00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - What significance do leucine, lysine, and phenylalanine hold? ...

    Correct

    • What significance do leucine, lysine, and phenylalanine hold?

      Your Answer: They are essential amino acids

      Explanation:

      Essential Amino Acids and their Importance in the Diet

      There are approximately 20 essential amino acids that are crucial for human health. These amino acids are considered essential because the body cannot produce them on its own and they must be obtained through the diet. While some of these essential amino acids can be used to create other non-essential amino acids, they are still necessary for overall health and wellbeing.

      Some examples of essential amino acids include histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. However, the amount of these essential amino acids can vary depending on the type of dietary protein consumed. Additionally, cooking or preserving proteins can alter the amino acid composition, making them less effective for the body.

      In summary, essential amino acids play a vital role in maintaining human health and must be obtained through the diet. the importance of these amino acids and their sources can help individuals make informed decisions about their dietary choices.

    • This question is part of the following fields:

      • Basic Sciences
      11.1
      Seconds
  • Question 2 - What role does the nucleolus play in eukaryotic cells? ...

    Incorrect

    • What role does the nucleolus play in eukaryotic cells?

      Your Answer: To store the cells DNA during cell division

      Correct Answer: To transcribe ribosomal RNA and assemble ribosomes

      Explanation:

      The Nucleolus: Structure and Function

      The nucleolus is a non-membrane-bound structure that takes up about a quarter of the nuclear volume. It is composed mainly of proteins and nucleic acids and is responsible for transcribing ribosomal RNA (rRNA) and assembling ribosomes in the cell. Nucleoli are formed in nucleolar organizing regions (NORs), which are also the regions of the genes for three of the four eukaryotic rRNAs.

      During ribosome assembly, ribosomal proteins enter the nucleolus from the cytoplasm and begin to assemble on an rRNA precursor. As the pre-rRNA is cleaved to produce 5.8S, 18S, and 28S rRNAs, additional ribosomal proteins and the 5S rRNA (which is synthesized elsewhere in the nucleus) assemble to form preribosomal subunits. These subunits then exit the nucleolus into the cytoplasm and combine to produce the final 40S and 60S ribosomal subunits.

      Overall, the nucleolus plays a crucial role in protein synthesis by producing the components necessary for ribosome assembly. Its unique structure and function make it an essential component of the cell’s machinery.

    • This question is part of the following fields:

      • Basic Sciences
      17.5
      Seconds
  • Question 3 - What are the vitamins that are soluble in fat? ...

    Correct

    • What are the vitamins that are soluble in fat?

      Your Answer: Vitamins A, D, E and K

      Explanation:

      Absorption of Fat-Soluble Vitamins

      Fat-soluble vitamins, namely A, D, E, and K, have a different absorption process compared to water-soluble vitamins. In the gut, these vitamins are combined with other fat-soluble substances such as monoacylglycerols and cholesterol to form micelles. These micelles are then transported to the lymphatic system and eventually enter the bloodstream through the subclavian vein.

      However, any issues that affect the absorption of fats will also impact the absorption of fat-soluble vitamins. This means that individuals with conditions that affect fat absorption, such as cystic fibrosis or celiac disease, may have difficulty absorbing these vitamins. It is important to ensure adequate intake of fat-soluble vitamins through a balanced diet or supplements to prevent deficiencies and associated health problems.

    • This question is part of the following fields:

      • Basic Sciences
      7.7
      Seconds
  • Question 4 - What is the main role of the Golgi apparatus in eukaryotic cells? ...

    Correct

    • What is the main role of the Golgi apparatus in eukaryotic cells?

      Your Answer: Process of proteins

      Explanation:

      The Golgi Apparatus, Cell Division, and Homeostasis

      The Golgi apparatus is a structure found in eukaryotic cells that consists of flattened membrane stacks. Its primary function is to modify proteins that have been synthesized in the rough endoplasmic reticulum, preparing them for secretion or transport within the cell. However, the Golgi apparatus is not directly involved in cell division, which is controlled by the nucleus.

      Cell homeostasis, on the other hand, is primarily maintained by membrane-embedded channels or proteins such as the sodium-potassium pump. This mechanism ensures that the cell’s internal environment remains stable. The sodium-potassium pump is an active transport mechanism that involves the binding of three intracellular sodium ions to the protein. Adenosine triphosphate (ATP) donates a phosphate group to the protein, which causes it to change shape and release the sodium ions out of the cell.

      The protein then accepts two extracellular potassium ions, and the donated phosphate group detaches, causing the protein to revert to its original shape. This allows the potassium ions to enter the cell, increasing the intracellular potassium concentration and decreasing the intracellular sodium concentration. This process is in contrast to the extracellular conditions.

      In summary, the Golgi apparatus modifies proteins for secretion or transport, while cell division is controlled by the nucleus. Cell homeostasis is maintained by membrane-embedded channels or proteins such as the sodium-potassium pump, which actively transports ions to stabilize the cell’s internal environment.

    • This question is part of the following fields:

      • Basic Sciences
      10.8
      Seconds
  • Question 5 - A couple in their early 30s come to your clinic seeking advice. The...

    Incorrect

    • A couple in their early 30s come to your clinic seeking advice. The husband has a history of haemophilia B and they are worried about the possibility of passing it on to their children. Can you determine which of their offspring will be affected by the disease?

      Your Answer: Half of the daughters and half of the sons will be affected

      Correct Answer: All daughters will be carriers; no sons will be affected

      Explanation:

      The inheritance of Haemophilia A and B is crucial in identifying individuals who are at risk of developing the condition. Haemophilia A and B are genetic disorders that are inherited in an X-linked recessive manner. Haemophilia A is caused by a deficiency in clotting factor VIII, while haemophilia B is caused by a deficiency in clotting factor IX.

      On the other hand, haemophilia C, which is caused by a deficiency in clotting factor XI, is primarily inherited in an autosomal recessive manner. In X-linked recessive conditions like haemophilia B, males are more likely to be affected than females. This is because males only need one abnormal copy of the gene, which is carried on the X chromosome, to be affected.

      Females, on the other hand, can be carriers of the condition if they carry one normal and one abnormal copy of the gene. While carriers can have clotting abnormalities, these are usually milder than those seen in affected individuals. Men cannot pass the condition to their sons, but they will pass on the abnormal X chromosome to all their daughters, who will be carriers.

      Female carriers can pass on the condition to around half their sons, and half their daughters will be carriers. Females can only be affected if they are the offspring of an affected male and a carrier female. In summary, the inheritance of haemophilia A and B is crucial in identifying individuals who are at risk of developing the condition. It also helps in providing appropriate genetic counseling and management for affected individuals and their families.

    • This question is part of the following fields:

      • Basic Sciences
      21.7
      Seconds
  • Question 6 - You are evaluating a geriatric patient in the emergency department who has fallen...

    Incorrect

    • You are evaluating a geriatric patient in the emergency department who has fallen and needs a venous cannula for fluid resuscitation. To ensure maximum flow into the vein, you plan to apply the Hagen-Poiseuille equation to select an appropriate cannula size. Which of the following statements is true according to this law?

      Your Answer: Flow is proportional to the radius of the cannula squared

      Correct Answer: Flow will be faster through a shorter cannula

      Explanation:

      Poiseuille’s Equation and Fluid Flow in Cylinders

      Poiseuille’s equation is used to describe the flow of non-pulsatile laminar fluids through a cylinder. The equation states that the flow rate is directly proportional to the pressure driving the fluid and the fourth power of the radius. Additionally, it is inversely proportional to the viscosity of the fluid and the length of the tube. This means that a short, wide cannula with pressure on the bag will deliver fluids more rapidly than a long, narrow one.

      It is important to note that even small changes in the radius of a tube can greatly affect the flow rate. This is because the fourth power of the radius is used in the equation. Therefore, any changes in the radius will have a significant impact on the flow rate. Poiseuille’s equation is crucial in determining the optimal conditions for fluid delivery in medical settings.

    • This question is part of the following fields:

      • Basic Sciences
      23.4
      Seconds
  • Question 7 - A couple in their late 20s comes to your clinic seeking advice regarding...

    Incorrect

    • A couple in their late 20s comes to your clinic seeking advice regarding the possibility of their children inheriting cystic fibrosis. The husband has a confirmed diagnosis of the condition, but the carrier status of the wife is unknown.

      What is the likelihood of any of their offspring being affected by cystic fibrosis?

      Your Answer: 50%

      Correct Answer: 2.50%

      Explanation:

      Cystic Fibrosis Inheritance

      Cystic fibrosis (CF) is a genetic disorder that affects the chloride ion channels, leading to the thickening of respiratory and other secretions. It is an autosomal recessive condition, which means that a person must inherit two copies of the defective gene, one from each parent, to develop the disease. The most common defective allele is carried by approximately 1 in 20 people.

      If a man with CF has children with a woman who does not carry the recessive gene, then none of their children will be affected by the disease. However, they will all be carriers of the CF gene. On the other hand, if the woman is a carrier of the CF gene, there is a 50% chance that each child will inherit one copy of the defective gene from each parent and be affected by the disease. The remaining 50% of the children will inherit one copy of the defective gene and one normal gene, making them carriers of the CF gene but not affected by the disease.

      In summary, the probability of any child being affected by CF is 2.5% if one parent has the defective gene and the other does not. It is important for individuals who are carriers of the CF gene to be aware of their status and seek genetic counseling before planning to have children.

    • This question is part of the following fields:

      • Basic Sciences
      33
      Seconds
  • Question 8 - A 32-year-old snowboarder presents to the Emergency department complaining of pain and swelling...

    Correct

    • A 32-year-old snowboarder presents to the Emergency department complaining of pain and swelling around the first metacarpophalangeal joint (MCP joint) following a fall during practice.
      Upon examination, there is significant swelling and bruising on the ulnar side of the joint.

      What is the most probable injury that the patient has sustained?

      Your Answer: Ulnar collateral ligament

      Explanation:

      Skier’s Thumb: A Common Injury in Winter Sports

      Skier’s thumb, also known as gamekeeper’s thumb, is a common injury that occurs in winter sports. It is caused by damage or rupture of the ulnar collateral ligament, which is located at the base of the thumb. This injury can result in acute swelling and gross instability of the thumb. In severe cases where a complete tear of the ligament is suspected, an MRI may be necessary to confirm the diagnosis, and surgical repair may be required.

      Once the acute swelling has subsided, treatment for skier’s thumb typically involves immobilization in a thumb spica. This is the standard therapy for cases of partial rupture.

    • This question is part of the following fields:

      • Basic Sciences
      44.5
      Seconds
  • Question 9 - What occurs in eukaryotic prophase? ...

    Correct

    • What occurs in eukaryotic prophase?

      Your Answer: Chromatin condenses into chromosomes

      Explanation:

      The Stages of Prophase in Eukaryotic Mitosis

      Prophase is the first stage of eukaryotic mitosis, except for plant cells which have a preprophase stage. During prophase, the cell’s chromatin, which is made up of DNA and associated proteins, condenses into double rod-shaped structures called chromosomes. This process is facilitated by the condensin protein I and/or II complexes. As the chromosomes form, the nuclear membrane and nucleoli disintegrate and disappear, making the chromatin visible.

      Before prophase, the cell’s DNA is replicated during interphase, resulting in identical pairs of chromosomes called chromatids. These chromatids attach to each other at a DNA element called the centromere. DNA and centrosome duplication occur during interphase, while chromosome alignment takes place during metaphase. The nuclear membrane and nucleoli re-form during telophase, and the sister chromatids separate during anaphase.

      In summary, prophase is the initial stage of eukaryotic mitosis where chromatin condenses into chromosomes, and the nuclear membrane and nucleoli disappear. Chromosome alignment, DNA and centrosome duplication, and re-formation of the nuclear membrane and nucleoli occur in subsequent stages.

    • This question is part of the following fields:

      • Basic Sciences
      11.3
      Seconds
  • Question 10 - What is the final product of glycolysis besides ATP? ...

    Incorrect

    • What is the final product of glycolysis besides ATP?

      Your Answer: NADH+

      Correct Answer: Pyruvate

      Explanation:

      Glycolysis: The Energy-Producing Reaction

      Glycolysis is a crucial energy-producing reaction that converts glucose into pyruvate while releasing energy to create ATP and NADH+. It is one of the three major carbohydrate reactions, along with the citric acid cycle and the electron transport chain. The reaction involves ten enzymatic steps that provide entry points to glycolysis, allowing for a variety of starting points. The most common starting point is glucose or glycogen, which produces glucose-6-phosphate.

      Glycolysis occurs in two phases: the preparatory (or investment) phase and the pay-off phase. In the preparatory phase, ATP is consumed to start the reaction, while in the pay-off phase, ATP is produced. Glycolysis can be either aerobic or anaerobic, but it does not require nor consume oxygen.

      Although other molecules are involved in glycolysis at some stage, none of them form its end product. Lactic acid is associated with anaerobic glycolysis. glycolysis is essential for how the body produces energy from carbohydrates.

    • This question is part of the following fields:

      • Basic Sciences
      12.8
      Seconds
  • Question 11 - What are the clinical consequences of a lack of vitamin A? ...

    Incorrect

    • What are the clinical consequences of a lack of vitamin A?

      Your Answer: Dental caries

      Correct Answer: Dry conjunctiva

      Explanation:

      The Devastating Effects of Vitamin A Deficiency

      Vitamin A deficiency is a serious health concern that can lead to a range of devastating effects. One of the most common consequences is blindness, particularly in children. Poor night vision is often an early sign of this deficiency, which can progress to complete blindness if left untreated.

      In addition to blindness, vitamin A deficiency can also cause dry conjunctiva, a condition known as conjunctival xerosis. This occurs when the normally moist and fine conjunctiva becomes thickened and dysfunctional, leading to the formation of white plaques known as Bitot’s spots. Corneal ulceration can also occur as a result of this condition.

      The respiratory and gastrointestinal epithelia can also be affected by vitamin A deficiency, leading to reduced resistance to infection. This deficiency is a major public health issue in some parts of the world and is the single most common preventable cause of blindness. It is crucial to address this issue through education and access to vitamin A-rich foods and supplements.

      Overall, the devastating effects of vitamin A deficiency highlight the importance of proper nutrition and access to essential vitamins and minerals. By addressing this issue, we can help prevent blindness and improve overall health outcomes for individuals and communities around the world.

    • This question is part of the following fields:

      • Basic Sciences
      14.9
      Seconds
  • Question 12 - What is the primary role of the nucleus in a eukaryotic cell? ...

    Correct

    • What is the primary role of the nucleus in a eukaryotic cell?

      Your Answer: To regulate gene transcription and translation

      Explanation:

      The Nucleus: Control Centre of the Cell

      The nucleus is the control centre of the cell, responsible for regulating gene transcription from DNA into mRNA and from mRNA into peptide/protein synthesis. Eukaryotic cells have a membrane-enclosed organised nucleus, while prokaryotic cells lack this structure. The nuclear structure consists of an outer and inner nuclear membrane that form the nuclear envelope, which has nuclear pores allowing the movement of water-soluble molecules. Inside the nucleus is the nucleoplasm containing the nuclear lamina, a dense fibrillar network that acts as a skeleton and regulates DNA replication and cell division. The nucleus also contains nucleoli, structures involved in the formation of ribosomes responsible for mRNA translation.

      Although the incorrect answer options above describe processes in which the nucleus is involved, none of them constitutes its main function within the cell.

    • This question is part of the following fields:

      • Basic Sciences
      16
      Seconds
  • Question 13 - What controls the specific stages of the cell cycle? ...

    Incorrect

    • What controls the specific stages of the cell cycle?

      Your Answer: The complexing of cyclases with cyclins at the end of the G1 phase

      Correct Answer: Cyclins and cyclin-dependent kinases

      Explanation:

      Regulation of the Cell Cycle by Cyclins and Cyclin-Dependent Kinases

      The cell cycle is controlled by the activity of proteins known as cyclins and phosphorylating enzymes called cyclin-dependent kinases (CDKs). Cyclins and CDKs combine to form an activated heterodimer, where cyclins act as the regulatory subunits and CDKs act as the catalytic subunits. Neither of these molecules is active on their own. When a cyclin binds to a CDK, the CDK phosphorylates other target proteins, either activating or deactivating them. This coordination leads to the entry into the next phase of the cell cycle. The specific proteins that are activated depend on the different combinations of cyclin-CDK. Additionally, CDKs are always present in cells, while cyclins are produced at specific points in the cell cycle in response to other signaling pathways.

      In summary, the cell cycle is regulated by the interaction between cyclins and CDKs. This interaction leads to the phosphorylation of target proteins, which ultimately controls the progression of the cell cycle.

    • This question is part of the following fields:

      • Basic Sciences
      18
      Seconds
  • Question 14 - Which food is a rich source of vitamin D in the diet? ...

    Correct

    • Which food is a rich source of vitamin D in the diet?

      Your Answer: Oily fish

      Explanation:

      Sources of Vitamin D

      Vitamin D is a type of fat-soluble vitamin that can be found in certain foods such as cheese, butter, eggs, and oily fish. However, vegetable sources of vitamin D are limited, although some foods are fortified with this vitamin. For instance, 100 grams of sundried shiitake mushrooms contain 1600 IU of vitamin D, while one egg contains 20 IU. Wild salmon is also a good source of vitamin D, with 100 grams containing 800 IU, while farmed salmon contains 200 IU.

      Aside from food sources, sunlight is also a good source of vitamin D. Exposure of arms and legs to sunlight for 10-15 minutes can provide 3000 IU of vitamin D. However, it is difficult to obtain the daily requirement of 25-50 IU of vitamin D through sunlight alone, especially for people living in temperate climates. As a result, many people may have insufficient vitamin D levels. It is important to ensure that we get enough vitamin D through a combination of food sources and sunlight exposure.

    • This question is part of the following fields:

      • Basic Sciences
      10.5
      Seconds
  • Question 15 - What could be a potential cause of metabolic acidosis? ...

    Incorrect

    • What could be a potential cause of metabolic acidosis?

      Your Answer: Voluntary hyperventilation

      Correct Answer: Poorly controlled diabetes

      Explanation:

      Acid-Base Imbalances in Different Medical Conditions

      Poorly controlled diabetes can cause the breakdown of fatty acids, leading to the production of ketones as an alternative energy source. However, an excess of ketones can result in metabolic acidosis due to their acidic nature. On the other hand, chronic obstructive pulmonary disease (COPD) and suffocation can cause the retention of carbon dioxide, leading to respiratory acidosis. In COPD, there may be a compensatory metabolic alkalosis. Voluntary hyperventilation can cause respiratory alkalosis due to the reduction of carbon dioxide. Vomiting can also lead to metabolic alkalosis. Diabetic ketoacidosis is a complication of type 1 diabetes that results in high blood sugar levels, ketone production, and acidosis.

      In summary, different medical conditions can cause acid-base imbalances in the body. It is important to identify the underlying cause of the imbalance to provide appropriate treatment.

    • This question is part of the following fields:

      • Basic Sciences
      27.5
      Seconds
  • Question 16 - The diabetes prevention program has been running for the last 5 years. At...

    Correct

    • The diabetes prevention program has been running for the last 5 years. At baseline, a well conducted study with a sample size of 500 showed that the prevalence of diabetes among adults aged 40 and above was 15%.
      Five years later another survey (of 400 responders) showed that the prevalence of diabetes was 10%.
      In the above example, which definition of prevalence is correct?

      Your Answer: Prevalence is the number of new and old smokers in a year

      Explanation:

      Prevalence and Incidence in Smoking

      Prevalence and incidence are two important concepts in the smoking habits of a population. Prevalence refers to the number of people who smoke at a particular time point, such as at the beginning or end of a study period. This is calculated by dividing the number of smokers by the total population.

      On the other hand, incidence refers to the number of new cases of smoking at a particular time point. For example, this could be at the beginning of a study period for the whole year or at the 10th year. This is calculated by dividing the number of new smokers by the number of smoke-free individuals who are potentially at risk of taking up smoking.

      prevalence and incidence is important in evaluating the effectiveness of smoking cessation programs and policies. By tracking changes in prevalence and incidence over time, researchers and policymakers can determine whether their efforts are making a difference in reducing smoking rates. Additionally, these concepts can help identify populations that are at higher risk of taking up smoking, allowing for targeted interventions to prevent smoking initiation.

    • This question is part of the following fields:

      • Basic Sciences
      97.3
      Seconds
  • Question 17 - What is the cause of the symptoms of weakness, dermatitis, diarrhoea and dementia...

    Incorrect

    • What is the cause of the symptoms of weakness, dermatitis, diarrhoea and dementia in pellagra?

      Your Answer: Genetic disease affecting collagen synthesis

      Correct Answer: Deficiency of the vitamin niacin

      Explanation:

      Niacin Deficiency and Other Genetic Diseases

      Niacin, a vitamin present in two forms – nicotinamide and nicotinic acid, is found in a variety of plant and animal foodstuffs. However, in some cases, the form of the vitamin is not easily absorbed by the human body, leading to deficiency. This deficiency is common in areas where maize is the primary dietary carbohydrate. Additionally, niacin can be produced by the body from the amino acid tryptophan. Diseases that affect the availability of tryptophan, such as Hartnup disease and carcinoid syndrome, can also result in niacin deficiency.

      Pellagra is a condition that arises from niacin deficiency. It initially presents with non-specific symptoms such as nausea, fatigue, and reduced appetite, followed by pigmented dermatitis in sun-exposed areas, gastrointestinal disturbance, mood disturbance, and dementia in severe cases.

      Apart from niacin deficiency, genetic diseases affecting collagen synthesis, such as Ehlers Danlos, present with symptoms of fragile stretchy skin and joint hypermobility. Genetic diseases affecting haemoglobin, such as sickle cell anaemia, present with symptoms of pain, hepatosplenomegaly, shortness of breath, and anaemia. Deficiencies in B12 and folate can also lead to macrocytic anaemia, paresthesia, and lethargy.

      In conclusion, the causes and symptoms of niacin deficiency and other genetic diseases is crucial for early diagnosis and effective treatment. A balanced diet and regular medical check-ups can help prevent and manage these conditions.

    • This question is part of the following fields:

      • Basic Sciences
      19.3
      Seconds
  • Question 18 - A 50-year-old female patient presents to the vascular clinic for evaluation of varicose...

    Correct

    • A 50-year-old female patient presents to the vascular clinic for evaluation of varicose veins. During the assessment, a test is conducted to determine the site of incompetence. The patient is instructed to lie down, and her legs are raised to empty the veins. A constricting band is then placed below the sapheno-femoral junction, and the patient is asked to stand up to observe for varicose vein filling. What is the name of this test?

      Your Answer: Tourniquet test

      Explanation:

      Tests for Varicose Veins and Arterial Insufficiency

      The Trendelenburg and tourniquet tests are both used to evaluate the site of incompetence in varicose veins at the sapheno-femoral junction. During the Trendelenburg test, the examiner applies pressure with their fingers over the junction, while in the tourniquet test, a tourniquet is placed just below the junction. If the veins fill rapidly upon standing, it suggests that the sapheno-femoral junction is not the source of the incompetence.

      Buerger’s test is used to assess the arterial circulation of the lower limb. The lower the angle at which blanching occurs, the more likely there is arterial insufficiency. This test is important in diagnosing peripheral artery disease.

      The ankle-brachial pressure index (ABPI) is another test used to assess arterial insufficiency. Blood pressure cuffs are used to measure the systolic blood pressure in the ankle and arm. The ratio of the two pressures is calculated, and a lower ratio indicates a higher degree of claudication.

      Finally, Perthe’s test is used to assess the patency of the deep femoral vein before varicose vein surgery. This test involves compressing the vein and observing the filling of the superficial veins. If the superficial veins fill quickly, it suggests that the deep femoral vein is patent and can be used for surgery.

      In summary, these tests are important in diagnosing and evaluating varicose veins and arterial insufficiency. They help healthcare professionals determine the best course of treatment for their patients.

    • This question is part of the following fields:

      • Basic Sciences
      35.2
      Seconds
  • Question 19 - While taking a patient's medical history, you discover that their family has a...

    Correct

    • While taking a patient's medical history, you discover that their family has a strong history of a certain disease. Autosomal dominant diseases are often caused by defects in structural genes and typically present in early adulthood, affecting both males and females equally. Which of the following diseases does not follow an autosomal dominant pattern of inheritance?

      Your Answer: Haemochromatosis

      Explanation:

      Abnormal Binding Proteins and Iron Deposition: A Genetic Disorder

      Abnormal binding proteins can lead to the deposition of iron in the body, resulting in various health complications. This genetic disorder is inherited in an autosomal recessive manner. The deposition of iron can cause cardiomyopathy, cirrhosis, pancreatic failure due to fibrosis, and skin pigmentation.

      In general, disorders that affect metabolism or DNA replication on a cellular or genetic level tend to be autosomal recessive. On the other hand, genetic disorders that affect the structure of the body on a larger level are usually autosomal dominant. While there may be exceptions to these rules, they can serve as a helpful guide for exam preparation. Proper of this genetic disorder can aid in its diagnosis and management.

    • This question is part of the following fields:

      • Basic Sciences
      25.2
      Seconds
  • Question 20 - A 50-year-old male comes to the clinic complaining of abdominal swelling, nausea, and...

    Incorrect

    • A 50-year-old male comes to the clinic complaining of abdominal swelling, nausea, and mild jaundice. He has a history of regular alcohol consumption, drinking two 330ml bottles of lager per day (3% ABV) and a 75cl bottle of 12% ABV wine per week.

      What is the approximate number of units of alcohol this man consumes per week? Round to the nearest unit.

      Your Answer: 21 units

      Correct Answer: 23 units

      Explanation:

      Calculating Units of Alcohol

      To calculate the number of units of alcohol in a drink, you need to multiply the percentage of alcohol (ABV) by the volume in millilitres and then divide by 1000. However, there are potential pitfalls to watch out for when answering questions about units of alcohol. For example, if the consumption is presented as a daily amount, you need to multiply by 7 to get the weekly amount. Additionally, if the volume is presented in centilitres, you need to convert it to millilitres before performing the calculation.

      For instance, let’s say you want to calculate the units of alcohol in a bottle of lager. If the ABV is 3% and the volume is 330ml, the calculation would be 3% x 330ml divided by 1000, which equals 0.99 units rounded up to 1 unit. If the person drinks two bottles a day, that’s 2 units per day or 14 units per week. Similarly, if the person drinks one bottle of wine per week, and the ABV is 12% and the volume is 750ml, the calculation would be 12% x 750ml divided by 1000, which equals 9 units per bottle.

      It’s important to be aware of potential pitfalls when calculating units of alcohol, such as checking the units of volume and adjusting for duration. By this simple calculation, you can be prepared for any question that may come up in an exam setting. The UK recommendations for alcohol consumption are no more than 14 units per week for both sexes. While calculating units of alcohol may seem daunting, with practice and preparation, you can confidently tackle any question that comes your way.

    • This question is part of the following fields:

      • Basic Sciences
      20
      Seconds
  • Question 21 - What is the primary function of riboflavin in the B vitamin group? ...

    Incorrect

    • What is the primary function of riboflavin in the B vitamin group?

      Your Answer: Visual acuity

      Correct Answer: Mopping up free radicals

      Explanation:

      The Role of Riboflavin in the Body

      Riboflavin, also known as vitamin B2, is a B-vitamin that plays a crucial role in the body. One of its functions is to act as an antioxidant, mopping up free radicals that can cause damage to cells. However, if the metabolites formed during this process are not excreted promptly, the free radicals can be generated again. Riboflavin is also involved in the production of blue-light sensitive pigments in the eye, which help establish the circadian rhythm. This function is not related to visual acuity.

      Riboflavin is found in a variety of foods, including milk and offal. Deficiency of this vitamin is rare, but when it does occur, it can cause non-specific effects on the skin and mucous membranes. There is no evidence of clear long-lasting damage from riboflavin deficiency. Overall, riboflavin is an important nutrient that plays a vital role in maintaining good health.

    • This question is part of the following fields:

      • Basic Sciences
      14.9
      Seconds
  • Question 22 - What stage of cellular respiration is responsible for the production of pyruvic acid?...

    Correct

    • What stage of cellular respiration is responsible for the production of pyruvic acid?

      Your Answer: Glycolysis

      Explanation:

      The Versatility of Pyruvic Acid in Cellular Metabolism

      Pyruvic acid is a simple alpha-keto acid that plays a crucial role in several metabolic pathways within the cell. It serves as a central intersection where different pathways converge and diverge. One of the primary ways pyruvic acid is produced is through glycolysis, where glucose is broken down into pyruvic acid. Depending on the cell’s needs, pyruvic acid can be converted back into glucose through gluconeogenesis or used to synthesize fatty acids through the acetyl-CoA pathway. Additionally, pyruvic acid can be used to produce the amino acid alanine.

      Pyruvic acid is also involved in respiration, where it enters the Krebs cycle under aerobic conditions. This cycle produces energy in the form of ATP, which is used by the cell for various functions. Under anaerobic conditions, pyruvic acid can ferment into lactic acid, which is used by some organisms as a source of energy.

      In summary, pyruvic acid is a versatile molecule that plays a critical role in cellular metabolism. Its ability to be converted into different molecules depending on the cell’s needs makes it an essential component of many metabolic pathways.

    • This question is part of the following fields:

      • Basic Sciences
      9.7
      Seconds
  • Question 23 - At what stage of eukaryotic mitosis do the centromeres of chromosomes separate? ...

    Correct

    • At what stage of eukaryotic mitosis do the centromeres of chromosomes separate?

      Your Answer: Anaphase

      Explanation:

      Chromosome Division during Anaphase

      Chromosomes are joined together in an X shape at the centromere. During anaphase, the centromeres break down and the chromosomes divide into two identical pairs called sister chromatids. These sister chromatids then move to opposite sides of the cell along a network of spindle fibres. When the cell divides during telophase, each daughter cell receives one sister chromatid from the parent cell. This ensures the accurate copying and propagation of genes. The process of chromosome division during anaphase is crucial for the proper distribution of genetic material in cells.

    • This question is part of the following fields:

      • Basic Sciences
      5.3
      Seconds
  • Question 24 - What is the primary means of transportation for vitamin D in the human...

    Incorrect

    • What is the primary means of transportation for vitamin D in the human body?

      Your Answer: In blood, bound to albumin

      Correct Answer: In blood, bound to the group specific component

      Explanation:

      The Role of UV Light and Vitamin D in Calcium and Phosphate Regulation

      In order for the body to produce Vitamin D3, UV light at a specific wavelength is required to convert cholesterol in the skin. Vitamin D2 and D3 are then transported in the bloodstream bound to the Vitamin-D Binding Protein and undergo further modifications in the liver and kidney to become the active form, 1,25 (OH)2Vitamin D. This active form plays a crucial role in regulating calcium and phosphate concentrations in the body.

      1,25 (OH)2Vitamin D increases calcium absorption in the duodenum and inhibits the secretion and synthesis of PTH, which helps to maintain calcium concentrations. It also increases phosphate absorption in the jejunum and ileum, which is important for maintaining phosphate concentrations. Additionally, 1,25 (OH)2Vitamin D promotes bone turnover by stimulating both osteoblast and osteoclast activity.

      Overall, the production and activation of Vitamin D through UV light and dietary sources is essential for proper calcium and phosphate regulation in the body.

    • This question is part of the following fields:

      • Basic Sciences
      11.1
      Seconds
  • Question 25 - What function does vitamin E serve in the body? ...

    Incorrect

    • What function does vitamin E serve in the body?

      Your Answer: Enhances blood clotting (pro-coagulant)

      Correct Answer: Antioxidant

      Explanation:

      Vitamin E and its Functions

      Several substances are classified as vitamin E, with alpha-tocopherol being the most common, accounting for 90% of human vitamin E. Alpha-tocopherol is composed of two carbon rings and a long saturated hydrocarbon chain, making it hydrophobic. It has an aromatic ring with an OH- group attached to it. Other substances with vitamin E activity include other tocopherols and tocotrienols, all of which act as antioxidants. Alpha-tocopherol is particularly important in cell membranes, preventing the peroxidation of unsaturated fatty acids by free radicals. It also has other functions, such as regulating gene transcription, inhibiting clotting formation, reducing proliferation of vascular smooth muscle, and playing a role in immunity.

      Despite claims that taking vitamin E can reduce the risk of heart disease, cancer, and enhance sexual performance, there is currently no strong evidence to support these claims.

    • This question is part of the following fields:

      • Basic Sciences
      9.6
      Seconds
  • Question 26 - What are the primary constituents of the cytoskeleton in eukaryotic cells? ...

    Incorrect

    • What are the primary constituents of the cytoskeleton in eukaryotic cells?

      Your Answer: Kinesin/dynein microtubules and intermediate filaments

      Correct Answer: Microfilaments, intermediate filaments and microtubules

      Explanation:

      The Eukaryotic Cytoskeleton: A Structural Support System

      The eukaryotic cytoskeleton is a network of structures that provide structural support to the cell. It helps the cell maintain its shape, protects it from external pressure, and performs intracellular transport. The cytoskeleton is made up of three major structures: microfilaments, intermediate filaments, and microtubules. Microfilaments are thin double helices made up of actin and are involved in pressure resistance and cell motility. Intermediate filaments have a more complex structure and maintain cell shape while bearing tension. Microtubules are hollow cylinders made up of alpha and beta tubulin proteins and are involved in intracellular transport, cell movement, and form the mitotic spindle during cytokinesis.

      Cilia, flagella, and lamellipodia are structures that are not part of the cell’s cytoskeleton but are made up of components of it and perform unique functions such as cell movement and extracellular sensing. Kinesin and dynein are motor proteins that support microtubule function. Microfilaments and alpha/beta microtubules are incorrect because they leave out intermediate filaments. Tubulin and actin are proteins of microtubules and microfilaments, respectively, but myosin is a motility protein involved in muscle contraction. The eukaryotic cytoskeleton is an essential component of the cell that provides structural support and enables various cellular functions.

    • This question is part of the following fields:

      • Basic Sciences
      13.8
      Seconds
  • Question 27 - What is the fundamental meaning of carbohydrate? ...

    Correct

    • What is the fundamental meaning of carbohydrate?

      Your Answer: A compound following the formula Cx(H2O)y

      Explanation:

      Carbohydrates: Building Blocks of Energy and Storage

      Carbohydrates are organic compounds made up of carbon, hydrogen, and oxygen, with a general formula of Cx(H2O)y. They can be classified as either aldehydes or ketones and contain multiple hydroxyl groups. Monosaccharides are the simplest form of carbohydrates, consisting of a single unit. They are categorized based on the number of carbon atoms they contain, with trioses having three, pentoses having five, and hexoses having six carbon atoms. These monosaccharides are essential for energy production and building larger carbohydrate structures.

      Disaccharides are formed when two monosaccharides are joined together through a condensation reaction, releasing a water molecule. The most common disaccharides are lactose, maltose, and sucrose. Polysaccharides, on the other hand, are long, branched polymers made up of multiple single units. They serve as convenient storage molecules for energy reserves, such as glycogen in humans and starch in plants.

      In summary, carbohydrates are vital building blocks for energy production and storage in living organisms. Monosaccharides, disaccharides, and polysaccharides all play important roles in maintaining the body’s energy balance and overall health.

    • This question is part of the following fields:

      • Basic Sciences
      11.3
      Seconds
  • Question 28 - What is the estimated percentage of oxygen in the blood that is attached...

    Incorrect

    • What is the estimated percentage of oxygen in the blood that is attached to haemoglobin?

      Your Answer: 80%

      Correct Answer: 100%

      Explanation:

      Calculation of Oxygen in Blood

      The majority of oxygen in the blood is bound to haemoglobin, with the exact amount varying based on the oxygen saturation and haemoglobin level. To calculate the amount of oxygen per litre of blood, the formula (13.9 × Hb × sats/100) + (PaO2 × 0.03) can be used. For example, an average man with an Hb of 14, saturations of 98% on room air, and a PaO2 of 12 would have 191 ml of oxygen per litre of blood. It is important to note that only 0.36 ml of this oxygen is dissolved in the blood.

    • This question is part of the following fields:

      • Basic Sciences
      10.5
      Seconds
  • Question 29 - What is the term for the process described below in laboratory testing?

    Enzymes...

    Correct

    • What is the term for the process described below in laboratory testing?

      Enzymes are immobilised on a solid surface, such as a bead or well, and allowed to come into contact with the sample. After washing, another enzyme is added with a label allowing quantitation of the analyte.

      Your Answer: Enzyme-linked immunosorbent assay

      Explanation:

      ELISA: A Common Immunoassay in Medical Diagnostic Testing

      An enzyme-linked immunosorbent assay (ELISA) is a type of immunoassay that is widely used in medical diagnostic testing. This method uses antibodies to identify and/or quantify the analyte being tested. The ELISA process involves several steps, including coating a plate with the antigen, adding the patient’s sample, washing the plate to remove any unbound material, adding an enzyme-linked antibody, washing the plate again, and adding a substrate to produce a measurable signal.

      Over time, many modifications have been made to the ELISA, making it a versatile tool in the laboratory for measuring various analytes. Some of the substances that can be measured using immunoassays include thyroid hormone, testosterone, oestrogen, troponin, and vitamin D. The ELISA has been around for a long time and is still widely used today due to its accuracy, sensitivity, and specificity.

    • This question is part of the following fields:

      • Basic Sciences
      24.6
      Seconds
  • Question 30 - Which process occurs mainly in the smooth endoplasmic reticulum? ...

    Correct

    • Which process occurs mainly in the smooth endoplasmic reticulum?

      Your Answer: Steroid synthesis

      Explanation:

      The Functions of Endoplasmic Reticulum and Lysosomes

      The endoplasmic reticulum (ER) is a complex network of membranes that is divided into two types: rough and smooth. The rough ER is characterized by the presence of ribosomes on its cytosolic side, which makes it an important site for protein production, modification, and transport. On the other hand, the smooth ER is involved in cholesterol and steroid handling, as well as calcium storage in some cells. This type of ER is particularly prominent in cells that produce large amounts of steroid hormones, such as those found in the adrenal cortex.

      Lysosomes, on the other hand, are organelles that are responsible for breaking down and recycling cellular waste. They are formed by the Golgi apparatus, which is another complex network of membranes found in eukaryotic cells. Lysosomes contain a variety of enzymes that are capable of breaking down different types of molecules, including proteins, lipids, and carbohydrates.

      In summary, the ER and lysosomes are two important organelles in eukaryotic cells that play different roles in cellular metabolism. While the ER is involved in protein production, modification, and transport, the lysosomes are responsible for breaking down and recycling cellular waste.

    • This question is part of the following fields:

      • Basic Sciences
      13.5
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Basic Sciences (15/30) 50%
Passmed