00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - What is the entity that carries out phagocytosis in the central nervous system?...

    Correct

    • What is the entity that carries out phagocytosis in the central nervous system?

      Your Answer: Microglia

      Explanation:

      Glial Cells: The Support System of the Central Nervous System

      The central nervous system is composed of two basic cell types: neurons and glial cells. Glial cells, also known as support cells, play a crucial role in maintaining the health and function of neurons. There are several types of glial cells, including macroglia (astrocytes and oligodendrocytes), ependymal cells, and microglia.

      Astrocytes are the most abundant type of glial cell and have numerous functions, such as providing structural support, repairing nervous tissue, nourishing neurons, contributing to the blood-brain barrier, and regulating neurotransmission and blood flow. There are two main types of astrocytes: protoplasmic and fibrous.

      Oligodendrocytes are responsible for the formation of myelin sheaths, which insulate and protect axons, allowing for faster and more efficient transmission of nerve impulses.

      Ependymal cells line the ventricular system and are involved in the circulation of cerebrospinal fluid (CSF) and fluid homeostasis in the brain. Specialized ependymal cells called choroid plexus cells produce CSF.

      Microglia are the immune cells of the CNS and play a crucial role in protecting the brain from infection and injury. They also contribute to the maintenance of neuronal health and function.

      In summary, glial cells are essential for the proper functioning of the central nervous system. They provide structural support, nourishment, insulation, and immune defense to neurons, ensuring the health and well-being of the brain and spinal cord.

    • This question is part of the following fields:

      • Neurosciences
      10.1
      Seconds
  • Question 2 - What are the eosinophilic inclusion bodies observed in Alzheimer's Disease? ...

    Correct

    • What are the eosinophilic inclusion bodies observed in Alzheimer's Disease?

      Your Answer: Hirano bodies

      Explanation:

      Pathology Findings in Psychiatry

      There are several pathology findings that are associated with various psychiatric conditions. Papp-Lantos bodies, for example, are visible in the CNS and are associated with multisystem atrophy. Pick bodies, on the other hand, are large, dark-staining aggregates of proteins in neurological tissue and are associated with frontotemporal dementia.

      Lewy bodies are another common pathology finding in psychiatry and are associated with Parkinson’s disease and Lewy Body dementia. These are round, concentrically laminated, pale eosinophilic cytoplasmic inclusions that are aggregates of alpha-synuclein.

      Other pathology findings include asteroid bodies, which are associated with sarcoidosis and berylliosis, and are acidophilic, stellate inclusions in giant cells. Barr bodies are associated with stains of X chromosomes and are inactivated X chromosomes that appear as a dark staining mass in contact with the nuclear membrane.

      Mallory bodies are another common pathology finding and are associated with alcoholic hepatitis, alcoholic cirrhosis, Wilson’s disease, and primary-biliary cirrhosis. These are eosinophilic intracytoplasmic inclusions in hepatocytes that are made up of intermediate filaments, predominantly prekeratin.

      Other pathology findings include Schaumann bodies, which are associated with sarcoidosis and berylliosis, and are concentrically laminated inclusions in giant cells. Zebra bodies are associated with Niemann-Pick disease, Tay-Sachs disease, of any of the mucopolysaccharidoses and are palisaded lamellated membranous cytoplasmic bodies seen in macrophages.

      LE bodies, also known as hematoxylin bodies, are associated with SLE (lupus) and are nuclei of damaged cells with bound anti-nuclear antibodies that become homogeneous and loose chromatin pattern. Verocay bodies are associated with Schwannoma (Neurilemoma) and are palisades of nuclei at the end of a fibrillar bundle.

      Hirano bodies are associated with normal aging but are more numerous in Alzheimer’s disease. These are eosinophilic, football-shaped inclusions seen in neurons of the brain. Neurofibrillary tangles are another common pathology finding in Alzheimer’s disease and are made up of microtubule-associated proteins and neurofilaments.

      Kayser-Fleischer rings are associated with Wilson’s disease and are rings of discoloration on the cornea. Finally, Kuru plaques are associated with Kuru and Gerstmann-Sträussler syndrome and are sometimes present in patients with Creutzfeldt-Jakob disease (CJD). These are composed partly of a host-encoded prion protein.

    • This question is part of the following fields:

      • Neurosciences
      8.7
      Seconds
  • Question 3 - Which enzyme is responsible for the conversion of tyrosine to dihydroxyphenylalanine? ...

    Correct

    • Which enzyme is responsible for the conversion of tyrosine to dihydroxyphenylalanine?

      Your Answer: Tyrosine hydroxylase

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      11
      Seconds
  • Question 4 - What substances are found at higher levels in individuals with depression and bipolar...

    Correct

    • What substances are found at higher levels in individuals with depression and bipolar affective disorder?

      Your Answer: Cortisol

      Explanation:

      HPA Axis Dysfunction in Mood Disorders

      The HPA axis, which includes regulatory neural inputs and a feedback loop involving the hypothalamus, pituitary, and adrenal glands, plays a central role in the stress response. Excessive secretion of cortisol, a glucocorticoid hormone, can lead to disruptions in cellular functioning and widespread physiologic dysfunction. Dysregulation of the HPA axis is implicated in mood disorders such as depression and bipolar affective disorder.

      In depressed patients, cortisol levels often do not decrease as expected in response to the administration of dexamethasone, a synthetic corticosteroid. This abnormality in the dexamethasone suppression test is thought to be linked to genetic of acquired defects of glucocorticoid receptors. Tricyclic antidepressants have been shown to increase expression of glucocorticoid receptors, whereas this is not the case for SSRIs.

      Early adverse experiences can produce long standing changes in HPA axis regulation, indicating a possible neurobiological mechanism whereby childhood trauma could be translated into increased vulnerability to mood disorder. In major depression, there is hypersecretion of cortisol, corticotropin-releasing factor (CRF), and ACTH, and associated adrenocortical enlargement. HPA abnormalities have also been found in other psychiatric disorders including Alzheimer’s and PTSD.

      In bipolar disorder, dysregulation of ACTH and cortisol response after CRH stimulation have been reported. Abnormal DST results are found more often during depressive episodes in the course of bipolar disorder than in unipolar disorder. Reduced pituitary volume secondary to LHPA stimulation, resulting in pituitary hypoactivity, has been observed in bipolar patients.

      Overall, HPA axis dysfunction is implicated in mood disorders, and understanding the underlying mechanisms may lead to new opportunities for treatments.

    • This question is part of the following fields:

      • Neurosciences
      8.1
      Seconds
  • Question 5 - What is the most effective tool to use when suspecting a brain hemorrhage...

    Correct

    • What is the most effective tool to use when suspecting a brain hemorrhage in an emergency situation?

      Your Answer: CT

      Explanation:

      Neuroimaging techniques can be divided into structural and functional types, although this distinction is becoming less clear as new techniques emerge. Structural techniques include computed tomography (CT) and magnetic resonance imaging (MRI), which use x-rays and magnetic fields, respectively, to produce images of the brain’s structure. Functional techniques, on the other hand, measure brain activity by detecting changes in blood flow of oxygen consumption. These include functional MRI (fMRI), emission tomography (PET and SPECT), perfusion MRI (pMRI), and magnetic resonance spectroscopy (MRS). Some techniques, such as diffusion tensor imaging (DTI), combine both structural and functional information to provide a more complete picture of the brain’s anatomy and function. DTI, for example, uses MRI to estimate the paths that water takes as it diffuses through white matter, allowing researchers to visualize white matter tracts.

    • This question is part of the following fields:

      • Neurosciences
      4.5
      Seconds
  • Question 6 - Which of the following is categorized as a projection tract in relation to...

    Correct

    • Which of the following is categorized as a projection tract in relation to white matter?

      Your Answer: Geniculocalcarine tract

      Explanation:

      White matter is the cabling that links different parts of the CNS together. There are three types of white matter cables: projection tracts, commissural tracts, and association tracts. Projection tracts connect higher centers of the brain with lower centers, commissural tracts connect the two hemispheres together, and association tracts connect regions of the same hemisphere. Some common tracts include the corticospinal tract, which connects the motor cortex to the brainstem and spinal cord, and the corpus callosum, which is the largest white matter fiber bundle connecting corresponding areas of cortex between the hemispheres. Other tracts include the cingulum, superior and inferior occipitofrontal fasciculi, and the superior and inferior longitudinal fasciculi.

    • This question is part of the following fields:

      • Neurosciences
      28.5
      Seconds
  • Question 7 - Which process breaks down dopamine? ...

    Correct

    • Which process breaks down dopamine?

      Your Answer: COMT, MAO-B and MAO-A

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      4.4
      Seconds
  • Question 8 - Which of the following diseases is not considered a prion disease? ...

    Correct

    • Which of the following diseases is not considered a prion disease?

      Your Answer: Dhat

      Explanation:

      Dhat is a syndrome that is specific to Indian culture and affects men. Those who suffer from it experience anxiety about the presence of semen in their urine, which they believe leads to a loss of energy.

      Creutzfeldt-Jakob Disease: Differences between vCJD and CJD

      Creutzfeldt-Jakob Disease (CJD) is a prion disease that includes scrapie, BSE, and Kuru. However, there are important differences between sporadic (also known as classic) CJD and variant CJD. The table below summarizes these differences.

      vCJD:
      – Longer duration from onset of symptoms to death (a year of more)
      – Presents with psychiatric and behavioral symptoms before neurological symptoms
      – MRI shows pulvinar sign
      – EEG shows generalized slowing
      – Originates from infected meat products
      – Affects younger people (age 25-30)

      CJD:
      – Shorter duration from onset of symptoms to death (a few months)
      – Presents with neurological symptoms
      – MRI shows bilateral anterior basal ganglia high signal
      – EEG shows biphasic and triphasic waves 1-2 per second
      – Originates from genetic mutation (bad luck)
      – Affects older people (age 55-65)

      Overall, understanding the differences between vCJD and CJD is important for diagnosis and treatment.

    • This question is part of the following fields:

      • Neurosciences
      5.6
      Seconds
  • Question 9 - Who received the Nobel prize for their discovery of dopamine's function as a...

    Correct

    • Who received the Nobel prize for their discovery of dopamine's function as a neurotransmitter?

      Your Answer: Carlsson

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      5.4
      Seconds
  • Question 10 - Which inhibitory neurotransmitter's receptor is blocked by strychnine, resulting in strychnine poisoning? ...

    Incorrect

    • Which inhibitory neurotransmitter's receptor is blocked by strychnine, resulting in strychnine poisoning?

      Your Answer: GABA

      Correct Answer: Glycine

      Explanation:

      The primary neurotransmitters that promote neural activity are glutamate and aspartate, while the primary neurotransmitters that inhibit neural activity are GABA and glycine.

      Glycine and its Antagonist Strychnine

      Glycine is a neurotransmitter that binds to a receptor, which increases the permeability of the postsynaptic membrane to chloride ions. This results in hyperpolarization of the membrane, making it less likely to depolarize and thus, glycine acts as an inhibitory neurotransmitter.

      On the other hand, strychnine is a glycine antagonist that can bind to the glycine receptor without opening the chloride ion-channel. This inhibition of inhibition leads to spinal hyperexcitability, which is why strychnine is a poison. The binding of strychnine to the glycine receptor prevents glycine from performing its inhibitory function, leading to an increase in the likelihood of depolarization and causing hyperexcitability. Therefore, the effects of glycine and strychnine on the glycine receptor are opposite, with glycine acting as an inhibitor and strychnine acting as an excitatory agent.

    • This question is part of the following fields:

      • Neurosciences
      8.4
      Seconds
  • Question 11 - Which structure is thought to play a major role in processing rewards? ...

    Correct

    • Which structure is thought to play a major role in processing rewards?

      Your Answer: Nucleus accumbens

      Explanation:

      Drug addiction is closely linked to reward processing, which is primarily regulated by the nucleus accumbens and the ventral tegmental area (VTA).

      The Basal Ganglia: Functions and Disorders

      The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.

      The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.

      However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.

      In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.

    • This question is part of the following fields:

      • Neurosciences
      9.8
      Seconds
  • Question 12 - Which waveform represents a frequency that is less than 4 Hz? ...

    Correct

    • Which waveform represents a frequency that is less than 4 Hz?

      Your Answer: Delta

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      6.9
      Seconds
  • Question 13 - What is a true statement about senile plaques? ...

    Correct

    • What is a true statement about senile plaques?

      Your Answer: They consist of beta amyloid

      Explanation:

      Senile plaques are formed by beta amyloid proteins that have folded abnormally and are found in the extracellular space of the grey matter. While they are present in smaller quantities during normal aging, they are insoluble. These plaques are created due to the improper cleavage of Amyloid Precursor Protein (APP), a transmembrane protein whose function is not fully understood.

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      14.3
      Seconds
  • Question 14 - Which cognitive function is primarily evaluated by the task of copying intersecting pentagons...

    Correct

    • Which cognitive function is primarily evaluated by the task of copying intersecting pentagons in the MMSE?

      Your Answer: Constructional apraxia

      Explanation:

      The primary purpose of intersecting pentagons is to evaluate constructional apraxia, with attention being a secondary factor.

      Apraxia: Understanding the Inability to Carry Out Learned Voluntary Movements

      Apraxia is a neurological condition that affects a person’s ability to carry out learned voluntary movements. It is important to note that this condition assumes that everything works and the person is not paralyzed. There are different types of apraxia, each with its own set of symptoms and characteristics.

      Limb kinetic apraxia is a type of apraxia that affects a person’s ability to make fine of delicate movements. This can include tasks such as buttoning a shirt of tying shoelaces.

      Ideomotor apraxia, on the other hand, is an inability to carry out learned tasks when given the necessary objects. For example, a person with ideomotor apraxia may try to write with a hairbrush instead of using it to brush their hair.

      Constructional apraxia affects a person’s ability to copy a picture of combine parts of something to form a whole. This can include tasks such as building a puzzle of drawing a picture.

      Ideational apraxia is an inability to follow a sequence of actions in the correct order. For example, a person with ideational apraxia may struggle to take a match out of a box and strike it with their left hand.

      Finally, oculomotor apraxia affects a person’s ability to control eye movements. This can make it difficult for them to track moving objects of read smoothly.

      Overall, apraxia can have a significant impact on a person’s ability to carry out everyday tasks. However, with the right support and treatment, many people with apraxia are able to improve their abilities and maintain their independence.

    • This question is part of the following fields:

      • Neurosciences
      4.9
      Seconds
  • Question 15 - Which condition is most commonly associated with fast, generalized spike and wave activity...

    Correct

    • Which condition is most commonly associated with fast, generalized spike and wave activity on the EEG?

      Your Answer: Myoclonic epilepsy

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      17.7
      Seconds
  • Question 16 - What is the cell type that offers structural support in the central nervous...

    Correct

    • What is the cell type that offers structural support in the central nervous system?

      Your Answer: Astrocyte

      Explanation:

      Glial Cells: The Support System of the Central Nervous System

      The central nervous system is composed of two basic cell types: neurons and glial cells. Glial cells, also known as support cells, play a crucial role in maintaining the health and function of neurons. There are several types of glial cells, including macroglia (astrocytes and oligodendrocytes), ependymal cells, and microglia.

      Astrocytes are the most abundant type of glial cell and have numerous functions, such as providing structural support, repairing nervous tissue, nourishing neurons, contributing to the blood-brain barrier, and regulating neurotransmission and blood flow. There are two main types of astrocytes: protoplasmic and fibrous.

      Oligodendrocytes are responsible for the formation of myelin sheaths, which insulate and protect axons, allowing for faster and more efficient transmission of nerve impulses.

      Ependymal cells line the ventricular system and are involved in the circulation of cerebrospinal fluid (CSF) and fluid homeostasis in the brain. Specialized ependymal cells called choroid plexus cells produce CSF.

      Microglia are the immune cells of the CNS and play a crucial role in protecting the brain from infection and injury. They also contribute to the maintenance of neuronal health and function.

      In summary, glial cells are essential for the proper functioning of the central nervous system. They provide structural support, nourishment, insulation, and immune defense to neurons, ensuring the health and well-being of the brain and spinal cord.

    • This question is part of the following fields:

      • Neurosciences
      8.3
      Seconds
  • Question 17 - Through which structure does the mandibular division of the trigeminal nerve exit the...

    Incorrect

    • Through which structure does the mandibular division of the trigeminal nerve exit the cranial cavity?

      Your Answer: Foramen spinosum

      Correct Answer: Foramen ovale

      Explanation:

      Cranial Fossae and Foramina

      The cranium is divided into three regions known as fossae, each housing different cranial lobes. The anterior cranial fossa contains the frontal lobes and includes the frontal and ethmoid bones, as well as the lesser wing of the sphenoid. The middle cranial fossa contains the temporal lobes and includes the greater wing of the sphenoid, sella turcica, and most of the temporal bones. The posterior cranial fossa contains the occipital lobes, cerebellum, and medulla and includes the occipital bone.

      There are several foramina in the skull that allow for the passage of various structures. The most important foramina likely to appear in exams are listed below:

      – Foramen spinosum: located in the middle fossa and allows for the passage of the middle meningeal artery.
      – Foramen ovale: located in the middle fossa and allows for the passage of the mandibular division of the trigeminal nerve.
      – Foramen lacerum: located in the middle fossa and allows for the passage of the small meningeal branches of the ascending pharyngeal artery and emissary veins from the cavernous sinus.
      – Foramen magnum: located in the posterior fossa and allows for the passage of the spinal cord.
      – Jugular foramen: located in the posterior fossa and allows for the passage of cranial nerves IX, X, and XI.

      Understanding the location and function of these foramina is essential for medical professionals, as they play a crucial role in the diagnosis and treatment of various neurological conditions.

    • This question is part of the following fields:

      • Neurosciences
      17
      Seconds
  • Question 18 - From which structure does the mesolimbic pathway project to the nucleus accumbens? ...

    Correct

    • From which structure does the mesolimbic pathway project to the nucleus accumbens?

      Your Answer: Midbrain

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      9.2
      Seconds
  • Question 19 - A 30-year-old woman is diagnosed with damage to the Broca's area after experiencing...

    Correct

    • A 30-year-old woman is diagnosed with damage to the Broca's area after experiencing expressive aphasia following a car accident. Where is the Broca's area located in the brain?

      Your Answer: Inferior frontal gyrus

      Explanation:

      Broca’s area, located in the inferior frontal gyrus of the dominant hemisphere, is a crucial region for language production. It controls the motor functions necessary for speech production, and damage to this area can result in difficulties forming words and speaking. While language comprehension remains intact, the individual may experience expressive dysphasia, struggling to produce speech.

    • This question is part of the following fields:

      • Neurosciences
      6.4
      Seconds
  • Question 20 - Which wave pattern is considered the most abnormal during a state of wakefulness?...

    Correct

    • Which wave pattern is considered the most abnormal during a state of wakefulness?

      Your Answer: Delta

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      6.5
      Seconds
  • Question 21 - Which condition can be diagnosed based on an atypical tonsillar biopsy result? ...

    Correct

    • Which condition can be diagnosed based on an atypical tonsillar biopsy result?

      Your Answer: Variant CJD

      Explanation:

      To confirm a diagnosis of variant CJD, a tonsillar biopsy is performed as it is the only form of CJD that impacts the lymph nodes.

      Creutzfeldt-Jakob Disease: Differences between vCJD and CJD

      Creutzfeldt-Jakob Disease (CJD) is a prion disease that includes scrapie, BSE, and Kuru. However, there are important differences between sporadic (also known as classic) CJD and variant CJD. The table below summarizes these differences.

      vCJD:
      – Longer duration from onset of symptoms to death (a year of more)
      – Presents with psychiatric and behavioral symptoms before neurological symptoms
      – MRI shows pulvinar sign
      – EEG shows generalized slowing
      – Originates from infected meat products
      – Affects younger people (age 25-30)

      CJD:
      – Shorter duration from onset of symptoms to death (a few months)
      – Presents with neurological symptoms
      – MRI shows bilateral anterior basal ganglia high signal
      – EEG shows biphasic and triphasic waves 1-2 per second
      – Originates from genetic mutation (bad luck)
      – Affects older people (age 55-65)

      Overall, understanding the differences between vCJD and CJD is important for diagnosis and treatment.

    • This question is part of the following fields:

      • Neurosciences
      12.1
      Seconds
  • Question 22 - Mirror neurons provide a biological framework for comprehending what concept? ...

    Correct

    • Mirror neurons provide a biological framework for comprehending what concept?

      Your Answer: Imitation learning

      Explanation:

      Mirror Neurons: A Model for Imitation Learning

      Mirror neurons are a unique type of visuomotor neurons that were first identified in the premotor cortex of monkeys in area F5. These neurons fire not only when the monkey performs a specific action but also when it observes another individual, whether it is a monkey of a human, performing a similar action. This discovery has led to the development of a model for understanding imitation learning.

      Mirror neurons offer a fascinating insight into how humans and animals learn by imitation. They provide a neural mechanism that allows individuals to understand the actions of others and to replicate those actions themselves. This process is essential for social learning, as it enables individuals to learn from others and to adapt to their environment.

      The discovery of mirror neurons has also led to new research in the field of neuroscience, as scientists seek to understand how these neurons work and how they can be used to improve our understanding of human behavior. As we continue to learn more about mirror neurons, we may be able to develop new therapies for individuals with social and communication disorders, such as autism.

      Overall, mirror neurons are a fascinating area of research that has the potential to revolutionize our understanding of human behavior and learning. By studying these neurons, we may be able to unlock new insights into how we learn, communicate, and interact with others.

    • This question is part of the following fields:

      • Neurosciences
      4.7
      Seconds
  • Question 23 - Which medical conditions have been linked to the potential involvement of nitric oxide...

    Incorrect

    • Which medical conditions have been linked to the potential involvement of nitric oxide in their development?

      Your Answer: Schizophrenia

      Correct Answer: Depression

      Explanation:

      Nitric Oxide and Depression

      Recent research has indicated that nitric oxide (NO) may play a role in the development of depression. Inhibitors of NO synthase have been found to exhibit antidepressant-like effects in preclinical studies, suggesting that NO may be involved in the pathogenesis of depression. These findings suggest that targeting NO signaling pathways may be a potential therapeutic approach for treating depression. Further research is needed to fully understand the role of NO in depression and to develop effective treatments based on this knowledge.

    • This question is part of the following fields:

      • Neurosciences
      5.3
      Seconds
  • Question 24 - Which neurochemical pathway is responsible for causing extrapyramidal side effects (EPSEs) due to...

    Correct

    • Which neurochemical pathway is responsible for causing extrapyramidal side effects (EPSEs) due to dopamine blockade?

      Your Answer: Nigrostriatal

      Explanation:

      The Four Dopamine Pathways in the Brain

      The brain has four main dopamine pathways that play crucial roles in regulating various functions. The nigrostriatal pathway is responsible for motor movement and runs from the substantia nigra to the basal ganglia. However, blocking D2 receptors in this pathway can lead to extrapyramidal side effects (EPSEs).

      The tuberoinfundibular pathway, on the other hand, runs from the hypothalamus to the anterior pituitary and is responsible for regulating prolactin secretion. Dopamine inhibits prolactin secretion, which is why D2 selective antipsychotics can cause hyperprolactinemia.

      The mesocortical pathway originates from the ventral tegmental area (VTA) and runs to the prefrontal cortex. This pathway plays a crucial role in regulating cognition, executive functioning, and affect.

      Finally, the mesolimbic pathway also originates from the VTA and runs to the nucleus accumbens. This pathway is responsible for mediating positive psychotic symptoms, and dopamine hyperactivity in this pathway can lead to the development of these symptoms.

      Overall, understanding the different dopamine pathways in the brain is crucial for developing effective treatments for various psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      6.8
      Seconds
  • Question 25 - From which substance is melatonin produced? ...

    Correct

    • From which substance is melatonin produced?

      Your Answer: Serotonin

      Explanation:

      Melatonin: The Hormone of Darkness

      Melatonin is a hormone that is produced in the pineal gland from serotonin. This hormone is known to be released in higher amounts during the night, especially in dark environments. Melatonin plays a crucial role in regulating the sleep-wake cycle and is often referred to as the hormone of darkness.

      The production of melatonin is influenced by the amount of light that enters the eyes. When it is dark, the pineal gland releases more melatonin, which helps to promote sleep. On the other hand, when it is light, the production of melatonin is suppressed, which helps to keep us awake and alert.

      Melatonin is also known to have antioxidant properties and may help to protect the body against oxidative stress. It has been suggested that melatonin may have a role in the prevention of certain diseases, such as cancer and neurodegenerative disorders.

      Overall, melatonin is an important hormone that plays a crucial role in regulating our sleep-wake cycle and may have other health benefits as well.

    • This question is part of the following fields:

      • Neurosciences
      4.9
      Seconds
  • Question 26 - What is the accurate statement about night terrors in children? ...

    Correct

    • What is the accurate statement about night terrors in children?

      Your Answer: Violent behaviour has been reported

      Explanation:

      Night terrors typically occur during deep sleep in stage 4. Upon waking, there is no memory of the experience. These episodes can be considered a dissociative state and may involve automatic behaviors. In some cases, violent behavior may occur during night terrors, but the individual cannot be held accountable for their actions. Family history is not a common factor in the occurrence of night terrors.

    • This question is part of the following fields:

      • Neurosciences
      23.3
      Seconds
  • Question 27 - What is a true statement about multisystem atrophy? ...

    Correct

    • What is a true statement about multisystem atrophy?

      Your Answer: Associated Parkinson's symptoms respond poorly to levodopa

      Explanation:

      Parkinson plus syndromes, including multisystem atrophy, exhibit a limited efficacy towards Parkinson’s treatment, such as levodopa.

      Multisystem Atrophy: A Parkinson Plus Syndrome

      Multisystem atrophy is a type of Parkinson plus syndrome that is characterized by three main features: Parkinsonism, autonomic failure, and cerebellar ataxia. It can present in three different ways, including Shy-Drager Syndrome, Striatonigral degeneration, and Olivopontocerebellar atrophy, each with varying degrees of the three main features.

      Macroscopic features of multisystem atrophy include pallor of the substantia nigra, greenish discoloration and atrophy of the putamen, and cerebellar atrophy. Microscopic features include the presence of Papp-Lantos bodies, which are alpha-synuclein inclusions found in oligodendrocytes in the substantia nigra, cerebellum, and basal ganglia.

      Overall, multisystem atrophy is a complex and debilitating condition that affects multiple systems in the body, leading to a range of symptoms and challenges for patients and their caregivers.

    • This question is part of the following fields:

      • Neurosciences
      9.4
      Seconds
  • Question 28 - What EEG alteration would be anticipated when a patient who is in a...

    Correct

    • What EEG alteration would be anticipated when a patient who is in a relaxed state with their eyes shut is instructed to open their eyes and read a text passage in front of them?

      Your Answer: The bilateral disappearance of alpha waves

      Explanation:

      When someone is in a relaxed state with their eyes closed, alpha waves can be detected in the posterior regions of their head. However, these waves will disappear if the person becomes drowsy, concentrates on something, is stimulated, of fixates on a visual object. If the environment is dark, the alpha waves may still be present even with the eyes open.

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      17.1
      Seconds
  • Question 29 - A senior citizen is experiencing sedation during lurasidone dose titration. What is the...

    Correct

    • A senior citizen is experiencing sedation during lurasidone dose titration. What is the medication's minimum effective dose?

      Your Answer: 37 mg

      Explanation:

      Lurasidone may cause akathisia and sedation as common side effects, which can vary based on the dosage. Its metabolic profile is neutral. However, doses lower than 37 mg are unlikely to produce desired results.

    • This question is part of the following fields:

      • Neurosciences
      14.2
      Seconds
  • Question 30 - In what circumstances are neurofibrillary tangles less commonly observed? ...

    Incorrect

    • In what circumstances are neurofibrillary tangles less commonly observed?

      Your Answer: Dementia pugilistica

      Correct Answer: Vascular dementia

      Explanation:

      Tauopathies exhibit tangles, but vascular dementia is not classified as one.

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      13.4
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurosciences (26/30) 87%
Passmed