-
Question 1
Correct
-
Where is troponin T located within the body?
Your Answer: Heart
Explanation:Troponin and Its Significance in Cardiac Health
Troponin is an enzyme that is specific to the heart and is used to detect injury to the heart muscle. It is commonly measured in patients who present with chest pain that may be related to heart problems. Elevated levels of troponin can indicate a heart attack or other acute coronary syndromes. However, it is important to note that troponin levels may also be slightly elevated in other conditions such as renal failure, cardiomyopathy, myocarditis, and large pulmonary embolism.
Troponin is a crucial marker in the diagnosis and management of cardiac conditions. It is a reliable indicator of heart muscle damage and can help healthcare professionals determine the best course of treatment for their patients. Additionally, troponin levels can provide prognostic information, allowing doctors to predict the likelihood of future cardiac events. It is important for individuals to understand the significance of troponin in their cardiac health and to seek medical attention if they experience any symptoms of heart problems.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Incorrect
-
One of the elderly patients at your general practice was recently hospitalized and diagnosed with myeloma. It was discovered that they have severe chronic kidney disease. The patient comes in for an update on their condition. After reviewing their medications, you realize they are taking ramipril for hypertension, which is contraindicated in renal failure. What is the most accurate description of the effect of ACE inhibitors on glomerular filtration pressure?
Your Answer: Vasoconstriction of the afferent arteriole
Correct Answer: Vasodilation of the efferent arteriole
Explanation:The efferent arteriole experiences vasodilation as a result of ACE inhibitors and ARBs, which inhibit the production of angiotensin II and block its receptors. This leads to a decrease in glomerular filtration pressure and rate, particularly in individuals with renal artery stenosis. On the other hand, the afferent arteriole remains dilated due to the presence of prostaglandins. NSAIDs, which inhibit COX-1 and COX-2, can cause vasoconstriction of the afferent arteriole and a subsequent decrease in glomerular filtration pressure. In healthy individuals, the afferent arteriole remains dilated while the efferent arteriole remains constricted to maintain a balanced glomerular pressure. The patient in the scenario has been diagnosed with myeloma, a disease that arises from the malignant transformation of B-cells and is characterized by bone infiltration, hypercalcaemia, anaemia, and renal impairment.
Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.
While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.
Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.
The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Incorrect
-
A 78-year-old woman has recently been diagnosed with heart failure following 10 months of progressive breathlessness and swelling in her ankles. She has been prescribed several medications and provided with lifestyle recommendations. What are the two types of infections that she is most susceptible to due to her recent diagnosis?
Your Answer: Chest infections and myocarditis
Correct Answer: Chest infections and ulcerated cellulitic legs
Explanation:As a result of the volume overload caused by heart failure, she will have a higher susceptibility to chest infections due to pulmonary edema and leg infections due to peripheral edema.
Chronic heart failure can be managed through drug treatment, according to updated guidelines issued by NICE in 2018. While loop diuretics are useful in managing fluid overload, they do not reduce mortality in the long term. The first-line treatment for all patients is a combination of an ACE-inhibitor and a beta-blocker, with clinical judgement used to determine which one to start first. Aldosterone antagonists are recommended as second-line treatment, but potassium levels should be monitored as both ACE inhibitors and aldosterone antagonists can cause hyperkalaemia. Third-line treatment should be initiated by a specialist and may include ivabradine, sacubitril-valsartan, hydralazine in combination with nitrate, digoxin, and cardiac resynchronisation therapy. Other treatments include annual influenzae and one-off pneumococcal vaccines. Those with asplenia, splenic dysfunction, or chronic kidney disease may require a booster every 5 years.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
An individual in their mid-20s is identified to have a superior vena cava on the left side. What is the most probable route for blood from this system to reach the heart?
Your Answer: Via the coronary sinus
Explanation:The Superior Vena Cava: Anatomy, Relations, and Developmental Variations
The superior vena cava (SVC) is a large vein that drains blood from the head and neck, upper limbs, thorax, and part of the abdominal walls. It is formed by the union of the subclavian and internal jugular veins, which then join to form the right and left brachiocephalic veins. The SVC is located in the anterior margins of the right lung and pleura, and is related to the trachea and right vagus nerve posteromedially, and the posterior aspects of the right lung and pleura posterolaterally. The pulmonary hilum is located posteriorly, while the right phrenic nerve and pleura are located laterally on the right side, and the brachiocephalic artery and ascending aorta are located laterally on the left side.
Developmental variations of the SVC are recognized, including anomalies of its connection and interruption of the inferior vena cava (IVC) in its abdominal course. In some individuals, a persistent left-sided SVC may drain into the right atrium via an enlarged orifice of the coronary sinus, while in rare cases, the left-sided vena cava may connect directly with the superior aspect of the left atrium, usually associated with an un-roofing of the coronary sinus. Interruption of the IVC may occur in patients with left-sided atrial isomerism, with drainage achieved via the azygos venous system.
Overall, understanding the anatomy, relations, and developmental variations of the SVC is important for medical professionals in diagnosing and treating related conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Incorrect
-
A 25-year-old man comes to the clinic complaining of shortness of breath during physical activity. He has no significant medical history but mentions that his mother passed away while playing netball at the age of 28. During the physical exam, the doctor detects an ejection systolic murmur when listening to his heart. The intensity of the murmur decreases when the patient squats. An echocardiogram is ordered to further investigate.
What findings may be observed on the echocardiogram of this patient?Your Answer:
Correct Answer: Systolic anterior motion (SAM)
Explanation:The presence of asymmetric septal hypertrophy and systolic anterior movement (SAM) of the anterior leaflet of the mitral valve on echocardiogram or cMR strongly suggests the diagnosis of hypertrophic obstructive cardiomyopathy (HOCM) in this patient. This is further supported by his symptoms of exertional dyspnoea and family history of sudden cardiac death, possibly related to HOCM. The observation of SAM on echocardiogram is a common finding in patients with HOCM.
Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
A 55-year-old man is having a radical gastrectomy for stomach cancer. What structure must be divided to access the coeliac axis during the procedure?
Your Answer:
Correct Answer: Lesser omentum
Explanation:The division of the lesser omentum is necessary during a radical gastrectomy as it constitutes one of the nodal stations that must be removed.
The Coeliac Axis and its Branches
The coeliac axis is a major artery that supplies blood to the upper abdominal organs. It has three main branches: the left gastric, hepatic, and splenic arteries. The hepatic artery further branches into the right gastric, gastroduodenal, right gastroepiploic, superior pancreaticoduodenal, and cystic arteries. Meanwhile, the splenic artery gives off the pancreatic, short gastric, and left gastroepiploic arteries. Occasionally, the coeliac axis also gives off one of the inferior phrenic arteries.
The coeliac axis is located anteriorly to the lesser omentum and is related to the right and left coeliac ganglia, as well as the caudate process of the liver and the gastric cardia. Inferiorly, it is in close proximity to the upper border of the pancreas and the renal vein.
Understanding the anatomy and branches of the coeliac axis is important in diagnosing and treating conditions that affect the upper abdominal organs, such as pancreatic cancer or gastric ulcers.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Incorrect
-
A woman visits her physician and undergoes lying and standing blood pressure tests. Upon standing, her baroreceptors sense reduced stretch, triggering the baroreceptor reflex. This results in a decrease in baroreceptor activity, leading to an elevation in sympathetic discharge.
What is the function of the neurotransmitter that is released?Your Answer:
Correct Answer: Noradrenaline binds to β 1 receptors in the SA node increasing depolarisation
Explanation:The binding of noradrenaline to β 1 receptors in the SA node is responsible for an increase in heart rate due to an increase in depolarisation in the pacemaker action potential, allowing for more frequent firing of action potentials. As the SA node is the pacemaker in a healthy individual, the predominant β receptor found in the heart, β 1, is the one that noradrenaline acts on more than β 2 and α 2 receptors. Therefore, the correct answer is that noradrenaline binds to β 1 receptors in the SA node.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
A 22-year-old male student is brought to the Emergency Department via ambulance. He is unconscious, hypotensive, and tachycardic. According to his friend, he started feeling unwell after being stung by a bee in the park. The medical team suspects anaphylactic shock and begins resuscitation. While anaphylactic shock causes widespread vasodilation, which mediator is responsible for arteriole constriction?
Your Answer:
Correct Answer: Endothelin
Explanation:Arteriolar constriction is facilitated by various mediators such as noradrenaline from the sympathetic nervous system, circulating catecholamines, angiotensin-2, and locally released endothelin peptide by endothelial cells. Endothelin primarily acts on ET(A) receptors to cause constriction, but it can also cause dilation by acting on ET(B) receptors.
On the other hand, the parasympathetic nervous system, nitric oxide, and prostacyclin are all responsible for facilitating arteriolar dilation, rather than constriction.
Understanding Endothelin and Its Role in Various Diseases
Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.
Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.
In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
A 65-year-old man presents for a coronary angiogram due to worsening symptoms of unstable angina. The cardiologist observes multiple significant coronary stenoses, which are likely related to the patient's numerous risk factors, including hypertension, heavy smoking, hypercholesterolemia, and type 2 diabetes mellitus. What is the ultimate step in the development of this pathology?
Your Answer:
Correct Answer: Smooth muscle proliferation and migration
Explanation:Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 78-year-old woman visits her doctor complaining of increasing breathlessness at night and swollen ankles over the past 10 months. She has a medical history of ischaemic heart disease, but an echocardiogram reveals normal valve function. During the examination, the doctor detects a low-pitched sound at the start of diastole, following S2. What is the probable reason for this sound?
Your Answer:
Correct Answer: Rapid movement of blood entering ventricles from atria
Explanation:S3 is an unusual sound that can be detected in certain heart failure patients. It is caused by the rapid movement and oscillation of blood into the ventricles.
Another abnormal heart sound, S4, is caused by forceful atrial contraction and occurs later in diastole.
While aortic regurgitation causes an early diastolic decrescendo murmur and mitral stenosis can cause a mid-diastolic rumble with an opening snap, these conditions are less likely as the echocardiogram reported normal valve function.
A patent ductus arteriosus typically causes a continuous murmur and would present earlier in life.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
A 61-year-old man recovering from severe community-acquired pneumonia is being assessed by a consultant and a medical student. He has a medical history of hypertension, heart failure, depression, and gout, and is currently taking ramipril, atenolol, furosemide, sertraline, allopurinol, and ibuprofen. The consultant suspects that his slightly low blood pressure may be due to his medications. The patient's urea and electrolyte levels are provided below. Can you identify the role of atenolol in reducing blood pressure?
Na+ 142 mmol/l
K+ 4.2 mmol/l
Urea 6 mmol/l
Creatinine 68 µmol/lYour Answer:
Correct Answer: Inhibits the release of renin from the kidneys
Explanation:Beta-blockers have an added advantage in treating hypertension as they can suppress the release of renin from the kidneys. This is because the release of renin is partly regulated by β1-adrenoceptors in the kidney, which are inhibited by beta-blockers. By reducing the amount of circulating plasma renin, the levels of angiotensin II and aldosterone decrease, leading to increased renal loss of sodium and water, ultimately lowering arterial pressure.
It is important to note that atenolol does not compete with aldosterone, unlike spironolactone, a potassium-sparing diuretic that does compete with aldosterone for its receptor. Additionally, atenolol does not inhibit the conversion of ATI to ATII, which is achieved by ACE-inhibitors like ramipril.
While both beta-1 and beta-2 receptors are present in the heart, atenolol primarily acts on beta-1 receptors, resulting in negative inotropic, negative chronotropic, and positive lusitropic effects. Lusitropy refers to the relaxation of the heart.
Therefore, the statement that atenolol inhibits the release of renin is correct, and the fifth option is incorrect.
Beta-blockers are a class of drugs that are primarily used to manage cardiovascular disorders. They have a wide range of indications, including angina, post-myocardial infarction, heart failure, arrhythmias, hypertension, thyrotoxicosis, migraine prophylaxis, and anxiety. Beta-blockers were previously avoided in heart failure, but recent evidence suggests that certain beta-blockers can improve both symptoms and mortality. They have also replaced digoxin as the rate-control drug of choice in atrial fibrillation. However, their role in reducing stroke and myocardial infarction has diminished in recent years due to a lack of evidence.
Examples of beta-blockers include atenolol and propranolol, which was one of the first beta-blockers to be developed. Propranolol is lipid-soluble, which means it can cross the blood-brain barrier.
Like all drugs, beta-blockers have side-effects. These can include bronchospasm, cold peripheries, fatigue, sleep disturbances (including nightmares), and erectile dysfunction. There are also some contraindications to using beta-blockers, such as uncontrolled heart failure, asthma, sick sinus syndrome, and concurrent use with verapamil, which can precipitate severe bradycardia.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Incorrect
-
A 75-year-old man with a medical history of heart failure, ischaemic heart disease, and type 2 diabetes mellitus presents to the cardiology clinic with complaints of dyspnoea and leg swelling. Upon examination, the physician notes bibasal crackles in the lungs and bilateral pitting oedema up to the mid-shin level. The heart sounds are normal. To alleviate the symptoms, the cardiologist prescribes furosemide. Which part of the kidney does furosemide target?
Your Answer:
Correct Answer: Na-K-2Cl symporter in the thick ascending loop of Henle
Explanation:Furosemide is a medication that is often prescribed to patients with heart failure who have excess fluid in their bodies. It works by inhibiting the Na-K-Cl cotransporter in the thick ascending limb of the loop of Henle, which prevents the reabsorption of sodium. This results in a less hypertonic renal medulla and reduces the osmotic force that causes water to be reabsorbed from the collecting ducts. As a result, more water is excreted through the kidneys.
It is important to be aware of the common side effects of loop diuretics, which are listed in the notes below.
Loop Diuretics: Mechanism of Action and Clinical Applications
Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.
Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
Linda is a 54-year-old woman who was admitted with a 3-day history of worsening shortness of breath. On her last admission 6 months ago, she was treated for a ST-elevation myocardial infarction (STEMI).
She does not experience any significant chest pain. A chest X-ray shows minor bibasal consolidation suggestive of mild pulmonary oedema. Her blood tests are as follow:
Na+ 138 mmol/L (135 - 145)
K+ 4.0 mmol/L (3.5 - 5.0)
Urea 5.8 mmol/L (2.0 - 7.0)
Creatinine 100 µmol/L (55 - 120)
A 12-lead electrocardiogram shows sinus rhythm. An echocardiogram shows reduced left ventricular (LV) contraction with an LV ejection fraction of 40%.
Which of the following treatments should be prescribed to reduce mortality?Your Answer:
Correct Answer: Ramipril
Explanation:For patients diagnosed with heart failure with reduced LVEF, the initial treatment should involve administering a beta blocker and an ACE inhibitor. In the case of the patient in question, the symptoms and echocardiogram results indicate the onset of LV failure, which is likely due to their previous STEMI. Therefore, the recommended course of action is to prescribe an ACE inhibitor and beta-blocker as the primary therapy. This will help alleviate the symptoms of heart failure by reducing the after-load on the heart.
Chronic heart failure can be managed through drug treatment, according to updated guidelines issued by NICE in 2018. While loop diuretics are useful in managing fluid overload, they do not reduce mortality in the long term. The first-line treatment for all patients is a combination of an ACE-inhibitor and a beta-blocker, with clinical judgement used to determine which one to start first. Aldosterone antagonists are recommended as second-line treatment, but potassium levels should be monitored as both ACE inhibitors and aldosterone antagonists can cause hyperkalaemia. Third-line treatment should be initiated by a specialist and may include ivabradine, sacubitril-valsartan, hydralazine in combination with nitrate, digoxin, and cardiac resynchronisation therapy. Other treatments include annual influenzae and one-off pneumococcal vaccines. Those with asplenia, splenic dysfunction, or chronic kidney disease may require a booster every 5 years.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Incorrect
-
A 57-year-old male with a history of hypertension for six years presents to the Emergency department with complaints of severe chest pain that radiates to his back, which he describes as tearing in nature. He is currently experiencing tachycardia and hypertension, with a blood pressure reading of 185/95 mmHg. A soft early diastolic murmur is also noted. The ECG shows ST elevation of 2 mm in the inferior leads, and a small left-sided pleural effusion is visible on chest x-ray. Based on the patient's clinical history, what is the initial diagnosis that needs to be ruled out?
Your Answer:
Correct Answer: Aortic dissection
Explanation:Aortic Dissection in a Hypertensive Patient
This patient is experiencing an aortic dissection, which is a serious medical condition. The patient’s hypertension is a contributing factor, and the pain they are experiencing is typical for this condition. One of the key features of aortic dissection is radiation of pain to the back. Upon examination, the patient also exhibits hypertension, aortic regurgitation, and pleural effusion, which are all consistent with this diagnosis. The ECG changes in the inferior lead are likely due to the aortic dissection compromising the right coronary artery. To properly diagnose and treat this patient, it is crucial to thoroughly evaluate their peripheral pulses and urgently perform imaging of the aorta. Proper and timely medical intervention is necessary to prevent further complications and ensure the best possible outcome for the patient.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
A 52-year-old man comes to the emergency department complaining of severe crushing chest pain that spreads to his left arm and jaw. He also feels nauseous. Upon conducting an ECG, you observe ST-segment elevation in several chest leads and diagnose him with ST-elevation MI. From which vessel do the coronary vessels arise?
Your Answer:
Correct Answer: Ascending aorta
Explanation:The left and right coronary arteries originate from the left and right aortic sinuses, respectively. The left aortic sinus is located on the left side of the ascending aorta, while the right aortic sinus is situated at the back.
The coronary sinus is a venous vessel formed by the confluence of four coronary veins. It receives venous blood from the great, middle, small, and posterior cardiac veins and empties into the right atrium.
The descending aorta is a continuation of the aortic arch and runs through the chest and abdomen before dividing into the left and right common iliac arteries. It has several branches along its path.
The pulmonary veins transport oxygenated blood from the lungs to the left atrium and do not have any branches.
The pulmonary artery carries deoxygenated blood from the right ventricle to the lungs. It splits into the left and right pulmonary arteries, which travel to the left and right lungs, respectively.
The patient in the previous question has exhibited symptoms indicative of acute coronary syndrome, and the ECG results confirm an ST-elevation myocardial infarction.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
As a curious fourth-year medical student, you observe the birth of a full-term baby delivered vaginally to a mother who has given birth once before. The infant's Apgar score is 9 at 1 minute and 10 at 10 minutes, and the delivery is uncomplicated. However, a postnatal examination reveals that the ductus arteriosus has not closed properly. Can you explain the process by which this structure normally closes?
Your Answer:
Correct Answer: Decreased prostaglandin concentration
Explanation:The ductus arteriosus, which is a shunt connecting the pulmonary artery with the descending aorta in utero, closes with the first breaths of life. This is due to an increase in pulmonary blood flow, which helps to clear local vasodilating prostaglandins that keep the duct open during fetal development. The opening of the lung alveoli with the first breath of life leads to an increase in oxygen tension in the blood, but this is not the primary mechanism behind the closure of the ductus arteriosus. It is important to note that oxygen tension in the blood increases after birth when the infant breathes in air and no longer receives mixed oxygenated blood via the placenta.
Understanding Patent Ductus Arteriosus
Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.
This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.
The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
As the physician in charge of the health of a 70-year-old man who came in for his yearly check-up, you discover that he smokes 15 cigarettes daily and has a medical history of hypertension and hypercholesterolemia. During the examination, you hear a left-sided carotid bruit while auscultating. A recent duplex ultrasound showed that the left internal carotid artery has a 50% stenosis. What is the final step in the pathogenesis of this man's condition?
Your Answer:
Correct Answer: Smooth muscle proliferation and migration into the tunica intima
Explanation:Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Incorrect
-
Which one of the following is not a branch of the external carotid artery?
Your Answer:
Correct Answer: Mandibular artery
Explanation:Mnemonic for branches of the external carotid artery:
Some Angry Lady Figured Out PMS
S – Superior thyroid (superior laryngeal artery branch)
A – Ascending pharyngeal
L – Lingual
F – Facial (tonsillar and labial artery)
O – Occipital
P – Posterior auricular
M – Maxillary (inferior alveolar artery, middle meningeal artery)
S – Superficial temporalAnatomy of the External Carotid Artery
The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.
To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.
The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
A 57-year-old man comes to see his doctor with concerns about his sexual relationship with his new wife. Upon further inquiry, he discloses that he is experiencing difficulty in achieving physical arousal and is experiencing delayed orgasms. He did not report any such issues during his medication review six weeks ago and believes that the recent change in medication may be responsible for this.
The patient's medical history includes asthma, hypertension, migraine, bilateral hip replacement, and gout.
Which medication is the most likely cause of his recent prescription change?Your Answer:
Correct Answer: Indapamide
Explanation:Thiazide-like diuretics, including indapamide, can cause sexual dysfunction, which is evident in this patient’s history. Before attempting to manage the issue, it is important to rule out any iatrogenic causes. Ramipril, an ACE-inhibitor, is not associated with sexual dysfunction, while losartan, an angiotensin II receptor blocker, and amlodipine, a dihydropyridine calcium channel blocker, are also not known to cause sexual dysfunction and are used in the management of hypertension.
Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
A 78-year-old ex-smoker comes to the clinic complaining of chest discomfort and shortness of breath. He had a history of ST-elevation myocardial infarction 10 days ago, which was treated with thrombolysis. During the examination, a high-pitch holosystolic murmur is heard at the apex. The ECG shows widespread ST elevation. Unfortunately, the patient experiences cardiac arrest and passes away. What is the probable histological finding in his heart?
Your Answer:
Correct Answer: Macrophages and granulation tissue at margins
Explanation:The histology findings of a myocardial infarction (MI) vary depending on the time elapsed since the event. Within the first 24 hours, there is evidence of early coagulative necrosis, neutrophils, wavy fibers, and hypercontraction of myofibrils. This stage is associated with a high risk of ventricular arrhythmia, heart failure, and cardiogenic shock.
Between 1-3 days post-MI, there is extensive coagulative necrosis and an influx of neutrophils, which can lead to fibrinous pericarditis. From 3-14 days post-MI, macrophages and granulation tissue are present at the margins, and there is a high risk of complications such as free wall rupture (which can cause mitral regurgitation), papillary muscle rupture, and left ventricular pseudoaneurysm.
After 2 weeks to several months, the scar tissue has contracted and is complete. This stage is associated with Dressler syndrome, heart failure, arrhythmias, and mural thrombus. It is important to note that the risk of complications decreases as time passes, but long-term management and monitoring are still necessary for patients who have experienced an MI.
Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 21
Incorrect
-
A 65-year-old man was brought to the emergency department due to a respiratory infection. After receiving antibiotics and showing signs of improvement, he suddenly collapsed before being released. An ECG was performed and revealed fast, irregular QRS complexes that seemed to be twisting around the baseline.
Which antibiotic is the probable culprit for the aforementioned situation?Your Answer:
Correct Answer: Clarithromycin
Explanation:Torsades de pointes can be caused by macrolides
The probable reason for the patient’s collapse is torsades de pointes, which is identified by fast, irregular QRS complexes that seem to be ‘twisting’ around the baseline on the ECG. This condition is linked to a prolonged QT interval. In this instance, the QT interval was prolonged due to the use of clarithromycin, a macrolide antibiotic. None of the other medications have been found to prolong the QT interval.
Torsades de pointes is a type of ventricular tachycardia that is associated with a prolonged QT interval. This condition can lead to ventricular fibrillation and sudden death. There are several causes of a long QT interval, including congenital conditions such as Jervell-Lange-Nielsen syndrome and Romano-Ward syndrome, as well as certain medications like amiodarone, tricyclic antidepressants, and antipsychotics. Other factors that can contribute to a long QT interval include electrolyte imbalances, myocarditis, hypothermia, and subarachnoid hemorrhage. The management of torsades de pointes typically involves the administration of intravenous magnesium sulfate.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Incorrect
-
A 70-year-old male arrives at the emergency department complaining of tearing chest pain that radiates to his back. He has a history of uncontrolled hypertension. During auscultation, a diastolic murmur is heard, which is most audible over the 2nd intercostal space, right sternal border. What chest radiograph findings are expected from this patient's presentation?
Your Answer:
Correct Answer: Widened mediastinum
Explanation:Aortic dissection can cause a widened mediastinum on a chest x-ray. This condition is characterized by tearing chest pain that radiates to the back, hypertension, and aortic regurgitation. It occurs when there is a tear in the tunica intima of the aorta’s wall, creating a false lumen that fills with a large volume of blood.
Calcification of the arch of the aorta, cardiomegaly, displacement of the trachea from the midline, and enlargement of the aortic knob are not commonly associated with aortic dissection. Calcification of the walls of arteries is a chronic process that occurs with age and is more likely in men. Cardiomegaly can be caused by various conditions, including ischaemic heart disease and congenital abnormalities. Displacement of the trachea from the midline can result from other pathologies such as a tension pneumothorax or an aortic aneurysm. Enlargement of the aortic knob is a classical finding of an aortic aneurysm.
Aortic dissection is classified according to the location of the tear in the aorta. The Stanford classification divides it into type A, which affects the ascending aorta in two-thirds of cases, and type B, which affects the descending aorta distal to the left subclavian origin in one-third of cases. The DeBakey classification divides it into type I, which originates in the ascending aorta and propagates to at least the aortic arch and possibly beyond it distally, type II, which originates in and is confined to the ascending aorta, and type III, which originates in the descending aorta and rarely extends proximally but will extend distally.
To diagnose aortic dissection, a chest x-ray may show a widened mediastinum, but CT angiography of the chest, abdomen, and pelvis is the investigation of choice. However, the choice of investigations should take into account the patient’s clinical stability, as they may present acutely and be unstable. Transoesophageal echocardiography (TOE) is more suitable for unstable patients who are too risky to take to the CT scanner.
The management of type A aortic dissection is surgical, but blood pressure should be controlled to a target systolic of 100-120 mmHg while awaiting intervention. On the other hand, type B aortic dissection is managed conservatively with bed rest and IV labetalol to reduce blood pressure and prevent progression. Complications of a backward tear include aortic incompetence/regurgitation and MI, while complications of a forward tear include unequal arm pulses and BP, stroke, and renal failure. Endovascular repair of type B aortic dissection may have a role in the future.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 23
Incorrect
-
A 63-year-old man comes to the clinic for a hypertension follow-up. He was diagnosed with high blood pressure two months ago and started on amlodipine. However, his blood pressure remained uncontrolled, so ramipril was added four weeks ago. During his visit today, his blood pressure is measured at 155/92 mmHg. You decide to prescribe indapamide, a thiazide-like diuretic. Can you explain the mechanism of action of thiazide-like diuretics?
Your Answer:
Correct Answer: Inhibit Na+ Cl- cotransporter
Explanation:Thiazide-like drugs such as indapamide work by blocking the Na+-Cl− symporter at the beginning of the distal convoluted tubule, which inhibits sodium reabsorption. Loop diuretics, on the other hand, inhibit the Na+ K+ 2Cl- cotransporters in the thick ascending loop of Henle. Amiloride, a potassium-sparing diuretic, inhibits the epithelial sodium channels in the cortical collecting ducts, while spironolactone, another potassium-sparing diuretic, blocks the action of aldosterone on aldosterone receptors and inhibits the Na+/K+ exchanger in the cortical collecting ducts.
Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
A 65-year-old woman with confirmed heart failure visits her GP with swelling and discomfort in both legs. During the examination, the GP observes pitting edema and decides to prescribe a brief trial of a diuretic. Which diuretic targets the thick ascending limb of the loop of Henle?
Your Answer:
Correct Answer: Furosemide (loop diuretic)
Explanation:Loop Diuretics: Mechanism of Action and Clinical Applications
Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.
Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 25
Incorrect
-
During surgery on her neck, a woman in her 50s suffers a vagus nerve injury where the nerve is cut near the exit from the skull. She wakes up with a high heart rate and high blood pressure due to loss of parasympathetic tone.
What other features would be expected with a vagus nerve injury?Your Answer:
Correct Answer: Hoarse voice
Explanation:The vagus (X) nerve is responsible for all innervation related to speech, meaning that any injuries to this nerve can lead to speech problems. It’s important to note that the vagus nerve has both autonomic and somatic effects, with the latter being the most crucial for speech. This involves the motor supply to the larynx through the recurrent laryngeal nerves, which are branches of the vagus. If one vagus nerve is damaged, it would have the same impact as damage to a single recurrent laryngeal nerve, resulting in a hoarse voice.
However, it’s worth noting that anal tone, erections, and urination are controlled by the sacral parasympathetics and would not be affected by the loss of the vagus nerve. Similarly, pupillary constriction is controlled by parasympathetics on the oculomotor nerve and would not be impacted by the loss of the vagus nerve.
The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.
The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.
The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 26
Incorrect
-
A 63-year-old man arrives at the emergency department complaining of severe chest pain that feels like crushing. He is sweating heavily and feels nauseous. Upon conducting an ECG, you observe ST-segment elevation in multiple chest leads and sinus bradycardia. It is known that myocardial infarction can cause sinus bradycardia. Can you identify the arterial vessel that typically supplies blood to both the sinoatrial (SA) node and the atrioventricular (AV) node?
Your Answer:
Correct Answer: Right coronary artery
Explanation:The heart is supplied with blood by the coronary arteries, which branch off from the aorta. The right coronary artery supplies blood to the right side of the heart, while the left coronary artery supplies blood to the left side of the heart.
Occlusion, or blockage, of the right coronary artery can cause inferior myocardial infarction (MI), which is indicated on an electrocardiogram (ECG) by changes in leads II, III, and aVF. This type of MI is particularly associated with arrhythmias because the right coronary artery usually supplies the sinoatrial (SA) and atrioventricular (AV) nodes.
The left anterior descending artery (LAD) is one of the two branches of the left coronary artery. It runs along the front of the heart’s interventricular septum to reach the apex of the heart. One or more diagonal branches may arise from the LAD. Occlusion of the LAD can cause anteroseptal MI, which is evident on an ECG with changes in leads V1-V4.
The right marginal artery branches off from the right coronary artery near the bottom of the heart and continues along the heart’s bottom edge towards the apex.
The left circumflex artery is the other branch of the left coronary artery. It runs in the coronary sulcus around the base of the heart and gives rise to the left marginal artery. Occlusion of the left circumflex artery is typically associated with lateral MI.
The left marginal artery arises from the left circumflex artery and runs along the heart’s obtuse margin.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 27
Incorrect
-
Which of the following complications is the least commonly associated with ventricular septal defects in pediatric patients?
Your Answer:
Correct Answer: Atrial fibrillation
Explanation:Understanding Ventricular Septal Defect
Ventricular septal defect (VSD) is a common congenital heart disease that affects many individuals. It is caused by a hole in the wall that separates the two lower chambers of the heart. In some cases, VSDs may close on their own, but in other cases, they require specialized management.
There are various causes of VSDs, including chromosomal disorders such as Down’s syndrome, Edward’s syndrome, Patau syndrome, and cri-du-chat syndrome. Congenital infections and post-myocardial infarction can also lead to VSDs. The condition can be detected during routine scans in utero or may present post-natally with symptoms such as failure to thrive, heart failure, hepatomegaly, tachypnea, tachycardia, pallor, and a pansystolic murmur.
Management of VSDs depends on the size and symptoms of the defect. Small VSDs that are asymptomatic may require monitoring, while moderate to large VSDs may result in heart failure and require nutritional support, medication for heart failure, and surgical closure of the defect.
Complications of VSDs include aortic regurgitation, infective endocarditis, Eisenmenger’s complex, right heart failure, and pulmonary hypertension. Eisenmenger’s complex is a severe complication that results in cyanosis and clubbing and is an indication for a heart-lung transplant. Women with pulmonary hypertension are advised against pregnancy as it carries a high risk of mortality.
In conclusion, VSD is a common congenital heart disease that requires specialized management. Early detection and appropriate treatment can prevent severe complications and improve outcomes for affected individuals.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 28
Incorrect
-
A 65-year-old woman is admitted with severe community-acquired pneumonia that progresses to sepsis and sepsis-driven atrial fibrillation. During examination, her blood pressure is unrecordable and a weak pulse is detected in her left arm. She reports experiencing weakness, numbness, and pain in her left arm, leading doctors to suspect an embolus. What is the embolus' direction of travel from her heart to her left arm?
Your Answer:
Correct Answer: Left atrium → Left ventricle → aortic arch → left subclavian artery → left axillary artery → left brachial artery
Explanation:The path of oxygenated blood is from the left atrium to the left ventricle, then through the aortic arch, left subclavian artery, left axillary artery, and finally the left brachial artery.
Vascular disorders of the upper limb are less common than those in the lower limb. The upper limb circulation can be affected by embolic events, stenotic lesions, inflammatory disorders, and venous diseases. The collateral circulation of the arterial inflow can impact disease presentation. Conditions include axillary/brachial embolus, arterial occlusions, Raynaud’s disease, upper limb venous thrombosis, and cervical rib. Treatment varies depending on the condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Incorrect
-
A woman with suspected heart failure has a transthoracic echocardiogram (TTE) to investigate the function of her heart. The goal is to measure her ejection fraction, however, to do this first her stroke volume must be measured.
What is the formula for stroke volume?Your Answer:
Correct Answer: End diastolic volume - end systolic volume
Explanation:Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.
Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.
Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 30
Incorrect
-
A 25-year-old athlete is collaborating with the cardiovascular physiology department to enhance their performance. They are observing their heart rate to optimize their training routine. After a rigorous treadmill test, their heart rate rises from 56 beats per minute (BPM) to 184 BPM, leading to an increase in their cardiac output.
What is the most accurate description of the alterations in stroke volume during the treadmill test?Your Answer:
Correct Answer: Increased venous return from the muscles, increases preload and increases stroke volume
Explanation:When the body is exercising, the heart needs to increase its output to meet the increased demand for oxygen in the muscles. This is achieved by increasing the heart rate, but there is a limit to how much the heart rate can increase. To achieve a total increase in cardiac output, the stroke volume must also increase. This is done by increasing the preload, which is facilitated by an increase in venous return.
Therefore, an increase in venous return will always result in an increase in preload and stroke volume. Conversely, a decrease in venous return will lead to a decrease in preload and stroke volume, as there is less blood returning to the heart from the rest of the body. It is important to note that an increase in venous return cannot result in a decrease in either stroke volume or preload.
Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.
Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.
Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)