00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - You are managing a 35 year old patient with severe burns. You determine...

    Incorrect

    • You are managing a 35 year old patient with severe burns. You determine that the patient needs urgent fluid replacement. The patient weighs 75 kg and has burns covering 15% of their total body surface area. How much fluid should be administered to the patient over a 24-hour period?

      Your Answer: 16000 ml

      Correct Answer: 6400 ml

      Explanation:

      To calculate the total fluid requirement over 24 hours, you need to multiply the TBSA (Total Body Surface Area) by the weight in kilograms. In this particular case, the calculation would be 4 multiplied by 20 multiplied by 80, resulting in a total of 6400 milliliters.

      Further Reading:

      Burn injuries can be classified based on their type (degree, partial thickness or full thickness), extent as a percentage of total body surface area (TBSA), and severity (minor, moderate, major/severe). Severe burns are defined as a >10% TBSA in a child and >15% TBSA in an adult.

      When assessing a burn, it is important to consider airway injury, carbon monoxide poisoning, type of burn, extent of burn, special considerations, and fluid status. Special considerations may include head and neck burns, circumferential burns, thorax burns, electrical burns, hand burns, and burns to the genitalia.

      Airway management is a priority in burn injuries. Inhalation of hot particles can cause damage to the respiratory epithelium and lead to airway compromise. Signs of inhalation injury include visible burns or erythema to the face, soot around the nostrils and mouth, burnt/singed nasal hairs, hoarse voice, wheeze or stridor, swollen tissues in the mouth or nostrils, and tachypnea and tachycardia. Supplemental oxygen should be provided, and endotracheal intubation may be necessary if there is airway obstruction or impending obstruction.

      The initial management of a patient with burn injuries involves conserving body heat, covering burns with clean or sterile coverings, establishing IV access, providing pain relief, initiating fluid resuscitation, measuring urinary output with a catheter, maintaining nil by mouth status, closely monitoring vital signs and urine output, monitoring the airway, preparing for surgery if necessary, and administering medications.

      Burns can be classified based on the depth of injury, ranging from simple erythema to full thickness burns that penetrate into subcutaneous tissue. The extent of a burn can be estimated using methods such as the rule of nines or the Lund and Browder chart, which takes into account age-specific body proportions.

      Fluid management is crucial in burn injuries due to significant fluid losses. Evaporative fluid loss from burnt skin and increased permeability of blood vessels can lead to reduced intravascular volume and tissue perfusion. Fluid resuscitation should be aggressive in severe burns, while burns <15% in adults and <10% in children may not require immediate fluid resuscitation. The Parkland formula can be used to calculate the intravenous fluid requirements for someone with a significant burn injury.

    • This question is part of the following fields:

      • Trauma
      203.3
      Seconds
  • Question 2 - A 25 year old male is brought to the emergency department by the...

    Incorrect

    • A 25 year old male is brought to the emergency department by the police. The man tried to evade capture by leaping from a ground floor window. The patient reports that both of his feet are hurting, but the left foot is significantly more painful than the right. The patient exhibits tenderness in the left heel, leading you to suspect a calcaneus fracture. Which of the following statements about calcaneus fractures is accurate?

      Your Answer: The majority of fractures are extra-articular

      Correct Answer: Contralateral calcaneus fractures are present in 10% of patients

      Explanation:

      Fractures that extend into the calcaneocuboid joint are commonly intra-articular. It is recommended to refer patients to orthopaedics for further evaluation and treatment. Conservative management usually involves keeping the patient non-weight bearing for a period of 6-12 weeks.

      Further Reading:

      Calcaneus fractures are a common type of lower limb and joint injury. The calcaneus, or heel bone, is the most frequently fractured tarsal bone. These fractures are often intra-articular, meaning they involve the joint. The most common cause of calcaneus fractures is a fall or jump from a height.

      When assessing calcaneus fractures, X-rays are used to visualize the fracture lines. Two angles are commonly assessed to determine the severity of the fracture. Böhler’s angle, which measures the angle between two tangent lines drawn across the anterior and posterior borders of the calcaneus, should be between 20-40 degrees. If it is less than 20 degrees, it indicates a calcaneal fracture with flattening. The angle of Gissane, which measures the depression of the posterior facet of the subtalar joint, should be between 120-145 degrees. An increased angle of Gissane suggests a calcaneal fracture.

      In the emergency department, the management of a fractured calcaneus involves identifying the injury and any associated injuries, providing pain relief, elevating the affected limb(s), and referring the patient to an orthopedic specialist. It is important to be aware that calcaneus fractures are often accompanied by other injuries, such as bilateral fractures of vertebral fractures.

      The definitive management of a fractured calcaneus can be done conservatively or through surgery, specifically open reduction internal fixation (ORIF). The orthopedic team will typically order a CT or MRI scan to classify the fracture and determine the most appropriate treatment. However, a recent UK heel fracture trial suggests that in most cases, ORIF does not improve fracture outcomes.

    • This question is part of the following fields:

      • Trauma
      171.8
      Seconds
  • Question 3 - A 45-year-old woman is brought into resus by blue light ambulance following a...

    Correct

    • A 45-year-old woman is brought into resus by blue light ambulance following a car crash. She was hit by a truck while driving a car and has a suspected pelvic injury. She is currently on a backboard with cervical spine protection and a pelvic binder in place. The massive transfusion protocol is activated.
      Which of the following is the definition of a massive transfusion?

      Your Answer: The transfusion of more than 4 units of blood in 1 hour

      Explanation:

      ATLS guidelines now suggest administering only 1 liter of crystalloid fluid during the initial assessment. If patients do not respond to the crystalloid, it is recommended to quickly transition to blood products. Studies have shown that infusing more than 1.5 liters of crystalloid fluid is associated with higher mortality rates in trauma cases. Therefore, it is advised to prioritize the early use of blood products and avoid large volumes of crystalloid fluid in trauma patients. In cases where it is necessary, massive transfusion should be considered, defined as the transfusion of more than 10 units of blood in 24 hours or more than 4 units of blood in one hour. For patients with evidence of Class III and IV hemorrhage, early resuscitation with blood and blood products in low ratios is recommended.

      Based on the findings of significant trials, such as the CRASH-2 study, the use of tranexamic acid is now recommended within 3 hours. This involves administering a loading dose of 1 gram intravenously over 10 minutes, followed by an infusion of 1 gram over eight hours. In some regions, tranexamic acid is also being utilized in the prehospital setting.

    • This question is part of the following fields:

      • Trauma
      48
      Seconds
  • Question 4 - A 42-year-old man was involved in a car accident where his vehicle collided...

    Correct

    • A 42-year-old man was involved in a car accident where his vehicle collided with a wall. He was rescued at the scene and has been brought to the hospital by ambulance. He is currently wearing a cervical immobilization device. He is experiencing chest pain on the left side and is having difficulty breathing. As the leader of the trauma response team, his vital signs are as follows: heart rate of 110, blood pressure of 102/63, oxygen saturation of 90% on room air. His Glasgow Coma Scale score is 15 out of 15. Upon examination, he has extensive bruising on the left side of his chest and shows reduced chest expansion, dullness to percussion, and decreased breath sounds throughout the entire left hemithorax.

      What is the most likely diagnosis for this patient?

      Your Answer: Massive haemothorax

      Explanation:

      A massive haemothorax occurs when more than 1500 mL of blood, which is about 1/3 of the patient’s blood volume, rapidly accumulates in the chest cavity. The classic signs of a massive haemothorax include decreased chest expansion, decreased breath sounds, and dullness to percussion. Both tension pneumothorax and massive haemothorax can cause decreased breath sounds, but they can be differentiated through percussion. Hyperresonance indicates tension pneumothorax, while dullness suggests a massive haemothorax.

      The first step in managing a massive haemothorax is to simultaneously restore blood volume and decompress the chest cavity by inserting a chest drain. In most cases, the bleeding in a haemothorax has already stopped by the time management begins, and simple drainage is sufficient. It is important to use a chest drain of adequate size (preferably 36F) to ensure effective drainage of the haemothorax without clotting.

    • This question is part of the following fields:

      • Trauma
      33.9
      Seconds
  • Question 5 - A 28 year old female is brought into the emergency department after a...

    Correct

    • A 28 year old female is brought into the emergency department after a jet skiing accident at a local lake. The patient fell off the jet ski but her leg got caught in the handlebars and she was submerged for 2-3 minutes before being freed. The patient's friends started rescue breaths and chest compressions as the patient was unconscious but were stopped after approximately 30 seconds by an off duty lifeguard who assessed the patient and determined she was breathing spontaneously and had a pulse. On examination, the patient is breathing spontaneously with intermittent coughing, oxygen saturation levels are 97% on room air, a few crackling sounds are heard in the lower parts of the lungs, and the patient's Glasgow Coma Scale score is 13 out of 15.

      Which of the following should be included in the initial management of this patient?

      Your Answer: Obtain an arterial blood gas sample for evidence of hypoxia

      Explanation:

      It is recommended to obtain an arterial blood gas (ABG) sample from all patients who have experienced submersion (drowning) as even individuals without symptoms may have a surprising level of hypoxia. Draining the lungs is not effective and not recommended. There is no strong evidence to support the routine use of antibiotics as a preventive measure. Steroids have not been proven to be effective in treating drowning. All drowning patients, except those with normal oxygen levels, normal saturations, and normal lung sounds, should receive supplemental oxygen as significant hypoxia can occur without causing difficulty in breathing.

      Further Reading:

      Drowning is the process of experiencing respiratory impairment from submersion or immersion in liquid. It can be classified as cold-water or warm-water drowning. Risk factors for drowning include young age and male sex. Drowning impairs lung function and gas exchange, leading to hypoxemia and acidosis. It also causes cardiovascular instability, which contributes to metabolic acidosis and cell death.

      When someone is submerged or immersed, they will voluntarily hold their breath to prevent aspiration of water. However, continued breath holding causes progressive hypoxia and hypercapnia, leading to acidosis. Eventually, the respiratory center sends signals to the respiratory muscles, forcing the individual to take an involuntary breath and allowing water to be aspirated into the lungs. Water entering the lungs stimulates a reflex laryngospasm that prevents further penetration of water. Aspirated water can cause significant hypoxia and damage to the alveoli, leading to acute respiratory distress syndrome (ARDS).

      Complications of drowning include cardiac ischemia and infarction, infection with waterborne pathogens, hypothermia, neurological damage, rhabdomyolysis, acute tubular necrosis, and disseminated intravascular coagulation (DIC).

      In children, the diving reflex helps reduce hypoxic injury during submersion. It causes apnea, bradycardia, and peripheral vasoconstriction, reducing cardiac output and myocardial oxygen demand while maintaining perfusion of the brain and vital organs.

      Associated injuries with drowning include head and cervical spine injuries in patients rescued from shallow water. Investigations for drowning include arterial blood gases, chest X-ray, ECG and cardiac monitoring, core temperature measurement, and blood and sputum cultures if secondary infection is suspected.

      Management of drowning involves extricating the patient from water in a horizontal position with spinal precautions if possible. Cardiovascular considerations should be taken into account when removing patients from water to prevent hypotension and circulatory collapse. Airway management, supplemental oxygen, and ventilation strategies are important in maintaining oxygenation and preventing further lung injury. Correcting hypotension, electrolyte disturbances, and hypothermia is also necessary. Attempting to drain water from the lungs is ineffective.

      Patients without associated physical injury who are asymptomatic and have no evidence of respiratory compromise after six hours can be safely discharged home. Ventilation strategies aim to maintain oxygenation while minimizing ventilator-associated lung injury.

    • This question is part of the following fields:

      • Trauma
      33.2
      Seconds
  • Question 6 - A 52-year-old individual is brought to the emergency room after a car accident....

    Correct

    • A 52-year-old individual is brought to the emergency room after a car accident. They present with a fracture in the middle of their left femur and complain of abdominal pain. The patient appears restless. The following are their vital signs:

      Blood pressure: 112/94 mmHg
      Pulse rate: 102 bpm
      Respiration rate: 21 rpm
      SpO2: 97% on room air
      Temperature: 36 ºC

      Considering the possibility of significant blood loss, what grade of hypovolemic shock would you assign to this patient?

      Your Answer: Grade 2

      Explanation:

      Grade 2 shock is characterized by a pulse rate of 100 to 120 beats per minute and a respiratory rate of 20 to 30 breaths per minute. These clinical features align with the symptoms of grade 2 hypovolemic shock, as indicated in the below notes.

      Further Reading:

      Shock is a condition characterized by inadequate tissue perfusion due to circulatory insufficiency. It can be caused by fluid loss or redistribution, as well as impaired cardiac output. The main causes of shock include haemorrhage, diarrhoea and vomiting, burns, diuresis, sepsis, neurogenic shock, anaphylaxis, massive pulmonary embolism, tension pneumothorax, cardiac tamponade, myocardial infarction, and myocarditis.

      One common cause of shock is haemorrhage, which is frequently encountered in the emergency department. Haemorrhagic shock can be classified into different types based on the amount of blood loss. Type 1 haemorrhagic shock involves a blood loss of 15% or less, with less than 750 ml of blood loss. Patients with type 1 shock may have normal blood pressure and heart rate, with a respiratory rate of 12 to 20 breaths per minute.

      Type 2 haemorrhagic shock involves a blood loss of 15 to 30%, with 750 to 1500 ml of blood loss. Patients with type 2 shock may have a pulse rate of 100 to 120 beats per minute and a respiratory rate of 20 to 30 breaths per minute. Blood pressure is typically normal in type 2 shock.

      Type 3 haemorrhagic shock involves a blood loss of 30 to 40%, with 1.5 to 2 litres of blood loss. Patients with type 3 shock may have a pulse rate of 120 to 140 beats per minute and a respiratory rate of more than 30 breaths per minute. Urine output is decreased to 5-15 mls per hour.

      Type 4 haemorrhagic shock involves a blood loss of more than 40%, with more than 2 litres of blood loss. Patients with type 4 shock may have a pulse rate of more than 140 beats per minute and a respiratory rate of more than 35 breaths per minute. They may also be drowsy, confused, and possibly experience loss of consciousness. Urine output may be minimal or absent.

      In summary, shock is a condition characterized by inadequate tissue perfusion. Haemorrhage is a common cause of shock, and it can be classified into different types based on the amount of blood loss. Prompt recognition and management of shock are crucial in order to prevent further complications and improve patient outcomes

    • This question is part of the following fields:

      • Trauma
      85.8
      Seconds
  • Question 7 - A 32-year-old construction worker is brought into the emergency department with burns to...

    Correct

    • A 32-year-old construction worker is brought into the emergency department with burns to the right forearm. The patient explains that he was smoking a cigarette while driving back from work when the cigarette accidentally fell onto his arm, igniting his sleeve which might have been soaked in gasoline from work. You observe circumferential burns encompassing the entire right forearm. What would be your primary concern regarding potential complications?

      Your Answer: Compartment syndrome

      Explanation:

      Compartment syndrome can occur when there are circumferential burns on the arms or legs. This typically happens with full thickness burns, where the burnt skin becomes stiff and compresses the compartment, making it difficult for blood to flow out. To treat this condition, escharotomy and possibly fasciotomy may be necessary.

      Further Reading:

      Burn injuries can be classified based on their type (degree, partial thickness or full thickness), extent as a percentage of total body surface area (TBSA), and severity (minor, moderate, major/severe). Severe burns are defined as a >10% TBSA in a child and >15% TBSA in an adult.

      When assessing a burn, it is important to consider airway injury, carbon monoxide poisoning, type of burn, extent of burn, special considerations, and fluid status. Special considerations may include head and neck burns, circumferential burns, thorax burns, electrical burns, hand burns, and burns to the genitalia.

      Airway management is a priority in burn injuries. Inhalation of hot particles can cause damage to the respiratory epithelium and lead to airway compromise. Signs of inhalation injury include visible burns or erythema to the face, soot around the nostrils and mouth, burnt/singed nasal hairs, hoarse voice, wheeze or stridor, swollen tissues in the mouth or nostrils, and tachypnea and tachycardia. Supplemental oxygen should be provided, and endotracheal intubation may be necessary if there is airway obstruction or impending obstruction.

      The initial management of a patient with burn injuries involves conserving body heat, covering burns with clean or sterile coverings, establishing IV access, providing pain relief, initiating fluid resuscitation, measuring urinary output with a catheter, maintaining nil by mouth status, closely monitoring vital signs and urine output, monitoring the airway, preparing for surgery if necessary, and administering medications.

      Burns can be classified based on the depth of injury, ranging from simple erythema to full thickness burns that penetrate into subcutaneous tissue. The extent of a burn can be estimated using methods such as the rule of nines or the Lund and Browder chart, which takes into account age-specific body proportions.

      Fluid management is crucial in burn injuries due to significant fluid losses. Evaporative fluid loss from burnt skin and increased permeability of blood vessels can lead to reduced intravascular volume and tissue perfusion. Fluid resuscitation should be aggressive in severe burns, while burns <15% in adults and <10% in children may not require immediate fluid resuscitation. The Parkland formula can be used to calculate the intravenous fluid requirements for someone with a significant burn injury.

    • This question is part of the following fields:

      • Trauma
      155.9
      Seconds
  • Question 8 - A 35-year-old man is brought into the emergency room by an ambulance with...

    Incorrect

    • A 35-year-old man is brought into the emergency room by an ambulance with sirens blaring. He has been in a building fire and has sustained severe burns. Upon assessing his airway, you have concerns about potential airway blockage. You decide to proceed with intubation and begin preparing the required equipment.
      What is one reason for performing early intubation in a burn patient?

      Your Answer: A carboxyhaemoglobin level of 8%

      Correct Answer: Hoarseness of voice

      Explanation:

      Early assessment of the airway is a critical aspect of managing a burned patient. Airway obstruction can occur rapidly due to direct injury or swelling from the burn. If there is a history of trauma, the airway should be evaluated while maintaining cervical spine control.

      There are several risk factors for airway obstruction in burned patients, including inhalation injury, soot in the mouth or nostrils, singed nasal hairs, burns to the head, face, and neck, burns inside the mouth, large burn area and increasing burn depth, associated trauma, and a carboxyhemoglobin level above 10%.

      In cases where significant swelling is anticipated, it may be necessary to urgently secure the airway with an uncut endotracheal tube before the swelling becomes severe. Delaying recognition of impending airway obstruction can make intubation difficult, and a surgical airway may be required.

      The American Burn Life Support (ABLS) guidelines recommend early intubation in certain situations. These include signs of airway obstruction, extensive burns, deep facial burns, burns inside the mouth, significant swelling or risk of swelling, difficulty swallowing, respiratory compromise, decreased level of consciousness, and anticipated transfer of a patient with a large burn and airway issues without qualified personnel to intubate during transport.

      Circumferential burns of the neck can cause tissue swelling around the airway, making early intubation necessary in these cases as well.

    • This question is part of the following fields:

      • Trauma
      125.9
      Seconds
  • Question 9 - A 32-year-old man is brought in by ambulance following a car crash. A...

    Incorrect

    • A 32-year-old man is brought in by ambulance following a car crash. A FAST scan is conducted to evaluate for a haemoperitoneum.
      Which of the subsequent anatomical regions is evaluated as part of a typical 4 view FAST scan?

      Your Answer: Hypochondrium

      Correct Answer: Left upper quadrant

      Explanation:

      A Focussed Assessment with Sonography for Trauma (FAST) scan is a point-of-care ultrasound examination conducted when a trauma patient arrives. Its primary purpose is to identify the presence of intra-abdominal free fluid, which is typically assumed to be haemoperitoneum in the context of trauma. This information helps healthcare providers make decisions regarding further management of the patient.

      The sensitivity of FAST scanning for detecting intraperitoneal fluid is approximately 90%, while its specificity is around 95%. However, its sensitivity for detecting solid organ injuries is much lower. As a result, FAST scanning has largely replaced diagnostic peritoneal lavage as the preferred initial method for assessing haemoperitoneum.

      During a standard FAST scan, four regions are assessed. The first is the subxiphoid transverse view, which is used to check for pericardial effusion and left lobe liver injuries. The second is the longitudinal view of the right upper quadrant, which helps identify right liver injuries, right kidney injuries, and fluid in the hepatorenal recess (Morison’s pouch). The third is the longitudinal view of the left upper quadrant, which is used to assess for splenic injury and left kidney injury. Lastly, the transverse and longitudinal views of the suprapubic region are examined to assess the bladder and fluid in the pouch of Douglas.

      In addition to the standard FAST scan, an extended FAST or eFAST may also be performed. This involves examining the left and right thoracic regions to assess for the presence of pneumothorax and haemothorax.

      The hepatorenal recess is the deepest part of the peritoneal cavity when a patient is lying flat. Therefore, it is the most likely area for fluid to accumulate in a supine position.

    • This question is part of the following fields:

      • Trauma
      33.8
      Seconds
  • Question 10 - A 35 year old female is brought into the emergency department with chest...

    Correct

    • A 35 year old female is brought into the emergency department with chest injuries after a canister was thrown into a fire and the explosive projectile struck the patient's chest wall. On examination, there is asymmetry of the chest. You observe that the chest wall moves inward during inhalation and outward during expiration.

      What is the term for this clinical sign?

      Your Answer: Paradoxical breathing

      Explanation:

      The patient in this scenario is exhibiting a clinical sign known as paradoxical breathing. This is characterized by an abnormal movement of the chest wall during respiration. Normally, the chest expands during inhalation and contracts during exhalation. However, in paradoxical breathing, the opposite occurs. The chest wall moves inward during inhalation and outward during exhalation. This can be seen in cases of chest trauma or injury, where there is a disruption in the normal mechanics of breathing.

      Further Reading:

      Flail chest is a serious condition that occurs when multiple ribs are fractured in two or more places, causing a segment of the ribcage to no longer expand properly. This condition is typically caused by high-impact thoracic blunt trauma and is often accompanied by other significant injuries to the chest.

      The main symptom of flail chest is a chest deformity, where the affected area moves in a paradoxical manner compared to the rest of the ribcage. This can cause chest pain and difficulty breathing, known as dyspnea. X-rays may also show evidence of lung contusion, indicating further damage to the chest.

      In terms of management, conservative treatment is usually the first approach. This involves providing adequate pain relief and respiratory support to the patient. However, if there are associated injuries such as a pneumothorax or hemothorax, specific interventions like thoracostomy or surgery may be necessary.

      Positive pressure ventilation can be used to provide internal splinting of the airways, helping to prevent atelectasis, a condition where the lungs collapse. Overall, prompt and appropriate management is crucial in order to prevent further complications and improve the patient’s outcome.

    • This question is part of the following fields:

      • Trauma
      24.4
      Seconds
  • Question 11 - A female trauma victim that has experienced substantial blood loss is estimated to...

    Correct

    • A female trauma victim that has experienced substantial blood loss is estimated to have experienced a grade IV hemorrhage. The patient's weight is approximately 60 kg.
      Which of the following physiological indicators aligns with a diagnosis of grade IV hemorrhage?

      Your Answer: Blood loss of greater than 2 L in a 70 kg male

      Explanation:

      Recognizing the extent of blood loss based on vital sign and mental status abnormalities is a crucial skill. The Advanced Trauma Life Support (ATLS) classification for hemorrhagic shock correlates the amount of blood loss with expected physiological responses in a healthy individual weighing 70 kg. In terms of body weight, the total circulating blood volume accounts for approximately 7%, which is roughly equivalent to five liters in an average 70 kg male patient.

      The ATLS classification for hemorrhagic shock is as follows:

      CLASS I:
      – Blood loss: Up to 750 mL
      – Blood loss (% blood volume): Up to 15%
      – Pulse rate: Less than 100 beats per minute (bpm)
      – Systolic blood pressure: Normal
      – Pulse pressure: Normal (or increased)
      – Respiratory rate: 14-20 breaths per minute
      – Urine output: Greater than 30 mL/hr
      – CNS/mental status: Slightly anxious

      CLASS II:
      – Blood loss: 750-1500 mL
      – Blood loss (% blood volume): 15-30%
      – Pulse rate: 100-120 bpm
      – Systolic blood pressure: Normal
      – Pulse pressure: Decreased
      – Respiratory rate: 20-30 breaths per minute
      – Urine output: 20-30 mL/hr
      – CNS/mental status: Mildly anxious

      CLASS III:
      – Blood loss: 1500-2000 mL
      – Blood loss (% blood volume): 30-40%
      – Pulse rate: 120-140 bpm
      – Systolic blood pressure: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: 30-40 breaths per minute
      – Urine output: 5-15 mL/hr
      – CNS/mental status: Anxious, confused

      CLASS IV:
      – Blood loss: More than 2000 mL
      – Blood loss (% blood volume): More than 40%
      – Pulse rate: More than 140 bpm
      – Systolic blood pressure: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: More than 40 breaths per minute
      – Urine output: Negligible
      – CNS/mental status: Confused, lethargic

    • This question is part of the following fields:

      • Trauma
      83.2
      Seconds
  • Question 12 - You are treating a patient who fell from a rooftop and has sustained...

    Correct

    • You are treating a patient who fell from a rooftop and has sustained a fracture to the left calcaneus. Which of the following injuries is frequently associated with calcaneal fractures?

      Your Answer: Vertebral fracture

      Explanation:

      When patients have calcaneal fractures, it is important to evaluate them for any additional injuries that may be present. These can include vertebral fractures, fractures in the opposite calcaneus, and injuries to the cuboid bone.

      Further Reading:

      Calcaneus fractures are a common type of lower limb and joint injury. The calcaneus, or heel bone, is the most frequently fractured tarsal bone. These fractures are often intra-articular, meaning they involve the joint. The most common cause of calcaneus fractures is a fall or jump from a height.

      When assessing calcaneus fractures, X-rays are used to visualize the fracture lines. Two angles are commonly assessed to determine the severity of the fracture. Böhler’s angle, which measures the angle between two tangent lines drawn across the anterior and posterior borders of the calcaneus, should be between 20-40 degrees. If it is less than 20 degrees, it indicates a calcaneal fracture with flattening. The angle of Gissane, which measures the depression of the posterior facet of the subtalar joint, should be between 120-145 degrees. An increased angle of Gissane suggests a calcaneal fracture.

      In the emergency department, the management of a fractured calcaneus involves identifying the injury and any associated injuries, providing pain relief, elevating the affected limb(s), and referring the patient to an orthopedic specialist. It is important to be aware that calcaneus fractures are often accompanied by other injuries, such as bilateral fractures of vertebral fractures.

      The definitive management of a fractured calcaneus can be done conservatively or through surgery, specifically open reduction internal fixation (ORIF). The orthopedic team will typically order a CT or MRI scan to classify the fracture and determine the most appropriate treatment. However, a recent UK heel fracture trial suggests that in most cases, ORIF does not improve fracture outcomes.

    • This question is part of the following fields:

      • Trauma
      69
      Seconds
  • Question 13 - A female trauma victim that has experienced substantial blood loss is estimated to...

    Incorrect

    • A female trauma victim that has experienced substantial blood loss is estimated to have experienced a grade III haemorrhage. The patient's weight is approximately 60 kg.
      Which of the following physiological indicators aligns with a diagnosis of grade III haemorrhage?

      Your Answer: Loss of 25% of blood volume

      Correct Answer: Urine output of 10 ml/hr

      Explanation:

      Recognizing the extent of blood loss based on vital sign and mental status abnormalities is a crucial skill. The Advanced Trauma Life Support (ATLS) classification for hemorrhagic shock correlates the amount of blood loss with expected physiological responses in a healthy individual weighing 70 kg. In terms of body weight, the total circulating blood volume accounts for approximately 7%, which is roughly equivalent to five liters in an average 70 kg male patient.

      The ATLS classification for hemorrhagic shock is as follows:

      CLASS I:
      – Blood loss: Up to 750 mL
      – Blood loss (% blood volume): Up to 15%
      – Pulse rate: Less than 100 beats per minute (bpm)
      – Systolic blood pressure: Normal
      – Pulse pressure: Normal (or increased)
      – Respiratory rate: 14-20 breaths per minute
      – Urine output: Greater than 30 mL/hr
      – CNS/mental status: Slightly anxious

      CLASS II:
      – Blood loss: 750-1500 mL
      – Blood loss (% blood volume): 15-30%
      – Pulse rate: 100-120 bpm
      – Systolic blood pressure: Normal
      – Pulse pressure: Decreased
      – Respiratory rate: 20-30 breaths per minute
      – Urine output: 20-30 mL/hr
      – CNS/mental status: Mildly anxious

      CLASS III:
      – Blood loss: 1500-2000 mL
      – Blood loss (% blood volume): 30-40%
      – Pulse rate: 120-140 bpm
      – Systolic blood pressure: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: 30-40 breaths per minute
      – Urine output: 5-15 mL/hr
      – CNS/mental status: Anxious, confused

      CLASS IV:
      – Blood loss: More than 2000 mL
      – Blood loss (% blood volume): More than 40%
      – Pulse rate: More than 140 bpm
      – Systolic blood pressure: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: More than 40 breaths per minute
      – Urine output: Negligible
      – CNS/mental status: Confused, lethargic

    • This question is part of the following fields:

      • Trauma
      34.7
      Seconds
  • Question 14 - A 4-year-old girl is brought in by an emergency ambulance after being involved...

    Incorrect

    • A 4-year-old girl is brought in by an emergency ambulance after being involved in a car accident. A trauma alert is activated, and you are tasked with obtaining intravenous access and administering a fluid bolus. However, you are unable to successfully establish intravenous access and decide to prepare for intraosseous access instead.

      Which of the following anatomical sites would be the most appropriate for insertion?

      Your Answer: Anteromedial femur

      Correct Answer: Proximal humerus

      Explanation:

      Intraosseous access is recommended in trauma, burns, or resuscitation situations when other attempts at venous access fail or would take longer than one minute. It is particularly recommended for circulatory access in pediatric cardiac arrest cases. This technique can also be used when urgent blood sampling or intravenous access is needed and traditional cannulation is difficult and time-consuming. It serves as a temporary measure to stabilize the patient and facilitate long-term intravenous access.

      Potential complications of intraosseous access include compartment syndrome, infection, and fracture. Therefore, it is contraindicated to use this method on the side of definitively fractured bones or limbs with possible proximal fractures. It should also not be used at sites of previous attempts or in patients with conditions such as osteogenesis imperfecta or osteopetrosis.

      There are several possible sites for intraosseous access insertion. These include the proximal humerus, approximately 1 cm above the surgical neck; the proximal tibia, on the anterior surface, 2-3 cm below the tibial tuberosity; the distal tibia, 3 cm proximal to the most prominent aspect of the medial malleolus; the femoral region, on the anterolateral surface, 3 cm above the lateral condyle; the iliac crest; and the sternum.

    • This question is part of the following fields:

      • Trauma
      22.9
      Seconds
  • Question 15 - A child who has been involved in a car accident undergoes a traumatic...

    Incorrect

    • A child who has been involved in a car accident undergoes a traumatic cardiac arrest. You perform an anterolateral thoracotomy.
      What is the accurate anatomical location for the incision that needs to be made?

      Your Answer: 5th intercostal space from the midaxillary line to the posterior axillary line

      Correct Answer: 4th intercostal space from the sternum to the posterior axillary line

      Explanation:

      An anterolateral thoracotomy is a surgical procedure performed on the front part of the chest wall. It is commonly used in Emergency Department thoracotomy, with a preference for a left-sided approach in patients with traumatic arrest or left-sided chest injuries. However, in patients with right-sided chest injuries and profound hypotension but have not arrested, a right-sided approach is recommended.

      The procedure is carried out in the following steps:
      – An incision is made along the 4th or 5th intercostal space, starting from the sternum at the front and extending to the posterior axillary line.
      – The incision should be deep enough to partially cut through the latissimus dorsi muscle.
      – The skin, subcutaneous fat, and superficial portions of the pectoralis and serratus muscles are divided.
      – The parietal pleura is divided, allowing entry into the pleural cavity.
      – The intercostal muscles are completely cut, and a rib spreader is placed and opened to provide visualization of the thoracic cavity.
      – The anterolateral approach allows access to important anatomical structures during resuscitation, including the pulmonary hilum, heart, and aorta.

      In cases where there is suspicion of a right-sided heart injury, an additional incision can be made on the right side, extending across the entire chest. This is known as a bilateral anterolateral thoracotomy or a clamshell thoracotomy.

    • This question is part of the following fields:

      • Trauma
      131.6
      Seconds
  • Question 16 - A 42-year-old woman was involved in a car accident where her car collided...

    Incorrect

    • A 42-year-old woman was involved in a car accident where her car collided with a tree at high speed. She was not wearing a seatbelt and was thrown forward onto the steering wheel of her car. She has severe bruising over her anterior chest wall and is experiencing chest pain. A chest X-ray reveals a significantly widened mediastinum, deviation of the trachea to the left, and fractures of the third and fourth ribs. Her vital signs are HR 88, BP 130/78, SaO2 98% on high flow oxygen.

      At which anatomical site is an injury MOST likely to have occurred in this case?

      Your Answer: Near the point of origin of the brachiocephalic trunk

      Correct Answer: Near the ligamentum arteriosum

      Explanation:

      Traumatic aortic rupture is a relatively common cause of sudden death following major trauma, especially high-speed road traffic accidents (RTAs). It is estimated that 15-20% of deaths from RTAs are due to this injury. If the aortic rupture is promptly recognized and treated, patients who survive the initial injury can fully recover.

      Surviving patients often have an incomplete laceration near the ligamentum arteriosum of the aorta. The continuity is maintained by either an intact adventitial layer or a contained mediastinal hematoma, which prevents immediate exsanguination and death.

      Detecting traumatic aortic rupture can be challenging as many patients do not exhibit specific symptoms, and other injuries may also be present, making the diagnosis unclear.

      Chest X-ray findings can aid in the diagnosis and include fractures of the 1st and 2nd ribs, a grossly widened mediastinum, a hazy left lung field, obliteration of the aortic knob, deviation of the trachea to the right, presence of a pleural cap, elevation and rightward shift of the right mainstem bronchus, depression of the left mainstem bronchus, obliteration of the space between the pulmonary artery and aorta, and deviation of the esophagus (or NG tube) to the right.

      Helical contrast-enhanced CT scanning is highly sensitive and specific for detecting aortic rupture, but it should only be performed on hemodynamically stable patients.

      Treatment options include primary repair or resection of the torn segment with replacement using an interposition graft. Endovascular repair is also now considered an acceptable alternative approach.

    • This question is part of the following fields:

      • Trauma
      37
      Seconds
  • Question 17 - A 45 year old is brought into the emergency department after sustaining a...

    Incorrect

    • A 45 year old is brought into the emergency department after sustaining a head injury after falling from a staircase. The patient opens his eyes to voice and localises to pain. The patient's speech is slurred and he appears disoriented. What is this patient's Glasgow Coma Score (GCS)?

      Your Answer: 10

      Correct Answer: 12

      Explanation:

      In this case, the patient opens his eyes to voice, which corresponds to a score of 3 on the eye opening component. The patient localizes to pain, indicating a purposeful motor response, which corresponds to a score of 5 on the motor response component. However, the patient’s speech is slurred and he appears disoriented, suggesting an impaired verbal response. This would correspond to a score of 4 on the verbal response component.

      To calculate the GCS, we sum up the scores from each component. In this case, the patient’s GCS would be 3 + 4 + 5 = 12

      Further Reading:

      Indications for CT Scanning in Head Injuries (Adults):
      – CT head scan should be performed within 1 hour if any of the following features are present:
      – GCS < 13 on initial assessment in the ED
      – GCS < 15 at 2 hours after the injury on assessment in the ED
      – Suspected open or depressed skull fracture
      – Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
      – Post-traumatic seizure
      – New focal neurological deficit
      – > 1 episode of vomiting

      Indications for CT Scanning in Head Injuries (Children):
      – CT head scan should be performed within 1 hour if any of the features in List 1 are present:
      – Suspicion of non-accidental injury
      – Post-traumatic seizure but no history of epilepsy
      – GCS < 14 on initial assessment in the ED for children more than 1 year of age
      – Paediatric GCS < 15 on initial assessment in the ED for children under 1 year of age
      – At 2 hours after the injury, GCS < 15
      – Suspected open or depressed skull fracture or tense fontanelle
      – Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
      – New focal neurological deficit
      – For children under 1 year, presence of bruise, swelling or laceration of more than 5 cm on the head

      – CT head scan should be performed within 1 hour if none of the above features are present but two or more of the features in List 2 are present:
      – Loss of consciousness lasting more than 5 minutes (witnessed)
      – Abnormal drowsiness
      – Three or more discrete episodes of vomiting
      – Dangerous mechanism of injury (high-speed road traffic accident, fall from a height.

    • This question is part of the following fields:

      • Trauma
      23.2
      Seconds
  • Question 18 - A 35-year-old woman is brought into the emergency room by an ambulance with...

    Incorrect

    • A 35-year-old woman is brought into the emergency room by an ambulance with flashing lights. She has been in a car accident and has sustained severe burns. You examine her airway and have concerns about potential airway blockage. Your plan is to intubate the patient and begin preparing the required equipment.
      As per the ATLS guidelines, what is the minimum internal diameter of the endotracheal tube that should be utilized?

      Your Answer: 6.5 mm

      Correct Answer: 7.5 mm

      Explanation:

      Patients who have suffered burns should receive high-flow oxygen (15 L) through a reservoir bag while their breathing is being evaluated. If intubation is necessary, it is crucial to use an appropriately sized endotracheal tube (ETT). Using a tube that is too small can make it difficult or even impossible to ventilate the patient, clear secretions, or perform bronchoscopy.

      According to the ATLS guidelines, adults should be intubated using an ETT with an internal diameter (ID) of at least 7.5 mm or larger. Children, on the other hand, should have an ETT with an ID of at least 4.5 mm. Once a patient has been intubated, it is important to continue administering 100% oxygen until their carboxyhemoglobin levels drop to less than 5%.

      To protect the lungs, it is recommended to use lung protective ventilation techniques. This involves using low tidal volumes (4-8 mL/kg) and ensuring that peak inspiratory pressures do not exceed 30 cmH2O.

    • This question is part of the following fields:

      • Trauma
      96.8
      Seconds
  • Question 19 - A 32-year-old woman was involved in a car accident where her car collided...

    Incorrect

    • A 32-year-old woman was involved in a car accident where her car collided with a tree at high speed. She was not wearing a seatbelt and was thrown forward onto the steering wheel of her car. She has bruising over her anterior chest wall and is experiencing chest pain. A helical contrast-enhanced CT scan of the chest reveals a traumatic aortic injury. After receiving analgesia, which has effectively controlled her pain, her vital signs are as follows: HR 95, BP 128/88, SaO2 97% on room air, temperature is 37.4ºC.
      Which of the following medications would be most appropriate to administer next?

      Your Answer: Diamorphine

      Correct Answer: Esmolol

      Explanation:

      Traumatic aortic rupture, also known as traumatic aortic disruption or transection, occurs when the aorta is torn or ruptured due to physical trauma. This condition often leads to sudden death because of severe bleeding. Motor vehicle accidents and falls from great heights are the most common causes of this injury.

      The patients with the highest chances of survival are those who have an incomplete tear near the ligamentum arteriosum of the proximal descending aorta, close to where the left subclavian artery branches off. The presence of an intact adventitial layer or contained mediastinal hematoma helps maintain continuity and prevents immediate bleeding and death. If promptly identified and treated, survivors of these injuries can recover. In cases where traumatic aortic rupture leads to sudden death, approximately 50% of patients have damage at the aortic isthmus, while around 15% have damage in either the ascending aorta or the aortic arch.

      Initial chest X-rays may show signs consistent with a traumatic aortic injury. However, false-positive and false-negative results can occur, and sometimes there may be no abnormalities visible on the X-ray. Some of the possible X-ray findings include a widened mediastinum, hazy left lung field, obliteration of the aortic knob, fractures of the 1st and 2nd ribs, deviation of the trachea to the right, presence of a pleural cap, elevation and rightward shift of the right mainstem bronchus, depression of the left mainstem bronchus, obliteration of the space between the pulmonary artery and aorta, and deviation of the esophagus or NG tube to the right.

      A helical contrast-enhanced CT scan of the chest is the preferred initial investigation for suspected blunt aortic injury. It has proven to be highly accurate, with close to 100% sensitivity and specificity. CT scanning should be performed liberally, as chest X-ray findings can be unreliable. However, hemodynamically unstable patients should not be placed in a CT scanner. If the CT results are inconclusive, aortography or trans-oesophageal echo can be performed for further evaluation.

      Immediate surgical intervention is necessary for these injuries. Endovascular repair is the most common method used and has excellent short-term outcomes. Open repair may also be performed depending on the circumstances. It is important to control heart rate and blood pressure during stabilization to reduce the risk of rupture. Pain should be managed with appropriate analgesic

    • This question is part of the following fields:

      • Trauma
      219.2
      Seconds
  • Question 20 - A 42-year-old man was involved in a car accident where his vehicle collided...

    Incorrect

    • A 42-year-old man was involved in a car accident where his vehicle collided with a wall. He was rescued at the scene and has been brought to the hospital by ambulance. He is currently wearing a cervical immobilization device. He is experiencing chest pain on the left side and difficulty breathing. As the leader of the trauma response team, his vital signs are as follows: heart rate 110, blood pressure 102/63, oxygen saturation 90% on room air. His Glasgow Coma Scale score is 15 out of 15. Upon examination, he has extensive bruising on the left side of his chest, reduced chest expansion, dullness to percussion, and decreased breath sounds throughout the entire left side of his chest. He is receiving high-flow oxygen and a blood transfusion of his specific blood type has been initiated.

      What is the most appropriate next step in managing his condition?

      Your Answer: Needle thoracocentesis

      Correct Answer: Chest drain insertion

      Explanation:

      A massive haemothorax occurs when more than 1500 mL of blood, which is about 1/3 of the patient’s blood volume, rapidly accumulates in the chest cavity. The classic signs of a massive haemothorax include decreased chest expansion, decreased breath sounds, and dullness to percussion. Both tension pneumothorax and massive haemothorax can cause decreased breath sounds, but they can be differentiated through percussion. Hyperresonance indicates tension pneumothorax, while dullness suggests a massive haemothorax.

      The first step in managing a massive haemothorax is to simultaneously restore blood volume and decompress the chest cavity by inserting a chest drain. In most cases, the bleeding in a haemothorax has already stopped by the time management begins, and simple drainage is sufficient. It is important to use a chest drain of adequate size (preferably 36F) to ensure effective drainage of the haemothorax without clotting.

      If 1500 mL of blood is immediately drained or if the rate of ongoing blood loss exceeds 200 mL per hour for 2-4 hours, early thoracotomy should be considered.

    • This question is part of the following fields:

      • Trauma
      38.6
      Seconds
  • Question 21 - A 35 year old is brought to the emergency room after a car...

    Incorrect

    • A 35 year old is brought to the emergency room after a car accident. He has a left sided mid-shaft femoral fracture and is experiencing abdominal pain. He appears restless. The patient's vital signs are as follows:

      Blood pressure: 112/94 mmHg
      Pulse rate: 102 bpm
      Respiration rate: 21 rpm
      SpO2: 97% on room air
      Temperature: 36 ºC

      Which of the following additional parameters would be most helpful in monitoring this patient?

      Your Answer: Glasgow coma scale

      Correct Answer: Urine output

      Explanation:

      Shock is a condition characterized by inadequate tissue perfusion due to circulatory insufficiency. It can be caused by fluid loss or redistribution, as well as impaired cardiac output. The main causes of shock include haemorrhage, diarrhoea and vomiting, burns, diuresis, sepsis, neurogenic shock, anaphylaxis, massive pulmonary embolism, tension pneumothorax, cardiac tamponade, myocardial infarction, and myocarditis.

      One common cause of shock is haemorrhage, which is frequently encountered in the emergency department. Haemorrhagic shock can be classified into different types based on the amount of blood loss. Type 1 haemorrhagic shock involves a blood loss of 15% or less, with less than 750 ml of blood loss. Patients with type 1 shock may have normal blood pressure and heart rate, with a respiratory rate of 12 to 20 breaths per minute.

      Type 2 haemorrhagic shock involves a blood loss of 15 to 30%, with 750 to 1500 ml of blood loss. Patients with type 2 shock may have a pulse rate of 100 to 120 beats per minute and a respiratory rate of 20 to 30 breaths per minute. Blood pressure is typically normal in type 2 shock.

      Type 3 haemorrhagic shock involves a blood loss of 30 to 40%, with 1.5 to 2 litres of blood loss. Patients with type 3 shock may have a pulse rate of 120 to 140 beats per minute and a respiratory rate of more than 30 breaths per minute. Urine output is decreased to 5-15 mls per hour.

      Type 4 haemorrhagic shock involves a blood loss of more than 40%, with more than 2 litres of blood loss. Patients with type 4 shock may have a pulse rate of more than 140 beats per minute and a respiratory rate of more than 35 breaths per minute. They may also be drowsy, confused, and possibly experience loss of consciousness. Urine output may be minimal or absent.

      In summary, shock is a condition characterized by inadequate tissue perfusion. Haemorrhage is a common cause of shock, and it can be classified into different types based on the amount of blood loss. Prompt recognition and management of shock are crucial in order to prevent further complications and improve patient outcomes

    • This question is part of the following fields:

      • Trauma
      143.4
      Seconds
  • Question 22 - A 35-year-old woman is brought in by ambulance following a car accident where...

    Correct

    • A 35-year-old woman is brought in by ambulance following a car accident where her car was struck by a truck. She has suffered severe facial injuries and shows signs of airway obstruction. Her neck is immobilized. She has suffered significant midface trauma, and the anesthesiologist decides to secure a definitive airway by intubating the patient. He is unable to pass an endotracheal tube, and he decides to perform a needle cricothyroidotomy.

      Which of the following statements about needle cricothyroidotomy is correct?

      Your Answer: Evidence of local infection is a valid contraindication

      Explanation:

      A needle cricothyroidotomy is a procedure used in emergency situations to provide oxygenation when intubation and oxygenation are not possible. It is typically performed when a patient cannot be intubated or oxygenated. There are certain conditions that make this procedure contraindicated, such as local infection, distorted anatomy, previous failed attempts, and swelling or mass lesions.

      To perform a needle cricothyroidotomy, the necessary equipment should be assembled and prepared. The patient should be positioned supine with their neck in a neutral position. The neck should be cleaned in a sterile manner using antiseptic swabs. If time allows, the area should be anesthetized locally. A 12 or 14 gauge over-the-needle catheter should be assembled to a 10 mL syringe.

      The cricothyroid membrane, located between the thyroid and cricoid cartilage, should be identified anteriorly. The trachea should be stabilized with the thumb and forefinger of one hand. Using the other hand, the skin should be punctured in the midline with the needle over the cricothyroid membrane. The needle should be directed at a 45° angle caudally while negative pressure is applied to the syringe. Needle aspiration should be maintained as the needle is inserted through the lower half of the cricothyroid membrane, with air aspiration indicating entry into the tracheal lumen.

      Once the needle is in place, the syringe and needle should be removed while the catheter is advanced to the hub. The oxygen catheter should be attached and the airway secured. It is important to be aware of possible complications, such as technique failure, cannula obstruction or dislodgement, injury to local structures, and surgical emphysema if high flow oxygen is administered through a malpositioned cannula.

    • This question is part of the following fields:

      • Trauma
      61.1
      Seconds
  • Question 23 - A 14-year-old girl was cycling down a hill when a car backed up...

    Correct

    • A 14-year-old girl was cycling down a hill when a car backed up in front of her, resulting in a collision. She visits the emergency department, reporting upper abdominal pain caused by the handlebars. You determine that a FAST scan is necessary. What is the main objective of performing a FAST scan for blunt abdominal trauma?

      Your Answer: Detect the presence of intraperitoneal fluid

      Explanation:

      The primary goal of performing a FAST scan in cases of blunt abdominal trauma is to identify the existence of intraperitoneal fluid. According to the Royal College of Emergency Medicine (RCEM), the purpose of using ultrasound in the initial evaluation of abdominal trauma is specifically to confirm the presence of fluid within the peritoneal cavity, with the assumption that it is blood. However, it is important to note that ultrasound is not reliable for diagnosing injuries to solid organs or hollow viscus.

      Further Reading:

      Abdominal trauma can be classified into two categories: blunt trauma and penetrating trauma. Blunt trauma occurs when compressive or deceleration forces are applied to the abdomen, often resulting from road traffic accidents or direct blows during sports. The spleen and liver are the organs most commonly injured in blunt abdominal trauma. On the other hand, penetrating trauma involves injuries that pierce the skin and enter the abdominal cavity, such as stabbings, gunshot wounds, or industrial accidents. The bowel and liver are the organs most commonly affected in penetrating injuries.

      When it comes to imaging in blunt abdominal trauma, there are three main modalities that are commonly used: focused assessment with sonography in trauma (FAST), diagnostic peritoneal lavage (DPL), and computed tomography (CT). FAST is a non-invasive and quick method used to detect free intraperitoneal fluid, aiding in the decision on whether a laparotomy is needed. DPL is also used to detect intraperitoneal blood and can be used in both unstable blunt abdominal trauma and penetrating abdominal trauma. However, it is more invasive and time-consuming compared to FAST and has largely been replaced by it. CT, on the other hand, is the gold standard for diagnosing intra-abdominal pathology and is used in stable abdominal trauma patients. It offers high sensitivity and specificity but requires a stable and cooperative patient. It also involves radiation and may have delays in availability.

      In the case of penetrating trauma, it is important to assess these injuries with the help of a surgical team. Penetrating objects should not be removed in the emergency department as they may be tamponading underlying vessels. Ideally, these injuries should be explored in the operating theater.

      In summary, abdominal trauma can be classified into blunt trauma and penetrating trauma. Blunt trauma is caused by compressive or deceleration forces and commonly affects the spleen and liver. Penetrating trauma involves injuries that pierce the skin and commonly affect the bowel and liver. Imaging modalities such as FAST, DPL, and CT are used to assess and diagnose abdominal trauma, with CT being the gold standard. Penetrating injuries should be assessed by a surgical team and should ideally be explored in the operating theater.

    • This question is part of the following fields:

      • Trauma
      72.4
      Seconds
  • Question 24 - A 4-year-old girl is brought in by an emergency ambulance after being involved...

    Correct

    • A 4-year-old girl is brought in by an emergency ambulance after being involved in a car accident. A trauma call is made, and you are tasked with obtaining intravenous access and administering a fluid bolus. However, you are unable to successfully secure intravenous access and decide to set up for intraosseous access instead.

      Which of the following anatomical locations would be the LEAST suitable for insertion in this case?

      Your Answer: Lateral malleolus

      Explanation:

      Intraosseous access is recommended in trauma, burns, or resuscitation situations when other attempts at venous access fail or would take longer than one minute. It is particularly recommended for circulatory access in pediatric cardiac arrest cases. This technique can also be used when urgent blood sampling or intravenous access is needed and traditional cannulation is difficult and time-consuming. It serves as a temporary measure to stabilize the patient and facilitate long-term intravenous access.

      Potential complications of intraosseous access include compartment syndrome, infection, and fracture. Therefore, it is contraindicated to use this method on the side of definitively fractured bones or limbs with possible proximal fractures. It should also not be used at sites of previous attempts or in patients with conditions such as osteogenesis imperfecta or osteopetrosis.

      There are several possible sites for intraosseous access insertion. These include the proximal humerus, approximately 1 cm above the surgical neck; the proximal tibia, on the anterior surface, 2-3 cm below the tibial tuberosity; the distal tibia, 3 cm proximal to the most prominent aspect of the medial malleolus; the femoral region, on the anterolateral surface, 3 cm above the lateral condyle; the iliac crest; and the sternum.

    • This question is part of the following fields:

      • Trauma
      36.5
      Seconds
  • Question 25 - A 45-year-old woman is brought into the emergency room by an ambulance with...

    Incorrect

    • A 45-year-old woman is brought into the emergency room by an ambulance with sirens blaring after being involved in a car accident. She was hit by a truck while crossing the street and is suspected to have a pelvic injury. Her blood pressure is unstable, and the hospital has initiated the massive transfusion protocol. You decide to administer tranexamic acid as well.
      What is the recommended time frame for administering tranexamic acid in a trauma situation?

      Your Answer: Within 1 hour

      Correct Answer: Within 3 hours

      Explanation:

      ATLS guidelines now suggest administering only 1 liter of crystalloid fluid during the initial assessment. If patients do not respond to the crystalloid, it is recommended to quickly transition to blood products. Studies have shown that infusing more than 1.5 liters of crystalloid fluid is associated with higher mortality rates in trauma cases. Therefore, it is advised to prioritize the early use of blood products and avoid large volumes of crystalloid fluid in trauma patients. In cases where it is necessary, massive transfusion should be considered, defined as the transfusion of more than 10 units of blood in 24 hours or more than 4 units of blood in one hour. For patients with evidence of Class III and IV hemorrhage, early resuscitation with blood and blood products in low ratios is recommended.

      Based on the findings of significant trials, such as the CRASH-2 study, the use of tranexamic acid is now recommended within 3 hours. This involves administering a loading dose of 1 gram intravenously over 10 minutes, followed by an infusion of 1 gram over eight hours. In some regions, tranexamic acid is also being utilized in the prehospital setting.

    • This question is part of the following fields:

      • Trauma
      20.5
      Seconds
  • Question 26 - A 25-year-old woman is stabbed in the chest during a fight outside a...

    Incorrect

    • A 25-year-old woman is stabbed in the chest during a fight outside a bar. A FAST scan is conducted, revealing the presence of free fluid in the chest cavity.

      Which of the following organs is most likely to be damaged in this scenario?

      Your Answer: Colon

      Correct Answer: Liver

      Explanation:

      Stab wounds to the abdomen result in tissue damage through laceration and cutting. When patients experience penetrating abdominal trauma due to stab wounds, the organs that are most commonly affected include the liver (40% of cases), small bowel (30% of cases), diaphragm (20% of cases), and colon (15% of cases). These statistics are derived from the latest edition of the ATLS manual.

    • This question is part of the following fields:

      • Trauma
      18.5
      Seconds
  • Question 27 - A young patient who has been in a car accident experiences a traumatic...

    Incorrect

    • A young patient who has been in a car accident experiences a traumatic cardiac arrest. You decide to perform an anterolateral thoracotomy.
      During this procedure, which structures will need to be divided?

      Your Answer: Subscapularis

      Correct Answer: Latissimus dorsi

      Explanation:

      An anterolateral thoracotomy is a surgical procedure performed on the front part of the chest wall. It is commonly used in Emergency Department thoracotomy, with a preference for a left-sided approach in patients experiencing traumatic arrest or left-sided chest injuries. However, in cases where patients have not arrested but present with severe low blood pressure and right-sided chest injuries, a right-sided approach is recommended.

      The procedure is conducted as follows: an incision is made along the 4th or 5th intercostal space, starting from the sternum at the front and extending to the posterior axillary line. The incision should be deep enough to partially cut through the latissimus dorsi muscle. Subsequently, the skin, subcutaneous fat, and superficial portions of the pectoralis and serratus muscles are divided. The parietal pleura is then divided, allowing access to the pleural cavity. The intercostal muscles are completely cut, and a rib spreader is inserted and opened to provide visualization of the thoracic cavity.

      The anterolateral approach enables access to crucial anatomical structures during resuscitation, including the pulmonary hilum, heart, and aorta. In cases where a right-sided heart injury is suspected, an additional incision can be made on the right side, extending across the entire chest. This procedure is known as a bilateral anterolateral thoracotomy or a clamshell thoracotomy.

    • This question is part of the following fields:

      • Trauma
      129.7
      Seconds
  • Question 28 - A 35-year-old woman is involved in a car accident. Her observations are taken...

    Correct

    • A 35-year-old woman is involved in a car accident. Her observations are taken one hour after arriving in the Emergency Department. Her pulse rate is 145 bpm, BP is 72/38 mmHg, respiratory rate 45 breaths/minute, and her urine output over the past hour has been negligible. She is drowsy, lethargic, and confused. The patient weighs approximately 70 kg.
      How would you classify her hemorrhage according to the ATLS hemorrhagic shock classification?

      Your Answer: Class IV

      Explanation:

      This patient is showing significant signs of distress, including a highly elevated heart rate and respiratory rate, as well as very little urine output. Additionally, they are experiencing drowsiness, lethargy, and confusion. These symptoms indicate that the patient has suffered a class IV haemorrhage at this stage.

      Recognizing the extent of blood loss based on vital signs and mental status abnormalities is a crucial skill. The Advanced Trauma Life Support (ATLS) classification for haemorrhagic shock correlates the amount of blood loss with expected physiological responses in a healthy 70 kg patient. In a 70 kg male patient, the total circulating blood volume is approximately five litres, accounting for around 7% of their total body weight.

      The ATLS haemorrhagic shock classification is summarized as follows:

      CLASS I
      Blood loss (mL): Up to 750
      Blood loss (% blood volume): Up to 15%
      Pulse rate (bpm): <100
      Systolic BP: Normal
      Pulse pressure: Normal (or increased)
      Respiratory rate: 14-20
      Urine output (ml/hr): >30
      CNS/mental status: Slightly anxious

      CLASS II
      Blood loss (mL): 750-1500
      Blood loss (% blood volume): 15-30%
      Pulse rate (bpm): 100-120
      Systolic BP: Normal
      Pulse pressure: Decreased
      Respiratory rate: 20-30
      Urine output (ml/hr): 20-30
      CNS/mental status: Mildly anxious

      CLASS III
      Blood loss (mL): 1500-2000
      Blood loss (% blood volume): 30-40%
      Pulse rate (bpm): 120-140
      Systolic BP: Decreased
      Pulse pressure: Decreased
      Respiratory rate: 30-40
      Urine output (ml/hr): 5-15
      CNS/mental status: Anxious, confused

      CLASS IV
      Blood loss (mL): >2000
      Blood loss (% blood volume): >40%
      Pulse rate (bpm): >140
      Systolic BP: Decreased
      Pulse pressure: Decreased
      Respiratory rate: >40
      Urine output (ml/hr): Negligible
      CNS/mental status: Confused, lethargic

    • This question is part of the following fields:

      • Trauma
      16.2
      Seconds
  • Question 29 - A 25-year-old woman is brought into the emergency department after sustaining a single...

    Incorrect

    • A 25-year-old woman is brought into the emergency department after sustaining a single stab wound to the abdomen while attempting to intervene in a fight. The patient's observations are as follows:

      Parameter Reading
      Blood pressure: 122/84 mmHg
      Pulse rate: 88 bpm
      Respiration rate: 12 rpm
      SpO2: 98% on air

      Which two organs are frequently affected in cases of penetrating abdominal trauma?

      Your Answer: Liver and spleen

      Correct Answer: Liver and small bowel

      Explanation:

      In cases of penetrating abdominal trauma, two organs that are frequently affected are the liver and the small bowel. This means that when a person sustains a stab wound or any other type of injury that penetrates the abdomen, these two organs are at a higher risk of being damaged.

      Further Reading:

      Abdominal trauma can be classified into two categories: blunt trauma and penetrating trauma. Blunt trauma occurs when compressive or deceleration forces are applied to the abdomen, often resulting from road traffic accidents or direct blows during sports. The spleen and liver are the organs most commonly injured in blunt abdominal trauma. On the other hand, penetrating trauma involves injuries that pierce the skin and enter the abdominal cavity, such as stabbings, gunshot wounds, or industrial accidents. The bowel and liver are the organs most commonly affected in penetrating injuries.

      When it comes to imaging in blunt abdominal trauma, there are three main modalities that are commonly used: focused assessment with sonography in trauma (FAST), diagnostic peritoneal lavage (DPL), and computed tomography (CT). FAST is a non-invasive and quick method used to detect free intraperitoneal fluid, aiding in the decision on whether a laparotomy is needed. DPL is also used to detect intraperitoneal blood and can be used in both unstable blunt abdominal trauma and penetrating abdominal trauma. However, it is more invasive and time-consuming compared to FAST and has largely been replaced by it. CT, on the other hand, is the gold standard for diagnosing intra-abdominal pathology and is used in stable abdominal trauma patients. It offers high sensitivity and specificity but requires a stable and cooperative patient. It also involves radiation and may have delays in availability.

      In the case of penetrating trauma, it is important to assess these injuries with the help of a surgical team. Penetrating objects should not be removed in the emergency department as they may be tamponading underlying vessels. Ideally, these injuries should be explored in the operating theater.

      In summary, abdominal trauma can be classified into blunt trauma and penetrating trauma. Blunt trauma is caused by compressive or deceleration forces and commonly affects the spleen and liver. Penetrating trauma involves injuries that pierce the skin and commonly affect the bowel and liver. Imaging modalities such as FAST, DPL, and CT are used to assess and diagnose abdominal trauma, with CT being the gold standard. Penetrating injuries should be assessed by a surgical team and should ideally be explored in the operating theater.

    • This question is part of the following fields:

      • Trauma
      90.1
      Seconds
  • Question 30 - A 25-year-old arrives at the emergency department after being involved in a car...

    Correct

    • A 25-year-old arrives at the emergency department after being involved in a car accident. A FAST scan is conducted to assess for abdominal injuries caused by blunt trauma. Which of the following is NOT among the four standard views obtained during a FAST scan?

      Your Answer: Umbilical view

      Explanation:

      FAST scans consist of four standard views that are obtained to assess different areas of the body. These views include the right upper quadrant (RUQ), left upper quadrant (LUQ), pericardial sac, and the pelvis.

      In the RUQ view, the focus is on the right flank or peri-hepatic area, which includes Morison’s pouch and the right costophrenic pleural recess.

      The LUQ view examines the left flank or peri-splenic area, which includes the spleen-renal recess and the left costophrenic pleural space.

      The pericardial sac is also assessed to evaluate any abnormalities in this area.

      Lastly, the pelvis is examined in two planes to ensure a comprehensive evaluation.

      In addition to these four standard views, an anterior pleural view is often performed alongside the others. This view used to be part of the extended FAST (eFAST) scan but is now commonly included routinely.

      Further Reading:

      Abdominal trauma can be classified into two categories: blunt trauma and penetrating trauma. Blunt trauma occurs when compressive or deceleration forces are applied to the abdomen, often resulting from road traffic accidents or direct blows during sports. The spleen and liver are the organs most commonly injured in blunt abdominal trauma. On the other hand, penetrating trauma involves injuries that pierce the skin and enter the abdominal cavity, such as stabbings, gunshot wounds, or industrial accidents. The bowel and liver are the organs most commonly affected in penetrating injuries.

      When it comes to imaging in blunt abdominal trauma, there are three main modalities that are commonly used: focused assessment with sonography in trauma (FAST), diagnostic peritoneal lavage (DPL), and computed tomography (CT). FAST is a non-invasive and quick method used to detect free intraperitoneal fluid, aiding in the decision on whether a laparotomy is needed. DPL is also used to detect intraperitoneal blood and can be used in both unstable blunt abdominal trauma and penetrating abdominal trauma. However, it is more invasive and time-consuming compared to FAST and has largely been replaced by it. CT, on the other hand, is the gold standard for diagnosing intra-abdominal pathology and is used in stable abdominal trauma patients. It offers high sensitivity and specificity but requires a stable and cooperative patient. It also involves radiation and may have delays in availability.

      In the case of penetrating trauma, it is important to assess these injuries with the help of a surgical team. Penetrating objects should not be removed in the emergency department as they may be tamponading underlying vessels. Ideally, these injuries should be explored in the operating theater.

      In summary, abdominal trauma can be classified into blunt trauma and penetrating trauma. Blunt trauma is caused by compressive or deceleration forces and commonly affects the spleen and liver. Penetrating trauma involves injuries that pierce the skin and commonly affect the bowel and liver. Imaging modalities such as FAST, DPL, and CT are used to assess and diagnose abdominal trauma, with CT being the gold standard. Penetrating injuries should be assessed by a surgical team and should ideally be explored in the operating theater.

    • This question is part of the following fields:

      • Trauma
      34.6
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Trauma (13/30) 43%
Passmed