00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A teenage girl with suspected sensorineural hearing loss is being educated by her...

    Incorrect

    • A teenage girl with suspected sensorineural hearing loss is being educated by her physician about the anatomy of the auditory system. The doctor informs her that there are three bones responsible for transmitting sound waves to the eardrum. Can you identify the correct sequence in which these bones are present?

      Your Answer: Malleus, stapes, incus

      Correct Answer: Malleus, incus, stapes

      Explanation:

      The order in which sound waves are transmitted to the oval window, the entrance to the inner ear, is through the bones known as malleus, incus, and stapes. The vestibulocochlear nerve plays a significant role in the process of sensorineural hearing.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      26.6
      Seconds
  • Question 2 - Your next patient, Emily, is a 26-year-old female who is an avid athlete....

    Correct

    • Your next patient, Emily, is a 26-year-old female who is an avid athlete. She arrives at the emergency department with an arm injury. After a basic x-ray, it is revealed that she has a humerus shaft fracture.

      Considering the probable nerve damage, which of the subsequent movements will Emily have difficulty with?

      Your Answer: Wrist extension

      Explanation:

      The radial nerve is susceptible to injury in the case of a humerus shaft fracture, which can result in impaired wrist extension.

      The Radial Nerve: Anatomy, Innervation, and Patterns of Damage

      The radial nerve is a continuation of the posterior cord of the brachial plexus, with root values ranging from C5 to T1. It travels through the axilla, posterior to the axillary artery, and enters the arm between the brachial artery and the long head of triceps. From there, it spirals around the posterior surface of the humerus in the groove for the radial nerve before piercing the intermuscular septum and descending in front of the lateral epicondyle. At the lateral epicondyle, it divides into a superficial and deep terminal branch, with the deep branch crossing the supinator to become the posterior interosseous nerve.

      The radial nerve innervates several muscles, including triceps, anconeus, brachioradialis, and extensor carpi radialis. The posterior interosseous branch innervates supinator, extensor carpi ulnaris, extensor digitorum, and other muscles. Denervation of these muscles can lead to weakness or paralysis, with effects ranging from minor effects on shoulder stability to loss of elbow extension and weakening of supination of prone hand and elbow flexion in mid prone position.

      Damage to the radial nerve can result in wrist drop and sensory loss to a small area between the dorsal aspect of the 1st and 2nd metacarpals. Axillary damage can also cause paralysis of triceps. Understanding the anatomy, innervation, and patterns of damage of the radial nerve is important for diagnosing and treating conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      35
      Seconds
  • Question 3 - A 36-year-old male arrives at the emergency department with a sudden thunderclap headache...

    Correct

    • A 36-year-old male arrives at the emergency department with a sudden thunderclap headache in the occipital area and photophobia. The CT scan of the head reveals hyper-attenuation around the circle of Willis, within the subarachnoid space. What is the probable diagnosis, and which meningeal layer is the hemorrhage located between, apart from the arachnoid mater?

      Your Answer: Pia mater

      Explanation:

      The correct answer is the pia mater, which is the innermost layer of the meninges. A sudden onset headache at the back of the head, described as thunderclap in nature, is a classic symptom of a subarachnoid hemorrhage. This type of bleeding occurs in the subarachnoid space, which is located between the arachnoid mater and the pia mater. The pia mater is directly attached to the brain and spinal cord.

      The answer bone is incorrect because the bleed occurs between the pia mater and arachnoid mater, not in the bone. Bone is not a meningeal layer.

      The answer brain is also incorrect because the bleed occurs above the pia mater and below the arachnoid mater, in the subarachnoid space. The brain is located below the pia mater and is not directly involved in the bleed. The brain is also not a meningeal layer.

      The answer dura mater is incorrect because it is the thick outermost layer of the meninges, not the innermost layer where the bleed occurs.

      The Three Layers of Meninges

      The meninges are a group of membranes that cover the brain and spinal cord, providing support to the central nervous system and the blood vessels that supply it. These membranes can be divided into three distinct layers: the dura mater, arachnoid mater, and pia mater.

      The outermost layer, the dura mater, is a thick fibrous double layer that is fused with the inner layer of the periosteum of the skull. It has four areas of infolding and is pierced by small areas of the underlying arachnoid to form structures called arachnoid granulations. The arachnoid mater forms a meshwork layer over the surface of the brain and spinal cord, containing both cerebrospinal fluid and vessels supplying the nervous system. The final layer, the pia mater, is a thin layer attached directly to the surface of the brain and spinal cord.

      The meninges play a crucial role in protecting the brain and spinal cord from injury and disease. However, they can also be the site of serious medical conditions such as subdural and subarachnoid haemorrhages. Understanding the structure and function of the meninges is essential for diagnosing and treating these conditions.

    • This question is part of the following fields:

      • Neurological System
      42.1
      Seconds
  • Question 4 - A 60-year-old man visits an after-hours medical facility in the late evening with...

    Incorrect

    • A 60-year-old man visits an after-hours medical facility in the late evening with a complaint of a severe headache that is focused around his left eye. He mentions experiencing haloes in his vision and difficulty seeing clearly. The patient has a medical history of hypertension and diabetes. During the examination, the sclera appears red, and the cornea is hazy with a dilated pupil.

      What condition is the most probable diagnosis?

      Your Answer: Central retinal vein occlusion

      Correct Answer: Acute closed-angle glaucoma

      Explanation:

      The patient’s symptoms are consistent with acute closed-angle glaucoma, which is an urgent ophthalmological emergency. They are experiencing a headache with unilateral eye pain, reduced vision, visual haloes, a red and congested eye with a cloudy cornea, and a dilated, unresponsive pupil. These symptoms may be triggered by darkness or dilating eye drops. Treatment should involve laying the patient flat to relieve angle pressure, administering pilocarpine eye drops to constrict the pupil, acetazolamide orally to reduce aqueous humour production, and providing analgesia. Referral to secondary care is necessary.

      It is important to differentiate this condition from other potential causes of the patient’s symptoms. Central retinal vein occlusion, for example, would cause sudden painless loss of vision and severe retinal haemorrhages on fundoscopy. Migraines typically involve a visual or somatosensory aura followed by a unilateral throbbing headache, nausea, vomiting, and photophobia. Subarachnoid haemorrhages present with a sudden, severe headache, rather than a gradually worsening one accompanied by eye signs. Temporal arteritis may cause pain when chewing, difficulty brushing hair, and thickened temporal arteries visible on examination. However, the presence of a dilated, fixed pupil with conjunctival injection should steer the clinician away from a diagnosis of migraine.

      Acute angle closure glaucoma (AACG) is a type of glaucoma where there is a rise in intraocular pressure (IOP) due to a blockage in the outflow of aqueous humor. This condition is more likely to occur in individuals with hypermetropia, pupillary dilation, and lens growth associated with aging. Symptoms of AACG include severe pain, decreased visual acuity, a hard and red eye, haloes around lights, and a semi-dilated non-reacting pupil. AACG is an emergency and requires urgent referral to an ophthalmologist. The initial medical treatment involves a combination of eye drops, such as a direct parasympathomimetic, a beta-blocker, and an alpha-2 agonist, as well as intravenous acetazolamide to reduce aqueous secretions. Definitive management involves laser peripheral iridotomy, which creates a tiny hole in the peripheral iris to allow aqueous humor to flow to the angle.

    • This question is part of the following fields:

      • Neurological System
      23.1
      Seconds
  • Question 5 - A 57-year-old woman with a history of polycystic kidney disease visits her doctor...

    Incorrect

    • A 57-year-old woman with a history of polycystic kidney disease visits her doctor complaining of a drooping eyelid. Upon examination, her left eye displays unilateral ptosis and a downward and outward gaze, with a dilated left pupil. The patient is referred to the neuroradiology department for cerebral angiography, which reveals an aneurysm compressing the oculomotor nerve as it passes through two arteries. What are the names of these two arteries that the oculomotor nerve runs through?

      Your Answer:

      Correct Answer: Posterior cerebral and superior cerebellar arteries

      Explanation:

      The oculomotor nerve commonly becomes compressed by aneurysms arising from the posterior cerebral and superior cerebellar arteries as it exits the midbrain, passing between these vessels.

      When a patient presents with ptosis, pupillary dilation, and downward and outward gaze, this is classified as a ‘surgical’ cause of oculomotor nerve palsy. In contrast, ‘medical’ causes of oculomotor nerve palsy, such as diabetic neuropathy, typically spare the pupil (at least initially) because the parasympathetic fibers are located on the periphery of the oculomotor nerve trunk and are therefore the first to be affected by compression, resulting in a fixed and dilated pupil.

      While a posterior communicating artery aneurysm is a classic cause of oculomotor nerve compression, it is not the correct answer to the above question.

      All other combinations are incorrect.

      Disorders of the Oculomotor System: Nerve Path and Palsy Features

      The oculomotor system is responsible for controlling eye movements and pupil size. Disorders of this system can result in various nerve path and palsy features. The oculomotor nerve has a large nucleus at the midbrain and its fibers pass through the red nucleus and the pyramidal tract, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience ptosis, eye down and out, and an inability to move the eye superiorly, inferiorly, or medially. The pupil may also become fixed and dilated.

      The trochlear nerve has the longest intracranial course and is the only nerve to exit the dorsal aspect of the brainstem. Its nucleus is located at the midbrain and it passes between the posterior cerebral and superior cerebellar arteries, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience vertical diplopia (diplopia on descending the stairs) and an inability to look down and in.

      The abducens nerve has its nucleus in the mid pons and is responsible for the convergence of eyes in primary position. When this nerve is affected, patients may experience lateral diplopia towards the side of the lesion and the eye may deviate medially. Understanding the nerve path and palsy features of the oculomotor system can aid in the diagnosis and treatment of disorders affecting this important system.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 6 - Which one of the following structures is not at the level of the...

    Incorrect

    • Which one of the following structures is not at the level of the infrapyloric plane?

      Your Answer:

      Correct Answer: Cardioesophageal junction

      Explanation:

      The cardioesophageal junction is located at the level of T11, which is a frequently tested anatomical knowledge. The oesophagus spans from the lower border of the cricoid cartilage at C6 to the cardioesophageal junction at T11. It is important to note that in newborns, the oesophagus extends from C4 or C5 to T9.

      Anatomical Planes and Levels in the Human Body

      The human body can be divided into different planes and levels to aid in anatomical study and medical procedures. One such plane is the transpyloric plane, which runs horizontally through the body of L1 and intersects with various organs such as the pylorus of the stomach, left kidney hilum, and duodenojejunal flexure. Another way to identify planes is by using common level landmarks, such as the inferior mesenteric artery at L3 or the formation of the IVC at L5.

      In addition to planes and levels, there are also diaphragm apertures located at specific levels in the body. These include the vena cava at T8, the esophagus at T10, and the aortic hiatus at T12. By understanding these planes, levels, and apertures, medical professionals can better navigate the human body during procedures and accurately diagnose and treat various conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 7 - A 27-year-old male is brought in after collapsing. According to the paramedics, he...

    Incorrect

    • A 27-year-old male is brought in after collapsing. According to the paramedics, he was found unconscious at a bar and no one knows what happened. Upon examination, his eyes remain closed and do not respond to commands, but he mumbles incomprehensibly when pressure is applied to his nailbed. He also opens his eyes and uses his other hand to push away the painful stimulus. His temperature is 37°C, his oxygen saturation is 95% on air, and his pulse is 100 bpm with a blood pressure of 106/76 mmHg. What is his Glasgow coma scale score?

      Your Answer:

      Correct Answer: 9

      Explanation:

      The Glasgow Coma Scale is used because it is simple, has high interobserver reliability, and correlates well with outcome following severe brain injury. It consists of three components: Eye Opening, Verbal Response, and Motor Response. The score is the sum of the scores as well as the individual elements. For example, a score of 10 might be expressed as GCS10 = E3V4M3.

      Best eye response:
      1- No eye opening
      2- Eye opening to pain
      3- Eye opening to sound
      4- Eyes open spontaneously

      Best verbal response:
      1- No verbal response
      2- Incomprehensible sounds
      3- Inappropriate words
      4- Confused
      5- Orientated

      Best motor response:
      1- No motor response.
      2- Abnormal extension to pain
      3- Abnormal flexion to pain
      4- Withdrawal from pain
      5- Localizing pain
      6- Obeys commands

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 8 - A 60-year-old man visits his physician with a complaint of double vision. During...

    Incorrect

    • A 60-year-old man visits his physician with a complaint of double vision. During the examination, the physician observes that the left eye is in a 'down and out' position and the pupil is dilated. The physician suspects a cranial nerve palsy.

      What is the probable reason for his nerve palsy?

      Your Answer:

      Correct Answer: Posterior communicating artery aneurysm

      Explanation:

      Consider compression as the likely cause of surgical third nerve palsy.

      When the dilation of the pupil is involved, it is referred to as surgical third nerve palsy. This condition is caused by a lesion that compresses the pupillary fibers located on the outer part of the third nerve. Unlike vascular causes of third nerve palsy, which only affect the nerve and not the pupillary fibers.

      Out of the given options, only answer 4 is a compressive cause of third nerve palsy. The other options are risk factors for vascular causes.

      Understanding Third Nerve Palsy: Causes and Features

      Third nerve palsy is a neurological condition that affects the third cranial nerve, which controls the movement of the eye and eyelid. The condition is characterized by the eye being deviated ‘down and out’, ptosis, and a dilated pupil. In some cases, it may be referred to as a ‘surgical’ third nerve palsy due to the dilation of the pupil.

      There are several possible causes of third nerve palsy, including diabetes mellitus, vasculitis (such as temporal arteritis or SLE), uncal herniation through tentorium if raised ICP, posterior communicating artery aneurysm, and cavernous sinus thrombosis. In some cases, it may also be a false localizing sign. Weber’s syndrome, which is characterized by an ipsilateral third nerve palsy with contralateral hemiplegia, is caused by midbrain strokes. Other possible causes include amyloid and multiple sclerosis.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 9 - A 70-year-old man is undergoing an elective total knee replacement surgery for chronic...

    Incorrect

    • A 70-year-old man is undergoing an elective total knee replacement surgery for chronic osteoarthritis. The surgical team aims to minimize the risk of damage to the common peroneal nerve and tibial nerve during the procedure. Can you identify the anatomical landmark where the sciatic nerve divides into these two nerves?

      Your Answer:

      Correct Answer: Apex of the popliteal fossa

      Explanation:

      The sciatic nerve is derived from the lumbosacral plexus and consists of nerve roots L4-S3. It enters the gluteal region through the greater sciatic foramen and emerges inferiorly to the piriformis muscle, traveling inferolaterally. The nerve enters the posterior thigh by passing deep to the long head of biceps femoris and eventually splits into the tibial and common fibular nerves at the apex of the popliteal fossa. The sciatic nerve primarily innervates the muscles of the posterior thigh and the hamstring portion of the adductor magnus, but it has no direct sensory function.

      Understanding the Sciatic Nerve

      The sciatic nerve is the largest nerve in the body, formed from the sacral plexus and arising from spinal nerves L4 to S3. It passes through the greater sciatic foramen and emerges beneath the piriformis muscle, running under the cover of the gluteus maximus muscle. The nerve provides cutaneous sensation to the skin of the foot and leg, as well as innervating the posterior thigh muscles and lower leg and foot muscles. Approximately halfway down the posterior thigh, the nerve splits into the tibial and common peroneal nerves. The tibial nerve supplies the flexor muscles, while the common peroneal nerve supplies the extensor and abductor muscles.

      The sciatic nerve also has articular branches for the hip joint and muscular branches in the upper leg, including the semitendinosus, semimembranosus, biceps femoris, and part of the adductor magnus. Cutaneous sensation is provided to the posterior aspect of the thigh via cutaneous nerves, as well as the gluteal region and entire lower leg (except the medial aspect). The nerve terminates at the upper part of the popliteal fossa by dividing into the tibial and peroneal nerves. The nerve to the short head of the biceps femoris comes from the common peroneal part of the sciatic, while the other muscular branches arise from the tibial portion. The tibial nerve goes on to innervate all muscles of the foot except the extensor digitorum brevis, which is innervated by the common peroneal nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 10 - A 7-year-old girl is brought to the child assessment unit by her father....

    Incorrect

    • A 7-year-old girl is brought to the child assessment unit by her father. She has been experiencing lower leg pain for over 3 weeks. He reports that she has been tripping more than usual but attributes it to her new carpet. Lately, she has been having difficulty getting out of bed and sometimes complains of feeling tired. The child appears to be in good health but has a runny nose. During the examination, she falls off the bed and lands on the floor. She uses her arms and legs to help herself up as she tries to stand.

      What is the observed sign in this scenario?

      Your Answer:

      Correct Answer: Gower's sign

      Explanation:

      Children with Duchenne muscular dystrophy typically exhibit a positive Gower’s sign, which is due to weakness in the proximal muscles, particularly those in the lower limbs. This sign has a moderate sensitivity and high specificity. While idiopathic toe walking may also be present in DMD, it is more commonly associated with cerebral palsy and does not match the description in the given scenario. The Allis sign, also known as Galeazzi’s test, is utilized to evaluate for hip dislocation, primarily in cases of developmental dysplasia of the hip. Tinel’s sign is a method used to identify irritated nerves by tapping lightly over the nerve to elicit a sensation of tingling or ‘pins and needles’ in the nerve’s distribution.

      Dystrophinopathies are a group of genetic disorders that are inherited in an X-linked recessive manner. These disorders are caused by mutations in the dystrophin gene located on the X chromosome at position Xp21. Dystrophin is a protein that is part of a larger membrane-associated complex in muscle cells. It connects the muscle membrane to actin, which is a component of the muscle cytoskeleton.

      Duchenne muscular dystrophy is a severe form of dystrophinopathy that is caused by a frameshift mutation in the dystrophin gene. This mutation results in the loss of one or both binding sites, leading to progressive proximal muscle weakness that typically begins around the age of 5 years. Children with Duchenne muscular dystrophy may also exhibit calf pseudohypertrophy and Gower’s sign, which is when they use their arms to stand up from a squatted position. Approximately 30% of patients with Duchenne muscular dystrophy also have intellectual impairment.

      In contrast, Becker muscular dystrophy is a milder form of dystrophinopathy that typically develops after the age of 10 years. It is caused by a non-frameshift insertion in the dystrophin gene, which preserves both binding sites. Intellectual impairment is much less common in individuals with Becker muscular dystrophy.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 11 - A 42-year-old woman visits her doctor complaining of increased fatigue, especially towards the...

    Incorrect

    • A 42-year-old woman visits her doctor complaining of increased fatigue, especially towards the end of the day. Her husband notices visible signs of tiredness, with her eyes almost closed.

      During the examination, the doctor observes a mass on the front of the neck and mild ptosis on both sides. To further investigate, the doctor instructs the patient to look down for a brief period and then return to primary gaze. Bilateral eyelid twitching is present upon returning to primary gaze.

      What is the most commonly associated antibody with the probable diagnosis?

      Your Answer:

      Correct Answer: Antibodies against acetylcholine receptors

      Explanation:

      The patient’s symptoms and physical exam findings suggest a diagnosis of myasthenia gravis (MG). This autoimmune disorder affects the neuromuscular junction and can cause weakness and fatigue in the muscles. The presence of ptosis and diplopia, particularly worsening with prolonged use, is a common presentation in MG. Additionally, the presence of Cogan’s sign, twitching of the eyelids after a period of down-gazing, is a useful bedside test to assess for MG.

      It is important to note that anti-smooth muscle antibodies, antibodies against voltage-gated calcium channels, and antimitochondrial antibodies are not associated with MG. These antibodies are instead associated with autoimmune hepatitis, Lambert Eaton myasthenic syndrome, and primary biliary cholangitis, respectively.

      Myasthenia gravis is an autoimmune disorder that results in muscle weakness and fatigue, particularly in the eyes, face, neck, and limbs. It is more common in women and is associated with thymomas and other autoimmune disorders. Diagnosis is made through electromyography and testing for antibodies to acetylcholine receptors. Treatment includes acetylcholinesterase inhibitors and immunosuppression, and in severe cases, plasmapheresis or intravenous immunoglobulins may be necessary.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 12 - A 75-year-old male arrives at the Emergency Department with sudden onset facial weakness...

    Incorrect

    • A 75-year-old male arrives at the Emergency Department with sudden onset facial weakness and concerns of a stroke. However, upon further questioning, the patient denies any risk factors for cardiovascular disease. During the examination, the patient displays unilateral weakness on the right side of their face and reports experiencing pain in their right ear. Further investigation reveals a widespread vesicular rash on the patient's right ear.

      What is the causative organism responsible for this syndrome?

      Your Answer:

      Correct Answer: Varicella zoster virus

      Explanation:

      Ramsey-Hunt syndrome (VII nerve palsy) is caused by the varicella zoster virus.

      The facial nerve is responsible for supplying the muscles of facial expression, the digastric muscle, and various glandular structures. It also contains a few afferent fibers that originate in the genicular ganglion and are involved in taste. Bilateral facial nerve palsy can be caused by conditions such as sarcoidosis, Guillain-Barre syndrome, Lyme disease, and bilateral acoustic neuromas. Unilateral facial nerve palsy can be caused by these conditions as well as lower motor neuron issues like Bell’s palsy and upper motor neuron issues like stroke.

      The upper motor neuron lesion typically spares the upper face, specifically the forehead, while a lower motor neuron lesion affects all facial muscles. The facial nerve’s path includes the subarachnoid path, where it originates in the pons and passes through the petrous temporal bone into the internal auditory meatus with the vestibulocochlear nerve. The facial canal path passes superior to the vestibule of the inner ear and contains the geniculate ganglion at the medial aspect of the middle ear. The stylomastoid foramen is where the nerve passes through the tympanic cavity anteriorly and the mastoid antrum posteriorly, and it also includes the posterior auricular nerve and branch to the posterior belly of the digastric and stylohyoid muscle.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 13 - A patient presents with difficulties with swallowing, muscle cramps, tiredness and fasciculations. A...

    Incorrect

    • A patient presents with difficulties with swallowing, muscle cramps, tiredness and fasciculations. A diagnosis of a motor neuron disease is made. Which is the most common type?

      Your Answer:

      Correct Answer: Amyotrophic lateral sclerosis

      Explanation:

      The majority of individuals diagnosed with motor neuron disease suffer from amyotrophic lateral sclerosis, which is the prevailing form of the condition.

      Understanding the Different Types of Motor Neuron Disease

      Motor neuron disease is a neurological condition that affects both upper and lower motor neurons. It is a rare condition that usually occurs after the age of 40. There are different patterns of the disease, including amyotrophic lateral sclerosis, primary lateral sclerosis, progressive muscular atrophy, and progressive bulbar palsy. Some patients may also have a combination of these patterns.

      Amyotrophic lateral sclerosis is the most common type of motor neuron disease, accounting for 50% of cases. It typically presents with lower motor neuron signs in the arms and upper motor neuron signs in the legs. In familial cases, the gene responsible for the disease is located on chromosome 21 and codes for superoxide dismutase.

      Primary lateral sclerosis, on the other hand, presents with upper motor neuron signs only. Progressive muscular atrophy affects only the lower motor neurons and usually starts in the distal muscles before progressing to the proximal muscles. It carries the best prognosis among the different types of motor neuron disease.

      Finally, progressive bulbar palsy affects the muscles of the tongue, chewing and swallowing, and facial muscles due to the loss of function of brainstem motor nuclei. It carries the worst prognosis among the different types of motor neuron disease. Understanding the different types of motor neuron disease is crucial in providing appropriate treatment and care for patients.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 14 - A 27-year-old man comes to the hospital complaining of lower leg weakness and...

    Incorrect

    • A 27-year-old man comes to the hospital complaining of lower leg weakness and difficulty walking for the past two days. He had a recent episode of bloody diarrhea that was treated with oral ciprofloxacin after testing positive for Campylobacter jejuni.

      During the examination, the patient is fully alert and conscious. Neurological examination reveals reduced deep tendon reflexes and decreased tone in both lower legs up to the knee level. However, his sensation is intact, and there is no evidence of cartilage or tendon damage.

      What is the likely cause of the patient's diagnosis?

      Your Answer:

      Correct Answer: Autoimmunity

      Explanation:

      The correct cause of Guillain-Barre syndrome is autoimmunity, not an inherited neurological disorder, medication side effect, or nutritional deficiency. While it is often triggered by infection with Campylobacter jejuni, the syndrome is characterized by immune-mediated demyelination of peripheral nerves that occurs a few weeks after the trigger. Symptoms are bilateral, ascending, and symmetric, and can lead to respiratory failure and death if respiratory muscles are affected. Charcot-Marie-Tooth disease is an example of an inherited motor and sensory disorder affecting peripheral nerves, while B12 deficiency can lead to subacute combined degeneration of the cord. However, these conditions are not related to Guillain-Barre syndrome. Additionally, while ciprofloxacin can cause tendon damage or rupture in animal studies, this is rare in adults and not relevant to the patient’s symptoms.

      Understanding Guillain-Barre Syndrome and Miller Fisher Syndrome

      Guillain-Barre syndrome is a condition that affects the peripheral nervous system and is often triggered by an infection, particularly Campylobacter jejuni. The immune system attacks the myelin sheath that surrounds nerve fibers, leading to demyelination. This results in symptoms such as muscle weakness, tingling sensations, and paralysis.

      The pathogenesis of Guillain-Barre syndrome involves the cross-reaction of antibodies with gangliosides in the peripheral nervous system. Studies have shown a correlation between the presence of anti-ganglioside antibodies, particularly anti-GM1 antibodies, and the clinical features of the syndrome. In fact, anti-GM1 antibodies are present in 25% of patients with Guillain-Barre syndrome.

      Miller Fisher syndrome is a variant of Guillain-Barre syndrome that is characterized by ophthalmoplegia, areflexia, and ataxia. This syndrome typically presents as a descending paralysis, unlike other forms of Guillain-Barre syndrome that present as an ascending paralysis. The eye muscles are usually affected first in Miller Fisher syndrome. Studies have shown that anti-GQ1b antibodies are present in 90% of cases of Miller Fisher syndrome.

      In summary, Guillain-Barre syndrome and Miller Fisher syndrome are conditions that affect the peripheral nervous system and are often triggered by infections. The pathogenesis of these syndromes involves the cross-reaction of antibodies with gangliosides in the peripheral nervous system. While Guillain-Barre syndrome is characterized by muscle weakness and paralysis, Miller Fisher syndrome is characterized by ophthalmoplegia, areflexia, and ataxia.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 15 - A 35-year-old man has been referred to the neurology department due to experiencing...

    Incorrect

    • A 35-year-old man has been referred to the neurology department due to experiencing episodes of visual obstruction with flashes and strange shapes floating over his vision, accompanied by eyelid fluttering. He remains conscious during these episodes. Which brain region is likely to be affected?

      Your Answer:

      Correct Answer: Occipital lobe

      Explanation:

      Occipital lobe seizures can cause visual disturbances such as floaters and flashes. This is because the occipital lobe contains the primary visual cortex and visual association cortex, which receive sensory information from the optic radiations. Other symptoms of occipital lobe seizures may include uncontrolled eye movements and eyelid fluttering. It is important to note that seizures in other areas of the brain, such as the frontal or parietal lobes, may present with different symptoms.

      Localising Features of Focal Seizures in Epilepsy

      Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.

      On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 16 - A 72-year-old woman is brought to the general practice by her son. The...

    Incorrect

    • A 72-year-old woman is brought to the general practice by her son. The son reports that his mother has been experiencing increasing forgetfulness and appears less alert. She has also been having repeated incidents of urinary incontinence and walks with a shuffling gait. A CT head scan is ordered, which reveals bilateral dilation of the lateral ventricles without any blockage of the interventricular foramina. What is the space that the interventricular foramen allows cerebrospinal fluid to flow from each lateral ventricle into?

      Your Answer:

      Correct Answer: Third ventricle

      Explanation:

      The third ventricle is the correct answer as it is a part of the CSF system and is located in the midline between the thalami of the two hemispheres. It connects to the lateral ventricles via the interventricular foramina and to the fourth ventricle via the cerebral aqueduct (of Sylvius).

      CSF flows from the third ventricle to the fourth ventricle through the cerebral aqueduct (of Sylvius) and exits the fourth ventricle through one of four openings. These include the median aperture (foramen of Magendie), either of the two lateral apertures (foramina of Luschka), and the central canal at the obex.

      The lateral ventricles do not communicate directly with each other and drain into the third ventricle via individual interventricular foramina.

      The patient in the question is likely suffering from normal pressure hydrocephalus, which is characterized by gait abnormality, urinary incontinence, and dementia. This condition is caused by alterations in the flow and absorption of CSF, leading to ventricular dilation without raised intracranial pressure. Lumbar puncture typically shows normal CSF pressure.

      Cerebrospinal Fluid: Circulation and Composition

      Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.

      The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.

      The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 17 - An 80-year-old man comes to the emergency department with abrupt onset weakness of...

    Incorrect

    • An 80-year-old man comes to the emergency department with abrupt onset weakness of his left arm and leg along with double vision. During the examination, you observe that his right eye is held in a 'down-and-out' position and his pupil is dilated and unresponsive to light.

      Which artery would most plausibly account for this presentation?

      Your Answer:

      Correct Answer: Right posterior cerebral artery

      Explanation:

      The correct answer is the right posterior cerebral artery. When branches of this artery that supply the midbrain are affected by a stroke, it can result in ipsilateral oculomotor palsy and contralateral weakness of the upper and lower extremities. This explains the right-sided oculomotor palsy and left-sided weakness of the arm and leg mentioned in the stem.

      The left posterior cerebral artery is incorrect because it would cause left-sided oculomotor palsy and right-sided weakness of the upper and lower extremities.

      The left posterior inferior cerebellar artery is also incorrect because it would cause left-sided facial pain and temperature loss, right-sided limb/torso pain and temperature loss, vertigo, vomiting, dysphagia, ataxia, and nystagmus.

      The right middle cerebral artery is incorrect because it would cause contralateral hemiparesis and sensory loss (with the upper extremity being more affected than the lower), contralateral homonymous hemianopia, and aphasia. This would not explain the left oculomotor palsy mentioned in the stem.

      Stroke can affect different parts of the brain depending on which artery is affected. If the anterior cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the lower extremities being more affected than the upper. If the middle cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the upper extremities being more affected than the lower. They may also experience vision loss and difficulty with language. If the posterior cerebral artery is affected, the person may experience vision loss and difficulty recognizing objects.

      Lacunar strokes are a type of stroke that are strongly associated with hypertension. They typically present with isolated weakness or loss of sensation on one side of the body, or weakness with difficulty coordinating movements. They often occur in the basal ganglia, thalamus, or internal capsule.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 18 - A 49-year-old man with a diagnosis of glioblastoma multiforme and resistance to chemotherapy...

    Incorrect

    • A 49-year-old man with a diagnosis of glioblastoma multiforme and resistance to chemotherapy is referred for a craniotomy to remove the mass-occupying lesion. What is the correct sequence of layers the surgeon must pass through, from most superficial to deepest, during the craniotomy which involves creating an opening through the scalp and meninges?

      Your Answer:

      Correct Answer: Loose Connective Tissue, Periosteum, Dura Mater, Arachnoid Mater, Pia Mater

      Explanation:

      The outermost layer of the meninges is the dura mater.

      To remember the layers of the scalp from superficial to deep, use the acronym SCALP: Skin, Connective tissue, Aponeurosis, Loose connective tissue, Periosteum.

      To remember the layers of the meninges from superficial to deep, use the acronym DAP: Dura mater, Arachnoid mater, Pia mater.

      The Three Layers of Meninges

      The meninges are a group of membranes that cover the brain and spinal cord, providing support to the central nervous system and the blood vessels that supply it. These membranes can be divided into three distinct layers: the dura mater, arachnoid mater, and pia mater.

      The outermost layer, the dura mater, is a thick fibrous double layer that is fused with the inner layer of the periosteum of the skull. It has four areas of infolding and is pierced by small areas of the underlying arachnoid to form structures called arachnoid granulations. The arachnoid mater forms a meshwork layer over the surface of the brain and spinal cord, containing both cerebrospinal fluid and vessels supplying the nervous system. The final layer, the pia mater, is a thin layer attached directly to the surface of the brain and spinal cord.

      The meninges play a crucial role in protecting the brain and spinal cord from injury and disease. However, they can also be the site of serious medical conditions such as subdural and subarachnoid haemorrhages. Understanding the structure and function of the meninges is essential for diagnosing and treating these conditions.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 19 - The blood-brain barrier is not easily penetrated by which of the following substances?...

    Incorrect

    • The blood-brain barrier is not easily penetrated by which of the following substances?

      Your Answer:

      Correct Answer: Hydrogen ions

      Explanation:

      The blood brain barrier restricts the passage of highly dissociated compounds.

      Cerebrospinal Fluid: Circulation and Composition

      Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.

      The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.

      The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 20 - A 70-year-old male on the geriatric ward has been awakened by a headache....

    Incorrect

    • A 70-year-old male on the geriatric ward has been awakened by a headache. Later in the morning, he began to vomit. He has a history of prostate cancer, a stroke 3 years ago, and high blood pressure. During the examination, papilloedema was observed on fundoscopy.

      What is the strongest association with this ophthalmic finding?

      Your Answer:

      Correct Answer: Bilateral optic disc swelling

      Explanation:

      Papilloedema is almost always present in both eyes.

      Understanding Papilloedema

      Papilloedema is a condition characterized by swelling of the optic disc due to increased pressure within the skull. This condition typically affects both eyes. During a fundoscopy, several signs may be observed, including venous engorgement, loss of venous pulsation, blurring of the optic disc margin, elevation of the optic disc, loss of the optic cup, and Paton’s lines.

      There are several potential causes of papilloedema, including space-occupying lesions such as tumors or vascular abnormalities, malignant hypertension, idiopathic intracranial hypertension, hydrocephalus, and hypercapnia. In rare cases, papilloedema may be caused by hypoparathyroidism and hypocalcaemia or vitamin A toxicity.

      It is important to diagnose and treat papilloedema promptly, as it can lead to permanent vision loss if left untreated. Treatment typically involves addressing the underlying cause of the increased intracranial pressure, such as surgery to remove a tumor or medication to manage hypertension.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 21 - A father brings his 5-year-old daughter to the pediatrician with concerns about her...

    Incorrect

    • A father brings his 5-year-old daughter to the pediatrician with concerns about her health.

      He has observed his daughter, while playing at home, suddenly become motionless and stare off into the distance while repeatedly smacking her lips. She does not respond to his voice or touch until she suddenly returns to normal after a minute or so. Following these episodes, she often has difficulty speaking clearly. The father is worried that his daughter may have epilepsy, as he knows someone whose child has the condition.

      If the daughter has epilepsy, which specific area of the brain is likely affected?

      Your Answer:

      Correct Answer: Temporal lobe

      Explanation:

      Temporal lobe seizures are often associated with lip smacking and postictal dysphasia, which are localizing features. These seizures may also involve hallucinations and a feeling of déjà vu. In contrast, focal seizures of the occipital lobe typically cause visual disturbances, while seizures of the parietal lobe may result in peripheral paraesthesia.

      Localising Features of Focal Seizures in Epilepsy

      Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.

      On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 22 - A 65-year-old man arrives at the emergency department with a sudden onset of...

    Incorrect

    • A 65-year-old man arrives at the emergency department with a sudden onset of aphasia lasting for 15 minutes. His partner mentions a similar incident occurred a month ago, but he did not seek medical attention as it resolved on its own.

      Upon point of care testing, his capillary blood glucose level is 6.5 mmol/L (3.9 - 7.1). An urgent CT scan of his brain is conducted, which reveals no signs of acute infarct. However, upon returning from the scan, he regains full speech and denies experiencing any other neurological symptoms.

      What aspect of the episode suggests a diagnosis of transient ischaemic attack?

      Your Answer:

      Correct Answer: There was no evidence of acute infarction on CT imaging, and the episode was brief

      Explanation:

      The definition of a TIA has been updated to focus on tissue-based factors rather than time-based ones. It is now defined as a brief episode of neurological dysfunction caused by focal brain, spinal cord, or retinal ischemia, without acute infarction. The new guidelines emphasize the importance of focal neurology and negative brain imaging in diagnosing a TIA, which typically lasts less than an hour. This is a departure from the previous definition, which focused on symptoms resolving within 24 hours and led to delays in diagnosis and treatment. Patients may have a history of stereotyped episodes preceding a TIA. Focal neurology is a hallmark of TIA, which can affect motor, sensory, aphasic, or visual areas of the brain. In cases where isolated aphasia lasts only 30 minutes and brain imaging shows no infarction, the patient has had a TIA rather than a stroke.

      A transient ischaemic attack (TIA) is a brief period of neurological deficit caused by a vascular issue, lasting less than an hour. The original definition of a TIA was based on time, but it is now recognized that even short periods of ischaemia can result in pathological changes to the brain. Therefore, a new ’tissue-based’ definition is now used. The clinical features of a TIA are similar to those of a stroke, but the symptoms resolve within an hour. Possible features include unilateral weakness or sensory loss, aphasia or dysarthria, ataxia, vertigo, or loss of balance, visual problems, sudden transient loss of vision in one eye (amaurosis fugax), diplopia, and homonymous hemianopia.

      NICE recommends immediate antithrombotic therapy, giving aspirin 300 mg immediately unless the patient has a bleeding disorder or is taking an anticoagulant. If aspirin is contraindicated, management should be discussed urgently with the specialist team. Specialist review is necessary if the patient has had more than one TIA or has a suspected cardioembolic source or severe carotid stenosis. Urgent assessment within 24 hours by a specialist stroke physician is required if the patient has had a suspected TIA in the last 7 days. Referral for specialist assessment should be made as soon as possible within 7 days if the patient has had a suspected TIA more than a week previously. The person should be advised not to drive until they have been seen by a specialist.

      Neuroimaging should be done on the same day as specialist assessment if possible. MRI is preferred to determine the territory of ischaemia or to detect haemorrhage or alternative pathologies. Carotid imaging is necessary as atherosclerosis in the carotid artery may be a source of emboli in some patients. All patients should have an urgent carotid doppler unless they are not a candidate for carotid endarterectomy.

      Antithrombotic therapy is recommended, with clopidogrel being the first-line treatment. Aspirin + dipyridamole should be given to patients who cannot tolerate clopidogrel. Carotid artery endarterectomy should only be considered if the patient has suffered a stroke or TIA in the carotid territory and is not severely disabled. It should only be recommended if carotid stenosis is greater

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 23 - A 55-year-old male is seen in an outpatient neurology clinic after experiencing a...

    Incorrect

    • A 55-year-old male is seen in an outpatient neurology clinic after experiencing a stroke 3 weeks ago. He reports sudden, uncontrollable flailing movements in his right arm and leg. The movements are strong and involuntary, originating from the proximal sections of his limbs.

      What area of the brain is likely to be impacted in this scenario?

      Your Answer:

      Correct Answer: Subthalamic nucleus of the basal ganglia

      Explanation:

      Hemiballism is a rare hyperkinetic movement disorder that can be caused by a lesion to the subthalamic nucleus of the basal ganglia. This patient is exhibiting symptoms of hemiballism, including intense, flailing movements of the limbs that originate in the proximal area of the limb. It is important to distinguish hemiballism from chorea, which originates in the distal area of the limb.

      Kluver-Bucy syndrome is associated with a lesion to the amygdala and presents with symptoms such as hypersexuality, hyperorality, hyperphagia, and visual agnosia.

      Gait ataxia, characterized by an unsteady and uncoordinated gait, is associated with midline cerebellar lesions. However, this would not account for the hyperkinetic movements seen in this patient.

      A stroke affecting the substantia nigra of the basal ganglia can cause Parkinson’s disease, which is characterized by bradykinesia, resting tremor, and shuffling gait.

      A lesion to the temporal lobe can result in Wernicke’s aphasia, which is characterized by disorderly but fluent speech due to damage to Broca’s area.

      Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.

      In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 24 - Which one of the following structures is not transmitted by the jugular foramen?...

    Incorrect

    • Which one of the following structures is not transmitted by the jugular foramen?

      Your Answer:

      Correct Answer: Hypoglossal nerve

      Explanation:

      The jugular foramen contains three compartments. The anterior compartment transmits the inferior petrosal sinus, the middle compartment transmits cranial nerves IX, X, and XI, and the posterior compartment transmits the sigmoid sinus and some meningeal branches from the occipital and ascending pharyngeal arteries.

      Foramina of the Base of the Skull

      The base of the skull contains several openings called foramina, which allow for the passage of nerves, blood vessels, and other structures. The foramen ovale, located in the sphenoid bone, contains the mandibular nerve, otic ganglion, accessory meningeal artery, and emissary veins. The foramen spinosum, also in the sphenoid bone, contains the middle meningeal artery and meningeal branch of the mandibular nerve. The foramen rotundum, also in the sphenoid bone, contains the maxillary nerve.

      The foramen lacerum, located in the sphenoid bone, is initially occluded by a cartilaginous plug and contains the internal carotid artery, nerve and artery of the pterygoid canal, and the base of the medial pterygoid plate. The jugular foramen, located in the temporal bone, contains the inferior petrosal sinus, glossopharyngeal, vagus, and accessory nerves, sigmoid sinus, and meningeal branches from the occipital and ascending pharyngeal arteries.

      The foramen magnum, located in the occipital bone, contains the anterior and posterior spinal arteries, vertebral arteries, and medulla oblongata. The stylomastoid foramen, located in the temporal bone, contains the stylomastoid artery and facial nerve. Finally, the superior orbital fissure, located in the sphenoid bone, contains the oculomotor nerve, recurrent meningeal artery, trochlear nerve, lacrimal, frontal, and nasociliary branches of the ophthalmic nerve, and abducent nerve.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 25 - A 46-year-old homeless man is admitted to the emergency department due to intoxication....

    Incorrect

    • A 46-year-old homeless man is admitted to the emergency department due to intoxication. He reports experiencing progressive weakness in his lower limbs, as well as tingling and numbness in his hands. Additionally, he has been having issues with his memory and vision. Upon examination, there is generalised weakness and reduced proprioception and vibration sensation in the distal limbs, worse in the hands than the feet. Romberg's test is negative, but Babinski is positive. The patient's knee reflexes are brisk, and ankle jerks are absent. Based on this presentation, which spinal pathways are affected?

      Your Answer:

      Correct Answer: Dorsal column & lateral corticospinal tracts

      Explanation:

      Subacute combined degeneration of the spinal cord (SACD) is characterized by the patchy loss of myelin, primarily affecting the ascending dorsal columns and descending lateral corticospinal tracts. This results in a range of symptoms, including progressive weakness, tingling, numbness, and upper motor neuron signs in the lower limbs. Vision changes and cognitive decline may also occur.

      While the dorsal column is affected in SACD, the ascending anterior spinothalamic tract, which carries crude touch and pressure information, is typically not involved. Muscle weakness due to lateral corticospinal tract involvement is a hallmark of SACD.

      The anterior spinocerebellar tract, which carries unconscious proprioceptive and cutaneous information from the lower body, is not typically affected in SACD. Similarly, the lateral spinothalamic tract, which carries pain and temperature information, is not commonly involved.

      The reticulospinal and vestibulospinal tracts, which are primarily involved in locomotion, postural control, and changes in head orientation, are also not commonly affected in SACD.

      Subacute Combined Degeneration of Spinal Cord

      Subacute combined degeneration of spinal cord is a condition that occurs due to a deficiency of vitamin B12. The dorsal columns and lateral corticospinal tracts are affected, leading to the loss of joint position and vibration sense. The first symptoms are usually distal paraesthesia, followed by the development of upper motor neuron signs in the legs, such as extensor plantars, brisk knee reflexes, and absent ankle jerks. If left untreated, stiffness and weakness may persist.

      This condition is a serious concern and requires prompt medical attention. It is important to maintain a healthy diet that includes sufficient amounts of vitamin B12 to prevent the development of subacute combined degeneration of spinal cord.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 26 - A 35-year-old man is brought to the emergency department by ambulance after being...

    Incorrect

    • A 35-year-old man is brought to the emergency department by ambulance after being found unresponsive at his home. He is vomiting, confused, and drowsy with pinpoint pupils. The patient is only responsive to pain, has a respiratory rate of 6/min with shallow breaths, a blood pressure of 65/90mmHg, and a heart rate of 50bpm. It is suspected that he has overdosed. What receptor does the drug class likely agonize?

      Your Answer:

      Correct Answer: Mu, delta and kappa receptors

      Explanation:

      Understanding Opioids: Types, Receptors, and Clinical Uses

      Opioids are a class of chemical compounds that act upon opioid receptors located within the central nervous system (CNS). These receptors are G-protein coupled receptors that have numerous actions throughout the body. There are three clinically relevant groups of opioid receptors: mu (µ), kappa (κ), and delta (δ) receptors. Endogenous opioids, such as endorphins, dynorphins, and enkephalins, are produced by specific cells within the CNS and their actions depend on whether µ-receptors or δ-receptors and κ-receptors are their main target.

      Drugs targeted at opioid receptors are the largest group of analgesic drugs and form the second and third steps of the WHO pain ladder of managing analgesia. The choice of which opioid drug to use depends on the patient’s needs and the clinical scenario. The first step of the pain ladder involves non-opioids such as paracetamol and non-steroidal anti-inflammatory drugs. The second step involves weak opioids such as codeine and tramadol, while the third step involves strong opioids such as morphine, oxycodone, methadone, and fentanyl.

      The strength, routes of administration, common uses, and significant side effects of these opioid drugs vary. Weak opioids have moderate analgesic effects without exposing the patient to as many serious adverse effects associated with strong opioids. Strong opioids have powerful analgesic effects but are also more liable to cause opioid-related side effects such as sedation, respiratory depression, constipation, urinary retention, and addiction. The sedative effects of opioids are also useful in anesthesia with potent drugs used as part of induction of a general anesthetic.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 27 - A mother brings her 3-month-old son for his routine check-up. She mentions that...

    Incorrect

    • A mother brings her 3-month-old son for his routine check-up. She mentions that his left hand has been in a fixed 'claw-like' position since birth. Upon examination, the left forearm is found to be supinated and the left wrist and fingers are flexed. Additionally, a slight droop is observed in the right eyelid and the right pupil is constricted.

      What is the probable diagnosis?

      Your Answer:

      Correct Answer: Klumpke palsy

      Explanation:

      Klumpke palsy is a condition that can occur due to shoulder dystocia during birth or sudden upward jerking of the hand. It results from damage to the lower trunk of the brachial plexus (C8, T1) and can cause a flattened forearm, flexed wrist, and fingers. Klumpke injury may also be associated with Horner’s syndrome, which can cause ptosis and miosis on the opposite side of the face.

      Erb-Duchenne palsy is another condition that can occur due to shoulder dystocia during birth, but it results from damage to the upper trunk of the brachial plexus (C5, C6). The affected arm hangs by the side, is internally rotated, and has an extended elbow.

      Radial nerve palsy can be caused by a humeral midshaft fracture and can result in wrist drop.

      Median nerve palsy can have different features depending on the site of the lesion. If the lesion is in the wrist, it can cause paralysis of the thenar muscles, leading to an inability to abduct and oppose the thumb. If the lesion is in the elbow, it can cause a loss of pronation of the forearm and weak wrist flexion.

      Horner’s syndrome is a condition characterized by several features, including a small pupil (miosis), drooping of the upper eyelid (ptosis), a sunken eye (enophthalmos), and loss of sweating on one side of the face (anhidrosis). The cause of Horner’s syndrome can be determined by examining additional symptoms. For example, congenital Horner’s syndrome may be identified by a difference in iris color (heterochromia), while anhidrosis may be present in central or preganglionic lesions. Pharmacologic tests, such as the use of apraclonidine drops, can also be helpful in confirming the diagnosis and identifying the location of the lesion. Central lesions may be caused by conditions such as stroke or multiple sclerosis, while postganglionic lesions may be due to factors like carotid artery dissection or cluster headaches. It is important to note that the appearance of enophthalmos in Horner’s syndrome is actually due to a narrow palpebral aperture rather than true enophthalmos.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 28 - A 35-year-old male presents to the emergency department after experiencing a seizure. He...

    Incorrect

    • A 35-year-old male presents to the emergency department after experiencing a seizure. He reports a severe headache for the past several hours and feeling nauseous. Upon urgent MRI, oedema is observed in the temporal lobe. Antivirals are immediately initiated. What cells in the central nervous system act as phagocytes?

      Your Answer:

      Correct Answer: Microglia

      Explanation:

      The central nervous system has a limited number of immune cells, but microglia are specialized phagocytes that play a crucial role in clearing extracellular debris and responding to bacterial or viral infections. The patient in the scenario likely had herpes simplex virus encephalitis, as indicated by the classic sign of temporal lobe edema. Oligodendrocytes are responsible for myelinating axons in the central nervous system, while Schwann cells perform this function in the peripheral nervous system. Astrocytes provide structural support and help regulate extracellular potassium levels.

      The nervous system is composed of various types of cells, each with their own unique functions. Oligodendroglia cells are responsible for producing myelin in the central nervous system (CNS) and are affected in multiple sclerosis. Schwann cells, on the other hand, produce myelin in the peripheral nervous system (PNS) and are affected in Guillain-Barre syndrome. Astrocytes provide physical support, remove excess potassium ions, help form the blood-brain barrier, and aid in physical repair. Microglia are specialised CNS phagocytes, while ependymal cells provide the inner lining of the ventricles.

      In summary, the nervous system is made up of different types of cells, each with their own specific roles. Oligodendroglia and Schwann cells produce myelin in the CNS and PNS, respectively, and are affected in certain diseases. Astrocytes provide physical support and aid in repair, while microglia are specialised phagocytes in the CNS. Ependymal cells line the ventricles. Understanding the functions of these cells is crucial in understanding the complex workings of the nervous system.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 29 - You are on placement in the intensive care unit. An elderly patient has...

    Incorrect

    • You are on placement in the intensive care unit. An elderly patient has been brought in following a fall. However, the patient has not recovered and the consultant is now performing brain stem testing before considering organ donation.

      As part of this, the consultant rubs a cotton bud against the cornea and assesses to see if the patient blinks.

      What is the sensory innervation to the reflex being tested?

      Your Answer:

      Correct Answer: Cranial nerve V - trigeminal nerve

      Explanation:

      The afferent limb of the corneal reflex is the trigeminal nerve (cranial nerve V). When the cornea is stimulated, signals are sent via the ophthalmic branch of the trigeminal nerve to the trigeminal sensory nucleus. This activates the facial motor nucleus, causing motor signals to be sent via the facial nerve to contract the orbicularis oculi muscle and produce a blink response. The optic nerve (cranial nerve II) provides sensory innervation to the pupillary reflex, while the oculomotor nerve (cranial nerve III) provides motor innervation to the sphincter pupillae muscle for pupillary constriction. The glossopharyngeal nerve (cranial nerve IX) provides sensory innervation to the gag reflex, with motor innervation coming from the vagus nerve (cranial nerve X).

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds
  • Question 30 - A child undergoes a challenging craniotomy for fulminant mastoiditis and abscess. While performing...

    Incorrect

    • A child undergoes a challenging craniotomy for fulminant mastoiditis and abscess. While performing the surgery, the trigeminal nerve is severely affected in Meckel's cave. What is the least probable deficit that the child will experience?

      Your Answer:

      Correct Answer: Anaesthesia over the entire ipsilateral side of the face

      Explanation:

      The sensory fibres of the trigeminal nerve do not provide innervation to the angle of the jaw, which means that this area is not affected by this type of injury. However, since the trigeminal nerve is responsible for providing motor innervation to the muscles of mastication, an injury in close proximity to the motor fibres may result in some degree of compromise in muscle function.

      The trigeminal nerve is the main sensory nerve of the head and also innervates the muscles of mastication. It has sensory distribution to the scalp, face, oral cavity, nose and sinuses, and dura mater, and motor distribution to the muscles of mastication, mylohyoid, anterior belly of digastric, tensor tympani, and tensor palati. The nerve originates at the pons and has three branches: ophthalmic, maxillary, and mandibular. The ophthalmic and maxillary branches are sensory only, while the mandibular branch is both sensory and motor. The nerve innervates various muscles, including the masseter, temporalis, and pterygoids.

    • This question is part of the following fields:

      • Neurological System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurological System (2/4) 50%
Passmed