-
Question 1
Incorrect
-
A senior gentleman visits the GP for his routine INR check. He was prescribed warfarin five years ago upon being diagnosed with atrial fibrillation.
Which enzyme does warfarin inhibit?Your Answer: Protein C
Correct Answer: Epoxide reductase
Explanation:Warfarin prevents the activation of Vitamin K by inhibiting epoxide reductase. This enzyme is responsible for converting Vitamin K epoxide to Vitamin K quinone, a necessary step in the Vitamin K metabolic pathway. Without this conversion, the production of clotting factors (10, 9, 7 and 2) is decreased.
Gamma-glutamyl carboxylase is the enzyme responsible for carboxylating glutamic acid to produce clotting factors. Warfarin does not directly inhibit this enzyme.
CYP2C9 is an enzyme involved in the metabolism of many drugs, including warfarin.
Protein C is a plasma protein that functions as an anticoagulant. It is dependent on Vitamin K for activation and works by inhibiting factor 5 and 8. Protein C is produced as an inactive precursor enzyme, which is then activated to exert its anticoagulant effects.
Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Incorrect
-
An 80-year-old patient is initiated on warfarin after being diagnosed with atrial fibrillation. The patient has a medical history of a metallic heart valve.
The patient is informed that INR levels will be used to monitor the effects of warfarin. INR is a ratio of the value during warfarin treatment to the normal value, which is used to measure a specific aspect of clotting.
What is the value that is utilized during this monitoring process?Your Answer:
Correct Answer: Prothrombin time
Explanation:Warfarin leads to an extended prothrombin time, which is the correct answer. The prothrombin time assesses the extrinsic and common pathways of the clotting cascade, and warfarin affects factor VII from the extrinsic pathway, as well as factor II (prothrombin) and factor X from the common pathway. This results in a prolonged prothrombin time, and the INR is a ratio of the prothrombin time during warfarin treatment to the normal prothrombin time.
The activated partial thromboplastin time is an incorrect answer. Although high levels of warfarin may prolong the activated partial thromboplastin time, the INR is solely based on the prothrombin time.
Bleeding time is also an incorrect answer. While warfarin can cause a prolonged bleeding time, the INR measures the prothrombin time.
Fibrinogen levels are another incorrect answer. Fibrinogen is necessary for blood clotting, and warfarin can decrease fibrinogen levels after prolonged use. However, fibrinogen levels are not used in the INR measurement.
Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Incorrect
-
A 72-year-old woman is prescribed digoxin for the treatment of atrial fibrillation that was not effectively managed with atenolol alone. Digoxin works by inhibiting a crucial element in the cardiac action potential that restores resting potential. This inhibition leads to changes in the levels of specific ions on either side of the membrane, resulting in an enhanced contractile force of the heart and an improvement in left ventricular ejection fraction.
Which element does digoxin inhibit to achieve this effect?Your Answer:
Correct Answer: Na+/K+ ATPase
Explanation:Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Incorrect
-
A 24-year-old male patient arrives at the emergency department complaining of dizziness and palpitations. Upon triage, cardiac monitoring reveals supraventricular tachycardia with a heart rate of 200 beats per minute. This rapid heart rate is facilitated by the specialized cells and nerve fibers in the heart that conduct action potentials during systole.
What type of cells and nerve fibers in the heart have the highest conduction velocities?Your Answer:
Correct Answer: Purkinje fibres
Explanation:The Purkinje fibres have the fastest conduction velocities in the heart, reaching about 4m/sec. During cardiac electrical activation, the SA node generates action potentials that spread throughout the atria muscle during atrial systole, conducting at a velocity of approximately 0.5m/sec. The atrioventricular node acts as a pathway for action potentials to enter from the atria to the ventricles, also conducting at a similar velocity of about 0.5m/sec. The Bundle of His, located at the base of the ventricle, divides into the left and right bundle branches, which conduct at a faster velocity of around 2m/sec. These bundles then divide into an extensive system of Purkinje fibres that conduct the impulse throughout the ventricles at an even faster velocity of about 4m/sec.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Incorrect
-
A 51-year-old woman has just had a right hemiarthroplasty and is now experiencing sudden onset of shortness of breath and sharp pleuritic pain on the right side of her chest. A chest x-ray is done as part of the initial evaluation, revealing a wedge-shaped opacification. What is the probable diagnosis?
Your Answer:
Correct Answer: Pulmonary embolism
Explanation:Symptoms and Signs of Pulmonary Embolism
Pulmonary embolism is a medical condition that can be difficult to diagnose due to its varied symptoms and signs. While chest pain, dyspnoea, and haemoptysis are commonly associated with pulmonary embolism, only a small percentage of patients present with this textbook triad. The symptoms and signs of pulmonary embolism can vary depending on the location and size of the embolism.
The PIOPED study conducted in 2007 found that tachypnea, or a respiratory rate greater than 16/min, was the most common clinical sign in patients diagnosed with pulmonary embolism, occurring in 96% of cases. Other common signs included crackles in the chest (58%), tachycardia (44%), and fever (43%). Interestingly, the Well’s criteria for diagnosing a PE uses tachycardia rather than tachypnea. It is important for healthcare professionals to be aware of the varied symptoms and signs of pulmonary embolism to ensure prompt diagnosis and treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
What is the most suitable pathological explanation for the initial processes that occur in an abdominal aortic aneurysm in a 67-year-old male with hypertension who is otherwise healthy?
Your Answer:
Correct Answer: Loss of elastic fibres from the media
Explanation:Aneurysmal disease is characterized by the expansion of all layers of the arterial wall and the depletion of both elastin and collagen. The initial occurrence involves the breakdown of elastic fibers, which leads to the deterioration of collagen fibers.
Understanding the Pathology of Abdominal Aortic Aneurysm
Abdominal aortic aneurysms occur when the elastic proteins within the extracellular matrix fail, resulting in the dilation of all layers of the arterial wall. This degenerative disease is primarily caused by the loss of the intima and elastic fibers from the media, which is associated with increased proteolytic activity and lymphocytic infiltration. Aneurysms are typically considered aneurysmal when the diameter of the infrarenal aorta is 3 cm or greater, which is significantly larger than the normal diameter of 1.5cm in females and 1.7cm in males after the age of 50 years.
Smoking and hypertension are major risk factors for the development of aneurysms, while rare but important causes include syphilis and connective tissue diseases such as Ehlers Danlos type 1 and Marfan’s syndrome. Understanding the pathology of abdominal aortic aneurysm is crucial in identifying and managing the risk factors associated with this condition. By addressing these risk factors, individuals can reduce their likelihood of developing an aneurysm and improve their overall health.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Incorrect
-
A 42-year-old man arrives at the emergency department with complaints of palpitations and dizziness. He has been experiencing vomiting and diarrhoea for the past week and has also been suffering from muscle weakness and cramps for the last three days. The possibility of hypokalaemia is suspected, and an ECG is ordered. What ECG sign is indicative of hypokalaemia?
Your Answer:
Correct Answer: Small or inverted T waves
Explanation:Hypokalaemia, a condition characterized by low levels of potassium in the blood, can be detected through ECG features. These include the presence of U waves, small or absent T waves (which may occasionally be inverted), a prolonged PR interval, ST depression, and a long QT interval. The ECG image provided shows typical U waves and a borderline PR interval. To remember these features, one user suggests the following rhyme: In Hypokalaemia, U have no Pot and no T, but a long PR and a long QT.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
A 70-year-old man visits his primary care physician complaining of paroxysmal nocturnal dyspnoea and increasing orthopnoea. The physician suspects heart failure and orders a chest X-ray. What signs on the chest X-ray would indicate heart failure?
Your Answer:
Correct Answer: Upper zone vessel enlargement
Explanation:Diagnosis of Chronic Heart Failure
Chronic heart failure is a serious condition that requires prompt diagnosis and management. In 2018, the National Institute for Health and Care Excellence (NICE) updated its guidelines on the diagnosis and management of chronic heart failure. According to the new guidelines, all patients should undergo an N-terminal pro-B-type natriuretic peptide (NT‑proBNP) blood test as the first-line investigation, regardless of whether they have previously had a myocardial infarction or not.
Interpreting the NT-proBNP test is crucial in determining the severity of the condition. If the levels are high, specialist assessment, including transthoracic echocardiography, should be arranged within two weeks. If the levels are raised, specialist assessment, including echocardiogram, should be arranged within six weeks.
BNP is a hormone produced mainly by the left ventricular myocardium in response to strain. Very high levels of BNP are associated with a poor prognosis. The table above shows the different levels of BNP and NTproBNP and their corresponding interpretations.
It is important to note that certain factors can alter the BNP level. For instance, left ventricular hypertrophy, ischaemia, tachycardia, and right ventricular overload can increase BNP levels, while diuretics, ACE inhibitors, beta-blockers, angiotensin 2 receptor blockers, and aldosterone antagonists can decrease BNP levels. Therefore, it is crucial to consider these factors when interpreting the NT-proBNP test.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
An 80-year-old man presents to the emergency department with complaints of chest pain, dizziness, and palpitations. He has a medical history of mitral stenosis and denies any alcohol or smoking habits. Upon conducting an ECG, it is observed that lead I shows positively directed sawtooth deflections, while leads II, III, and aVF show negatively directed sawtooth deflections. What pathology does this finding suggest?
Your Answer:
Correct Answer: Atrial flutter
Explanation:Atrial flutter is identified by a sawtooth pattern on the ECG and is a type of supraventricular tachycardia. It occurs when electrical activity from the sinoatrial node reenters the atria instead of being conducted to the ventricles. Valvular heart disease is a risk factor, and atrial flutter is managed similarly to atrial fibrillation.
Left bundle branch block causes a delayed contraction of the left ventricle and is identified by a W pattern in V1 and an M pattern in V6 on an ECG. It does not produce a sawtooth pattern on the ECG.
Ventricular fibrillation is characterized by chaotic electrical conduction in the ventricles, resulting in a lack of normal ventricular contraction. It can cause cardiac arrest and requires advanced life support management.
Wolff-Parkinson-White syndrome is caused by an accessory pathway between the atria and the ventricles and is identified by a slurred upstroke at the beginning of the QRS complex, known as a delta wave. It can present with symptoms such as palpitations, shortness of breath, and syncope.
Atrial flutter is a type of supraventricular tachycardia that is characterized by a series of rapid atrial depolarization waves. This condition can be identified through ECG findings, which show a sawtooth appearance. The underlying atrial rate is typically around 300 beats per minute, which can affect the ventricular or heart rate depending on the degree of AV block. For instance, if there is a 2:1 block, the ventricular rate will be 150 beats per minute. Flutter waves may also be visible following carotid sinus massage or adenosine.
Managing atrial flutter is similar to managing atrial fibrillation, although medication may be less effective. However, atrial flutter is more sensitive to cardioversion, so lower energy levels may be used. For most patients, radiofrequency ablation of the tricuspid valve isthmus is curative.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 65-year-old man was effectively cardioverted for an unstable broad complex tachycardia. The physician opts to initiate oral amiodarone at 200 mg thrice daily, and gradually decrease at weekly intervals until a maintenance dose of 200 mg once daily.
What is the rationale behind this dosing plan?Your Answer:
Correct Answer: Amiodarone has a very long half-life
Explanation:Amiodarone’s long half-life is due to its high lipophilicity and extensive tissue absorption, resulting in reduced bioavailability in serum. To achieve stable therapeutic levels, a prolonged loading regimen is necessary.
To quickly achieve therapeutic levels, high doses of oral amiodarone are required due to poor absorption. Once achieved, a once-daily regimen can be continued. Amiodarone’s plasma half-life ranges from 20 to 100 days, meaning its effects persist long after discontinuation. Patients should be counseled on this and advised to recognize adverse effects and avoid drugs that interact with amiodarone even after stopping it.
The statement that amiodarone has a short half-life is incorrect; it has a long half-life.
Patients do not need to stay admitted for monitoring during the loading regimen. However, thyroid and liver function tests should be performed every 6 months for up to 12 months after discontinuation due to the long half-life.
Amiodarone is excreted via the liver and biliary system, not rapidly metabolized and eliminated by the kidneys. Therefore, patients with amiodarone overdose or toxicity are not suitable for dialysis.
Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
A 65-year-old woman experiences chest discomfort during physical activity and is diagnosed with angina.
What alterations are expected to be observed in her arteries?Your Answer:
Correct Answer: Smooth muscle proliferation and migration from the tunica media to the intima
Explanation:The final stage in the development of an atheroma involves the proliferation and migration of smooth muscle from the tunica media into the intima. While monocytes do migrate, they differentiate into macrophages which then phagocytose LDLs and form foam cells. Additionally, there is infiltration of LDLs. The formation of fibrous capsules is a result of the smooth muscle proliferation and migration. Atherosclerosis is also associated with a reduction in nitric oxide availability.
Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Incorrect
-
A 55-year-old chronic smoker presents to the cardiology clinic with worsening chest pain during physical activity. After initial investigations, an outpatient coronary angiography is performed which reveals severe stenosis/atheroma in multiple vessels. The patient is informed that this condition is a result of various factors, including the detrimental effects of smoking on the blood vessels.
What is the ultimate stage in the development of this patient's condition?Your Answer:
Correct Answer: Smooth muscle proliferation and migration from the tunica media into the intima
Explanation:Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
Which one of the following statements relating to the posterior cerebral artery is false?
Your Answer:
Correct Answer: It is connected to the circle of Willis via the superior cerebellar artery
Explanation:The bifurcation of the basilar artery gives rise to the posterior cerebral arteries, which are linked to the circle of Willis through the posterior communicating artery.
These arteries provide blood supply to the occipital lobe and a portion of the temporal lobe.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Incorrect
-
A 56-year-old male is admitted to the hospital with increasing fatigue and difficulty exercising. After undergoing various tests, including echocardiography and right heart catheterization, it is determined that he has pulmonary arterial hypertension (PAH) with a mean pulmonary artery pressure of 35 mmhg and a pulmonary capillary wedge pressure of 8mmhg. One of the medications prescribed for him is ambrisentan. What is the mechanism of action of this drug?
Your Answer:
Correct Answer: Endothelin-1 receptor antagonist
Explanation:Ambrisentan is an antagonist of endothelin-1 receptors, which are involved in vasoconstriction. In pulmonary arterial hypertension (PAH), the expression of endothelin-1 is increased, leading to constriction of blood vessels. Ambrisentan selectively targets ETA receptors found in vascular smooth muscle, reducing morbidity and mortality in PAH patients. Common side effects include peripheral edema, sinusitis, flushing, and nasal congestion. Prostacyclins like PGI2 can also be used to manage PPH by dilating blood vessels and inhibiting platelet aggregation. PGE2, an inflammatory mediator, is not used in PAH treatment. PDE inhibitors like sildenafil increase cGMP levels in pulmonary vessels, relaxing vascular smooth muscle and reducing pulmonary artery pressure.
Pulmonary arterial hypertension (PAH) is a condition where the resting mean pulmonary artery pressure is equal to or greater than 25 mmHg. The pathogenesis of PAH is thought to involve endothelin. It is more common in females and typically presents between the ages of 30-50 years. PAH is diagnosed in the absence of chronic lung diseases such as COPD, although certain factors increase the risk. Around 10% of cases are inherited in an autosomal dominant fashion.
The classical presentation of PAH is progressive exertional dyspnoea, but other possible features include exertional syncope, exertional chest pain, peripheral oedema, and cyanosis. Physical examination may reveal a right ventricular heave, loud P2, raised JVP with prominent ‘a’ waves, and tricuspid regurgitation.
Management of PAH should first involve treating any underlying conditions. Acute vasodilator testing is central to deciding on the appropriate management strategy. If there is a positive response to acute vasodilator testing, oral calcium channel blockers may be used. If there is a negative response, prostacyclin analogues, endothelin receptor antagonists, or phosphodiesterase inhibitors may be used. Patients with progressive symptoms should be considered for a heart-lung transplant.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
An eager young medical student inquires about ECGs. Despite your limited knowledge on the subject, you valiantly attempt to respond to her queries! One of her questions is: which part of the ECG denotes ventricular repolarization?
Your Answer:
Correct Answer: T wave
Explanation:The final stage of cardiac contraction, ventricular repolarization, is symbolized by the T wave. This can be easily remembered by recognizing that it occurs after the QRS complex, which represents earlier phases of contraction.
Understanding the Normal ECG
The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.
The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.
Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
A 68-year-old man visits his doctor complaining of exertional dyspnea and is diagnosed with heart failure. Afterload-induced increases can lead to systolic dysfunction in heart failure.
What factors worsen his condition by increasing afterload?Your Answer:
Correct Answer: Ventricular dilatation
Explanation:Ventricular dilation can increase afterload, which is the resistance the heart must overcome during contraction. Afterload is often measured as ventricular wall stress, which is influenced by ventricular pressure, radius, and wall thickness. As the ventricle dilates, the radius increases, leading to an increase in wall stress and afterload. This can eventually lead to heart failure if the heart is unable to compensate. Conversely, decreased systemic vascular resistance and hypotension can decrease afterload, while increased venous return can increase preload. Mitral valve stenosis, on the other hand, can decrease preload.
The stroke volume refers to the amount of blood that is pumped out of the ventricle during each cycle of cardiac contraction. This volume is usually the same for both ventricles and is approximately 70ml for a man weighing 70Kg. To calculate the stroke volume, the end systolic volume is subtracted from the end diastolic volume. Several factors can affect the stroke volume, including the size of the heart, its contractility, preload, and afterload.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
An elderly man in his late 60s is admitted to the cardiology ward due to worsening shortness of breath. He has a medical history of hypertension and ischaemic heart disease. During examination, bibasal crackles and pitting oedema to the knees bilaterally are observed. Blood tests are conducted, and the results show a brain natriuretic peptide level of 4990 pg/mL (< 400). What is the most probable physiological change that occurs in response to this finding?
Your Answer:
Correct Answer: Decreased afterload
Explanation:BNP has several actions, including vasodilation which can decrease cardiac afterload, diuretic and natriuretic effects, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. In the case of heart failure, BNP is primarily secreted by the ventricular myocardium to compensate for symptoms by promoting diuresis, natriuresis, vasodilation, and suppression of sympathetic tone and renin-angiotensin-aldosterone activity. Vasodilation of the peripheral vascular system leads to a decrease in afterload, reducing the force that the left ventricle has to contract against and lowering the risk of left ventricular failure progression. BNP also suppresses sympathetic tone and the RAAS, which would exacerbate heart failure symptoms, and contributes to natriuresis, aiding diuresis and improving dyspnea.
B-type natriuretic peptide (BNP) is a hormone that is primarily produced by the left ventricular myocardium in response to strain. Although heart failure is the most common cause of elevated BNP levels, any condition that causes left ventricular dysfunction, such as myocardial ischemia or valvular disease, may also raise levels. In patients with chronic kidney disease, reduced excretion may also lead to elevated BNP levels. Conversely, treatment with ACE inhibitors, angiotensin-2 receptor blockers, and diuretics can lower BNP levels.
BNP has several effects, including vasodilation, diuresis, natriuresis, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. Clinically, BNP is useful in diagnosing patients with acute dyspnea. A low concentration of BNP (<100 pg/mL) makes a diagnosis of heart failure unlikely, but elevated levels should prompt further investigation to confirm the diagnosis. Currently, NICE recommends BNP as a helpful test to rule out a diagnosis of heart failure. In patients with chronic heart failure, initial evidence suggests that BNP is an extremely useful marker of prognosis and can guide treatment. However, BNP is not currently recommended for population screening for cardiac dysfunction.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Incorrect
-
A 35-year-old man arrives at the emergency department with bradycardia. Is it possible for cardiac muscle to stay in phase 4 of the cardiac action potential for an extended period of time?
What happens during phase 4 of the cardiac action potential?Your Answer:
Correct Answer: Na+/K+ ATPase acts
Explanation:The Na+/K+ ATPase restores the resting potential.
The cardiac action potential does not involve slow sodium influx.
Phase 3 of repolarisation involves rapid potassium influx.
Phase 2 involves slow calcium influx.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
An 78-year-old man with a history of hypertension, ischaemic heart disease and peripheral vascular disease presents with palpitations and syncope. His ECG reveals an irregularly irregular pulse of 124 beats/min. What factor in his medical history will be given the most consideration when deciding whether or not to administer anticoagulation?
Your Answer:
Correct Answer: Age
Explanation:To determine the need for anticoagulation in patients with atrial fibrillation, it is necessary to conduct a CHA2DS2-VASc score assessment. This involves considering various factors, including age (which is weighted heaviest, with 2 points given for those aged 75 and over), hypertension (1 point), and congestive heart disease (1 point). Palpitations, however, are not included in the CHA2DS2-VASc tool.
Atrial fibrillation (AF) is a condition that requires careful management, including the use of anticoagulation therapy. The latest guidelines from NICE recommend assessing the need for anticoagulation in all patients with a history of AF, regardless of whether they are currently experiencing symptoms. The CHA2DS2-VASc scoring system is used to determine the most appropriate anticoagulation strategy, with a score of 2 or more indicating the need for anticoagulation. However, it is important to ensure a transthoracic echocardiogram has been done to exclude valvular heart disease, which is an absolute indication for anticoagulation.
When considering anticoagulation therapy, doctors must also assess the patient’s bleeding risk. NICE recommends using the ORBIT scoring system to formalize this risk assessment, taking into account factors such as haemoglobin levels, age, bleeding history, renal impairment, and treatment with antiplatelet agents. While there are no formal rules on how to act on the ORBIT score, individual patient factors should be considered. The risk of bleeding increases with a higher ORBIT score, with a score of 4-7 indicating a high risk of bleeding.
For many years, warfarin was the anticoagulant of choice for AF. However, the development of direct oral anticoagulants (DOACs) has changed this. DOACs have the advantage of not requiring regular blood tests to check the INR and are now recommended as the first-line anticoagulant for patients with AF. The recommended DOACs for reducing stroke risk in AF are apixaban, dabigatran, edoxaban, and rivaroxaban. Warfarin is now used second-line, in patients where a DOAC is contraindicated or not tolerated. Aspirin is not recommended for reducing stroke risk in patients with AF.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
A 54-year-old man visits the clinic with a complaint of experiencing shortness of breath during physical activity. He denies any chest pain or coughing and has never smoked. During cardiac auscultation, an ejection systolic murmur is detected. Although a valvular defect is suspected as the cause of his symptoms, echocardiography reveals an atrial septal defect (ASD) instead. An ASD allows blood to flow between the left and right atria. During fetal development, what structure connects the left and right atria?
Your Answer:
Correct Answer: Foramen ovale
Explanation:The foramen ovale is an opening in the wall between the two upper chambers of the heart that allows blood to flow from the right atrium to the left atrium. Normally, this opening closes shortly after birth. However, if it remains open, it can result in a condition called patent foramen ovale, which is an abnormal connection between the two atria. This can lead to an atrial septal defect, where blood flows from the left atrium to the right atrium. This condition may be detected early if there are symptoms or a heart murmur is heard, but it can also go unnoticed until later in life.
During fetal development, the ductus venosus is a blood vessel that connects the umbilical vein to the inferior vena cava, allowing oxygenated blood to bypass the liver. After birth, this vessel usually closes and becomes the ligamentum venosum.
The ductus arteriosus is another fetal blood vessel that connects the pulmonary artery to the aorta, allowing blood to bypass the non-functioning lungs. This vessel typically closes after birth and becomes the ligamentum arteriosum. If it remains open, it can result in a patent ductus arteriosus.
The coronary sinus is a vein that receives blood from the heart’s coronary veins and drains into the right atrium.
The mitral valve is a valve that separates the left atrium and the left ventricle of the heart.
The umbilical vein carries oxygenated blood from the placenta to the fetus during development. After birth, it typically closes and becomes the round ligament of the liver.
Understanding Patent Foramen Ovale
Patent foramen ovale (PFO) is a condition that affects approximately 20% of the population. It is characterized by the presence of a small hole in the heart that may allow an embolus, such as one from deep vein thrombosis, to pass from the right side of the heart to the left side. This can lead to a stroke, which is known as a paradoxical embolus.
Aside from its association with stroke, PFO has also been linked to migraine. Studies have shown that some patients experience an improvement in their migraine symptoms after undergoing PFO closure.
The management of PFO in patients who have had a stroke is still a topic of debate. Treatment options include antiplatelet therapy, anticoagulant therapy, or PFO closure. It is important for patients with PFO to work closely with their healthcare provider to determine the best course of action for their individual needs.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 21
Incorrect
-
A 3-week-old male is brought to the paediatrician with concerns of inadequate feeding and weight gain. During cardiac examination, a continuous 'machine-like' murmur is detected. An echocardiogram confirms the presence of a patent ductus arteriosus (PDA).
What is the name of the structure that would remain if the PDA had closed at birth?Your Answer:
Correct Answer: Ligamentum arteriosum
Explanation:The ligamentum arteriosum is what remains of the ductus arteriosus after it typically closes at birth. If the ductus arteriosus remains open, known as a patent ductus arteriosus, it can cause infants to fail to thrive. The ventricles of the heart come from the bulbus cordis and primitive ventricle. The coronary sinus is formed by a group of cardiac veins merging together. The ligamentum venosum is the leftover of the ductus venosum. The fossa ovalis is created when the foramen ovale closes.
During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Incorrect
-
You are working with a consultant paediatrician in an outpatient clinic and have a 14-month-old patient who is failing to thrive. The GP suspects the presence of an audible murmur. The consultant informs you that this child has an atrial septal defect (ASD). What is the most prevalent form of ASD?
Your Answer:
Correct Answer: Ostium secundum
Explanation:Atrial Septal Defects
Atrial septal defects (ASDs) are a type of congenital heart defect that occur when there is a hole in the wall separating the two upper chambers of the heart. The most common type of ASD is the ostium secundum defect, accounting for 75% of all cases. It is important to note that patent ductus arteriosus is not an ASD, but rather a connection between the aorta and pulmonary trunk that remains open after birth.
Most patients with ASDs are asymptomatic, but symptoms may occur depending on the size of the defect and the resistance in the pulmonary and systemic circulation. Typically, there is shunting of blood from the left to the right atrium, causing an increase in pulmonary blood flow and diastolic overload of the right ventricle. This can lead to enlargement of the right atrium, right ventricle, and pulmonary arteries, as well as incompetence of the pulmonary and tricuspid valves. In severe cases, pulmonary arterial hypertension may develop, which can lead to cyanosis if the shunt reverses from right to left.
It is important to note that right to left shunts cause cyanosis, while left to right shunts are generally not associated with cyanosis in the absence of other pathology. the pathophysiology of ASDs is crucial for proper diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 23
Incorrect
-
A 45-year-old woman presents to the cardiology clinic complaining of palpitations and shortness of breath for the past 6 weeks. She has a medical history of rheumatic fever and eczema.
During the physical examination, the patient exhibits a malar flush and a loud S1 with an opening snap is heard upon auscultation. Her heart rhythm is irregularly irregular. A chest x-ray is ordered and reveals a double heart border.
What other symptom is this patient likely to encounter?Your Answer:
Correct Answer: Difficulty swallowing
Explanation:The statement about left atrial enlargement compressing the esophagus in mitral stenosis is correct. This can lead to difficulty swallowing. The patient’s medical history of rheumatic fever, along with clinical signs such as malar flush, a loud S1 with opening snap, and an irregularly irregular heart rhythm (likely atrial fibrillation), suggest a diagnosis of mitral stenosis. This condition obstructs the outflow of blood from the left atrium into the left ventricle, causing the left atrium to enlarge and compress surrounding structures. Left atrial enlargement can also increase the risk of developing arrhythmias like atrial fibrillation.
The statements about arm and facial swelling, constipation, and neck pain are incorrect. Arm and facial swelling occur due to compression of the superior vena cava, which is not caused by left atrial enlargement. Constipation is not a symptom of mitral stenosis, but patients may experience abdominal discomfort due to right-sided heart failure. Neck pain is not associated with mitral stenosis, but neck vein distention may be observed.
Understanding Mitral Stenosis
Mitral stenosis is a condition where the mitral valve, which controls blood flow from the left atrium to the left ventricle, becomes obstructed. This leads to an increase in pressure within the left atrium, pulmonary vasculature, and right side of the heart. The most common cause of mitral stenosis is rheumatic fever, but it can also be caused by other rare conditions such as mucopolysaccharidoses, carcinoid, and endocardial fibroelastosis.
Symptoms of mitral stenosis include dyspnea, hemoptysis, a mid-late diastolic murmur, a loud S1, and a low volume pulse. Severe cases may also present with an increased length of murmur and a closer opening snap to S2. Chest x-rays may show left atrial enlargement, while echocardiography can confirm a cross-sectional area of less than 1 sq cm for a tight mitral stenosis.
Management of mitral stenosis depends on the severity of the condition. Asymptomatic patients are monitored with regular echocardiograms, while symptomatic patients may undergo percutaneous mitral balloon valvotomy or mitral valve surgery. Patients with associated atrial fibrillation require anticoagulation, with warfarin currently recommended for moderate/severe cases. However, there is an emerging consensus that direct-acting anticoagulants may be suitable for mild cases with atrial fibrillation.
Overall, understanding mitral stenosis is important for proper diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
What changes occur in the newborn after delivery?
Your Answer:
Correct Answer: The ductus arteriosus closes
Explanation:Within a few hours of birth, the foramen ovale, ductus arteriosus, and umbilical vessels all close. The foramen ovale, which allows blood to bypass the lungs by shunting from the right atrium to the left atrium, closes as the lungs become functional and the left atrial pressure exceeds the right atrial pressure. The ductus arteriosus, which connects the pulmonary artery to the aorta, also closes to form the ligamentum arteriosum, allowing blood to circulate into the pulmonary artery and become oxygenated. After a few days, Haemoglobin F is replaced by Haemoglobin A, which has a lower affinity for oxygen and may cause physiological jaundice in the newborn due to the breakdown of fetal blood cells. The first few breaths help to expel lung fluid from the fetal alveoli. If the ductus arteriosus fails to close, it can result in a patent ductus arteriosus (PDA), which can lead to serious health complications such as pulmonary hypertension, heart failure, and arrhythmias.
During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 25
Incorrect
-
You are on the ward and notice that an elderly patient lying supine in a monitored bed is hypotensive, with a blood pressure of 90/70 mmHg and tachycardic, with a heart rate of 120 beats/minute.
You adjust the bed to raise the patient's legs by 45 degrees and after 1 minute you measure the blood pressure again. The blood pressure increases to 100/75 and you prescribe a 500mL bag of normal saline to be given IV over 15 minutes.
What physiological association explains the increase in the elderly patient's blood pressure?Your Answer:
Correct Answer: Venous return is proportional to stroke volume
Explanation:Fluid responsiveness is typically indicated by changes in cardiac output or stroke volume in response to fluid administration. However, the strength of cardiac muscle contraction is influenced by adrenaline and noradrenaline, which enhance cardiac contractility rather than Starling’s law.
Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.
Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.
Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 26
Incorrect
-
A 30-year-old female patient complains of chest pain that is mainly located behind her sternum but radiates to both shoulders. The pain worsens when she breathes deeply or exercises. She has never smoked, drinks a bottle of wine per week, and had a flu-like illness about ten days ago. During examination, her temperature is 38°C, heart rate is 80 bpm, blood pressure is 118/76 mmHg, and respiratory rate is 16. A high pitched rub is audible during systole, and when asked to take a deep breath, she reports more pain on inspiration. The ECG shows ST elevation in both anterior and inferior leads. What is the most probable diagnosis?
Your Answer:
Correct Answer: Pericarditis
Explanation:Common Heart Conditions
Pericarditis is a heart condition that is often triggered by a heart attack or viral infections like Coxsackie B. Patients with pericarditis usually have a history of flu-like symptoms. One of the most common symptoms of pericarditis is widespread ST elevation on the ECG, which is characterized by upward concavity.
Alcoholic cardiomyopathy is another heart condition that can cause heart failure. Patients with this condition may experience symptoms like shortness of breath, fatigue, and swelling in the legs and ankles.
Angina is a type of chest pain that can be stable or unstable depending on whether it occurs at rest or during physical activity. Stable angina is usually triggered by physical exertion, while unstable angina can occur even when a person is at rest.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 27
Incorrect
-
A 67-year-old patient with well-controlled Parkinson's disease presents following several syncopal episodes. Each episode is preceded by a change in posture, typically when the patient gets out of bed in the morning. The patient feels dizzy and nauseous and falls. He recovers within seconds after the event. The neurologist states these symptoms are likely a side-effect of the patient's levodopa, and prescribes a medication to treat the condition.
What medication would be the most appropriate for managing the symptoms of this patient?Your Answer:
Correct Answer: Fludrocortisone
Explanation:Orthostatic hypotension can be treated with midodrine or fludrocortisone. Fludrocortisone is a synthetic mineralocorticoid that can replace low levels of aldosterone and is often used as an alternative to midodrine, which can cause side-effects such as hypertension and BPH in some patients. Atenolol is a beta-blocker used to treat angina and hypertension, while losartan is an angiotensin-II-receptor antagonist used to manage hypertension. Adenosine is a medication used to treat supraventricular tachycardias.
Understanding Orthostatic Hypotension
Orthostatic hypotension is a condition that is more commonly observed in older individuals and those who have neurodegenerative diseases such as Parkinson’s, diabetes, or hypertension. Additionally, certain medications such as alpha-blockers used for benign prostatic hyperplasia can also cause this condition. The primary feature of orthostatic hypotension is a sudden drop in blood pressure, usually more than 20/10 mm Hg, within three minutes of standing. This can lead to presyncope or syncope, which is a feeling of lightheadedness or fainting.
Fortunately, there are treatment options available for orthostatic hypotension. Midodrine and fludrocortisone are two medications that can be used to manage this condition. It is important to consult with a healthcare professional to determine the best course of treatment for each individual case. By understanding the causes, symptoms, and treatment options for orthostatic hypotension, individuals can take steps to manage this condition and improve their quality of life.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 28
Incorrect
-
As a medical student on placement in the pathology lab, I observed the pathologist examining a section of a blood vessel. I wondered, what distinguishes the tunica media from the tunica adventitia?
Your Answer:
Correct Answer: External elastic lamina
Explanation:Artery Histology: Layers of Blood Vessel Walls
The wall of a blood vessel is composed of three layers: the tunica intima, tunica media, and tunica adventitia. The innermost layer, the tunica intima, is made up of endothelial cells that are separated by gap junctions. The middle layer, the tunica media, contains smooth muscle cells and is separated from the intima by the internal elastic lamina and from the adventitia by the external elastic lamina. The outermost layer, the tunica adventitia, contains the vasa vasorum, fibroblast, and collagen. This layer is responsible for providing support and protection to the blood vessel. The vasa vasorum are small blood vessels that supply oxygen and nutrients to the larger blood vessels. The fibroblast and collagen provide structural support to the vessel wall. Understanding the histology of arteries is important in diagnosing and treating various cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Incorrect
-
A 72-year-old man arrives at the emergency department with severe chest pain that spreads to his left arm and jaw. After conducting an ECG, you observe ST-segment elevation in leads I, aVL, and V4-V6, leading to a diagnosis of anterolateral ST-elevation MI. What is the primary artery that provides blood to the lateral region of the left ventricle?
Your Answer:
Correct Answer: Left circumflex artery
Explanation:When the right coronary artery is blocked, it can lead to inferior myocardial infarction (MI) and changes in leads II, III, and aVF on an electrocardiogram (ECG). This is because the right coronary artery typically supplies blood to the sinoatrial (SA) and atrioventricular (AV) nodes, which can result in arrhythmias. The right marginal artery, which branches off from the right coronary artery near the bottom of the heart, runs along the heart’s lower edge towards the apex.
The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.
Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 30
Incorrect
-
A 72-year-old patient presents to the Emergency Room with central crushing chest pain that radiates to their jaw and left arm. They have a medical history of hypertension, type 2 diabetes mellitus, and hypercholesterolemia. The patient receives percutaneous coronary intervention but unfortunately experiences ventricular fibrillation and passes away 3 days later. What is the probable histological discovery in their heart?
Your Answer:
Correct Answer: Extensive coagulative necrosis, neutrophils
Explanation:Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
0
00
Session Time
00
:
00
Average Question Time (
Secs)