00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - An 80-year-old man visits his GP complaining of abdominal pain, early satiety, lethargy,...

    Correct

    • An 80-year-old man visits his GP complaining of abdominal pain, early satiety, lethargy, and weight loss. After conducting several tests, he is diagnosed with gastric adenocarcinoma following an endoscopic biopsy. What is the most probable histological characteristic that will be observed in the biopsy?

      Your Answer: Signet ring cells

      Explanation:

      Gastric cancer is a relatively uncommon type of cancer, accounting for only 2% of all cancer diagnoses in developed countries. It is more prevalent in older individuals, with half of patients being over the age of 75, and is more common in males than females. Several risk factors have been identified, including Helicobacter pylori infection, atrophic gastritis, certain dietary habits, smoking, and blood group. Symptoms of gastric cancer can include abdominal pain, weight loss, nausea, vomiting, and dysphagia. In some cases, lymphatic spread may result in the appearance of nodules in the left supraclavicular lymph node or periumbilical area. Diagnosis is typically made through oesophago-gastro-duodenoscopy with biopsy, and staging is done using CT. Treatment options depend on the extent and location of the cancer and may include endoscopic mucosal resection, partial or total gastrectomy, and chemotherapy.

    • This question is part of the following fields:

      • Gastrointestinal System
      35.1
      Seconds
  • Question 2 - You are a doctor working in the intensive care unit. A 35-year-old man...

    Incorrect

    • You are a doctor working in the intensive care unit. A 35-year-old man has been admitted to the ward due to suddenly vomiting large volumes of fresh blood. His blood pressure is 90/60 mmHg and his heart rate is 150bpm. He needs urgent intravenous fluids. Several attempts at intravenous cannulation have been made but to no avail. The on-call anaesthetist suggests performing a great saphenous vein cutdown.

      Where should the anaesthetist make the incision?

      Your Answer: Anterior to the lateral malleolus

      Correct Answer: Anterior to the medial malleolus

      Explanation:

      The long saphenous vein is often used for venous cutdown and passes in front of the medial malleolus. Venous cutdown involves surgically exposing a vein for cannulation.

      On the other hand, the short saphenous vein is situated in front of the lateral malleolus and runs up the back of the thigh to drain into the popliteal vein at the popliteal fossa.

      The long saphenous vein originates from the point where the first dorsal digital vein, which drains the big toe, joins the dorsal venous arch of the foot. It then passes in front of the medial malleolus, ascends the medial aspect of the thigh, and drains into the femoral vein by passing through the saphenous opening.

      The femoral vein becomes the external iliac vein at the inferior margin of the inguinal ligament. It receives blood from the great saphenous and popliteal veins, and a deep vein thrombosis that blocks this vein can be life-threatening.

      During a vascular examination of the lower limb, the dorsalis pedis artery is often palpated. It runs alongside the extensor digitorum longus.

      Lastly, the posterior tibial vein is located at the back of the medial malleolus, together with other structures, within the tarsal tunnel.

      The Anatomy of Saphenous Veins

      The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.

      On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.

      Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.

    • This question is part of the following fields:

      • Cardiovascular System
      71.9
      Seconds
  • Question 3 - A 35-year-old man presents to your clinic with numerous raised tumour-like growths on...

    Incorrect

    • A 35-year-old man presents to your clinic with numerous raised tumour-like growths on his body and hyperpigmented patches on his back and trunk. He reports experiencing frequent headaches, flushing, and palpitations. Upon genetic analysis, a mutation in the NF1 tumour suppressor gene on chromosome 17 is identified.

      If this man were to have a child with his asymptomatic wife, what is the likelihood that the child would inherit the same condition?

      Your Answer: 25%

      Correct Answer: 50%

      Explanation:

      Autosomal Dominant Inheritance: Characteristics and Complicating Factors

      Autosomal dominant diseases are genetic disorders that are inherited in an autosomal dominant pattern. This means that both homozygotes and heterozygotes manifest the disease, and there is no carrier state. Both males and females can be affected, and only affected individuals can pass on the disease. The disease is passed on to 50% of children, and it normally appears in every generation. The risk remains the same for each successive pregnancy.

      However, there are complicating factors that can affect the inheritance of autosomal dominant diseases. One of these factors is non-penetrance, which refers to the lack of clinical signs and symptoms despite having an abnormal gene. For example, 40% of individuals with otosclerosis may not show any symptoms. Another complicating factor is spontaneous mutation, which occurs when there is a new mutation in one of the gametes. This means that 80% of individuals with achondroplasia have unaffected parents.

      In summary, autosomal dominant inheritance is characterized by certain patterns of inheritance, but there are also complicating factors that can affect the expression of the disease. Understanding these factors is important for genetic counseling and for predicting the risk of passing on the disease to future generations.

    • This question is part of the following fields:

      • General Principles
      37.3
      Seconds
  • Question 4 - A 65-year-old man presents to the clinic with a complaint of losing 1...

    Correct

    • A 65-year-old man presents to the clinic with a complaint of losing 1 stone in weight over the past three months. Apart from this, he has no significant medical history. During the physical examination, his abdomen is soft, and no palpable masses are detected. A normal PR examination is also observed. The patient's blood tests reveal a haemoglobin level of 80 g/L (120-160) and an MCV of 70 fL (80-96). What is the most appropriate initial investigation for this patient?

      Your Answer: Upper GI endoscopy and colonoscopy

      Explanation:

      Possible GI Malignancy in a Man with Weight Loss and Microcytic Anaemia

      This man is experiencing weight loss and has an unexplained microcytic anaemia. The most probable cause of his blood loss is from the gastrointestinal (GI) tract, as there is no other apparent explanation. This could be due to an occult GI malignancy, which is why the recommended initial investigations are upper and lower GI endoscopy. These tests will help to identify any potential sources of bleeding in the GI tract and determine if there is an underlying malignancy. It is important to diagnose and treat any potential malignancy as early as possible to improve the patient’s prognosis. Therefore, prompt investigation and management are crucial in this case.

    • This question is part of the following fields:

      • Gastrointestinal System
      53.8
      Seconds
  • Question 5 - A 70-year-old man comes to the Parkinson clinic for a levodopa review. In...

    Correct

    • A 70-year-old man comes to the Parkinson clinic for a levodopa review. In Parkinson's disease, which region of the basal ganglia is most affected?

      Your Answer: Substantia nigra pars compacta

      Explanation:

      Parkinson’s disease primarily affects the basal ganglia, which is responsible for movement. Within the basal ganglia, the substantia nigra is a crucial component that plays a significant role in movement and reward. The dopaminergic neurons in the substantia nigra, which contain high levels of neuromelanin, function through the indirect pathway to facilitate movement. However, these neurons are the ones most impacted by Parkinson’s disease. The substantia nigra gets its name from its dark appearance, which is due to the abundance of neuromelanin in its neurons.

      Parkinson’s disease is a progressive neurodegenerative disorder that occurs due to the degeneration of dopaminergic neurons in the substantia nigra. This leads to a classic triad of symptoms, including bradykinesia, tremor, and rigidity, which are typically asymmetrical. The disease is more common in men and is usually diagnosed around the age of 65. Bradykinesia is characterized by a poverty of movement, shuffling steps, and difficulty initiating movement. Tremors are most noticeable at rest and typically occur in the thumb and index finger. Rigidity can be either lead pipe or cogwheel, and other features include mask-like facies, flexed posture, and drooling of saliva. Psychiatric features such as depression, dementia, and sleep disturbances may also occur. Diagnosis is usually clinical, but if there is difficulty differentiating between essential tremor and Parkinson’s disease, 123I‑FP‑CIT single photon emission computed tomography (SPECT) may be considered.

    • This question is part of the following fields:

      • Neurological System
      9.8
      Seconds
  • Question 6 - A 78-year-old woman visits her GP with suspected erysipelas and is prescribed clindamycin...

    Correct

    • A 78-year-old woman visits her GP with suspected erysipelas and is prescribed clindamycin for 7 days. What is the mechanism of action of this medication?

      Your Answer: Inhibition of protein synthesis

      Explanation:

      Clindamycin inhibits protein synthesis by binding to the 50S subunit of ribosomes. This is similar to the mechanism of macrolide antibiotics. It is important to note that clindamycin does not destroy cell membrane function or inhibit DNA gyrase or cell wall synthesis, which are mechanisms of other classes of antibiotics.

      Antibiotics work in different ways to kill or inhibit the growth of bacteria. The commonly used antibiotics can be classified based on their gross mechanism of action. The first group inhibits cell wall formation by either preventing peptidoglycan cross-linking (penicillins, cephalosporins, carbapenems) or peptidoglycan synthesis (glycopeptides like vancomycin). The second group inhibits protein synthesis by acting on either the 50S subunit (macrolides, chloramphenicol, clindamycin, linezolid, streptogrammins) or the 30S subunit (aminoglycosides, tetracyclines) of the bacterial ribosome. The third group inhibits DNA synthesis (quinolones like ciprofloxacin) or damages DNA (metronidazole). The fourth group inhibits folic acid formation (sulphonamides and trimethoprim), while the fifth group inhibits RNA synthesis (rifampicin). Understanding the mechanism of action of antibiotics is important in selecting the appropriate drug for a particular bacterial infection.

    • This question is part of the following fields:

      • General Principles
      21.2
      Seconds
  • Question 7 - Sophie is a 5-year-old girl who has presented with a complicated urinary tract...

    Incorrect

    • Sophie is a 5-year-old girl who has presented with a complicated urinary tract infection. She has been treated with the most appropriate antibiotic for 72-hours now and there is no improvement.

      What is the appropriate action to take regarding an ultrasound scan?

      Your Answer: He will not need an ultrasound scan. Add a second drug to the management plan

      Correct Answer: He will need an ultrasound scan during the course of the infection

      Explanation:

      According to NICE guidelines, an ultrasound scan should be performed on all children who present with a UTI and abnormal features during the acute phase of the infection. This is particularly important in cases of complicated UTIs, where there is no improvement in symptoms after 72 hours of appropriate treatment. It is crucial to perform the ultrasound scan during the infection rather than waiting for six weeks, as there could be underlying issues that need to be addressed. It is important to note that the need for an ultrasound scan should not compromise the need for further urine sampling or a change in antibiotics. Additionally, an ultrasound scan is a non-invasive procedure that poses no direct risk of infection and will not exacerbate the UTI.

      Urinary tract infections (UTIs) in children require investigation to identify any underlying causes and potential kidney damage. Unlike in adults, the development of a UTI in childhood may indicate renal scarring. The National Institute for Health and Care Excellence (NICE) recommends imaging the urinary tract for infants under six months who present with their first UTI and respond to treatment, within six weeks. Children over six months who respond to treatment do not require imaging unless there are features suggestive of an atypical infection, such as being seriously ill, having poor urine flow, an abdominal or bladder mass, raised creatinine, septicaemia, failure to respond to antibiotics within 48 hours, or infection with non-E. coli organisms.

      Further investigations may include a urine microscopy and culture, as only 50% of children with a UTI have pyuria, making microscopy or dipstick of the urine inadequate for diagnosis. A static radioisotope scan, such as DMSA, can identify renal scars and should be done 4-6 months after the initial infection. Micturating cystourethrography (MCUG) can identify vesicoureteral reflux and is only recommended for infants under six months who present with atypical or recurrent infections.

    • This question is part of the following fields:

      • General Principles
      55.9
      Seconds
  • Question 8 - A 75-year-old man is scheduled for an arterial bypass surgery to treat foot...

    Correct

    • A 75-year-old man is scheduled for an arterial bypass surgery to treat foot ulceration and claudication. The distal arterial anastomosis will be formed using the anterior tibial artery. Which of the following structures is not in close proximity to it?

      Your Answer: Tibialis posterior

      Explanation:

      The anterior tibial artery is closely associated with the tibialis anterior muscle as it serves as one of the main arteries in the anterior compartment.

      The anterior tibial artery starts opposite the lower border of the popliteus muscle and ends in front of the ankle, where it continues as the dorsalis pedis artery. As it descends, it runs along the interosseous membrane, the distal part of the tibia, and the front of the ankle joint. The artery passes between the tendons of the extensor digitorum and extensor hallucis longus muscles as it approaches the ankle. The deep peroneal nerve is closely related to the artery, lying anterior to the middle third of the vessel and lateral to it in the lower third.

    • This question is part of the following fields:

      • Cardiovascular System
      27.8
      Seconds
  • Question 9 - A 29-year-old man visits his primary care physician with complaints of a malodorous...

    Incorrect

    • A 29-year-old man visits his primary care physician with complaints of a malodorous discharge from his right ear for the past 3 weeks. The patient also reports experiencing ear pain for the past 2 weeks and occasional mild dizziness. Upon examination, the skin around the ear and pinna appear normal, but the ear canal is filled with debris. After removing the debris, a small perforation and waxy debris are observed on the tympanic membrane.

      The Rinne test indicates that bone conduction is better than air conduction on the right, and the Weber test shows sound lateralization to the right. The patient has no significant medical history and has never presented with an ear problem before.

      What is the most likely condition based on this patient's clinical presentation?

      Your Answer: Otitis media

      Correct Answer: Cholesteatoma

      Explanation:

      Cholesteatoma is a growth of non-cancerous squamous epithelium that can be observed as an ‘attic crust’ during otoscopy. This patient is displaying symptoms consistent with cholesteatoma, including ear discharge, earache, conductive hearing loss, and dizziness, which suggests that the inner ear has also been affected. It is important to distinguish cholesteatoma from otitis externa, as failure to diagnose cholesteatoma can lead to serious complications. Cholesteatoma can erode the ossicles bones, damage the inner ear and vestibulocochlear nerve, and even result in brain infections if it erodes through the skull bone.

      Otitis externa is an inflammation of the outer ear canal that causes ear pain, which worsens with movement of the outer ear. It is often caused by the use of earplugs or swimming in unclean water. Otitis media is an inflammation of the middle ear that can lead to fluid accumulation and perforation of the tympanic membrane. It is common in children and often follows a viral upper respiratory tract infection. Myringitis is a condition associated with otitis media that causes small vesicles or cysts to form on the surface of the eardrum, resulting in severe pain and hearing impairment. It is caused by viral or bacterial infections and is treated with pain relief and antibiotics.

      Understanding Cholesteatoma

      Cholesteatoma is a benign growth of squamous epithelium that can cause damage to the skull base. It is most commonly found in individuals between the ages of 10 and 20 years old. Those born with a cleft palate are at a higher risk of developing cholesteatoma, with a 100-fold increase in risk.

      The main symptoms of cholesteatoma include a persistent discharge with a foul odor and hearing loss. Other symptoms may occur depending on the extent of the growth, such as vertigo, facial nerve palsy, and cerebellopontine angle syndrome.

      During otoscopy, a characteristic attic crust may be seen in the uppermost part of the eardrum.

      Management of cholesteatoma involves referral to an ear, nose, and throat specialist for surgical removal. Early detection and treatment are important to prevent further damage to the skull base and surrounding structures.

      In summary, cholesteatoma is a non-cancerous growth that can cause significant damage if left untreated. It is important to be aware of the symptoms and seek medical attention promptly if they occur.

    • This question is part of the following fields:

      • Respiratory System
      71
      Seconds
  • Question 10 - What is a common clinical feature that is linked to hypovolemia? ...

    Correct

    • What is a common clinical feature that is linked to hypovolemia?

      Your Answer: Dry mucous membranes

      Explanation:

      Hypovolaemia

      Hypovolaemia is a condition that occurs when there is a decrease in the volume of blood in the body. This can be caused by severe dehydration, poor oral fluid intake, excessive fluid losses in diarrhoea or through stomas, and major haemorrhage. The symptoms of hypovolaemia include dry mucous membranes, normal or increased sodium concentration in the blood, reduced jugular venous pressure, reduced urinary flow rate, and increased respiratory rate.

      Dry mucous membranes are not a highly discriminating feature of hypovolaemia. The effect of hypovolaemia on sodium concentrations is highly variable. If hypovolaemia results from the loss of blood or fluid containing isotonic amounts of sodium, the sodium concentration is likely to stay within the reference range. However, if hypovolaemia is due to prolonged poor oral intake, hypernatraemia can result. Hypovolaemia alone is generally not associated with hyponatraemia unless there is concomitant infection, inflammation, or loss of sodium-rich fluids, for example, from a high-output stoma.

      Reduced jugular venous pressure is a common symptom of hypovolaemia. The low circulating volume will cause a low JVP. In normal circumstances, the body responds to hypovolaemia by reducing urinary flow rates. If circulation is impaired by loss of blood, a common response is an increase in the respiratory rate. This is often an early feature of significant blood loss. the symptoms of hypovolaemia is important for prompt diagnosis and treatment.

    • This question is part of the following fields:

      • Clinical Sciences
      4.7
      Seconds
  • Question 11 - A 23-year-old man presents to the emergency department with recurrent fevers. He has...

    Incorrect

    • A 23-year-old man presents to the emergency department with recurrent fevers. He has a medical history of Adult-onset Still's disease.

      As the admission progresses, the patient's condition worsens, with high-grade fevers and tachycardia.

      The following blood results are obtained:

      - Hb: 112 g/L (Male: 135-180, Female: 115-160)
      - Platelets: 80 * 109/L (150-400)
      - WBC: 2.3 * 109/L (4.0-11.0)
      - CRP: 72 mg/L (<5)
      - Ferritin: 22,500 mg/mL (30-400)
      - Triglycerides: 4.9 mmol/L (<1.7)
      - Fibrinogen: 0.8 g/L (2-4)

      What cytokine is believed to play a crucial role in the pathophysiology of this likely diagnosis?

      Your Answer: IL-2

      Correct Answer: Interferon-γ

      Explanation:

      Overview of Cytokines and Their Functions

      Cytokines are signaling molecules that play a crucial role in the immune system. Interleukins are a type of cytokine that are produced by various immune cells and have specific functions. IL-1, produced by macrophages, induces acute inflammation and fever. IL-2, produced by Th1 cells, stimulates the growth and differentiation of T cell responses. IL-3, produced by activated T helper cells, stimulates the differentiation and proliferation of myeloid progenitor cells. IL-4, produced by Th2 cells, stimulates the proliferation and differentiation of B cells. IL-5, also produced by Th2 cells, stimulates the production of eosinophils. IL-6, produced by macrophages and Th2 cells, stimulates the differentiation of B cells and induces fever. IL-8, produced by macrophages, promotes neutrophil chemotaxis. IL-10, produced by Th2 cells, inhibits Th1 cytokine production and is known as an anti-inflammatory cytokine. IL-12, produced by dendritic cells, macrophages, and B cells, activates NK cells and stimulates the differentiation of naive T cells into Th1 cells.

      In addition to interleukins, there are other cytokines with specific functions. Tumor necrosis factor-alpha, produced by macrophages, induces fever and promotes neutrophil chemotaxis. Interferon-gamma, produced by Th1 cells, activates macrophages. Understanding the functions of cytokines is important in developing treatments for various immune-related diseases.

    • This question is part of the following fields:

      • General Principles
      79
      Seconds
  • Question 12 - β-adrenergic receptor antagonists, like propranolol, are commonly prescribed in medical practice. In which...

    Correct

    • β-adrenergic receptor antagonists, like propranolol, are commonly prescribed in medical practice. In which of the following conditions are β-adrenergic receptor antagonists not recommended for use in elderly patients?

      Your Answer: Asthma

      Explanation:

      Beta Blockers and Asthma

      Beta blockers are commonly used to treat various cardiovascular diseases due to their negative chronotropic and inotropic effects. However, they can be detrimental to individuals with asthma. This is because beta blockers antagonize beta-2 receptors, which can lead to bronchoconstriction and trigger asthma attacks. As a result, beta blockers are not recommended as a treatment for asthma. It is important for healthcare providers to be aware of this potential adverse effect and to consider alternative medications for patients with asthma who require cardiovascular treatment. Proper management of both conditions is crucial to ensure optimal health outcomes for patients.

    • This question is part of the following fields:

      • Pharmacology
      20.8
      Seconds
  • Question 13 - A 64-year-old man is seen in the endocrinology clinic for review of his...

    Correct

    • A 64-year-old man is seen in the endocrinology clinic for review of his type II diabetes. He is currently on metformin and gliclazide, but his HbA1c is 68 mmol/mol. To improve his glycaemic control, you plan to initiate empagliflozin as a third agent. What is the site of action of this medication to achieve its mechanism of action?

      Your Answer: Proximal convoluted tubule of the nephron

      Explanation:

      The proximal convoluted tubule of the nephron is where the majority of glucose reabsorption occurs. Empagliflozin, which inhibits the SGLT-2 receptor, prevents glucose reabsorption in this area. Insulin receptors are found throughout the body, not SGLT-2 receptors. The distal convoluted tubule regulates sodium, potassium, calcium, and pH, while the loop of Henle is involved in water resorption. Sulphonylureas act on pancreatic beta cells to increase insulin production and improve glucose metabolism.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      14.4
      Seconds
  • Question 14 - A 55-year-old woman with hypertension comes in for a routine check-up with her...

    Incorrect

    • A 55-year-old woman with hypertension comes in for a routine check-up with her GP. She mentions feeling fatigued for the past few days and has been taking antihypertensive medication for almost a year, but cannot recall the name. Her ECG appears normal.

      Hb 142 g/L Male: (135-180)
      Female: (115 - 160)
      Platelets 180 * 109/L (150 - 400)
      WBC 7.5 * 109/L (4.0 - 11.0)

      Na+ 133 mmol/L (135 - 145)
      K+ 3.8 mmol/L (3.5 - 5.0)
      Urea 5.5 mmol/L (2.0 - 7.0)
      Creatinine 98 µmol/L (55 - 120)

      What medication might she be taking?

      Your Answer: Labetalol

      Correct Answer: Hydrochlorothiazide

      Explanation:

      Thiazide diuretics have been known to cause hyponatremia, as seen in the clinical scenario and blood tests. The question aims to test knowledge of antihypertensive medications that may lead to hyponatremia.

      The correct answer is Hydrochlorothiazide, as ACE inhibitors, angiotensin receptor blockers, and calcium channel blockers may also cause hyponatremia. Beta-blockers, such as Atenolol, typically do not cause hyponatremia. Similarly, central agonists like Clonidine and alpha-blockers like Doxazosin are not known to cause hyponatremia.

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      155.2
      Seconds
  • Question 15 - A 22-year-old graduate student comes to you with concerns about abnormal muscle jerks...

    Correct

    • A 22-year-old graduate student comes to you with concerns about abnormal muscle jerks and contractions while studying late for her upcoming exams. She is worried that she may be experiencing seizures. Upon further questioning, she denies any post-episode drowsiness, incontinence, or tongue biting, but admits that the muscle contractions occur just as she is about to fall asleep. She also denies any alcohol or illicit drug use.

      If an EEG performed during these episodes showed theta waves, what diagnosis would be made?

      Your Answer: Hypnagogic jerks

      Explanation:

      Non-REM stage 1 (N1) sleep is associated with hypnagogic jerks, also known as hypnic jerks, and is the lightest stage of sleep. During this phase, benign physiological muscular contractions occur and the EEG shows theta waves (3 to 8 Hz). Therefore, the correct answer is ‘hypnagogic jerks of stage N1 sleep’.

      Absence seizures, on the other hand, are short and frequent episodes of profound impairment of consciousness without loss of body tone, typically found in children. The EEG finding during an absence seizure is generalized 2.5 to 5 Herz (Hz) spike wave discharges, not theta waves.

      Although alcohol withdrawal can cause seizures, isolated muscle contractions during the sleep-wake interphase are unlikely. Furthermore, the finding of theta waves makes stage N1 more likely.

      Juvenile myoclonic epilepsy (JME) is characterized by myoclonic jerks, which are most frequent in the morning, within the first hour after awakening, though generalized tonic-clonic seizures (GTCS) and absence seizures can also occur. The EEG finding during episodes is 3 to 4 Hz polyspike-waves with frontocentral predominance, not theta waves.

      Night terrors, which occur during non-REM stage N3 sleep, the deepest type of non-REM sleep, are a parasomnia during which there is a loss of motor tone, not muscle jerks. The EEG waveform during this stage of sleep are beta waves.

      Understanding Sleep Stages: The Sleep Doctor’s Brain

      Sleep is a complex process that involves different stages, each with its own unique characteristics. The Sleep Doctor’s Brain provides a simplified explanation of the four main sleep stages: N1, N2, N3, and REM.

      N1 is the lightest stage of sleep, characterized by theta waves and often associated with hypnic jerks. N2 is a deeper stage of sleep, marked by sleep spindles and K-complexes. This stage represents around 50% of total sleep. N3 is the deepest stage of sleep, characterized by delta waves. Parasomnias such as night terrors, nocturnal enuresis, and sleepwalking can occur during this stage.

      REM, or rapid eye movement, is the stage where dreaming occurs. It is characterized by beta-waves and a loss of muscle tone, including erections. The sleep cycle typically follows a pattern of N1 → N2 → N3 → REM, with each stage lasting for different durations throughout the night.

      Understanding the different sleep stages is important for maintaining healthy sleep habits and identifying potential sleep disorders. By monitoring brain activity during sleep, the Sleep Doctor’s Brain can provide valuable insights into the complex process of sleep.

    • This question is part of the following fields:

      • Neurological System
      27.1
      Seconds
  • Question 16 - A pediatric patient with a rare immunodeficiency disorder has been included in a...

    Correct

    • A pediatric patient with a rare immunodeficiency disorder has been included in a research investigation exploring immunoglobulins and immune system activation. The latest findings indicate that the patient is unable to activate B-cells. The researchers are curious if there is a deficiency in a specific immunoglobulin that could explain the inadequate B-cell activation.

      What immunoglobulin is probably affected?

      Your Answer: IgD

      Explanation:

      The immunoglobulin IgG is a crucial component of the immune system, with high levels in serum and potent activity against bacterial and viral pathogens. It plays a role in activating the complement system and is also involved in type 2 and type 3 hypersensitivity reactions.

      Immunoglobulins, also known as antibodies, are proteins produced by the immune system to help fight off infections and diseases. There are five types of immunoglobulins found in the body, each with their own unique characteristics.

      IgG is the most abundant type of immunoglobulin in blood serum and plays a crucial role in enhancing phagocytosis of bacteria and viruses. It also fixes complement and can be passed to the fetal circulation.

      IgA is the most commonly produced immunoglobulin in the body and is found in the secretions of digestive, respiratory, and urogenital tracts and systems. It provides localized protection on mucous membranes and is transported across the interior of the cell via transcytosis.

      IgM is the first immunoglobulin to be secreted in response to an infection and fixes complement, but does not pass to the fetal circulation. It is also responsible for producing anti-A, B blood antibodies.

      IgD’s role in the immune system is largely unknown, but it is involved in the activation of B cells.

      IgE is the least abundant type of immunoglobulin in blood serum and is responsible for mediating type 1 hypersensitivity reactions. It provides immunity to parasites such as helminths and binds to Fc receptors found on the surface of mast cells and basophils.

    • This question is part of the following fields:

      • General Principles
      20.1
      Seconds
  • Question 17 - A 36-year-old male with a history of prolonged NSAID use and gastroesophageal reflux...

    Incorrect

    • A 36-year-old male with a history of prolonged NSAID use and gastroesophageal reflux disease presents to the acute surgical unit complaining of abdominal pain and hematemesis. During an endoscopy to investigate a suspected upper gastrointestinal bleed, a gastric ulcer is discovered on the posterior aspect of the stomach body that has eroded through an artery. Which specific artery is most likely to have been affected?

      Your Answer: Left gastric artery

      Correct Answer: Splenic artery

      Explanation:

      Acute upper gastrointestinal bleeding is a common and significant medical issue that can be caused by various conditions, with oesophageal varices and peptic ulcer disease being the most common. The main symptoms include haematemesis (vomiting of blood), melena (passage of altered blood per rectum), and a raised urea level due to the protein meal of the blood. The diagnosis can be determined by identifying the specific features associated with a particular condition, such as stigmata of chronic liver disease for oesophageal varices or abdominal pain for peptic ulcer disease.

      The differential diagnosis for acute upper gastrointestinal bleeding includes oesophageal, gastric, and duodenal causes. Oesophageal varices may present with a large volume of fresh blood, while gastric ulcers may cause low volume bleeds that present as iron deficiency anaemia. Duodenal ulcers are usually posteriorly sited and may erode the gastroduodenal artery. Aorto-enteric fistula is a rare but important cause of major haemorrhage associated with high mortality in patients with previous abdominal aortic aneurysm surgery.

      The management of acute upper gastrointestinal bleeding involves risk assessment using the Glasgow-Blatchford score, which helps clinicians decide whether patients can be managed as outpatients or not. Resuscitation involves ABC, wide-bore intravenous access, and platelet transfusion if actively bleeding platelet count is less than 50 x 10*9/litre. Endoscopy should be offered immediately after resuscitation in patients with a severe bleed, and all patients should have endoscopy within 24 hours. Treatment options include repeat endoscopy, interventional radiology, and surgery for non-variceal bleeding, while terlipressin and prophylactic antibiotics should be given to patients with variceal bleeding. Band ligation should be used for oesophageal varices, and injections of N-butyl-2-cyanoacrylate for patients with gastric varices. Transjugular intrahepatic portosystemic shunts (TIPS) should be offered if bleeding from varices is not controlled with the above measures.

    • This question is part of the following fields:

      • Gastrointestinal System
      83.2
      Seconds
  • Question 18 - A 63-year-old male presents with right sided hemiplegia. An MRI confirms a diagnosis...

    Correct

    • A 63-year-old male presents with right sided hemiplegia. An MRI confirms a diagnosis of a left sided partial anterior circulating stroke. He is treated with high dose aspirin for 14 days. He is then started on clopidogrel which he was unfortunately intolerant of. You therefore start him on dual aspirin and dipyridamole.

      What is the mechanism of action of dipyridamole?

      Your Answer: Increases the effects of adenosine

      Explanation:

      Dipyridamole is a medication that inhibits phosphodiesterase enzymes and reduces the uptake of adenosine by cells. This leads to an increase in adenosine levels and a decrease in the breakdown of cAMP. Patients taking dipyridamole should not receive exogenous adenosine treatment, such as for supraventricular tachycardia, due to this interaction.

      Clopidogrel is a medication that blocks ADP receptors.

      Aspirin is a medication that inhibits cyclo-oxygenase.

      Dabigatran and bivalirudin are medications that directly inhibit thrombin.

      Tirofiban and abciximab are medications that inhibit glycoprotein IIb/IIIa.

      Warfarin inhibits the production of factors II, VII, IX, and X.

      Understanding the Mechanism of Action of Dipyridamole

      Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.

      Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.

      Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.

      In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.

    • This question is part of the following fields:

      • Cardiovascular System
      84.7
      Seconds
  • Question 19 - A high school football player comes to the emergency department after a hard...

    Incorrect

    • A high school football player comes to the emergency department after a hard tackle. He complains of pain in the front of his shoulder, limited movement in his affected arm, and notices that his collarbone is protruding outward. An X-ray shows that his clavicle is displaced, particularly at the lateral end, but still intact. The medial end of the clavicle is still in contact with the sternum, and there are no other bone abnormalities. Given the extent of the dislocation, you suspect that multiple ligaments have been torn. Which of the following ligaments is the least likely to be affected?

      Your Answer: Trapezoid ligament

      Correct Answer: Coracoacromial ligament

      Explanation:

      The coracoacromial ligament is not likely to be damaged in a clavicle dislocation, as it does not connect to the clavicle. The ligaments that attach to the lateral end of the clavicle include the acromioclavicular ligament, trapezoid ligament, and conoid ligament (collectively known as the coracoclavicular ligament). In the case of an acromioclavicular joint dislocation, the severity of the injury depends on which ligaments are damaged. Mild cases may involve only a sprain or rupture of the acromioclavicular ligament, while more severe cases may involve rupture of all ligaments attaching to the lateral end of the clavicle.

      Anatomy of the Clavicle

      The clavicle is a bone that runs from the sternum to the acromion and plays a crucial role in preventing the shoulder from falling forwards and downwards. Its inferior surface is marked by ligaments at each end, including the trapezoid line and conoid tubercle, which provide attachment to the coracoclavicular ligament. The costoclavicular ligament attaches to the irregular surface on the medial part of the inferior surface, while the subclavius muscle attaches to the intermediate portion’s groove.

      The superior part of the clavicle’s medial end has a raised surface that gives attachment to the clavicular head of sternocleidomastoid, while the posterior surface attaches to the sternohyoid. On the lateral end, there is an oval articular facet for the acromion, and a disk lies between the clavicle and acromion. The joint’s capsule attaches to the ridge on the margin of the facet.

      In summary, the clavicle is a vital bone that helps stabilize the shoulder joint and provides attachment points for various ligaments and muscles. Its anatomy is marked by distinct features that allow for proper function and movement.

    • This question is part of the following fields:

      • Musculoskeletal System And Skin
      78.5
      Seconds
  • Question 20 - A 49-year-old woman visits the clinic complaining of occasional palpitations over the last...

    Correct

    • A 49-year-old woman visits the clinic complaining of occasional palpitations over the last 7 days. The palpitations occur without any physical exertion and are not accompanied by chest pain. Upon examination, her heart appears to be functioning normally. An ECG is conducted, revealing indications of hyperkalaemia. What is an ECG indicator of hyperkalaemia?

      Your Answer: Small or absent P waves

      Explanation:

      The presence of small or inverted T waves on an ECG can indicate hyperkalaemia, along with other signs such as absent or reduced P waves, broad and bizarre QRS complexes, and tall-tented T waves. In severe cases, hyperkalaemia can lead to asystole.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      24.4
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Gastrointestinal System (2/3) 67%
Cardiovascular System (2/4) 50%
General Principles (2/5) 40%
Neurological System (2/2) 100%
Respiratory System (0/1) 0%
Clinical Sciences (1/1) 100%
Pharmacology (1/1) 100%
Renal System (2/2) 100%
Musculoskeletal System And Skin (0/1) 0%
Passmed