00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - You are designing a research project looking at the sensitivities and specificities of...

    Incorrect

    • You are designing a research project looking at the sensitivities and specificities of various markers in relation to myocardial necrosis. Specifically you want to assess the molecule which troponin C binds to.

      Which molecule will you study in your research project?

      You are designing a research project looking at the sensitivities and specificities of various markers in relation to myocardial necrosis. Specifically, you want to assess the molecule which troponin C binds to.

      Which molecule will you study in your research project?

      Your Answer: Tropomyosin

      Correct Answer: Calcium ions

      Explanation:

      Troponin C plays a crucial role in muscle contraction by binding to calcium ions. However, it is not a specific marker for myocardial necrosis as it can be released due to damage in both skeletal and cardiac muscles.

      On the other hand, Troponin T and Troponin I are specific markers for myocardial necrosis. Troponin T binds to tropomyosin to form a complex, while Troponin I holds the troponin-tropomyosin complex in place by binding to actin.

      Muscle contraction occurs when actin slides along myosin, which is the thick component of muscle fibers. The sarcoplasmic reticulum plays a crucial role in regulating the concentration of calcium ions in the cytoplasm of striated muscle cells.

      Understanding Troponin: The Proteins Involved in Muscle Contraction

      Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.

      Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.

      Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.

    • This question is part of the following fields:

      • Cardiovascular System
      24
      Seconds
  • Question 2 - A 72-year-old man presents with biliary colic and an abdominal aortic aneurysm measuring...

    Incorrect

    • A 72-year-old man presents with biliary colic and an abdominal aortic aneurysm measuring 4.8 cm is discovered. Which of the following statements regarding this condition is false?

      Your Answer: They occur most often in current or former smokers

      Correct Answer: The wall will be composed of dense fibrous tissue only

      Explanation:

      These aneurysms are genuine and consist of all three layers of the arterial wall.

      Understanding Abdominal Aortic Aneurysms

      Abdominal aortic aneurysms occur when the elastic proteins in the extracellular matrix fail, causing the arterial wall to dilate. This is typically caused by degenerative disease and can be identified by a diameter of 3 cm or greater. The development of aneurysms is complex and involves the loss of the intima and elastic fibers from the media, which is associated with increased proteolytic activity and lymphocytic infiltration.

      Smoking and hypertension are major risk factors for the development of aneurysms, while rare causes include syphilis and connective tissue diseases such as Ehlers Danlos type 1 and Marfan’s syndrome. It is important to understand the underlying causes and risk factors for abdominal aortic aneurysms in order to prevent and treat this potentially life-threatening condition.

    • This question is part of the following fields:

      • Cardiovascular System
      40.5
      Seconds
  • Question 3 - A 55-year-old man undergoes a regular health examination, including observation, ECG, and routine...

    Correct

    • A 55-year-old man undergoes a regular health examination, including observation, ECG, and routine blood tests. The ECG reveals an extended corrected QT interval. Which abnormality detected in his blood test could explain the ECG results?

      Your Answer: Hypokalaemia

      Explanation:

      Long QT syndrome can be caused by hypokalaemia, among other electrolyte imbalances.

      Electrolyte imbalances such as hypocalcaemia and hypomagnesaemia can also result in long QT syndrome.

      However, hyperkalaemia, hypercalcaemia, and hypermagnesaemia are not linked to long QT syndrome.

      Long QT syndrome (LQTS) is a genetic condition that causes a delay in the ventricles’ repolarization. This delay can lead to ventricular tachycardia/torsade de pointes, which can cause sudden death or collapse. The most common types of LQTS are LQT1 and LQT2, which are caused by defects in the alpha subunit of the slow delayed rectifier potassium channel. A normal corrected QT interval is less than 430 ms in males and 450 ms in females.

      There are various causes of a prolonged QT interval, including congenital factors, drugs, and other conditions. Congenital factors include Jervell-Lange-Nielsen syndrome and Romano-Ward syndrome. Drugs that can cause a prolonged QT interval include amiodarone, sotalol, tricyclic antidepressants, and selective serotonin reuptake inhibitors. Other factors that can cause a prolonged QT interval include electrolyte imbalances, acute myocardial infarction, myocarditis, hypothermia, and subarachnoid hemorrhage.

      LQTS may be detected on a routine ECG or through family screening. Long QT1 is usually associated with exertional syncope, while Long QT2 is often associated with syncope following emotional stress, exercise, or auditory stimuli. Long QT3 events often occur at night or at rest and can lead to sudden cardiac death.

      Management of LQTS involves avoiding drugs that prolong the QT interval and other precipitants if appropriate. Beta-blockers are often used, and implantable cardioverter defibrillators may be necessary in high-risk cases. It is important to note that sotalol may exacerbate LQTS.

    • This question is part of the following fields:

      • Cardiovascular System
      21.9
      Seconds
  • Question 4 - A 82-year-old man visits the urology department complaining of a painful swelling in...

    Incorrect

    • A 82-year-old man visits the urology department complaining of a painful swelling in his left testicle that has been present for the past month. Upon examination, it is diagnosed as a left varicocele. Further CT scans reveal enlarged lymph nodes obstructing the venous drainage in the middle portion of his abdomen. Which vein is most likely to be compressed?

      Your Answer: Left common iliac vein

      Correct Answer: Left renal vein

      Explanation:

      The left renal vein collects venous blood from the left testis through the left testicular/gonadal vein.

      Both the left and right testes are drained by their respective testicular/gonadal veins. The right testicular vein empties directly into the inferior vena cava, while the left testicular vein drains into the left renal vein before joining the inferior vena cava.

      Anatomy of the Inferior Vena Cava

      The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.

      The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.

      The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.

    • This question is part of the following fields:

      • Cardiovascular System
      12.6
      Seconds
  • Question 5 - A 3-week old girl is presented to the GP by her mother who...

    Incorrect

    • A 3-week old girl is presented to the GP by her mother who has noticed yellowish discharge from her umbilicus on a daily basis. The baby was born without any complications and is healthy otherwise.

      Which embryological structure is most likely responsible for this issue?

      Your Answer: Vitelline duct

      Correct Answer: Allantois

      Explanation:

      If the allantois persists, it can result in a patent urachus, which may manifest as urine leakage from the belly button.

      A patent urachus is a remnant of the allantois from embryonic development that links the bladder to the umbilicus, enabling urine to flow through and exit from the abdominal area.

      When the vitelline duct fails to close, it can lead to the formation of a Meckel’s diverticulum.

      The ductus venosus acts as a bypass for umbilical blood to avoid the liver in the fetus.

      The umbilical vessels serve as a conduit for blood to and from the fetus during gestation. They are not connected to the bladder and would not cause daily leakage.

      During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.

    • This question is part of the following fields:

      • Cardiovascular System
      24.8
      Seconds
  • Question 6 - You are asked to evaluate a 5-day old cyanotic infant named Benjamin. Benjamin...

    Incorrect

    • You are asked to evaluate a 5-day old cyanotic infant named Benjamin. Benjamin has had a chest x-ray which shows a heart appearance described as 'egg-on-side'. What is the probable underlying diagnosis?

      Your Answer: Ventricular septal defect

      Correct Answer: Transposition of the great arteries

      Explanation:

      The ‘egg-on-side’ appearance on x-rays is a characteristic finding of transposition of the great arteries, which is one of the causes of cyanotic heart disease along with tetralogy of Fallot. While the age of the patient can help distinguish between the two conditions, the x-ray provides a clue for diagnosis. Patent ductus arteriosus, coarctation of the aorta, and ventricular septal defect do not typically present with cyanosis.

      Understanding Transposition of the Great Arteries

      Transposition of the great arteries (TGA) is a type of congenital heart disease that results in cyanosis. This condition occurs when the aorticopulmonary septum fails to spiral during septation, causing the aorta to leave the right ventricle and the pulmonary trunk to leave the left ventricle. Infants born to diabetic mothers are at a higher risk of developing TGA.

      The clinical features of TGA include cyanosis, tachypnea, a loud single S2, and a prominent right ventricular impulse. Chest x-rays may show an egg-on-side appearance. To manage TGA, prostaglandins can be used to maintain the ductus arteriosus. However, surgical correction is the definitive treatment for this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      35.2
      Seconds
  • Question 7 - A 67-year-old woman arrives at the emergency department complaining of palpitations. Upon examination,...

    Incorrect

    • A 67-year-old woman arrives at the emergency department complaining of palpitations. Upon examination, her ECG reveals tall tented T waves. What causes the distinctive shape of the T wave, which corresponds to phase 3 of the cardiac action potential?

      Your Answer: Resting potential restored by Na+/K+ ATPase

      Correct Answer: Repolarisation due to efflux of potassium

      Explanation:

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      16.4
      Seconds
  • Question 8 - A 40-year-old man undergoes a routine health check and his ECG reveals a...

    Incorrect

    • A 40-year-old man undergoes a routine health check and his ECG reveals a prolonged QT segment. He has no medical history and is not taking any medication. His father and grandfather both died from sudden cardiac arrest in their early 30s.

      What arrhythmias are most likely to occur as a result of this ECG abnormality?

      Your Answer: Atrial fibrillation

      Correct Answer: Torsades de pointes

      Explanation:

      Torsades de pointes is the most common consequence of Long QT syndrome, which can also result in polymorphic ventricular tachycardia.

      Long QT syndrome (LQTS) is a genetic condition that causes a delay in the ventricles’ repolarization. This delay can lead to ventricular tachycardia/torsade de pointes, which can cause sudden death or collapse. The most common types of LQTS are LQT1 and LQT2, which are caused by defects in the alpha subunit of the slow delayed rectifier potassium channel. A normal corrected QT interval is less than 430 ms in males and 450 ms in females.

      There are various causes of a prolonged QT interval, including congenital factors, drugs, and other conditions. Congenital factors include Jervell-Lange-Nielsen syndrome and Romano-Ward syndrome. Drugs that can cause a prolonged QT interval include amiodarone, sotalol, tricyclic antidepressants, and selective serotonin reuptake inhibitors. Other factors that can cause a prolonged QT interval include electrolyte imbalances, acute myocardial infarction, myocarditis, hypothermia, and subarachnoid hemorrhage.

      LQTS may be detected on a routine ECG or through family screening. Long QT1 is usually associated with exertional syncope, while Long QT2 is often associated with syncope following emotional stress, exercise, or auditory stimuli. Long QT3 events often occur at night or at rest and can lead to sudden cardiac death.

      Management of LQTS involves avoiding drugs that prolong the QT interval and other precipitants if appropriate. Beta-blockers are often used, and implantable cardioverter defibrillators may be necessary in high-risk cases. It is important to note that sotalol may exacerbate LQTS.

    • This question is part of the following fields:

      • Cardiovascular System
      11.2
      Seconds
  • Question 9 - An 80-year-old patient comes in for a routine follow-up appointment and reports a...

    Incorrect

    • An 80-year-old patient comes in for a routine follow-up appointment and reports a decline in exercise tolerance. They mention having difficulty with stairs and experiencing occasional central chest pain that radiates to their back, which is relieved by rest. The pain is not present at rest.

      During the examination, you observe a regular, slow-rising pulse and record a blood pressure of 110/95mmHg. Upon auscultation of the precordium, you detect an ejection systolic murmur.

      To further assess cardiac function and valves, an echocardiogram is scheduled. Based on the likely diagnosis, what additional exam findings are you most likely to discover?

      Your Answer: Pistol shot femoral pulses

      Correct Answer: Fourth heart sound (S4)

      Explanation:

      The patient’s symptoms and physical exam suggest the presence of aortic stenosis. This is indicated by the ejection systolic murmur, slow-rising pulse, and progressive heart failure symptoms. The fourth heart sound (S4) is also present, which occurs when the left atrium contracts forcefully to compensate for a stiff ventricle. In aortic stenosis, the left ventricle is hypertrophied due to the narrowed valve, leading to the S4 sound.

      While hepatomegaly is more commonly associated with right heart valvular disease, it is not entirely ruled out in this case. However, the patient’s history is more consistent with aortic stenosis.

      Malar flush, a pink flushed appearance across the cheeks, is typically seen in mitral stenosis due to hypercarbia causing arteriole vasodilation.

      Pistol shot femoral pulses, a sound heard during systole when auscultating the femoral artery, is a finding associated with aortic regurgitation and not present in this case.

      Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.

    • This question is part of the following fields:

      • Cardiovascular System
      43.5
      Seconds
  • Question 10 - What is the most suitable pathological explanation for the initial processes that occur...

    Incorrect

    • What is the most suitable pathological explanation for the initial processes that occur in an abdominal aortic aneurysm in a 67-year-old male with hypertension who is otherwise healthy?

      Your Answer: Loss of elastic fibres from the adventitia

      Correct Answer: Loss of elastic fibres from the media

      Explanation:

      Aneurysmal disease is characterized by the expansion of all layers of the arterial wall and the depletion of both elastin and collagen. The initial occurrence involves the breakdown of elastic fibers, which leads to the deterioration of collagen fibers.

      Understanding the Pathology of Abdominal Aortic Aneurysm

      Abdominal aortic aneurysms occur when the elastic proteins within the extracellular matrix fail, resulting in the dilation of all layers of the arterial wall. This degenerative disease is primarily caused by the loss of the intima and elastic fibers from the media, which is associated with increased proteolytic activity and lymphocytic infiltration. Aneurysms are typically considered aneurysmal when the diameter of the infrarenal aorta is 3 cm or greater, which is significantly larger than the normal diameter of 1.5cm in females and 1.7cm in males after the age of 50 years.

      Smoking and hypertension are major risk factors for the development of aneurysms, while rare but important causes include syphilis and connective tissue diseases such as Ehlers Danlos type 1 and Marfan’s syndrome. Understanding the pathology of abdominal aortic aneurysm is crucial in identifying and managing the risk factors associated with this condition. By addressing these risk factors, individuals can reduce their likelihood of developing an aneurysm and improve their overall health.

    • This question is part of the following fields:

      • Cardiovascular System
      16.9
      Seconds
  • Question 11 - A 75-year-old collapses at home and is rushed to the Emergency Room but...

    Incorrect

    • A 75-year-old collapses at home and is rushed to the Emergency Room but dies despite resuscitation efforts. He had a myocardial infarction five weeks prior. What histological findings would be expected in his heart?

      Your Answer: Coagulative necrosis, neutrophils, wavy fibres, hypercontraction of myofibrils

      Correct Answer: Contracted scar

      Explanation:

      The histology findings of a myocardial infarction (MI) vary depending on the time elapsed since the event. Within the first 24 hours, early coagulative necrosis, neutrophils, wavy fibres, and hypercontraction of myofibrils are observed, which increase the risk of ventricular arrhythmia, heart failure, and cardiogenic shock. Between 1-3 days post-MI, extensive coagulative necrosis and neutrophils are present, which can lead to fibrinous pericarditis. From 3-14 days post-MI, macrophages and granulation tissue are seen at the margins, and there is a high risk of complications such as free wall rupture (resulting in mitral regurgitation), papillary muscle rupture, and left ventricular pseudoaneurysm. Finally, from 2 weeks to several months post-MI, a contracted scar is formed, which is associated with Dressler syndrome, heart failure, arrhythmias, and mural thrombus.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      17.7
      Seconds
  • Question 12 - An 80-year-old woman arrives at the Emergency Department reporting painless loss of vision...

    Incorrect

    • An 80-year-old woman arrives at the Emergency Department reporting painless loss of vision on the right side that started 30 minutes ago. Based on the history and examination, it is probable that she has experienced an ophthalmic artery stroke. Which branch of the Circle of Willis is likely affected?

      Your Answer: Retinal artery

      Correct Answer: Internal carotid artery

      Explanation:

      The ophthalmic artery originates from the internal carotid artery, which is part of the Circle of Willis, a circular network of arteries that supply the brain. The anterior cerebral arteries, which supply the frontal and parietal lobes, as well as the corpus callosum and cingulate cortex of the brain, also arise from the internal carotid artery. A stroke of the ophthalmic artery or its branch, the central retinal artery, can cause painless loss of vision. The basilar artery, which forms part of the posterior cerebral circulation, is formed from the convergence of the two vertebral arteries and gives rise to many arteries, but not the ophthalmic artery. The posterior cerebral artery, which supplies the occipital lobe, arises from the basilar artery.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      16.5
      Seconds
  • Question 13 - Which one of the following statements relating to the posterior cerebral artery is...

    Correct

    • Which one of the following statements relating to the posterior cerebral artery is false?

      Your Answer: It is connected to the circle of Willis via the superior cerebellar artery

      Explanation:

      The bifurcation of the basilar artery gives rise to the posterior cerebral arteries, which are linked to the circle of Willis through the posterior communicating artery.

      These arteries provide blood supply to the occipital lobe and a portion of the temporal lobe.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      9.9
      Seconds
  • Question 14 - A 25-year-old woman is having a trendelenberg procedure to treat her varicose veins....

    Incorrect

    • A 25-year-old woman is having a trendelenberg procedure to treat her varicose veins. While dissecting the saphenofemoral junction, which structure is most susceptible to injury?

      Your Answer: Superficial circumflex iliac artery

      Correct Answer: Deep external pudendal artery

      Explanation:

      The deep external pudendal artery is situated near the origin of the long saphenous vein and can be damaged. The highest risk of injury occurs during the flush ligation of the saphenofemoral junction. However, if an injury is detected and the vessel is tied off, it is rare for any significant negative consequences to occur.

      The Anatomy of Saphenous Veins

      The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.

      On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.

      Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.

    • This question is part of the following fields:

      • Cardiovascular System
      18.3
      Seconds
  • Question 15 - A 26-year-old man presents to the emergency department after experiencing a syncopal episode....

    Correct

    • A 26-year-old man presents to the emergency department after experiencing a syncopal episode. He is currently stable and reports no warning signs prior to the episode. He has had a few similar episodes in the past but did not seek medical attention. Upon further investigation, it is discovered that his father and uncle both died suddenly from heart attacks at ages 45 and 42, respectively. An ECG reveals coved ST segment elevation in V1 and V2 leads, followed by a negative T wave. What is the definitive treatment for this patient's condition?

      Your Answer: Implantable cardioverter-defibrillator

      Explanation:

      The most effective management for Brugada syndrome is the implantation of a cardioverter-defibrillator, as per the NICE guidelines. This is the recommended treatment for patients with the condition, as evidenced by this man’s ECG findings, syncopal episodes, and family history of sudden cardiac deaths.

      While class I antiarrhythmic drugs like flecainide and procainamide may be used in clinical settings to diagnose Brugada syndrome, they should be avoided in patients with the condition as they can transiently induce the ECG features of the syndrome.

      Quinidine, another class I antiarrhythmic drug, has shown some benefits in preventing and treating tachyarrhythmias in small studies of patients with Brugada syndrome. However, it is not a definitive treatment and has not been shown to reduce the rate of sudden cardiac deaths in those with the condition.

      Amiodarone is typically used in life-threatening situations to stop ventricular tachyarrhythmias. However, due to its unfavorable side effect profile, it is not recommended for long-term use, especially in younger patients who may require it for decades.

      Understanding Brugada Syndrome

      Brugada syndrome is a type of inherited cardiovascular disease that can lead to sudden cardiac death. It is passed down in an autosomal dominant manner and is more prevalent in Asians, with an estimated occurrence of 1 in 5,000-10,000 individuals. The condition has a variety of genetic variants, but around 20-40% of cases are caused by a mutation in the SCN5A gene, which encodes the myocardial sodium ion channel protein.

      One of the key diagnostic features of Brugada syndrome is the presence of convex ST segment elevation greater than 2mm in more than one of the V1-V3 leads, followed by a negative T wave and partial right bundle branch block. These ECG changes may become more apparent after the administration of flecainide or ajmaline, which are the preferred diagnostic tests for suspected cases of Brugada syndrome.

      The management of Brugada syndrome typically involves the implantation of a cardioverter-defibrillator to prevent sudden cardiac death. It is important for individuals with Brugada syndrome to receive regular medical monitoring and genetic counseling to manage their condition effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      21.8
      Seconds
  • Question 16 - A 72-year-old man arrives at the emergency department with severe chest pain that...

    Incorrect

    • A 72-year-old man arrives at the emergency department with severe chest pain that spreads to his left arm and jaw. After conducting an ECG, you observe ST-segment elevation in leads I, aVL, and V4-V6, leading to a diagnosis of anterolateral ST-elevation MI. What is the primary artery that provides blood to the lateral region of the left ventricle?

      Your Answer: Right coronary artery

      Correct Answer: Left circumflex artery

      Explanation:

      When the right coronary artery is blocked, it can lead to inferior myocardial infarction (MI) and changes in leads II, III, and aVF on an electrocardiogram (ECG). This is because the right coronary artery typically supplies blood to the sinoatrial (SA) and atrioventricular (AV) nodes, which can result in arrhythmias. The right marginal artery, which branches off from the right coronary artery near the bottom of the heart, runs along the heart’s lower edge towards the apex.

      The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.

      Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.

    • This question is part of the following fields:

      • Cardiovascular System
      13.2
      Seconds
  • Question 17 - A 45-year-old man undergoes a routine medical exam and his blood pressure is...

    Incorrect

    • A 45-year-old man undergoes a routine medical exam and his blood pressure is measured at 155/95 mmHg, which is unusual as it has been normal for the past five annual check-ups. What could be the reason for this sudden change?

      Your Answer: The patient talking during the reading

      Correct Answer: An undersized blood pressure cuff

      Explanation:

      Ensuring Accurate Blood Pressure Measurements

      Blood pressure is a crucial physiological measurement in medicine, and it is essential to ensure that the values obtained are accurate. Inaccurate readings can occur due to various reasons, such as using the wrong cuff size, incorrect arm positioning, and unsupported arms. For instance, using a bladder that is too small can lead to an overestimation of blood pressure, while using a bladder that is too large can result in an underestimation of blood pressure. Similarly, lowering the arm below heart level can lead to an overestimation of blood pressure, while elevating the arm above heart level can result in an underestimation of blood pressure.

      It is recommended to measure blood pressure in both arms when considering a diagnosis of hypertension. If there is a difference of more than 20 mmHg between the readings obtained from both arms, the measurements should be repeated. If the difference remains greater than 20 mmHg, subsequent blood pressures should be recorded from the arm with the higher reading. By following these guidelines, healthcare professionals can ensure that accurate blood pressure measurements are obtained, which is crucial for making informed medical decisions.

    • This question is part of the following fields:

      • Cardiovascular System
      38.8
      Seconds
  • Question 18 - A 54-year-old woman has been diagnosed with hypertension following ABPM which showed her...

    Incorrect

    • A 54-year-old woman has been diagnosed with hypertension following ABPM which showed her blood pressure to be 152/91 mmHg. She is curious about her condition and asks her GP to explain the physiology of blood pressure. Can you tell me where the baroreceptors that detect blood pressure are located in the body?

      Your Answer: Hypothalamus

      Correct Answer: Carotid sinus

      Explanation:

      The carotid sinus, located just above the point where the internal and external carotid arteries divide, houses baroreceptors that sense the stretching of the artery wall. These baroreceptors are connected to the glossopharyngeal nerve (cranial nerve IX). The nerve fibers then synapse in the solitary nucleus of the medulla, which regulates the activity of sympathetic and parasympathetic neurons. This, in turn, affects the heart and blood vessels, leading to changes in blood pressure.

      Similarly, the aortic arch also has baroreceptors that are connected to the aortic nerve. This nerve combines with the vagus nerve (X) and travels to the solitary nucleus.

      In contrast, the carotid body, located near the carotid sinus, contains chemoreceptors that detect changes in the levels of oxygen and carbon dioxide in the blood.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      14
      Seconds
  • Question 19 - A 72-year-old woman is prescribed digoxin for the treatment of atrial fibrillation that...

    Correct

    • A 72-year-old woman is prescribed digoxin for the treatment of atrial fibrillation that was not effectively managed with atenolol alone. Digoxin works by inhibiting a crucial element in the cardiac action potential that restores resting potential. This inhibition leads to changes in the levels of specific ions on either side of the membrane, resulting in an enhanced contractile force of the heart and an improvement in left ventricular ejection fraction.

      Which element does digoxin inhibit to achieve this effect?

      Your Answer: Na+/K+ ATPase

      Explanation:

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      5.4
      Seconds
  • Question 20 - An ENT surgeon is performing a radical neck dissection. She wishes to fully...

    Incorrect

    • An ENT surgeon is performing a radical neck dissection. She wishes to fully expose the external carotid artery. To do so she inserts a self retaining retractor close to its origin. Which one of the following structures lies posterolaterally to the external carotid at this point?

      Your Answer: Superior thyroid artery

      Correct Answer: Internal carotid artery

      Explanation:

      At its origin from the common carotid, the internal carotid artery is located at the posterolateral position in relation to the external carotid artery. Its anterior surface gives rise to the superior thyroid, lingual, and facial arteries.

      Anatomy of the External Carotid Artery

      The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.

      To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.

      The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.

    • This question is part of the following fields:

      • Cardiovascular System
      19.8
      Seconds
  • Question 21 - A 67-year old man with a history of cardiovascular disease and COPD visits...

    Correct

    • A 67-year old man with a history of cardiovascular disease and COPD visits his GP. During a routine blood test, the GP observes that the patient has mild hyponatraemia. Which medication could have played a role in causing his hyponatraemia?

      Your Answer: Bendroflumethiazide

      Explanation:

      Thiazide diuretics have been linked to the adverse effect of hyponatremia, while caution is advised when using β2-agonists like salbutamol in patients with hypokalemia due to their potential to decrease serum potassium. In cases of hyperkalemia, β2-agonists may be used as a temporary treatment option. Bendroflumethiazide, a thiazide diuretic, can cause electrolyte imbalances such as hypokalemia, hypomagnesemia, and hypochloremic alkalosis. On the other hand, ACE inhibitors like ramipril may lead to hyperkalemia, especially in patients with renal impairment, diabetes mellitus, or those taking potassium-sparing diuretics, potassium supplements, or potassium-containing salts. Atenolol, however, is not directly associated with electrolyte disturbances.

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      6.9
      Seconds
  • Question 22 - A 54-year-old man is admitted to the coronary care unit after being hospitalized...

    Incorrect

    • A 54-year-old man is admitted to the coronary care unit after being hospitalized three weeks ago for an ST-elevation myocardial infarction. He reports chest pain again and is concerned it may be another infarction. The pain is described as sharp and worsens with breathing. The cardiology resident notes a fever and hears a rubbing sound and pansystolic murmur on auscultation, which were previously present. A 12-lead ECG shows no new ischemic changes. The patient has a history of diabetes, hypertension, and heavy smoking since his teenage years. What is the most likely cause of his current condition?

      Your Answer: Valve structural damage

      Correct Answer: Autoimmune-mediated

      Explanation:

      Dressler’s syndrome is an autoimmune-mediated pericarditis that occurs 2-6 weeks after a myocardial infarction (MI). This patient, who has been admitted to the coronary care unit following an MI, is experiencing chest pain that is pleuritic in nature, along with fever and a friction rub sound upon examination. Given the timing of the symptoms at three weeks post-MI, Dressler’s syndrome is the most likely diagnosis. This condition results from an autoimmune-mediated inflammatory reaction to antigens following an MI, leading to inflammation of the pericardial sac and pericardial effusion. If left untreated, it can increase the risk of ventricular rupture. Treatment typically involves high-dose aspirin and corticosteroids if necessary.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      29.6
      Seconds
  • Question 23 - A 65-year-old patient has been discharged from the hospital after experiencing a myocardial...

    Incorrect

    • A 65-year-old patient has been discharged from the hospital after experiencing a myocardial infarction. What is the most suitable combination of medication for the patient to be discharged with?

      Your Answer: Aspirin, calcium channel-blocker, ACE inhibitor and statin

      Correct Answer: Aspirin, beta blocker, ACE inhibitor and statin

      Explanation:

      Medications for Secondary Prevention of Myocardial Infarction

      According to the NICE guidelines on myocardial infarction (MI), patients who have suffered from a heart attack should be discharged with specific medications for secondary prevention. These medications include aspirin, ACE inhibitors, beta-blockers, and statins. The purpose of these medications is to prevent further cardiac events and improve the patient’s overall cardiovascular health.

      Aspirin is a blood thinner that helps to prevent blood clots from forming in the arteries, which can lead to another heart attack. ACE inhibitors help to lower blood pressure and reduce the workload on the heart, which can help to prevent further damage to the heart muscle. Beta-blockers also help to lower blood pressure and reduce the workload on the heart, as well as slow down the heart rate. Statins are cholesterol-lowering medications that help to reduce the risk of plaque buildup in the arteries, which can lead to a heart attack.

      These medications are prescribed for tertiary prevention, which means they are used in conjunction with cardiac rehabilitation to help prevent future cardiac events. Cardiac rehabilitation typically involves exercise, education, and counseling to help patients make lifestyle changes that can improve their cardiovascular health.

      In summary, patients who have suffered from a heart attack should be discharged with aspirin, ACE inhibitors, beta-blockers, and statins for secondary prevention. These medications, along with cardiac rehabilitation, can help to prevent future cardiac events and improve the patient’s overall cardiovascular health.

    • This question is part of the following fields:

      • Cardiovascular System
      19.9
      Seconds
  • Question 24 - A 65-year-old man presents to the vascular clinic with bilateral buttock claudication that...

    Incorrect

    • A 65-year-old man presents to the vascular clinic with bilateral buttock claudication that spreads down the thigh and erectile dysfunction. The vascular surgeon is unable to palpate his left femoral pulse and the right is weakly palpable. The patient is diagnosed with Leriche syndrome, which is caused by atherosclerotic occlusion of blood flow at the abdominal aortic bifurcation. He has been consented for aorto-iliac bypass surgery and is currently awaiting the procedure.

      What is the vertebral level of the affected artery that requires bypassing?

      Your Answer: T12

      Correct Answer: L4

      Explanation:

      The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.

    • This question is part of the following fields:

      • Cardiovascular System
      18
      Seconds
  • Question 25 - An 80-year-old patient is initiated on warfarin after being diagnosed with atrial fibrillation....

    Correct

    • An 80-year-old patient is initiated on warfarin after being diagnosed with atrial fibrillation. The patient has a medical history of a metallic heart valve.

      The patient is informed that INR levels will be used to monitor the effects of warfarin. INR is a ratio of the value during warfarin treatment to the normal value, which is used to measure a specific aspect of clotting.

      What is the value that is utilized during this monitoring process?

      Your Answer: Prothrombin time

      Explanation:

      Warfarin leads to an extended prothrombin time, which is the correct answer. The prothrombin time assesses the extrinsic and common pathways of the clotting cascade, and warfarin affects factor VII from the extrinsic pathway, as well as factor II (prothrombin) and factor X from the common pathway. This results in a prolonged prothrombin time, and the INR is a ratio of the prothrombin time during warfarin treatment to the normal prothrombin time.

      The activated partial thromboplastin time is an incorrect answer. Although high levels of warfarin may prolong the activated partial thromboplastin time, the INR is solely based on the prothrombin time.

      Bleeding time is also an incorrect answer. While warfarin can cause a prolonged bleeding time, the INR measures the prothrombin time.

      Fibrinogen levels are another incorrect answer. Fibrinogen is necessary for blood clotting, and warfarin can decrease fibrinogen levels after prolonged use. However, fibrinogen levels are not used in the INR measurement.

      Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects

      Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.

      Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.

      Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.

      In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.

    • This question is part of the following fields:

      • Cardiovascular System
      16.4
      Seconds
  • Question 26 - Mrs. Smith is a 75-year-old woman who presents to the emergency department with...

    Incorrect

    • Mrs. Smith is a 75-year-old woman who presents to the emergency department with progressive shortness of breath over the past 5 days. Last night she woke up suddenly because she couldn't catch her breath and developed a dry cough. Her breathing improved when she sat upright on the edge of her bed. She denies any chest pain, leg pain or fainting spells.

      Her past medical history includes a myocardial infarction 5 years ago for which she underwent a coronary artery bypass graft, hypertension and type 2 diabetes. She has been smoking for 30 years and doesn't drink any alcohol.

      What is the most likely diagnosis?

      Your Answer: Right-sided heart failure

      Correct Answer: Left-sided heart failure

      Explanation:

      The likely diagnosis for a patient experiencing paroxysmal nocturnal dyspnoea is left-sided heart failure. This symptom, which involves sudden waking at night due to shortness of breath, is a common feature of heart failure, particularly on the left side. Aortic dissection, myocardial infarction, and pulmonary embolism are unlikely diagnoses as they present with different symptoms. Right-sided heart failure is also an unlikely diagnosis as it presents with different features such as raised JVP, ankle oedema, and hepatomegaly.

      Features of Chronic Heart Failure

      Chronic heart failure is a condition that affects the heart’s ability to pump blood effectively. It is characterized by several features that can help in its diagnosis. Dyspnoea, or shortness of breath, is a common symptom of chronic heart failure. Patients may also experience coughing, which can be worse at night and accompanied by pink or frothy sputum. Orthopnoea, or difficulty breathing while lying down, and paroxysmal nocturnal dyspnoea, or sudden shortness of breath at night, are also common symptoms.

      Another feature of chronic heart failure is the presence of a wheeze, known as a cardiac wheeze. Patients may also experience weight loss, known as cardiac cachexia, which occurs in up to 15% of patients. However, this may be hidden by weight gained due to oedema. On examination, bibasal crackles may be heard, and signs of right-sided heart failure, such as a raised JVP, ankle oedema, and hepatomegaly, may be present.

      In summary, chronic heart failure is a condition that can be identified by several features, including dyspnoea, coughing, orthopnoea, paroxysmal nocturnal dyspnoea, wheezing, weight loss, bibasal crackles, and signs of right-sided heart failure. Early recognition and management of these symptoms can help improve outcomes for patients with chronic heart failure.

    • This question is part of the following fields:

      • Cardiovascular System
      14.8
      Seconds
  • Question 27 - A 75-year-old male presents to his GP with a four week history of...

    Incorrect

    • A 75-year-old male presents to his GP with a four week history of shortness of breath when he walks for approximately two minutes on level ground. There is also an associated central chest pain which resolves when he rests. The pain is localised and does not radiate.

      On examination, there were obvious signs of ankle and sacral pitting oedema. A left ventricular heave was palpated but the apex beat was not displaced. A systolic murmur was heard best at the second intercostal space just right of the sternum. This murmur also radiated to the carotid arteries.

      Which investigation is most likely to confirm the underlying cause of his symptoms?

      Your Answer: Twelve lead ECG

      Correct Answer: Echocardiogram

      Explanation:

      Diagnosis of Valvular Heart Disease

      Echocardiography is the most sensitive and specific way to diagnose valvular heart disease (VHD). It involves observing the valvular leaflets and degree of calcified stenosis of the aortic valve, as well as calculating cardiac output and ejection fraction for prognostic information. Chest x-ray may reveal a calcified aortic valve and left ventricular hypertrophy, while bilateral ankle edema is a minor sign for congestive heart failure. To assess the severity of heart failure, an x-ray, ECG, and BNP should be performed, but echocardiogram remains the most reliable diagnostic tool for VHD.

      A myocardial infarction is unlikely in this patient due to her age and the duration of symptoms. Instead, her angina-type pain is likely due to her underlying aortic valve disease. An angiogram of the coronary arteries alone cannot diagnose valvular defects. Cardiac enzymes such as troponin I and T are markers for myocardial necrosis and will not aid in the diagnosis of VHD. While ECG should be performed in a patient presenting with these symptoms, it alone is insufficient to diagnose VHD. The ECG may show left axis deviation due to left ventricular hypertrophy.

    • This question is part of the following fields:

      • Cardiovascular System
      18.5
      Seconds
  • Question 28 - A 28-year-old male is being evaluated at the pre-operative assessment clinic. A murmur...

    Correct

    • A 28-year-old male is being evaluated at the pre-operative assessment clinic. A murmur is detected in the 4th intercostal space adjacent to the left side of the sternum. What is the most probable source of the murmur?

      Your Answer: Tricuspid valve

      Explanation:

      The optimal location for auscultating the tricuspid valve is near the sternum, while the projected sound from the mitral area is most audible at the cardiac apex.

      Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.

    • This question is part of the following fields:

      • Cardiovascular System
      11.1
      Seconds
  • Question 29 - A 75-year-old woman complains of increasing shortness of breath in the past few...

    Incorrect

    • A 75-year-old woman complains of increasing shortness of breath in the past few months, especially when lying down at night. She has a history of type 2 diabetes and high blood pressure, which is managed with ramipril. She smokes 15 cigarettes per day. Her heart rate is 76 bpm, blood pressure is 160/95 mmHg, and oxygen saturation is 94% on room air. An ECG reveals sinus rhythm and left ventricular hypertrophy. On physical examination, there are no heart murmurs, but there is wheezing throughout the chest and coarse crackles at both bases. She has pitting edema in both ankles. Her troponin T level is 0.01 (normal range <0.02). What is the diagnosis for this patient?

      Your Answer: Right heart failure

      Correct Answer: Biventricular failure

      Explanation:

      Diagnosis and Assessment of Biventricular Failure

      This patient is exhibiting symptoms of both peripheral and pulmonary edema, indicating biventricular failure. The ECG shows left ventricular hypertrophy, which is likely due to her long-standing hypertension. While she is at an increased risk for a myocardial infarction as a diabetic and smoker, her low troponin T levels suggest that this is not the immediate cause of her symptoms. However, it is important to rule out acute coronary syndromes in diabetics, as they may not experience pain.

      Mitral stenosis, if present, would be accompanied by a diastolic murmur and left atrial hypertrophy. In severe cases, back-pressure can lead to pulmonary edema. Overall, a thorough assessment and diagnosis of biventricular failure is crucial in determining the appropriate treatment plan for this patient.

    • This question is part of the following fields:

      • Cardiovascular System
      18.9
      Seconds
  • Question 30 - A 47-year-old patient is scheduled for an emergency laparotomy due to bowel perforation....

    Correct

    • A 47-year-old patient is scheduled for an emergency laparotomy due to bowel perforation. While performing the procedure, the surgeon comes across the marginal artery of Drummond and decides to preserve it. Can you name the two arteries that combine to form the marginal artery of Drummond?

      Your Answer: Superior mesenteric artery and inferior mesenteric artery

      Explanation:

      The anastomosis known as the marginal artery of Drummond is created by the joining of the superior mesenteric artery and inferior mesenteric artery. This results in a continuous arterial circle that runs along the inner edge of the colon. The artery gives rise to straight vessels, also known as vasa recta, which supply the colon. The ileocolic, right colic, and middle colic branches of the SMA, as well as the left colic and sigmoid branches of the IMA, combine to form the marginal artery of Drummond. All other options are incorrect as they do not contribute to this particular artery.

      The Superior Mesenteric Artery and its Branches

      The superior mesenteric artery is a major blood vessel that branches off the aorta at the level of the first lumbar vertebrae. It supplies blood to the small intestine from the duodenum to the mid transverse colon. However, due to its more oblique angle from the aorta, it is more susceptible to receiving emboli than the coeliac axis.

      The superior mesenteric artery is closely related to several structures, including the neck of the pancreas superiorly, the third part of the duodenum and uncinate process postero-inferiorly, and the left renal vein posteriorly. Additionally, the right superior mesenteric vein is also in close proximity.

      The superior mesenteric artery has several branches, including the inferior pancreatico-duodenal artery, jejunal and ileal arcades, ileo-colic artery, right colic artery, and middle colic artery. These branches supply blood to various parts of the small and large intestine. An overview of the superior mesenteric artery and its branches can be seen in the accompanying image.

    • This question is part of the following fields:

      • Cardiovascular System
      11.9
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (8/30) 27%
Passmed