-
Question 1
Correct
-
A 58-year-old male complains of intense pain in the center of his abdomen that extends to his back and is accompanied by nausea and vomiting. Upon examination, his abdomen is tender and guarded, and his pulse is 106 bpm while his blood pressure is 120/82 mmHg. What diagnostic test would be beneficial in this case?
Your Answer: Amylase
Explanation:Diagnostic Tests and Severity Assessment for Acute Pancreatitis
Acute pancreatitis is a medical condition that requires prompt diagnosis and treatment. One of the most useful diagnostic tests for this condition is the measurement of amylase levels in the blood. In patients with acute pancreatitis, amylase levels are typically elevated, often reaching three times the upper limit of normal. Other blood parameters, such as troponin T, are not specific to pancreatitis and may be used to diagnose other medical conditions.
To assess the severity of acute pancreatitis, healthcare providers may use the Modified Glasgow Criteria, which is a mnemonic tool that helps to evaluate various clinical parameters. These parameters include PaO2, age, neutrophil count, calcium levels, renal function, enzymes such as LDH and AST, albumin levels, and blood sugar levels. Depending on the severity of these parameters, patients may be classified as having mild, moderate, or severe acute pancreatitis.
In summary, the diagnosis of acute pancreatitis relies on the measurement of amylase levels in the blood, while the severity of the condition can be assessed using the Modified Glasgow Criteria. Early diagnosis and prompt treatment are crucial for improving outcomes in patients with acute pancreatitis.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Correct
-
A 2-year-old girl presents to the paediatric clinic with concerns about her delayed walking. Her mother reports that she has had three ear infections this year and has not been gaining weight as expected. The following blood test results are relevant:
Hb 120 g/L (110 - 140)
WBC 7.8 * 109/L (5.0 – 12.0)
Na+ 142 mmol/L (135 - 145)
K+ 4.0 mmol/L (3.5 - 5.0)
Creatinine 30 µmol/L (13 – 39)
CRP 2 mg/L (< 5)
Corrected serum Ca2+ 2.30 mmol/L (2.20-2.70)
ALP 190 IU/l (76 – 308)
Vitamin D 15 nmol/L (>50)
IgA Anti-tissue transglutaminase (tTGA) Negative -
TSH 5.0 mU/l (0.6 – 8.1)
What is the underlying condition causing this child's delayed walking?Your Answer: Rickets
Explanation:Rickets is caused by a lack of vitamin D.
Understanding Vitamin D
Vitamin D is a type of vitamin that is soluble in fat and is essential for the metabolism of calcium and phosphate in the body. It is converted into calcifediol in the liver and then into calcitriol, which is the active form of vitamin D, in the kidneys. Vitamin D can be obtained from two sources: vitamin D2, which is found in plants, and vitamin D3, which is present in dairy products and can also be synthesized by the skin when exposed to sunlight.
The primary function of vitamin D is to increase the levels of calcium and phosphate in the blood. It achieves this by increasing the absorption of calcium in the gut and the reabsorption of calcium in the kidneys. Vitamin D also stimulates osteoclastic activity, which is essential for bone growth and remodeling. Additionally, it increases the reabsorption of phosphate in the kidneys.
A deficiency in vitamin D can lead to two conditions: rickets in children and osteomalacia in adults. Rickets is characterized by soft and weak bones, while osteomalacia is a condition where the bones become weak and brittle. Therefore, it is crucial to ensure that the body receives an adequate amount of vitamin D to maintain healthy bones and overall health.
-
This question is part of the following fields:
- General Principles
-
-
Question 3
Incorrect
-
Sarah is a 52-year-old patient with hypertension. Her blood pressure remains high despite taking ramipril therefore add-on therapy with a thiazide-like diuretic is being considered.
What is a contraindication to starting this therapy?Your Answer: Hypocalcaemia
Correct Answer: Gout
Explanation:Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Incorrect
-
Sophie is a 15-year-old girl who has been brought to your GP clinic by her father. She has not yet started to develop breasts or have her first period. She does not seem worried, but her father is concerned. Sophie has a history of eczema and has been using topical steroids for several years. When her father leaves the room, she also admits to occasionally using tanning beds.
What could be a possible cause of delayed puberty in Sophie?Your Answer: Asthma
Correct Answer: Cystic fibrosis
Explanation:Delayed puberty can be caused by various factors, with constitutional delay being the most common cause. However, other causes must be ruled out before diagnosing constitutional delay. Some of these causes include chronic illnesses like kidney disease and Crohn’s disease, malnutrition from conditions such as anorexia nervosa, cystic fibrosis, and coeliac disease, excessive physical exercise, psychosocial deprivation, steroid therapy, hypothyroidism, tumours near the hypothalamo-pituitary axis, congenital anomalies like septo-optic dysplasia and congenital panhypopituitarism, irradiation treatment, and trauma such as surgery or head injury.
Understanding Cystic Fibrosis: Symptoms and Other Features
Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.
Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 5
Incorrect
-
A premature baby is born and the anaesthetists are struggling to ventilate the lungs because of insufficient surfactant. How does Laplace's law explain the force pushing inwards on the walls of the alveolus caused by surface tension between two static fluids, such as air and water in the alveolus?
Your Answer: Proportional to the square of the radius of the alveolus
Correct Answer: Inversely proportional to the radius of the alveolus
Explanation:The Relationship between Alveolar Size and Surface Tension in Respiratory Physiology
In respiratory physiology, the alveolus is often represented as a perfect sphere to apply Laplace’s law. According to this law, there is an inverse relationship between the size of the alveolus and the surface tension. This means that smaller alveoli experience greater force than larger alveoli for a given surface tension, and they will collapse first. This phenomenon explains why, when two balloons are attached together by their ends, the smaller balloon will empty into the bigger balloon.
In the lungs, this same principle applies to lung units, causing atelectasis and collapse when surfactant is not present. Surfactant is a substance that reduces surface tension, making it easier to expand the alveoli and preventing smaller alveoli from collapsing. Therefore, surfactant plays a crucial role in maintaining the proper functioning of the lungs and preventing respiratory distress. the relationship between alveolar size and surface tension is essential in respiratory physiology and can help in the development of treatments for lung diseases.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 6
Incorrect
-
An 85-year-old woman presents to the emergency department with a recent onset of confusion. Her daughter reports that she had a fall at home last month and hit her head but did not seek medical attention as she appeared to be fine. A CT scan of her head reveals a hyper-dense crescent-shaped area in the left hemisphere. What is the likely diagnosis, and between which meningeal layers is the blood collecting?
Your Answer: Pia mater
Correct Answer: Arachnoid mater
Explanation:The middle layer of the meninges is called the arachnoid mater. In an elderly patient with a history like the one described, a subacute subdural hematoma is likely the cause. This occurs when blood collects in the space between the dura mater and arachnoid mater. The arachnoid mater is a very thin layer that is attached to the inside of the dura mater and separated from the innermost layer (pia mater) by the subarachnoid space. Acromion and bone are incorrect answers as they are not related to the meninges, and pia mater is incorrect because it is the innermost layer of the meninges that is attached to the brain and spinal cord.
The Three Layers of Meninges
The meninges are a group of membranes that cover the brain and spinal cord, providing support to the central nervous system and the blood vessels that supply it. These membranes can be divided into three distinct layers: the dura mater, arachnoid mater, and pia mater.
The outermost layer, the dura mater, is a thick fibrous double layer that is fused with the inner layer of the periosteum of the skull. It has four areas of infolding and is pierced by small areas of the underlying arachnoid to form structures called arachnoid granulations. The arachnoid mater forms a meshwork layer over the surface of the brain and spinal cord, containing both cerebrospinal fluid and vessels supplying the nervous system. The final layer, the pia mater, is a thin layer attached directly to the surface of the brain and spinal cord.
The meninges play a crucial role in protecting the brain and spinal cord from injury and disease. However, they can also be the site of serious medical conditions such as subdural and subarachnoid haemorrhages. Understanding the structure and function of the meninges is essential for diagnosing and treating these conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 7
Correct
-
A 24-year-old male has just begun taking risperidone for schizophrenia. Soon after starting the medication, he observes that his breasts have become enlarged and there is some discharge. He also confesses to experiencing a decrease in libido and erectile dysfunction.
What dopaminergic pathway is being suppressed to result in this manifestation, which is diagnosed as hyperprolactinemia due to the use of antipsychotics?Your Answer: Tuberoinfundibular pathway
Explanation:Antipsychotics cause hyperprolactinaemia by inhibiting the tuberoinfundibular pathway, a dopaminergic pathway that originates from the hypothalamus and extends to the median eminence. This inhibition results in an increase in prolactin levels, which is responsible for the patient’s symptoms. Parkinson’s disease is associated with dysfunction in the nigrostriatal pathway, while schizophrenia is linked to abnormalities in the mesolimbic and mesocortical pathways. The corticospinal tract is involved in movement.
Antipsychotics are a type of medication used to treat schizophrenia, psychosis, mania, and agitation. They are divided into two categories: typical and atypical antipsychotics. The latter were developed to address the extrapyramidal side-effects associated with the first generation of typical antipsychotics. Typical antipsychotics work by blocking dopaminergic transmission in the mesolimbic pathways through dopamine D2 receptor antagonism. However, they are known to cause extrapyramidal side-effects such as Parkinsonism, acute dystonia, akathisia, and tardive dyskinesia. These side-effects can be managed with procyclidine. Other side-effects of typical antipsychotics include antimuscarinic effects, sedation, weight gain, raised prolactin, impaired glucose tolerance, neuroleptic malignant syndrome, reduced seizure threshold, and prolonged QT interval. The Medicines and Healthcare products Regulatory Agency has issued specific warnings when antipsychotics are used in elderly patients due to an increased risk of stroke and venous thromboembolism.
-
This question is part of the following fields:
- Psychiatry
-
-
Question 8
Incorrect
-
A 75-year-old man with a long-standing history of type 2 diabetes mellitus presents to his physician with an inability to walk. The patient has a history of chronic kidney disease, diabetic retinopathy and a prior myocardial infarction treated via a stent. The patient admits to a recent loss of sensation in the lower limbs and is found to also have associated motor neuropathy. Complications of his chronic disease are found to be the cause of his gait problems.
What findings would be expected during examination of the lower limbs?Your Answer: Babinski positive, increased reflexes, decreased tone
Correct Answer: Decreased reflexes, fasciculations, decreased tone
Explanation:When there is a lower motor neuron lesion, there is a reduction in everything, including reflexes, tone, and power. Fasciculations are also a common feature. Motor neuropathy caused by diabetes is a form of peripheral neuropathy, which typically presents with lower motor neuron symptoms. On the other hand, an upper motor neuron lesion is characterized by increased tone, reflexes, and weakness. A mixed picture may occur when there are both upper and lower motor neuron signs present. For example, Babinski positive, increased reflexes, and decreased tone indicate a combination of upper and lower motor neuron lesions. Similarly, decreased tone, decreased reflexes, and clonus suggest a mixed picture, with the clonus being an upper motor neuron sign. Conversely, increased tone, decreased reflexes, and clonus also indicate a mixed picture, with the increased tone and clonus being upper motor neuron signs and the decreased reflexes being a lower motor neuron sign.
The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.
One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 9
Incorrect
-
A 55-year-old man visits his GP complaining of excessive thirst and urination for the past two weeks. Upon conducting various tests, it was determined that he has diabetes insipidus due to a hormone deficiency. Which gland is responsible for producing and releasing this hormone into the bloodstream?
Your Answer: Kidneys
Correct Answer: Posterior pituitary
Explanation:ADH and oxytocin are secreted by the posterior pituitary.
When a person has diabetes insipidus, their kidneys are unable to concentrate urine due to a deficiency of antidiuretic hormone (ADH) or resistance to its action. This results in the production and excretion of a large volume of diluted urine.
The posterior pituitary, also known as the neurohypophysis, is the back part of the pituitary gland and is involved in the endocrine system. Unlike the anterior pituitary, it is not glandular and has a direct neural connection to the hypothalamus. It releases oxytocin and vasopressin/ADH directly into the bloodstream.
The pituitary gland is a small gland located within the sella turcica in the sphenoid bone of the middle cranial fossa. It weighs approximately 0.5g and is covered by a dural fold. The gland is attached to the hypothalamus by the infundibulum and receives hormonal stimuli from the hypothalamus through the hypothalamo-pituitary portal system. The anterior pituitary, which develops from a depression in the wall of the pharynx known as Rathkes pouch, secretes hormones such as ACTH, TSH, FSH, LH, GH, and prolactin. GH and prolactin are secreted by acidophilic cells, while ACTH, TSH, FSH, and LH are secreted by basophilic cells. On the other hand, the posterior pituitary, which is derived from neuroectoderm, secretes ADH and oxytocin. Both hormones are produced in the hypothalamus before being transported by the hypothalamo-hypophyseal portal system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 10
Incorrect
-
A 50-year-old man has a long femoral line inserted to measure CVP. The catheter travels from the common iliac vein to the inferior vena cava. At what vertebral level does this occur?
Your Answer: S1
Correct Answer: L5
Explanation:At the level of L5, the common iliac veins join together to form the inferior vena cava (IVC).
Anatomy of the Inferior Vena Cava
The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.
The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.
The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
What is the process called for the removal of non-coding sequences from pre-mRNA and what is the term used for the genes that are removed?
Your Answer: Capping - exons
Correct Answer: Splicing - introns
Explanation:RNA splicing is the process of removing non-coding sequences of genes (introns) from pre-mRNA and joining the protein-coding sequences (exons) to form mature RNA ready for translation into a protein. This process occurs in spliceosomes and is catalysed by small nuclear ribonucleoproteins. The coding sections that remain are known as exons. Capping and polyadenylation are not the correct answers as they refer to different processes that protect mRNA from degradation. The term for the non-coding genes being removed is introns, not exons.
Functions of Cell Organelles
The functions of major cell organelles can be summarized in a table. The rough endoplasmic reticulum (RER) is responsible for the translation and folding of new proteins, as well as the manufacture of lysosomal enzymes. It is also the site of N-linked glycosylation. Cells such as pancreatic cells, goblet cells, and plasma cells have extensive RER. On the other hand, the smooth endoplasmic reticulum (SER) is involved in steroid and lipid synthesis. Cells of the adrenal cortex, hepatocytes, and reproductive organs have extensive SER.
The Golgi apparatus modifies, sorts, and packages molecules that are destined for cell secretion. The addition of mannose-6-phosphate to proteins designates transport to lysosome. The mitochondrion is responsible for aerobic respiration and contains mitochondrial genome as circular DNA. The nucleus is involved in DNA maintenance, RNA transcription, and RNA splicing, which removes the non-coding sequences of genes (introns) from pre-mRNA and joins the protein-coding sequences (exons).
The lysosome is responsible for the breakdown of large molecules such as proteins and polysaccharides. The nucleolus produces ribosomes, while the ribosome translates RNA into proteins. The peroxisome is involved in the catabolism of very long chain fatty acids and amino acids, resulting in the formation of hydrogen peroxide. Lastly, the proteasome, along with the lysosome pathway, is involved in the degradation of protein molecules that have been tagged with ubiquitin.
-
This question is part of the following fields:
- General Principles
-
-
Question 12
Incorrect
-
A 28-year-old woman comes in for her first ultrasound after discovering she is pregnant. The scan reveals that the placenta is properly implanted. What modifications take place in the endometrium during days 5-13 in response to fetal tissue implantation?
Your Answer:
Correct Answer: Decidualization
Explanation:The blastocyst typically implants in the endometrium around day 6-7 and finishes by day 10, which is during the secretory phase when progesterone from the corpus luteum is present. A woman will only test positive for pregnancy after implantation has occurred. During implantation, the blastodisc is formed.
Apposition is the process of the blastocyst aligning with the endometrium, which is influenced by signals from both the endometrium and the blastocyst. The endometrium releases COX-2, growth factors, cytokines, and hormones like estrogen and progesterone, while the blastocyst releases EGF, LIF signaling, growth factors, and cytokines. NSAIDs should be avoided during the peri-implantation stage due to the importance of COX-2 in apposition.
Attachment is the next stage, which occurs when the blastocyst attaches to the endometrium through pinopods and microvilli. The endometrium is only receptive to implantation during a narrow window of the menstrual cycle, but sperm can survive for up to 7 days, leading to unexpected pregnancies.
Penetration is the final stage, where the blastocyst becomes embedded in the endometrium, and the development of the placenta begins. Haemochorial placentation is characterized by changes in the uterus, including the differentiation of the endometrium into the decidua, enlarged stromal cells, and NK cells, as well as the transformation of the uterine spiral arteries.
Embryology is the study of the development of an organism from the moment of fertilization to birth. During the first week of embryonic development, the fertilized egg implants itself into the uterine wall. By the second week, the bilaminar disk is formed, consisting of two layers of cells. The primitive streak appears in the third week, marking the beginning of gastrulation and the formation of the notochord.
As the embryo enters its fourth week, limb buds begin to form, and the neural tube closes. The heart also begins to beat during this time. By week 10, the genitals are differentiated, and the embryo exhibits intermittent breathing movements. These early events in embryonic development are crucial for the formation of the body’s major organs and structures. Understanding the timeline of these events can provide insight into the complex process of human development.
-
This question is part of the following fields:
- General Principles
-
-
Question 13
Incorrect
-
A 40-year-old primigravida presents at the clinic with an elevated risk of Down's syndrome according to the triple screen blood test. After further testing, amniocentesis confirms a prenatal diagnosis of Down's syndrome.
What genetic abnormalities are frequently associated with this condition?Your Answer:
Correct Answer: Nondisjunction
Explanation:The most frequent cause of Down’s syndrome is nondisjunction, which occurs when chromosomes do not separate during cell division. This results in three copies of chromosome 21 in individuals with Down’s syndrome. Meiotic disjunction can lead to the transmission of this abnormality in gametes, resulting in trisomy 21.
Another possible cause of Down’s syndrome is mosaicism, which involves the presence of multiple cell populations within the body. If mutations occur during the early stages of mitosis, the error can be passed down to subsequent generations with varying genotypes.
Down’s Syndrome: Epidemiology and Genetics
Down’s syndrome is a genetic disorder that is caused by the presence of an extra copy of chromosome 21. The risk of having a child with Down’s syndrome increases with maternal age, with a 1 in 1,500 chance at age 20 and a 1 in 50 or greater chance at age 45. This can be remembered by dividing the denominator by 3 for every extra 5 years of age starting at 1/1,000 at age 30.
There are three main types of Down’s syndrome: nondisjunction, Robertsonian translocation, and mosaicism. Nondisjunction accounts for 94% of cases and occurs when the chromosomes fail to separate properly during cell division. Robertsonian translocation, which usually involves chromosome 14, accounts for 5% of cases and occurs when a piece of chromosome 21 attaches to another chromosome. Mosaicism, which accounts for 1% of cases, occurs when there are two genetically different populations of cells in the body.
The risk of recurrence for Down’s syndrome varies depending on the type of genetic abnormality. If the trisomy 21 is a result of nondisjunction, the chance of having another child with Down’s syndrome is approximately 1 in 100 if the mother is less than 35 years old. If the trisomy 21 is a result of Robertsonian translocation, the risk is much higher, with a 10-15% chance if the mother is a carrier and a 2.5% chance if the father is a carrier.
-
This question is part of the following fields:
- General Principles
-
-
Question 14
Incorrect
-
A 29-year-old man presents to the emergency department with a worsening cough and haemoptysis. He also reports dark urine, reduced urine output and generally feels tired.
On examination, he has crackles on auscultation of the chest and bipedal oedema. His heart rate is 120 beats/min, blood pressure 148/78 mmHg, respiratory rate 28 breaths/min. He is apyrexial.
Na+ 136 mmol/L (135 - 145)
K+ 5.0 mmol/L (3.5 - 5.0)
Bicarbonate 24 mmol/L (22 - 29)
Urea 14 mmol/L (2.0 - 7.0)
Creatinine 250 µmol/L (55 - 120)
Which antibodies characteristic of this condition are targeted, given the likely diagnosis?Your Answer:
Correct Answer: Collagen type IV
Explanation:Goodpasture’s syndrome is caused by autoantibodies targeting collagen type IV, specifically anti-glomerular basement membrane antibodies (anti-GBM). This condition is characterized by symptoms such as cough, haemoptysis, crackles on auscultation, oedema, and impaired renal function.
In contrast, anti-dsDNA antibodies target double-stranded DNA and are commonly found in systemic lupus erythematosus (SLE), which presents with rash, photosensitivity, hair loss, and other systemic signs.
p-ANCA antibodies typically target myeloperoxidase and are associated with eosinophilic granulomatosis with polyangiitis (EGPA), which presents with a history of asthma and/or allergic rhinitis.
c-ANCA antibodies target proteinase 3 and are associated with granulomatosis with polyangiitis (GPA), which presents with sinusitis and other upper airway signs.
Antibodies against streptolysin O are involved in the immune response against streptococcal infection and are associated with post-streptococcal glomerulonephritis, which is preceded by streptococcal infection and presents with renal impairment but not the other symptoms seen in Goodpasture’s syndrome.
Understanding Collagen and its Associated Disorders
Collagen is a vital protein found in connective tissue and is the most abundant protein in the human body. Although there are over 20 types of collagen, the most important ones are types I, II, III, IV, and V. Collagen is composed of three polypeptide strands that are woven into a helix, with numerous hydrogen bonds providing additional strength. Vitamin C plays a crucial role in establishing cross-links, and fibroblasts synthesize collagen.
Disorders of collagen can range from acquired defects due to aging to rare congenital disorders. Osteogenesis imperfecta is a congenital disorder that has eight subtypes and is caused by a defect in type I collagen. Patients with this disorder have bones that fracture easily, loose joints, and other defects depending on the subtype. Ehlers Danlos syndrome is another congenital disorder that has multiple subtypes and is caused by an abnormality in types 1 and 3 collagen. Patients with this disorder have features of hypermobility and are prone to joint dislocations and pelvic organ prolapse, among other connective tissue defects.
-
This question is part of the following fields:
- General Principles
-
-
Question 15
Incorrect
-
Which nerve is most vulnerable to damage when there is a cut on the upper lateral margin of the popliteal fossa in older adults?
Your Answer:
Correct Answer: Common peroneal nerve
Explanation:The lower infero-lateral aspect of the fossa is where the sural nerve exits, and it is at a higher risk during short saphenous vein surgery. On the other hand, the tibial nerve is located more medially and is less susceptible to injury in this area.
Anatomy of the Popliteal Fossa
The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.
The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.
Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
A 32-year-old female patient, who has a medical history of optic neuritis, visits the neurology clinic complaining of numbness and weakness in her left leg for the past few days. She mentions having experienced similar symptoms in her right arm about 7 months ago, which resolved spontaneously over a few days. Her symptoms worsen in hot weather. Upon neurological examination, weakness is observed in her left leg movements, but the rest of the examination is normal. What is the probable underlying pathophysiology of her condition?
Your Answer:
Correct Answer: Demyelination
Explanation:The patient is experiencing optic neuritis and peripheral neurological symptoms that have occurred at different times and locations. These symptoms are indicative of multiple sclerosis, specifically affecting the optic nerves. The disease is caused by demyelination of the nervous system’s axons, both in the central and peripheral regions.
The patient’s symptoms come and go, with complete resolution in between, suggesting a relapsing-remitting pattern of multiple sclerosis.
Understanding Multiple Sclerosis
Multiple sclerosis is a chronic autoimmune disorder that affects the central nervous system, causing demyelination. It is more common in women and typically diagnosed in individuals aged 20-40 years. Interestingly, it is much more prevalent in higher latitudes, with a five-fold increase compared to tropical regions. Genetics also play a role, with a 30% concordance rate in monozygotic twins and a 2% concordance rate in dizygotic twins.
There are several subtypes of multiple sclerosis, including relapsing-remitting disease, which is the most common form and accounts for around 85% of patients. This subtype is characterized by acute attacks followed by periods of remission. Secondary progressive disease describes relapsing-remitting patients who have deteriorated and developed neurological signs and symptoms between relapses. Gait and bladder disorders are commonly seen in this subtype, and around 65% of patients with relapsing-remitting disease go on to develop secondary progressive disease within 15 years of diagnosis. Finally, primary progressive disease accounts for 10% of patients and is characterized by progressive deterioration from onset, which is more common in older individuals.
-
This question is part of the following fields:
- Neurological System
-
-
Question 17
Incorrect
-
A 46-year-old patient with known HIV presents to hospital with increasing shortness of breath, fever, and fatigue. He admits to having been inconsistent with his adherence to his anti-retroviral medication.
Chest x-ray shows diffuse infiltrates, and sputum is induced to allow for culture; this confirms a diagnosis of Pneumocystis jirovecii pneumonia. He is started on co-trimoxazole, which is a combination medication containing trimethoprim, a dihydrofolate reductase inhibitor, and sulfamethoxazole.
What is the mechanism of action of sulfamethoxazole, the second drug in this combination?Your Answer:
Correct Answer: Inhibition of dihydropteroate synthetase
Explanation:Sulfonamides work by inhibiting dihydropteroate synthetase, an enzyme involved in bacterial folate synthesis. This enzyme is not present in eukaryotes, making it a suitable target for antibiotics. Fluoroquinolones, on the other hand, inhibit DNA gyrase, while alkylating agents prevent DNA cross-linking. Inhibition of the 30S and 50S ribosomes are mechanisms of action for aminoglycoside, tetracycline, macrolide, and chloramphenicol antibiotics.
Understanding Sulfonamides and Their Adverse Effects
Sulfonamides are a type of drug that work by inhibiting dihydropteroate synthetase. This class of drugs includes antibiotic sulfonamides such as sulfamethoxazole, sulfadiazine, and sulfisoxazole. Co-trimoxazole, a combination of sulfamethoxazole and trimethoprim, is commonly used in the management of Pneumocystis jiroveci pneumonia. Non-antibiotic sulfonamides like sulfasalazine and sulfonylureas also exist.
However, the use of co-trimoxazole may lead to adverse effects such as hyperkalaemia, headache, and rash, including the potentially life-threatening Steven-Johnson Syndrome. It is important to understand the potential risks associated with sulfonamides and to consult with a healthcare professional before taking any medication.
-
This question is part of the following fields:
- General Principles
-
-
Question 18
Incorrect
-
A 28-year-old woman arrives at the emergency department complaining of intense epigastric pain, along with continuous nausea and vomiting. She had visited the emergency department a week ago due to severe bloody diarrhea and was hospitalized for a day before being released.
Her amylase levels are elevated.
Which medication is the most probable cause of her current symptoms?Your Answer:
Correct Answer: Azathioprine
Explanation:Azathioprine is known to cause pancreatitis, which is likely the adverse effect experienced by this patient. It is possible that the patient was prescribed azathioprine after presenting with severe bloody diarrhea, a symptom of an acute flare-up of ulcerative colitis. Other drugs listed are not commonly associated with pancreatitis, although erythromycin may have a weak association. For more information on serious adverse effects of the listed drugs, please refer to the table below.
Drug Serious adverse effects
Paracetamol Hepatotoxicity
Amitriptyline Anticholinergic side effects
Erythromycin GI disturbance and prolongs QT interval
Azathioprine Bone marrow depression and pancreatitisAzathioprine is a medication that is converted into mercaptopurine, which is an active compound that inhibits the production of purine. To determine if someone is at risk for azathioprine toxicity, a test for thiopurine methyltransferase (TPMT) may be necessary. Adverse effects of this medication include bone marrow depression, nausea and vomiting, pancreatitis, and an increased risk of non-melanoma skin cancer. If infection or bleeding occurs, a full blood count should be considered. It is important to note that there may be a significant interaction between azathioprine and allopurinol, so lower doses of azathioprine should be used. However, azathioprine is generally considered safe to use during pregnancy.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 19
Incorrect
-
A 35-year-old man suffers a hemisection of the spinal cord at the level T5 due to a stabbing in his back. You conduct an evaluation of the patient's sensory function, including temperature, vibration, and fine touch, as well as muscle strength. What signs would you anticipate observing?
Your Answer:
Correct Answer: Contralateral loss of temperature, ipsilateral loss of fine touch and vibration, ipsilateral spastic paresis
Explanation:The spinothalamic tract carries sensory fibers for pain and temperature and decussates at the same level as the nerve root entering the spinal cord. As a result, contralateral temperature loss occurs. The dorsal column medial lemniscus carries sensory fibers for fine touch, vibration, and unconscious proprioception. It decussates at the medulla, leading to ipsilateral loss of fine touch and vibration. The corticospinal tract is a descending tract that has already decussated at the medulla and is responsible for inhibiting muscle movement. If affected in the spinal cord, it causes an upper motor neuron lesion on the ipsilateral side.
The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.
One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 20
Incorrect
-
A 35-year-old man is brought to the emergency department by ambulance after being found unresponsive at his home. He is vomiting, confused, and drowsy with pinpoint pupils. The patient is only responsive to pain, has a respiratory rate of 6/min with shallow breaths, a blood pressure of 65/90mmHg, and a heart rate of 50bpm. It is suspected that he has overdosed. What receptor does the drug class likely agonize?
Your Answer:
Correct Answer: Mu, delta and kappa receptors
Explanation:Understanding Opioids: Types, Receptors, and Clinical Uses
Opioids are a class of chemical compounds that act upon opioid receptors located within the central nervous system (CNS). These receptors are G-protein coupled receptors that have numerous actions throughout the body. There are three clinically relevant groups of opioid receptors: mu (µ), kappa (κ), and delta (δ) receptors. Endogenous opioids, such as endorphins, dynorphins, and enkephalins, are produced by specific cells within the CNS and their actions depend on whether µ-receptors or δ-receptors and κ-receptors are their main target.
Drugs targeted at opioid receptors are the largest group of analgesic drugs and form the second and third steps of the WHO pain ladder of managing analgesia. The choice of which opioid drug to use depends on the patient’s needs and the clinical scenario. The first step of the pain ladder involves non-opioids such as paracetamol and non-steroidal anti-inflammatory drugs. The second step involves weak opioids such as codeine and tramadol, while the third step involves strong opioids such as morphine, oxycodone, methadone, and fentanyl.
The strength, routes of administration, common uses, and significant side effects of these opioid drugs vary. Weak opioids have moderate analgesic effects without exposing the patient to as many serious adverse effects associated with strong opioids. Strong opioids have powerful analgesic effects but are also more liable to cause opioid-related side effects such as sedation, respiratory depression, constipation, urinary retention, and addiction. The sedative effects of opioids are also useful in anesthesia with potent drugs used as part of induction of a general anesthetic.
-
This question is part of the following fields:
- Neurological System
-
-
Question 21
Incorrect
-
What is the substrate utilized for gluconeogenesis in humans?
Your Answer:
Correct Answer: Lactate
Explanation:Substrates for Gluconeogenesis
Gluconeogenesis is the process of creating glucose from non-carbohydrate sources. The main substrates used for gluconeogenesis include lactate, alanine, pyruvate, other amino acids, and glycerol. Lactate is produced in non-hepatic tissues, such as muscle during exercise, and can travel to the liver to be converted back into glucose. This process is known as the Cori cycle. Alanine can also be used as a substrate for gluconeogenesis, as it travels to the liver. Pyruvate, produced during anaerobic circumstances, can be converted into alanine by the enzyme alanine aminotransferase (ALT).
Almost all amino acids present in proteins, except for leucine and lysine, can be converted into intermediates of the Krebs cycle, allowing them to be used for gluconeogenesis. This is a crucial source of new glucose during prolonged fasting. Additionally, the glycerol backbone from dietary triglycerides can be used for gluconeogenesis. However, propionate has a minimal role in humans, despite being a major substrate for gluconeogenesis in animals. the substrates used for gluconeogenesis is important for how the body creates glucose from non-carbohydrate sources.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 22
Incorrect
-
A 27-year-old woman visits the maternity assessment unit two weeks after giving birth with complaints of perineal pain and discharge. She had a forceps-assisted vaginal delivery at 40+5 weeks and suffered a type 3a perineal tear. Her primary concern is that the wound may be infected as it appears red and inflamed when she tries to examine it with a mirror.
During the examination, the perineal wound shows signs of purulent discharge, erythematous surrounding skin, and a buried suture. Given the complexity of the repair, the consultant orders a CT scan to rule out a pelvic abscess. The CT report reveals a small fluid collection in the perineal wound and lymphadenopathy.
Based on this information, where is the likely site of lymphatic drainage?Your Answer:
Correct Answer: Superficial inguinal lymph nodes
Explanation:The patient’s CT scan showed lymphadenopathy in the superficial inguinal lymph nodes, which is expected as the infection is located in the perineum. The deep inguinal lymph nodes, which drain the glans penis and clitoris, are not the primary site for perineal drainage. The medial group of external iliac lymph nodes drain the urinary bladder, membranous aspect of the urethra, cervix, and upper part of the vagina, while the internal iliac lymph nodes drain the anal canal above the pectinate line, the lower part of the rectum, the cervix, and the inferior uterus. If there were retained products of conception in the uterus causing an infection or a type 4 perineal tear involving a substantial portion of the rectum, lymphadenopathy of the internal iliac lymph nodes may be seen on the CT scan. The para-aortic lymph nodes drain the ovaries, but this is not relevant to the patient’s case as there is no indication of an ovarian pathology.
Lymphatic drainage is the process by which lymphatic vessels carry lymph, a clear fluid containing white blood cells, away from tissues and organs and towards lymph nodes. The lymphatic vessels that drain the skin and follow venous drainage are called superficial lymphatic vessels, while those that drain internal organs and structures follow the arteries and are called deep lymphatic vessels. These vessels eventually lead to lymph nodes, which filter and remove harmful substances from the lymph before it is returned to the bloodstream.
The lymphatic system is divided into two main ducts: the right lymphatic duct and the thoracic duct. The right lymphatic duct drains the right side of the head and right arm, while the thoracic duct drains everything else. Both ducts eventually drain into the venous system.
Different areas of the body have specific primary lymph node drainage sites. For example, the superficial inguinal lymph nodes drain the anal canal below the pectinate line, perineum, skin of the thigh, penis, scrotum, and vagina. The deep inguinal lymph nodes drain the glans penis, while the para-aortic lymph nodes drain the testes, ovaries, kidney, and adrenal gland. The axillary lymph nodes drain the lateral breast and upper limb, while the internal iliac lymph nodes drain the anal canal above the pectinate line, lower part of the rectum, and pelvic structures including the cervix and inferior part of the uterus. The superior mesenteric lymph nodes drain the duodenum and jejunum, while the inferior mesenteric lymph nodes drain the descending colon, sigmoid colon, and upper part of the rectum. Finally, the coeliac lymph nodes drain the stomach.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 23
Incorrect
-
A 56-year-old patient visits his primary care physician for a follow-up on his diabetes treatment. He is currently taking metformin and expresses concern about adding more medications that may lead to hypoglycemia. The patient has a medical history of bladder cancer, which was treated through surgery. On examination, the only notable finding is an elevated body mass index of 32 kg/m².
Based on recent blood test results, with an HbA1c level of 61 mmol/L (<48), the GP wants to prescribe a medication that does not cause weight gain or hypoglycemia. What is the probable mechanism of action of this drug?Your Answer:
Correct Answer: Reduction of the peripheral breakdown of incretins such as glucagon-like peptide (GLP-1)
Explanation:Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 24
Incorrect
-
A 63-year-old patient is undergoing treatment for Wernicke's encephalopathy caused by long-term alcohol abuse. The patient is currently being administered thiamine (vitamin B1) supplementation.
What is the metabolic function of thiamine?Your Answer:
Correct Answer: It is important for sugar catabolism
Explanation:Thiamine plays a crucial role in the breakdown of sugars and amino acids, making it essential for proper brain function. Chronic alcoholism can lead to a deficiency in thiamine, resulting in the development of Wernicke’s encephalopathy. While other vitamins such as folate, vitamin C, vitamin B12, and vitamin E have important functions in the body, they are not directly related to the development of Wernicke’s encephalopathy or thiamine deficiency.
The Importance of Vitamin B1 (Thiamine) in the Body
Vitamin B1, also known as thiamine, is a water-soluble vitamin that belongs to the B complex group. It plays a crucial role in the body as one of its phosphate derivatives, thiamine pyrophosphate (TPP), acts as a coenzyme in various enzymatic reactions. These reactions include the catabolism of sugars and amino acids, such as pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain amino acid dehydrogenase complex.
Thiamine deficiency can lead to clinical consequences, particularly in highly aerobic tissues like the brain and heart. The brain can develop Wernicke-Korsakoff syndrome, which presents symptoms such as nystagmus, ophthalmoplegia, and ataxia. Meanwhile, the heart can develop wet beriberi, which causes dilated cardiomyopathy. Other conditions associated with thiamine deficiency include dry beriberi, which leads to peripheral neuropathy, and Korsakoff’s syndrome, which causes amnesia and confabulation.
The primary causes of thiamine deficiency are alcohol excess and malnutrition. Alcoholics are routinely recommended to take thiamine supplements to prevent deficiency. Overall, thiamine is an essential vitamin that plays a vital role in the body’s metabolic processes.
-
This question is part of the following fields:
- General Principles
-
-
Question 25
Incorrect
-
Which nerve is in danger during removal of the submandibular gland?
Your Answer:
Correct Answer: Marginal mandibular nerve
Explanation:The depressor anguli oris and depressor labii inferioris muscles are supplied by the marginal mandibular nerve, which is located beneath the platysma muscle. Damage to this nerve can result in facial asymmetry and drooling.
Anatomy of the Submandibular Gland
The submandibular gland is located beneath the mandible and is surrounded by the superficial platysma, deep fascia, and mandible. It is also in close proximity to various structures such as the submandibular lymph nodes, facial vein, marginal mandibular nerve, cervical branch of the facial nerve, deep facial artery, mylohyoid muscle, hyoglossus muscle, lingual nerve, submandibular ganglion, and hypoglossal nerve.
The submandibular duct, also known as Wharton’s duct, is responsible for draining saliva from the gland. It opens laterally to the lingual frenulum on the anterior floor of the mouth and is approximately 5 cm in length. The lingual nerve wraps around the duct, and as it passes forward, it crosses medial to the nerve to lie above it before crossing back, lateral to it, to reach a position below the nerve.
The submandibular gland receives sympathetic innervation from the superior cervical ganglion and parasympathetic innervation from the submandibular ganglion via the lingual nerve. Its arterial supply comes from a branch of the facial artery, which passes through the gland to groove its deep surface before emerging onto the face by passing between the gland and the mandible. The anterior facial vein provides venous drainage, and the gland’s lymphatic drainage goes to the deep cervical and jugular chains of nodes.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 26
Incorrect
-
A 72-year-old man comes to the clinic with a left groin swelling and reports experiencing moderate pain and discomfort. The diagnosis is an inguinal hernia, and he is scheduled for elective surgery to repair the defect. During the procedure, which nerve running through the inguinal canal is at risk of being damaged?
Your Answer:
Correct Answer: Ilioinguinal nerve
Explanation:The inguinal canal is a crucial anatomical structure that houses the spermatic cord in males and the ilioinguinal nerve in both genders. The ilioinguinal and iliohypogastric nerves stem from the L1 nerve root and run through the canal. The ilioinguinal nerve enters the canal via the abdominal muscles and exits through the external inguinal ring. It is primarily a sensory nerve that provides sensation to the upper medial thigh. If the nerve is damaged during hernia repair, patients may experience numbness in this area after surgery.
Other nerves that pass through the pelvis include the femoral nerve, which descends behind the inguinal canal, the obturator nerve, which travels through the obturator foramen, and the sciatic nerve, which exits the pelvis through the greater sciatic foramen and runs posteriorly.
The inguinal canal is located above the inguinal ligament and measures 4 cm in length. Its superficial ring is situated in front of the pubic tubercle, while the deep ring is found about 1.5-2 cm above the halfway point between the anterior superior iliac spine and the pubic tubercle. The canal is bounded by the external oblique aponeurosis, inguinal ligament, lacunar ligament, internal oblique, transversus abdominis, external ring, and conjoint tendon. In males, the canal contains the spermatic cord and ilioinguinal nerve, while in females, it houses the round ligament of the uterus and ilioinguinal nerve.
The boundaries of Hesselbach’s triangle, which are frequently tested, are located in the inguinal region. Additionally, the inguinal canal is closely related to the vessels of the lower limb, which should be taken into account when repairing hernial defects in this area.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 27
Incorrect
-
You are examining an adult with a neck lump which is located within the anterior triangle of the neck.
Which of the following structures forms a boundary of the anterior triangle?Your Answer:
Correct Answer: The lower border of the mandible
Explanation:Triangles of the Neck
The neck is divided into several triangles, each with its own set of boundaries. The anterior triangle is defined by the lower border of the mandible, the anterior border of sternocleidomastoid, and the midline of the neck. On the other hand, the posterior triangle is bounded by the posterior border of the sternocleidomastoid and the anterior border of trapezius.
Another important triangle in the neck is the digastric triangle, which is formed by the posterior belly of digastric, the inferior border of the mandible and the mastoid process, and the anterior belly of the digastric muscle. These triangles are important landmarks for clinicians when examining the neck and its structures. the boundaries of each triangle can help in the diagnosis and treatment of various conditions affecting the neck.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 28
Incorrect
-
A 75-year-old woman has experienced a TIA during her hospital stay. An ultrasound revealed an 80% blockage in one of her carotid arteries, leading to a carotid endarterectomy. After the procedure, the doctor examines the patient and notices that when asked to stick out her tongue, it deviates towards the left side.
Which cranial nerve has been affected in this scenario?Your Answer:
Correct Answer: Right hypoglossal nerve
Explanation:When the hypoglossal nerve is damaged, the tongue deviates towards the side of the lesion. This is because the genioglossus muscle, which normally pushes the tongue to the opposite side, is weakened. In the case of a carotid endarterectomy, the hypoglossal nerve may be damaged as it passes through the hypoglossal canal and down the neck. A good memory aid is the tongue never lies as it points towards the side of the lesion. The correct answer in this case is the right hypoglossal nerve, as the patient’s tongue deviates towards the right. Lesions of the left glossopharyngeal nerve, right glossopharyngeal nerve, left hypoglossal nerve, and left trigeminal nerve would result in different symptoms and are therefore incorrect answers.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 29
Incorrect
-
A 35-year-old man suffers a neck stabbing that results in injury to his inferior brachial plexus trunk. Which modality is most likely to remain unaffected?
Your Answer:
Correct Answer: Initiating abduction of the shoulder
Explanation:The ulnar nerve is primarily affected in cases of injury to the inferior trunk of the brachial plexus, which is composed mainly of nerve roots C8 and T1. The medial cord, which is part of the inferior trunk, also contributes to the median nerve, resulting in some degree of grip impairment. However, such injuries are rare.
Understanding the Brachial Plexus and Cutaneous Sensation of the Upper Limb
The brachial plexus is a network of nerves that originates from the anterior rami of C5 to T1. It is divided into five sections: roots, trunks, divisions, cords, and branches. To remember these sections, a common mnemonic used is Real Teenagers Drink Cold Beer.
The roots of the brachial plexus are located in the posterior triangle and pass between the scalenus anterior and medius muscles. The trunks are located posterior to the middle third of the clavicle, with the upper and middle trunks related superiorly to the subclavian artery. The lower trunk passes over the first rib posterior to the subclavian artery. The divisions of the brachial plexus are located at the apex of the axilla, while the cords are related to the axillary artery.
The branches of the brachial plexus provide cutaneous sensation to the upper limb. This includes the radial nerve, which provides sensation to the posterior arm, forearm, and hand; the median nerve, which provides sensation to the palmar aspect of the thumb, index, middle, and half of the ring finger; and the ulnar nerve, which provides sensation to the palmar and dorsal aspects of the fifth finger and half of the ring finger.
Understanding the brachial plexus and its branches is important in diagnosing and treating conditions that affect the upper limb, such as nerve injuries and neuropathies. It also helps in understanding the cutaneous sensation of the upper limb and how it relates to the different nerves of the brachial plexus.
-
This question is part of the following fields:
- Neurological System
-
-
Question 30
Incorrect
-
A 26-year-old man has been referred to ENT by his doctor as he has swallowed a small chicken bone that feels stuck in his throat. During laryngoscopy, a chicken bone is observed lodged in the piriform recess. Which of the following nerves is most likely to be affected by the chicken bone?
Your Answer:
Correct Answer: Internal laryngeal nerve
Explanation:When foreign objects get stuck in the piriform recess, particularly sharp items like bones from fish or chicken, they can harm the internal laryngeal nerve that lies beneath the mucous membrane in that area. Retrieving these objects also poses a risk of damaging the internal laryngeal nerve. However, the other nerves are not likely to be impacted.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)