, with asthma being characterized by small bronchiole obstruction from inflammation and increased mucus production, and COPD causing small airway inflammation and emphysema that restricts outward airflow. Alpha-1 antitrypsin deficiency also leads to an obstructive pattern, as it results in pulmonary tissue degradation and panlobular emphysema.

      Understanding the Differences between Obstructive and Restrictive Lung Diseases

      Obstructive and restrictive lung diseases are two distinct categories of respiratory conditions that affect the lungs in different ways. Obstructive lung diseases are characterized by a reduction in the flow of air through the airways due to narrowing or blockage, while restrictive lung diseases are characterized by a decrease in lung volume or capacity, making it difficult to breathe in enough air.

      Spirometry is a common diagnostic tool used to differentiate between obstructive and restrictive lung diseases. In obstructive lung diseases, the ratio of forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) is less than 80%, indicating a reduced ability to exhale air. In contrast, restrictive lung diseases are characterized by an FEV1/FVC ratio greater than 80%, indicating a reduced ability to inhale air.

      Examples of obstructive lung diseases include chronic obstructive pulmonary disease (COPD), chronic bronchitis, and emphysema, while asthma and bronchiectasis are also considered obstructive. Restrictive lung diseases include intrapulmonary conditions such as idiopathic pulmonary fibrosis, extrinsic allergic alveolitis, and drug-induced fibrosis, as well as extrapulmonary conditions such as neuromuscular diseases, obesity, and scoliosis.

      Understanding the differences between obstructive and restrictive lung diseases is important for accurate diagnosis and appropriate treatment. While both types of conditions can cause difficulty breathing, the underlying causes and treatment approaches can vary significantly.

    • This question is part of the following fields:

      • Respiratory System
      66.7
      Seconds
  • Question 100 - A 65-year-old man visits his doctor complaining of a productive cough and difficulty...

    Incorrect

    • A 65-year-old man visits his doctor complaining of a productive cough and difficulty breathing for the past 10 days. The doctor prescribes antibiotics, but after a week, the patient's symptoms persist and he develops a fever and pain when breathing in. The doctor orders a chest x-ray, which indicates the presence of an empyema. What is the probable causative agent responsible for this condition?

      Your Answer: Listeria monocytogenes

      Correct Answer: Streptococcus pneumoniae

      Explanation:

      An accumulation of pus in the pleural space, known as empyema, is a possible complication of pneumonia and is responsible for the patient’s pleurisy. Streptococcus pneumoniae, the most frequent cause of pneumonia, is also the leading cause of empyema.

      Pneumonia is a common condition that affects the alveoli of the lungs, usually caused by a bacterial infection. Other causes include viral and fungal infections. Streptococcus pneumoniae is the most common organism responsible for pneumonia, accounting for 80% of cases. Haemophilus influenzae is common in patients with COPD, while Staphylococcus aureus often occurs in patients following influenzae infection. Mycoplasma pneumoniae and Legionella pneumophilia are atypical pneumonias that present with dry cough and other atypical symptoms. Pneumocystis jiroveci is typically seen in patients with HIV. Idiopathic interstitial pneumonia is a group of non-infective causes of pneumonia.

      Patients who develop pneumonia outside of the hospital have community-acquired pneumonia (CAP), while those who develop it within hospitals are said to have hospital-acquired pneumonia. Symptoms of pneumonia include cough, sputum, dyspnoea, chest pain, and fever. Signs of systemic inflammatory response, tachycardia, reduced oxygen saturations, and reduced breath sounds may also be present. Chest x-ray is used to diagnose pneumonia, with consolidation being the classical finding. Blood tests, such as full blood count, urea and electrolytes, and CRP, are also used to check for infection.

      Patients with pneumonia require antibiotics to treat the underlying infection and supportive care, such as oxygen therapy and intravenous fluids. Risk stratification is done using a scoring system called CURB-65, which stands for confusion, respiration rate, blood pressure, age, and is used to determine the management of patients with community-acquired pneumonia. Home-based care is recommended for patients with a CRB65 score of 0, while hospital assessment is recommended for all other patients, particularly those with a CRB65 score of 2 or more. The CURB-65 score also correlates with an increased risk of mortality at 30 days.

    • This question is part of the following fields:

      • Respiratory System
      76.6
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Respiratory System (40/100) 40%
Passmed