00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 22-year-old man presents to his GP complaining of ankle pain. He has...

    Correct

    • A 22-year-old man presents to his GP complaining of ankle pain. He has been training for a marathon and running up to 60 miles per week. During the examination, he experiences difficulty flexing his four lateral toes. The GP suspects tenosynovitis affecting his flexor digitorium longus.

      Which other muscles are part of the affected leg compartment?

      Your Answer: Tibialis posterior, flexor hallucis longus, and popliteus

      Explanation:

      The muscles located in the deep posterior compartment include the Tibialis posterior, Flexor hallucis longus, Flexor digitorum longus, and Popliteus. The Flexor digitorum longus muscle is specifically affected in this compartment.

      Muscular Compartments of the Lower Limb

      The lower limb is composed of different muscular compartments that perform various actions. The anterior compartment includes the tibialis anterior, extensor digitorum longus, peroneus tertius, and extensor hallucis longus muscles. These muscles are innervated by the deep peroneal nerve and are responsible for dorsiflexing the ankle joint, inverting and evert the foot, and extending the toes.

      The peroneal compartment, on the other hand, consists of the peroneus longus and peroneus brevis muscles, which are innervated by the superficial peroneal nerve. These muscles are responsible for eversion of the foot and plantar flexion of the ankle joint.

      The superficial posterior compartment includes the gastrocnemius and soleus muscles, which are innervated by the tibial nerve. These muscles are responsible for plantar flexion of the foot and may also flex the knee.

      Lastly, the deep posterior compartment includes the flexor digitorum longus, flexor hallucis longus, and tibialis posterior muscles, which are innervated by the tibial nerve. These muscles are responsible for flexing the toes, flexing the great toe, and plantar flexion and inversion of the foot, respectively.

      Understanding the muscular compartments of the lower limb is important in diagnosing and treating injuries and conditions that affect these muscles. Proper identification and management of these conditions can help improve mobility and function of the lower limb.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      30.9
      Seconds
  • Question 2 - A 42-year-old man with a known history of poorly-controlled HIV presented to the...

    Incorrect

    • A 42-year-old man with a known history of poorly-controlled HIV presented to the emergency department with confusion and persistent headache. His partner brought him in and reported one episode of non-bloody, non-bilious vomiting. On examination, he had nuchal rigidity and a positive Kernig's sign. His vital signs were notable for a blood pressure of 130/103 mmHg, pulse of 100 beats per minute, and temperature of 39ºC. Cerebrospinal fluid India ink staining revealed encapsulated, spherical cells that grew colonies on Sabouraud agar. What is the most likely causative organism?

      Your Answer: Mycoplasma pneumoniae

      Correct Answer: Cryptococcus meningitidis

      Explanation:

      Sabouraud agar is a culture medium that is specifically used for the cultivation of fungi.

      Based on the patient’s medical history of poorly-controlled HIV and the presence of fever, headache, and nuchal rigidity, it is highly likely that the patient is suffering from cryptococcus meningitis. This is further supported by the appearance of encapsulated, spherical cells on India ink staining and the growth of colonies on Sabouraud agar. The causative agent responsible for this condition is Cryptococcus meningitidis, which is a type of fungi.

      It is important to note that Neisseria meningitidis can also cause meningitis and present with similar symptoms of nuchal rigidity and positive Kernig’s sign. However, this is a Gram-negative bacterium that is unlikely to grow on Sabouraud agar. Instead, it can be cultured on Thayer-Martin agar.

      Mycoplasma pneumoniae is another possible cause of infection, but it typically presents with respiratory symptoms of atypical pneumonia, such as a dry cough, and has a milder course of illness. Additionally, it is unlikely to involve the cerebrospinal fluid (CSF) and would grow on Eaton agar rather than Sabouraud agar.

      Mycobacterium tuberculosis is a Gram-positive bacillus that is known to cause meningitis. However, it will not grow on Sabouraud agar and requires Lowenstein-Jensen agar for cultivation.

      Culture Requirements for Common Organisms

      Different microorganisms require specific culture conditions to grow and thrive. The table above lists some of the culture requirements for the more common organisms. For instance, Neisseria gonorrhoeae requires Thayer-Martin agar, which is a variant of chocolate agar, and the addition of Vancomycin, Polymyxin, and Nystatin to inhibit Gram-positive, Gram-negative, and fungal growth, respectively. Haemophilus influenzae, on the other hand, grows on chocolate agar with factors V (NAD+) and X (hematin).

      To remember the culture requirements for some of these organisms, some mnemonics can be used. For example, Nice Homes have chocolate can help recall that Neisseria and Haemophilus grow on chocolate agar. If I Tell-U the Corny joke Right, you’ll Laugh can be used to remember that Corynebacterium diphtheriae grows on tellurite agar or Loeffler’s media. Lactating pink monkeys can help recall that lactose fermenting bacteria, such as Escherichia coli, grow on MacConkey agar resulting in pink colonies. Finally, BORDETella pertussis can be used to remember that Bordetella pertussis grows on Bordet-Gengou (potato) agar.

    • This question is part of the following fields:

      • General Principles
      15
      Seconds
  • Question 3 - As a 6th year medical student observing a neurosurgeon, I am witnessing the...

    Incorrect

    • As a 6th year medical student observing a neurosurgeon, I am witnessing the removal of a cerebellar astrocytoma in a 9-year-old girl. If the cancer were to spread to the occipital lobes, which structure would it have to breach?

      Your Answer:

      Correct Answer: Tentorium cerebelli

      Explanation:

      The tentorium cerebelli, a fold of the dura mater, acts as a barrier between the cerebellum and brainstem and the occipital lobes. Therefore, for the boy’s cancer to reach the occipital lobes, it would need to breach this fold.

      The filum terminale is a strand of the pia mater that extends from the conus medullaris.

      The sellar diaphragm is a small dural fold that covers the pituitary gland.

      The falx cerebelli is a small dural fold that partially separates the cerebral hemispheres.

      The falx cerebri is a dural fold that separates the cerebral hemispheres.

      The Three Layers of Meninges

      The meninges are a group of membranes that cover the brain and spinal cord, providing support to the central nervous system and the blood vessels that supply it. These membranes can be divided into three distinct layers: the dura mater, arachnoid mater, and pia mater.

      The outermost layer, the dura mater, is a thick fibrous double layer that is fused with the inner layer of the periosteum of the skull. It has four areas of infolding and is pierced by small areas of the underlying arachnoid to form structures called arachnoid granulations. The arachnoid mater forms a meshwork layer over the surface of the brain and spinal cord, containing both cerebrospinal fluid and vessels supplying the nervous system. The final layer, the pia mater, is a thin layer attached directly to the surface of the brain and spinal cord.

      The meninges play a crucial role in protecting the brain and spinal cord from injury and disease. However, they can also be the site of serious medical conditions such as subdural and subarachnoid haemorrhages. Understanding the structure and function of the meninges is essential for diagnosing and treating these conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 4 - A 27-year-old woman is expecting her first baby. During routine midwife appointments, it...

    Incorrect

    • A 27-year-old woman is expecting her first baby. During routine midwife appointments, it was discovered that she has hypertension and proteinuria, which are signs of pre-eclampsia. To prevent respiratory distress syndrome, a complication of prematurity caused by inadequate pulmonary surfactant production, she will require steroid doses before induction of preterm labor. Which cell type is being targeted by corticosteroids in this patient?

      Your Answer:

      Correct Answer: Type 2 pneumocytes

      Explanation:

      Types of Pneumocytes and Their Functions

      Pneumocytes are specialized cells found in the lungs that play a crucial role in gas exchange. There are two main types of pneumocytes: type 1 and type 2. Type 1 pneumocytes are very thin squamous cells that cover around 97% of the alveolar surface. On the other hand, type 2 pneumocytes are cuboidal cells that secrete surfactant, a substance that reduces surface tension in the alveoli and prevents their collapse during expiration.

      Type 2 pneumocytes start to develop around 24 weeks gestation, but adequate surfactant production does not take place until around 35 weeks. This is why premature babies are prone to respiratory distress syndrome. In addition, type 2 pneumocytes can differentiate into type 1 pneumocytes during lung damage, helping to repair and regenerate damaged lung tissue.

      Apart from pneumocytes, there are also club cells (previously termed Clara cells) found in the bronchioles. These non-ciliated dome-shaped cells have a varied role, including protecting against the harmful effects of inhaled toxins and secreting glycosaminoglycans and lysozymes. Understanding the different types of pneumocytes and their functions is essential in comprehending the complex mechanisms involved in respiration.

    • This question is part of the following fields:

      • Respiratory System
      0
      Seconds
  • Question 5 - A 6-year-old girl presents to the emergency department with a high fever of...

    Incorrect

    • A 6-year-old girl presents to the emergency department with a high fever of one day duration and severe sore throat. She is noted to be drooling and sitting in a 'tripod' position, where she is leaning forward and supporting the upper body with hands on the knees. She is severely short of breath with inspiratory retractions and stridor. She appears to be uncomfortable and restless. Her mother also reports that she has been unable to eat anything for the past few hours. Her heart rate is 120 beats per minute (normal range: 80 - 120 beats per minute), blood pressure is 120/76 mmHg (normal range: SBP 89 - 112 mmHg; DBP 46 - 72 mmHg), SpO2 is 94% and her temperature is 40°C. She is quickly wheeled into the resuscitation room for stabilisation and treatment. A chest radiograph was promptly done in the resuscitation room.

      What radiological findings are associated with the girl's condition?

      Your Answer:

      Correct Answer: Thumb sign

      Explanation:

      The presence of a thumb sign on a lateral radiograph is indicative of acute epiglottitis in this child, who is displaying symptoms of dysphagia, drooling, and distress. This condition typically presents with a sudden onset of high fever and severe sore throat, as well as noisy breathing with stridor, and is most commonly seen in children aged 5-12 years old.

      In cases of acute epiglottitis, maintaining airway patency and ensuring hemodynamic stability are of utmost importance. While a lateral neck radiograph may be performed to confirm the diagnosis, the presence of a thumb sign is a strong indicator of an enlarged and inflamed epiglottis.

      It is important to note that the steeple sign, which is a radiological finding suggestive of croup, is not present in this case. Croup typically presents with a barking cough, rather than drooling and general malaise.

      Similarly, the sail sign, which is indicative of left lower lobe collapse and lower respiratory tract obstruction, is not relevant to this case, as the child’s symptoms suggest upper airway obstruction.

      Finally, while widening of the prevertebral space is characteristic of a retropharyngeal abscess, this condition typically presents with a unilateral swelling of the neck and an inability to extend the neck, which is not observed in this case.

      Acute epiglottitis is a rare but serious infection caused by Haemophilus influenzae type B. It is important to recognize and treat it promptly as it can lead to airway obstruction. Although it was once considered a disease of childhood, it is now more common in adults in the UK due to the immunization program. The incidence of epiglottitis has decreased since the introduction of the Hib vaccine. Symptoms include a rapid onset, high temperature, stridor, drooling of saliva, and a tripod position where the patient leans forward and extends their neck to breathe easier.

      Diagnosis is made by direct visualization, but only by senior or airway trained staff. X-rays may be done if there is concern about a foreign body. A lateral view in acute epiglottitis will show swelling of the epiglottis, while a posterior-anterior view in croup will show subglottic narrowing, commonly called the steeple sign.

      Immediate senior involvement is necessary, including those able to provide emergency airway support such as anaesthetics or ENT. Endotracheal intubation may be necessary to protect the airway. If suspected, do NOT examine the throat due to the risk of acute airway obstruction. Oxygen and intravenous antibiotics are also important in management.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 6 - A 63-year-old man arrives at the emergency department with difficulty speaking and weakness...

    Incorrect

    • A 63-year-old man arrives at the emergency department with difficulty speaking and weakness on his right side. The symptoms appeared suddenly, and he did not experience any trauma or pain. During the examination, you observe weakness in his right upper limb. Although he comprehends your inquiries, he struggles to find the right words to respond. There are no alterations in his sensation. You suspect that he has suffered a stroke. Which region of the brain is responsible for expressive dysphasia?

      Your Answer:

      Correct Answer: Broca's area

      Explanation:

      Broca’s area, located in the inferior posterior frontal lobe, is associated with expressive dysphasia, which is characterized by difficulty producing language and non-fluent speech. This condition is sometimes referred to as Broca’s dysphasia. On the other hand, the primary motor cortex, located in the posterior frontal lobe, is responsible for motor control, and lesions in this area can result in motor deficits affecting the opposite side of the body.

      Wernicke’s area, another brain region involved in speech, is primarily responsible for language comprehension and understanding. Lesions in this area can lead to receptive dysphasia, which is characterized by a lack of comprehension and understanding of language. Patients with receptive dysphasia may speak fluently, but their sentences may not make sense and may include neologisms.

      The occipital lobe, located at the back of the brain, is responsible for visual processing. Lesions in this area can result in homonymous hemianopia (with sparing of the macula), agnosias, and cortical blindness.

      Finally, the primary sensory cortex, located in the anterior region of the parietal lobe, receives sensory innervation. Lesions in this area can lead to loss of sensation, proprioception, fine touch, and vibration sense on the opposite side of the body.

      Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.

      In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 7 - A 49-year-old male has sustained a facial burn at work. During the morning...

    Incorrect

    • A 49-year-old male has sustained a facial burn at work. During the morning ward round, it is observed in the surgeon's notes that the facial artery has good arterial blood supply, leading to hope for satisfactory healing. What is the name of the major artery that the facial artery branches off from?

      Your Answer:

      Correct Answer: External carotid artery

      Explanation:

      The facial artery is the primary source of blood supply to the face, originating from the external carotid artery after the lingual artery. It follows a winding path and terminates as the angular artery at the inner corner of the eye.

      The internal carotid artery provides blood to the front and middle parts of the brain, while the vertebral artery, a branch of the subclavian artery, supplies the spinal cord, cerebellum, and back part of the brain. The brachiocephalic artery supplies the right side of the head and arm, giving rise to the subclavian and common carotid arteries on the right side.

      Anatomy of the External Carotid Artery

      The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.

      To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.

      The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 8 - As an observer in the colorectal surgical department, you spend a morning watching...

    Incorrect

    • As an observer in the colorectal surgical department, you spend a morning watching a colonoscopy list. A number of patients who arrive during the morning are individuals with Hereditary Non-Polyposis Colorectal Cancer (HNPCC), who are being screened to detect any early signs of colorectal cancer. What is the lifetime risk of developing colorectal cancer for individuals with this condition?

      Your Answer:

      Correct Answer: 90%

      Explanation:

      Colorectal cancer can be classified into three types: sporadic, hereditary non-polyposis colorectal carcinoma (HNPCC), and familial adenomatous polyposis (FAP). Sporadic colon cancer is believed to be caused by a series of genetic mutations, including allelic loss of the APC gene, activation of the K-ras oncogene, and deletion of p53 and DCC tumor suppressor genes. HNPCC, which is an autosomal dominant condition, is the most common form of inherited colon cancer. It is caused by mutations in genes involved in DNA mismatch repair, leading to microsatellite instability. The most common genes affected are MSH2 and MLH1. Patients with HNPCC are also at a higher risk of other cancers, such as endometrial cancer. The Amsterdam criteria are sometimes used to aid diagnosis of HNPCC. FAP is a rare autosomal dominant condition that leads to the formation of hundreds of polyps by the age of 30-40 years. It is caused by a mutation in the APC gene. Patients with FAP are also at risk of duodenal tumors. A variant of FAP called Gardner’s syndrome can also feature osteomas of the skull and mandible, retinal pigmentation, thyroid carcinoma, and epidermoid cysts on the skin. Genetic testing can be done to diagnose HNPCC and FAP, and patients with FAP generally have a total colectomy with ileo-anal pouch formation in their twenties.

    • This question is part of the following fields:

      • Gastrointestinal System
      0
      Seconds
  • Question 9 - A 31-year-old female patient visits her GP with complaints of constant fatigue, lethargy,...

    Incorrect

    • A 31-year-old female patient visits her GP with complaints of constant fatigue, lethargy, and severe headaches. She reports a loss of sexual drive and irregular periods. During an eye examination, the doctor observes bitemporal hemianopia, and an MRI scan reveals a large non-functional pituitary tumor. What structure is being pressed on by the tumor to cause the patient's visual symptoms?

      Your Answer:

      Correct Answer: Optic chiasm

      Explanation:

      The pituitary gland is located in the pituitary fossa, which is just above the optic chiasm. As a result, any enlarging masses from the pituitary gland can often put pressure on it, leading to bitemporal hemianopia.

      It is important to note that compression of the optic nerve would not cause more severe or widespread visual loss. Additionally, the optic nerve is not closely related to the pituitary gland anatomically, so it is unlikely to be directly compressed by a pituitary tumor.

      Similarly, the optic tract is not closely related to the pituitary gland anatomically, so it is also unlikely to be directly compressed by a pituitary tumor. Damage to the optic tract on one side would result in homonymous hemianopsia.

      The lateral geniculate nucleus is a group of cells in the thalamus that is unlikely to be compressed by a pituitary tumor. Its primary function is to transmit sensory information from the optic tract to other central parts of the visual pathway.

      Understanding Visual Field Defects

      Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.

      When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.

      Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.

      Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 10 - A 68-year-old man arrives at the emergency department complaining of intense abdominal pain...

    Incorrect

    • A 68-year-old man arrives at the emergency department complaining of intense abdominal pain that spreads to his back. His medical history shows that he has an abdominal aortic aneurysm. During a FAST scan, it is discovered that the abdominal aorta is widely dilated, with the most significant expansion occurring at the point where it divides into the iliac arteries. What vertebral level corresponds to the location of the most prominent dilation observed in the FAST scan?

      Your Answer:

      Correct Answer: L4

      Explanation:

      The abdominal aorta divides into two branches at the level of the fourth lumbar vertebrae. At the level of T12, the coeliac trunk arises, while at L1, the superior mesenteric artery branches off. The testicular artery and renal artery originate at L2, and at L3, the inferior mesenteric artery is formed.

      The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 11 - A 25-year-old woman is having a trendelenberg procedure to treat her varicose veins....

    Incorrect

    • A 25-year-old woman is having a trendelenberg procedure to treat her varicose veins. While dissecting the saphenofemoral junction, which structure is most susceptible to injury?

      Your Answer:

      Correct Answer: Deep external pudendal artery

      Explanation:

      The deep external pudendal artery is situated near the origin of the long saphenous vein and can be damaged. The highest risk of injury occurs during the flush ligation of the saphenofemoral junction. However, if an injury is detected and the vessel is tied off, it is rare for any significant negative consequences to occur.

      The Anatomy of Saphenous Veins

      The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.

      On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.

      Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 12 - Whilst conducting a cholecystectomy, a surgeon mistakenly tears the cystic artery. To minimize...

    Incorrect

    • Whilst conducting a cholecystectomy, a surgeon mistakenly tears the cystic artery. To minimize the bleeding, she applies a clamp to a vessel in the hepatoduodenal ligament.

      Which blood vessel is the surgeon probably compressing to manage the hemorrhage?

      Your Answer:

      Correct Answer: Hepatic artery

      Explanation:

      The Pringle manoeuvre, named after James Pringle, involves compressing the hepatic artery in the anterior aspect of the omental foramen to stop blood flow to the cystic artery. This is because the cystic artery is a branch of the right hepatic artery, which in turn is a branch of the (common) hepatic artery. While compressing the aorta proximal to the celiac trunk may also reduce blood flow to the cystic artery, it carries the risk of ischaemic damage to the abdominal viscera and lower limbs. Compressing the hepatic artery is therefore the preferred method as it minimizes unnecessary ischaemia. The hepatic portal vein and inferior vena cava are veins and cannot be compressed to control blood flow to the cystic artery. Similarly, compressing the superior pancreatoduodenal artery, which does not precede the cystic artery, will have no effect on controlling bleeding.

      The gallbladder is a sac made of fibromuscular tissue that can hold up to 50 ml of fluid. Its lining is made up of columnar epithelium. The gallbladder is located in close proximity to various organs, including the liver, transverse colon, and the first part of the duodenum. It is covered by peritoneum and is situated between the right lobe and quadrate lobe of the liver. The gallbladder receives its arterial supply from the cystic artery, which is a branch of the right hepatic artery. Its venous drainage is directly to the liver, and its lymphatic drainage is through Lund’s node. The gallbladder is innervated by both sympathetic and parasympathetic nerves. The common bile duct originates from the confluence of the cystic and common hepatic ducts and is located in the hepatobiliary triangle, which is bordered by the common hepatic duct, cystic duct, and the inferior edge of the liver. The cystic artery is also found within this triangle.

    • This question is part of the following fields:

      • Gastrointestinal System
      0
      Seconds
  • Question 13 - You are assisting in an open right adrenalectomy for a large adrenal adenoma...

    Incorrect

    • You are assisting in an open right adrenalectomy for a large adrenal adenoma in a slightly older patient. The consultant is momentarily distracted and you take the initiative to pull the adrenal into the wound to improve visibility. Unfortunately, this maneuver results in brisk bleeding. The most likely culprit vessel responsible for this bleeding is:

      - Portal vein
      - Phrenic vein
      - Right renal vein
      - Superior mesenteric vein
      - Inferior vena cava

      The vessel in question drains directly via a very short vessel and if not carefully sutured, it may become avulsed off the IVC. The best management approach for this injury involves the use of a Satinsky clamp and a 6/0 prolene suture.

      Your Answer:

      Correct Answer: Inferior vena cava

      Explanation:

      The vessel drains directly and is connected by a short pathway. If the sutures are not tied with caution, it could potentially detach from the IVC. In such a scenario, the recommended approach would be to use a Satinsky clamp and a 6/0 prolene suture to manage the injury.

      Adrenal Gland Anatomy

      The adrenal glands are located superomedially to the upper pole of each kidney. The right adrenal gland is posteriorly related to the diaphragm, inferiorly related to the kidney, medially related to the vena cava, and anteriorly related to the hepato-renal pouch and bare area of the liver. On the other hand, the left adrenal gland is postero-medially related to the crus of the diaphragm, inferiorly related to the pancreas and splenic vessels, and anteriorly related to the lesser sac and stomach.

      The arterial supply of the adrenal glands is through the superior adrenal arteries from the inferior phrenic artery, middle adrenal arteries from the aorta, and inferior adrenal arteries from the renal arteries. The right adrenal gland drains via one central vein directly into the inferior vena cava, while the left adrenal gland drains via one central vein into the left renal vein.

      In summary, the adrenal glands are small but important endocrine glands located above the kidneys. They have a unique blood supply and drainage system, and their location and relationships with other organs in the body are crucial for their proper functioning.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 14 - A 67-year-old male patient visits the neurology clinic for a routine follow-up of...

    Incorrect

    • A 67-year-old male patient visits the neurology clinic for a routine follow-up of his Parkinson's disease, which he has been diagnosed with for a few years now. Despite trying various medications, the patient's symptoms have been progressively deteriorating. The neurologist decides to add amantadine to his treatment regimen, in addition to other medications. Apart from its dopaminergic effects, the drug also possesses antiviral properties.

      What is the mechanism of action of amantadine's antiviral activity?

      Your Answer:

      Correct Answer: Inhibits uncoating of virus in cell

      Explanation:

      Amantadine inhibits the uncoating of viruses in cells by targeting the M2 protein channel. Although it is no longer commonly used to treat influenzae, its mechanism of action is still relevant for exams. Amantadine also has the ability to release dopamine from nerve endings.

      Interferon-alpha is an antiviral agent that inhibits mRNA synthesis and is used to treat chronic hepatitis B and C.

      Oseltamivir works by inhibiting neuraminidase and is used to treat influenzae.

      acyclovir and ganciclovir inhibit viral DNA polymerase and are used to treat various viral infections, including varicella-zoster virus and herpes simplex virus.

      Ribavirin interferes with the capping of viral mRNA and is used to treat chronic hepatitis C.

      Antiviral agents are drugs used to treat viral infections. They work by targeting specific mechanisms of the virus, such as inhibiting viral DNA polymerase or neuraminidase. Some common antiviral agents include acyclovir, ganciclovir, ribavirin, amantadine, oseltamivir, foscarnet, interferon-α, and cidofovir. Each drug has its own mechanism of action and indications for use, but they all aim to reduce the severity and duration of viral infections.

      In addition to these antiviral agents, there are also specific drugs used to treat HIV, a retrovirus. Nucleoside analogue reverse transcriptase inhibitors (NRTI), protease inhibitors (PI), and non-nucleoside reverse transcriptase inhibitors (NNRTI) are all used to target different aspects of the HIV life cycle. NRTIs work by inhibiting the reverse transcriptase enzyme, which is needed for the virus to replicate. PIs inhibit a protease enzyme that is necessary for the virus to mature and become infectious. NNRTIs bind to and inhibit the reverse transcriptase enzyme, preventing the virus from replicating. These drugs are often used in combination to achieve the best possible outcomes for HIV patients.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 15 - An 85-year-old man presents to the hospital with complaints of breathlessness at rest....

    Incorrect

    • An 85-year-old man presents to the hospital with complaints of breathlessness at rest. He has a medical history of type 2 diabetes and hypertension, for which he takes metformin, lisinopril, and metoprolol. He also smokes five cigarettes a day. On examination, he has a heart rate of 100 bpm, blood pressure of 128/90 mmHg, and a respiratory rate of 26 with oxygen saturation of 88% on 2l/minute. He has a regular, slow rising pulse, an ejection systolic murmur, crepitations at both lung bases, and oedema at the ankles and sacrum.

      What investigation is most crucial for his immediate management?

      Your Answer:

      Correct Answer: Electrocardiogram

      Explanation:

      Managing Pulmonary Edema from Congestive Cardiac Failure

      Pulmonary edema from congestive cardiac failure requires prompt investigation and management. The most crucial investigation is an ECG to check for a possible silent myocardial infarction. Even if the ECG is normal, a troponin test may be necessary to rule out a NSTEMI. Arterial blood gas analysis is also important to guide oxygen therapy. Additionally, stopping medications such as metformin, lisinopril, and metoprolol, and administering diuretics can help manage the condition.

      It is likely that the patient has aortic stenosis, which is contributing to the cardiac failure. However, acute management of the valvular disease will be addressed separately. To learn more about heart failure and its management, refer to the ABC of heart failure articles by Millane et al. and Watson et al.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 16 - In the majority of cases of transfusion reaction caused by Rh antibodies, what...

    Incorrect

    • In the majority of cases of transfusion reaction caused by Rh antibodies, what is the probable Rh grouping of the mother, father, and child?

      Your Answer:

      Correct Answer: The mother is Rh-negative, the father Rh-positive, and the baby Rh-positive

      Explanation:

      Transfusion Reactions and the Role of Rh Factor

      A transfusion reaction can occur when Rh-positive blood is given to a person who is Rh-negative and has been previously exposed to Rh-positive blood. This exposure can result in the development of anti-Rh antibodies, which can cause a reaction when Rh-positive blood is introduced into the body. In addition to transfusions, the Rh factor can also play a role in pregnancy. If a mother is Rh-negative and the father and baby are Rh-positive, there is a risk of a transfusion reaction occurring in the fetus or newborn, leading to a condition known as hemolytic disease of the fetus and newborn (HDFN). It is important to take preventative measures to avoid transfusion reactions and HDFN, such as ensuring blood compatibility and administering Rh immune globulin to Rh-negative mothers during pregnancy. the role of the Rh factor can help prevent these potentially dangerous reactions.

    • This question is part of the following fields:

      • Haematology And Oncology
      0
      Seconds
  • Question 17 - A 70-year-old man with chronic back pain and renal failure presents with the...

    Incorrect

    • A 70-year-old man with chronic back pain and renal failure presents with the following blood test results:

      Reference range
      Ca2+ 2.10 2.15-2.55 mmol/l
      Parathyroid hormone 9.8 1-6.5 pmol/l
      Phosphate 0.75 0.6-1.25 mmol/l

      What is the probable diagnosis?

      Your Answer:

      Correct Answer: Secondary hyperparathyroidism

      Explanation:

      Secondary hyperparathyroidism is characterized by elevated levels of PTH, while calcium levels are either normal or low. This condition occurs due to the parathyroid glands’ hyperplasia in response to chronic hypocalcemia or hyperphosphatemia, which is a natural physiological reaction. The body releases calcium from the kidneys, gastrointestinal system, and bones.

      Parathyroid Glands and Disorders of Calcium Metabolism

      The parathyroid glands play a crucial role in regulating calcium levels in the body. Hyperparathyroidism is a disorder that occurs when these glands produce too much parathyroid hormone (PTH), leading to abnormal calcium metabolism. Primary hyperparathyroidism is the most common form and is usually caused by a solitary adenoma. Secondary hyperparathyroidism occurs as a result of low calcium levels, often in the setting of chronic renal failure. Tertiary hyperparathyroidism is a rare condition that occurs when hyperplasia of the parathyroid glands persists after correction of underlying renal disorder.

      Diagnosis of hyperparathyroidism is based on hormone profiles and clinical features. Treatment options vary depending on the type and severity of the disorder. Surgery is usually indicated for primary hyperparathyroidism if certain criteria are met, such as elevated serum calcium levels, hypercalciuria, and nephrolithiasis. Secondary hyperparathyroidism is typically managed with medical therapy, while surgery may be necessary for persistent symptoms such as bone pain and soft tissue calcifications. Tertiary hyperparathyroidism may resolve on its own within a year after transplant, but surgery may be required if an autonomously functioning parathyroid gland is present. It is important to consider differential diagnoses, such as benign familial hypocalciuric hypercalcaemia, which is a rare but relatively benign condition.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 18 - A 25-year-old woman is seeking your assistance in getting a referral to a...

    Incorrect

    • A 25-year-old woman is seeking your assistance in getting a referral to a clinical geneticist. She has a family history of Huntington's disease, with her grandfather having died from the condition and her father recently being diagnosed. She wants to learn more about the disease and its genetic inheritance. Which of the following statements is accurate?

      Your Answer:

      Correct Answer: Huntington's disease is caused by a defect on chromosome 4

      Explanation:

      The cause of Huntington’s disease is a flaw in the huntingtin gene located on chromosome 4, resulting in a degenerative and irreversible neurological disorder. It is inherited in an autosomal dominant pattern and affects both genders equally.

      Huntington’s disease is a genetic disorder that causes progressive and incurable neurodegeneration. It is inherited in an autosomal dominant manner and is caused by a trinucleotide repeat expansion of CAG in the huntingtin gene on chromosome 4. This can result in the phenomenon of anticipation, where the disease presents at an earlier age in successive generations. The disease leads to the degeneration of cholinergic and GABAergic neurons in the striatum of the basal ganglia, which can cause a range of symptoms.

      Typically, symptoms of Huntington’s disease develop after the age of 35 and can include chorea, personality changes such as irritability, apathy, and depression, intellectual impairment, dystonia, and saccadic eye movements. Unfortunately, there is currently no cure for Huntington’s disease, and it usually results in death around 20 years after the initial symptoms develop.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 19 - Which of the following medications can lead to hyperkalemia? ...

    Incorrect

    • Which of the following medications can lead to hyperkalemia?

      Your Answer:

      Correct Answer: Heparin

      Explanation:

      Hyperkalaemia can be caused by both unfractionated and low-molecular weight heparin due to their ability to inhibit aldosterone secretion. Salbutamol is a known remedy for hyperkalaemia.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 20 - A child is diagnosed with Klumpke's palsy after birth. What is the most...

    Incorrect

    • A child is diagnosed with Klumpke's palsy after birth. What is the most probable symptom that will be observed?

      Your Answer:

      Correct Answer: Loss of flexors of the wrist

      Explanation:

      Klumpke’s paralysis is characterized by several features, including claw hand with extended MCP joints and flexed IP joints, loss of sensation over the medial aspect of the forearm and hand, Horner’s syndrome, and loss of flexors of the wrist. This condition is caused by a C8, T1 root lesion, which typically occurs during delivery when the arm is extended.

      Understanding the Brachial Plexus and Cutaneous Sensation of the Upper Limb

      The brachial plexus is a network of nerves that originates from the anterior rami of C5 to T1. It is divided into five sections: roots, trunks, divisions, cords, and branches. To remember these sections, a common mnemonic used is Real Teenagers Drink Cold Beer.

      The roots of the brachial plexus are located in the posterior triangle and pass between the scalenus anterior and medius muscles. The trunks are located posterior to the middle third of the clavicle, with the upper and middle trunks related superiorly to the subclavian artery. The lower trunk passes over the first rib posterior to the subclavian artery. The divisions of the brachial plexus are located at the apex of the axilla, while the cords are related to the axillary artery.

      The branches of the brachial plexus provide cutaneous sensation to the upper limb. This includes the radial nerve, which provides sensation to the posterior arm, forearm, and hand; the median nerve, which provides sensation to the palmar aspect of the thumb, index, middle, and half of the ring finger; and the ulnar nerve, which provides sensation to the palmar and dorsal aspects of the fifth finger and half of the ring finger.

      Understanding the brachial plexus and its branches is important in diagnosing and treating conditions that affect the upper limb, such as nerve injuries and neuropathies. It also helps in understanding the cutaneous sensation of the upper limb and how it relates to the different nerves of the brachial plexus.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 21 - A 45-year-old woman visits her doctor for a follow-up appointment after commencing metformin...

    Incorrect

    • A 45-year-old woman visits her doctor for a follow-up appointment after commencing metformin treatment half a year ago. She expresses worry about the potential long-term impact of diabetes on her kidneys, based on information she read online.

      What is the primary mechanism through which kidney damage occurs in this demographic of patients?

      Your Answer:

      Correct Answer: Non-enzymatic glycosylation

      Explanation:

      The non-enzymatic glycosylation of the basement membrane is responsible for the complications of diabetes nephropathy.

      Understanding Diabetic Nephropathy: The Common Cause of End-Stage Renal Disease

      Diabetic nephropathy is the leading cause of end-stage renal disease in the western world. It affects approximately 33% of patients with type 1 diabetes mellitus by the age of 40 years, and around 5-10% of patients with type 1 diabetes mellitus develop end-stage renal disease. The pathophysiology of diabetic nephropathy is not fully understood, but changes to the haemodynamics of the glomerulus, such as increased glomerular capillary pressure, and non-enzymatic glycosylation of the basement membrane are thought to play a key role. Histological changes include basement membrane thickening, capillary obliteration, mesangial widening, and the development of nodular hyaline areas in the glomeruli, known as Kimmelstiel-Wilson nodules.

      There are both modifiable and non-modifiable risk factors for developing diabetic nephropathy. Modifiable risk factors include hypertension, hyperlipidaemia, smoking, poor glycaemic control, and raised dietary protein. On the other hand, non-modifiable risk factors include male sex, duration of diabetes, and genetic predisposition, such as ACE gene polymorphisms. Understanding these risk factors and the pathophysiology of diabetic nephropathy is crucial in the prevention and management of this condition.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 22 - A 25-year-old woman with bothersome axillary hyperhidrosis is scheduled for a thoracoscopic sympathectomy...

    Incorrect

    • A 25-year-old woman with bothersome axillary hyperhidrosis is scheduled for a thoracoscopic sympathectomy to manage the condition. What anatomical structure must be severed to reach the sympathetic trunk during the procedure?

      Your Answer:

      Correct Answer: Parietal pleura

      Explanation:

      The parietal pleura is located anterior to the sympathetic chain. When performing a thoracoscopic sympathetomy, it is necessary to cut through this structure. The intercostal vessels are situated at the back and should be avoided as much as possible to prevent excessive bleeding. Deliberately cutting them will not enhance surgical access.

      Anatomy of the Sympathetic Nervous System

      The sympathetic nervous system is responsible for the fight or flight response in the body. The preganglionic efferent neurons of this system are located in the lateral horn of the grey matter of the spinal cord in the thoraco-lumbar regions. These neurons leave the spinal cord at levels T1-L2 and pass to the sympathetic chain. The sympathetic chain lies on the vertebral column and runs from the base of the skull to the coccyx. It is connected to every spinal nerve through lateral branches, which then pass to structures that receive sympathetic innervation at the periphery.

      The sympathetic ganglia are also an important part of this system. The superior cervical ganglion lies anterior to C2 and C3, while the middle cervical ganglion (if present) is located at C6. The stellate ganglion is found anterior to the transverse process of C7 and lies posterior to the subclavian artery, vertebral artery, and cervical pleura. The thoracic ganglia are segmentally arranged, and there are usually four lumbar ganglia.

      Interruption of the head and neck supply of the sympathetic nerves can result in an ipsilateral Horners syndrome. For the treatment of hyperhidrosis, sympathetic denervation can be achieved by removing the second and third thoracic ganglia with their rami. However, removal of T1 is not performed as it can cause a Horners syndrome. In patients with vascular disease of the lower limbs, a lumbar sympathetomy may be performed either radiologically or surgically. The ganglia of L2 and below are disrupted, but if L1 is removed, ejaculation may be compromised, and little additional benefit is conferred as the preganglionic fibres do not arise below L2.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 23 - During a tricuspid valve repair, the right atrium is opened after establishing cardiopulmonary...

    Incorrect

    • During a tricuspid valve repair, the right atrium is opened after establishing cardiopulmonary bypass. Which of the following structures is not located within the right atrium?

      Your Answer:

      Correct Answer: Trabeculae carnae

      Explanation:

      The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 24 - A 28-year-old woman presents to her GP with milky discharge from her breasts....

    Incorrect

    • A 28-year-old woman presents to her GP with milky discharge from her breasts. Her periods have also become very irregular and she has not menstruated in the past 4 months. On further questioning, she reports not being sexually active since having a miscarriage 9 months ago which required surgical management. On examination, there are no palpable masses in her breasts bilaterally, she demonstrates a small amount of milky white discharge from her left nipple which is collected for microscopy, culture, and sensitivity. She has no focal neurological deficits, cardiac, and respiratory examination is unremarkable, and her abdominal examination is unremarkable.

      What is the most likely diagnosis?

      Your Answer:

      Correct Answer: Prolactinoma

      Explanation:

      The likely cause of this patient’s amenorrhoea and galactorrhoea is a prolactinoma, which inhibits the secretion of GnRH and leads to low levels of oestrogen. Further tests, including a urinary pregnancy test and blood tests for various hormones, should be conducted to confirm the diagnosis. Asherman’s syndrome, intraductal papilloma, and pregnancy are less likely causes, as they do not present with the same symptoms or do not fit the patient’s reported history.

      Understanding Amenorrhoea: Causes, Investigations, and Management

      Amenorrhoea is a condition characterized by the absence of menstrual periods. It can be classified into two types: primary and secondary. Primary amenorrhoea occurs when menstruation fails to start by the age of 15 in girls with normal secondary sexual characteristics or by the age of 13 in girls with no secondary sexual characteristics. On the other hand, secondary amenorrhoea is the cessation of menstruation for 3-6 months in women with previously normal and regular menses or 6-12 months in women with previous oligomenorrhoea.

      The causes of amenorrhoea vary depending on the type. Primary amenorrhoea may be caused by gonadal dysgenesis, testicular feminization, congenital malformations of the genital tract, functional hypothalamic amenorrhoea, congenital adrenal hyperplasia, imperforate hymen, hypothalamic amenorrhoea, polycystic ovarian syndrome, hyperprolactinemia, premature ovarian failure, and thyrotoxicosis. Meanwhile, secondary amenorrhoea may be caused by stress, excessive exercise, PCOS, Sheehan’s syndrome, Asherman’s syndrome, and other underlying medical conditions.

      To diagnose amenorrhoea, initial investigations may include pregnancy tests, full blood count, urea & electrolytes, coeliac screen, thyroid function tests, gonadotrophins, prolactin, and androgen levels. Management of amenorrhoea involves treating the underlying cause. For primary amenorrhoea, it is important to investigate and treat any underlying cause. For secondary amenorrhoea, it is important to exclude pregnancy, lactation, and menopause and treat the underlying cause accordingly. Women with primary ovarian insufficiency due to gonadal dysgenesis may benefit from hormone replacement therapy to prevent osteoporosis and other complications.

      In conclusion, amenorrhoea is a condition that requires proper diagnosis and management. Understanding the causes and appropriate investigations can help in providing the necessary treatment and care for women experiencing this condition.

    • This question is part of the following fields:

      • Reproductive System
      0
      Seconds
  • Question 25 - A 23-year-old female medical student arrives at the emergency department with haematemesis, a...

    Incorrect

    • A 23-year-old female medical student arrives at the emergency department with haematemesis, a fever and weakness. She had been experiencing headache, myalgia and nausea for the past 3 days, but felt slightly better yesterday before feeling much worse today. She had recently travelled to Uganda for her elective and did not receive any of the recommended travel vaccines. Upon examination, she is bradycardic, weak all over and visibly jaundiced.

      What is the most appropriate description of the infection that this student is currently suffering from?

      Your Answer:

      Correct Answer: Zoonotic viral infection

      Explanation:

      The probable cause of the patient’s illness is yellow fever, which is a zoonotic infection. The symptoms, temporary relief, and recent travel to a region with a high incidence of yellow fever all point to this diagnosis. Yellow fever is a viral disease that is transmitted by the Aedes mosquito and can infect other primates as well. It is recommended that individuals traveling to yellow fever-prone areas receive the yellow fever vaccine before departure.

      Yellow Fever: A Viral Hemorrhagic Fever Spread by Mosquitos

      Yellow fever is a type of viral hemorrhagic fever that is spread by Aedes mosquitos. The incubation period for this zoonotic infection is typically between 2 to 14 days. While some individuals may experience only mild flu-like symptoms lasting less than a week, the classic description of yellow fever involves a sudden onset of high fever, rigors, nausea, and vomiting. Bradycardia, or a slow heart rate, may also develop. After a brief remission, jaundice, haematemesis, and oliguria may occur. In severe cases, individuals may experience jaundice and haematemesis. Councilman bodies, which are inclusion bodies, may also be seen in the hepatocytes.

    • This question is part of the following fields:

      • General Principles
      0
      Seconds
  • Question 26 - Which one of the following statements regarding gastric acid secretions is false? ...

    Incorrect

    • Which one of the following statements regarding gastric acid secretions is false?

      Your Answer:

      Correct Answer: The intestinal phase accounts for 60% of gastric acid produced

      Explanation:

      Understanding Gastric Secretions for Surgical Procedures

      A basic understanding of gastric secretions is crucial for surgeons, especially when dealing with patients who have undergone acid-lowering procedures or are prescribed anti-secretory drugs. Gastric acid, produced by the parietal cells in the stomach, has a pH of around 2 and is maintained by the H+/K+ ATPase pump. Sodium and chloride ions are actively secreted from the parietal cell into the canaliculus, creating a negative potential across the membrane. Carbonic anhydrase forms carbonic acid, which dissociates, and the hydrogen ions formed by dissociation leave the cell via the H+/K+ antiporter pump. This leaves hydrogen and chloride ions in the canaliculus, which mix and are secreted into the lumen of the oxyntic gland.

      There are three phases of gastric secretion: the cephalic phase, gastric phase, and intestinal phase. The cephalic phase is stimulated by the smell or taste of food and causes 30% of acid production. The gastric phase, which is caused by stomach distension, low H+, or peptides, causes 60% of acid production. The intestinal phase, which is caused by high acidity, distension, or hypertonic solutions in the duodenum, inhibits gastric acid secretion via enterogastrones and neural reflexes.

      The regulation of gastric acid production involves various factors that increase or decrease production. Factors that increase production include vagal nerve stimulation, gastrin release, and histamine release. Factors that decrease production include somatostatin, cholecystokinin, and secretin. Understanding these factors and their associated pharmacology is essential for surgeons.

      In summary, a working knowledge of gastric secretions is crucial for surgical procedures, especially when dealing with patients who have undergone acid-lowering procedures or are prescribed anti-secretory drugs. Understanding the phases of gastric secretion and the regulation of gastric acid production is essential for successful surgical outcomes.

    • This question is part of the following fields:

      • Gastrointestinal System
      0
      Seconds
  • Question 27 - A 16-year-old boy presents to the hospital with suspected appendicitis. Upon examination, he...

    Incorrect

    • A 16-year-old boy presents to the hospital with suspected appendicitis. Upon examination, he exhibits maximum tenderness at McBurney's point. Can you identify the location of McBurney's point?

      Your Answer:

      Correct Answer: 2/3rds laterally along the line between the umbilicus and the anterior superior iliac spine

      Explanation:

      To locate McBurney’s point, one should draw an imaginary line from the umbilicus to the anterior superior iliac spine on the right-hand side and then find the point that is 2/3rds of the way along this line. The other choices do not provide the correct location for this anatomical landmark.

      Acute appendicitis is a common condition that requires surgery and can occur at any age, but is most prevalent in young people aged 10-20 years. The pathogenesis of acute appendicitis involves lymphoid hyperplasia or a faecolith, which leads to obstruction of the appendiceal lumen. This obstruction causes gut organisms to invade the appendix wall, resulting in oedema, ischaemia, and possibly perforation.

      The most common symptom of acute appendicitis is abdominal pain, which is typically peri-umbilical and radiates to the right iliac fossa due to localised peritoneal inflammation. Other symptoms include mild pyrexia, anorexia, and nausea. Examination may reveal generalised or localised peritonism, rebound and percussion tenderness, guarding and rigidity, and classical signs such as Rovsing’s sign and psoas sign.

      Diagnosis of acute appendicitis is typically based on raised inflammatory markers and compatible history and examination findings. Imaging may be used in certain cases, such as ultrasound in females where pelvic organ pathology is suspected. Management of acute appendicitis involves appendicectomy, which can be performed via an open or laparoscopic approach. Patients with perforated appendicitis require copious abdominal lavage, while those without peritonitis who have an appendix mass should receive broad-spectrum antibiotics and consideration given to performing an interval appendicectomy. Intravenous antibiotics alone have been trialled as a treatment for appendicitis, but evidence suggests that this is associated with a longer hospital stay and up to 20% of patients go on to have an appendicectomy within 12 months.

    • This question is part of the following fields:

      • Gastrointestinal System
      0
      Seconds
  • Question 28 - A 15-year-old boy presents with diplopia and headache. Imaging reveals acute hydrocephalus and...

    Incorrect

    • A 15-year-old boy presents with diplopia and headache. Imaging reveals acute hydrocephalus and a space occupying lesion in the base of the 4th ventricle. What type of cell proliferation would be expected on biopsy?

      Your Answer:

      Correct Answer: Ependymal cells

      Explanation:

      Childhood tumours of the central nervous system (CNS) frequently develop at the base of the 4th ventricle. Oligodendrocytes are accountable for creating the myelin sheath in the CNS. The formation of the blood-brain barrier is a crucial function of astrocytes. Schwann cells are responsible for creating the myelin sheath in the peripheral nervous system.

      The nervous system is composed of various types of cells, each with their own unique functions. Oligodendroglia cells are responsible for producing myelin in the central nervous system (CNS) and are affected in multiple sclerosis. Schwann cells, on the other hand, produce myelin in the peripheral nervous system (PNS) and are affected in Guillain-Barre syndrome. Astrocytes provide physical support, remove excess potassium ions, help form the blood-brain barrier, and aid in physical repair. Microglia are specialised CNS phagocytes, while ependymal cells provide the inner lining of the ventricles.

      In summary, the nervous system is made up of different types of cells, each with their own specific roles. Oligodendroglia and Schwann cells produce myelin in the CNS and PNS, respectively, and are affected in certain diseases. Astrocytes provide physical support and aid in repair, while microglia are specialised phagocytes in the CNS. Ependymal cells line the ventricles. Understanding the functions of these cells is crucial in understanding the complex workings of the nervous system.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 29 - Which one of the following statements relating to the hip joint is false?...

    Incorrect

    • Which one of the following statements relating to the hip joint is false?

      Your Answer:

      Correct Answer: The posterior aspect of the patella is extrasynovial

      Explanation:

      The knee is the largest synovial joint in the body and its posterior aspect is located within the synovial membrane. In case of an ACL injury, the knee may swell significantly and cause severe pain due to its extensive innervation from the femoral, sciatic, and obturator nerves. When fully extended, all ligaments are stretched and the knee is in a locked position.

      The knee joint is the largest and most complex synovial joint in the body, consisting of two condylar joints between the femur and tibia and a sellar joint between the patella and femur. The degree of congruence between the tibiofemoral articular surfaces is improved by the presence of the menisci, which compensate for the incongruence of the femoral and tibial condyles. The knee joint is divided into two compartments: the tibiofemoral and patellofemoral compartments. The fibrous capsule of the knee joint is a composite structure with contributions from adjacent tendons, and it contains several bursae and ligaments that provide stability to the joint. The knee joint is supplied by the femoral, tibial, and common peroneal divisions of the sciatic nerve and by a branch from the obturator nerve, while its blood supply comes from the genicular branches of the femoral artery, popliteal, and anterior tibial arteries.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      0
      Seconds
  • Question 30 - A 40-year-old man is stabbed in the abdomen and the inferior vena cava...

    Incorrect

    • A 40-year-old man is stabbed in the abdomen and the inferior vena cava is injured. What is the typical number of functional valves found in this vessel?

      Your Answer:

      Correct Answer: 0

      Explanation:

      Anatomy of the Inferior Vena Cava

      The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.

      The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.

      The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

General Principles (0/1) 0%
Neurological System (1/1) 100%
Passmed