-
Question 1
Correct
-
A 65-year-old man is admitted after experiencing an acute coronary syndrome. He is prescribed aspirin, clopidogrel, nitrates, and morphine. Due to his high 6-month risk score, percutaneous coronary intervention is planned and he is given intravenous tirofiban. What is the mechanism of action of this medication?
Your Answer: Glycoprotein IIb/IIIa receptor antagonist
Explanation:Glycoprotein IIb/IIIa Receptor Antagonists
Glycoprotein IIb/IIIa receptor antagonists are a class of drugs that inhibit the function of the glycoprotein IIb/IIIa receptor, which is found on the surface of platelets. These drugs are used to prevent blood clots from forming in patients with acute coronary syndrome, unstable angina, or during percutaneous coronary intervention (PCI).
Examples of glycoprotein IIb/IIIa receptor antagonists include abciximab, eptifibatide, and tirofiban. These drugs work by blocking the binding of fibrinogen to the glycoprotein IIb/IIIa receptor, which prevents platelet aggregation and the formation of blood clots.
Glycoprotein IIb/IIIa receptor antagonists are typically administered intravenously and are used in combination with other antiplatelet agents, such as aspirin and clopidogrel. While these drugs are effective at preventing blood clots, they can also increase the risk of bleeding. Therefore, careful monitoring of patients is necessary to ensure that the benefits of these drugs outweigh the risks.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Correct
-
A 65-year-old woman experiences chest discomfort during physical activity and is diagnosed with angina.
What alterations are expected to be observed in her arteries?Your Answer: Smooth muscle proliferation and migration from the tunica media to the intima
Explanation:The final stage in the development of an atheroma involves the proliferation and migration of smooth muscle from the tunica media into the intima. While monocytes do migrate, they differentiate into macrophages which then phagocytose LDLs and form foam cells. Additionally, there is infiltration of LDLs. The formation of fibrous capsules is a result of the smooth muscle proliferation and migration. Atherosclerosis is also associated with a reduction in nitric oxide availability.
Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Correct
-
During the repair of an atrial septal defect, the surgeons notice blood leakage from the coronary sinus. What is the largest tributary of the coronary sinus?
Your Answer: Great cardiac vein
Explanation:The largest tributary of the coronary sinus is the great cardiac vein, which runs in the anterior interventricular groove. The heart is drained directly by the Thebesian veins.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
Which vessel is the first to branch from the external carotid artery?
Your Answer: Superior thyroid artery
Explanation:Here is a mnemonic to remember the order in which the branches of the external carotid artery originate: Some Attendings Like Freaking Out Potential Medical Students. The first branch is the superior thyroid artery, followed by the ascending pharyngeal, lingual, facial, occipital, post auricular, and finally the maxillary and superficial temporal arteries.
Anatomy of the External Carotid Artery
The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.
To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.
The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Correct
-
A 30-year-old man arrived at the emergency department following a syncopal episode during a game of basketball. He is typically healthy with no prior medical history, but he does mention experiencing occasional palpitations, which he believes may be due to alcohol or caffeine consumption. Upon further inquiry, he reveals that his father passed away suddenly at the age of 40 due to a heart condition. What is the underlying pathophysiological alteration in this patient?
Your Answer: Asymmetric septal hypertrophy
Explanation:When a young patient presents with symptoms of syncope and chest discomfort, along with a family history of hypertrophic cardiomyopathy (HOCM), it is important to consider the possibility of this condition. Asymmetric septal hypertrophy and systolic anterior movement (SAM) of the anterior leaflet of the mitral valve on echocardiogram or cMR are supportive of HOCM. This condition is caused by a genetic defect in the beta-myosin heavy chain protein gene. While Brugada syndrome may also be a consideration, it is not listed as a possible answer due to its underlying mechanism of sodium channelopathy.
Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
A 3-week-old male is brought to the paediatrician with concerns of inadequate feeding and weight gain. During cardiac examination, a continuous 'machine-like' murmur is detected. An echocardiogram confirms the presence of a patent ductus arteriosus (PDA).
What is the name of the structure that would remain if the PDA had closed at birth?Your Answer: Fossa ovalis
Correct Answer: Ligamentum arteriosum
Explanation:The ligamentum arteriosum is what remains of the ductus arteriosus after it typically closes at birth. If the ductus arteriosus remains open, known as a patent ductus arteriosus, it can cause infants to fail to thrive. The ventricles of the heart come from the bulbus cordis and primitive ventricle. The coronary sinus is formed by a group of cardiac veins merging together. The ligamentum venosum is the leftover of the ductus venosum. The fossa ovalis is created when the foramen ovale closes.
During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Correct
-
A 45-year-old patient has a cardiac output of 6 L/min and a heart rate of 60/min. Her end-diastolic left ventricular volume is 200ml. What is her left ventricular ejection fraction (LVEF)?
Your Answer: 50%
Explanation:Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.
Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.
Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Correct
-
A 55-year-old male patient complains of sudden chest pain and is being evaluated for acute coronary syndrome. Upon fasting, his serum cholesterol level was found to be 7.1 mmol/L (<5.2). What is the best initial course of action for managing this patient?
Your Answer: Statin therapy
Explanation:Statin Therapy for Hypercholesterolemia in Acute Coronary Syndrome
Hypercholesterolemia is a common condition in patients with acute coronary syndrome. The initial treatment approach for such patients is statin therapy, which includes drugs like simvastatin, atorvastatin, and rosuvastatin. Statins have been proven to reduce mortality in both primary and secondary prevention studies. The target cholesterol concentration for patients with hypercholesterolemia and acute coronary syndrome is less than 5 mmol/L.
According to NICE guidance, statins should be used more widely in conjunction with a QRISK2 score to stratify risk. This will help prevent cardiovascular disease and improve patient outcomes. The guidance recommends that statins be used in patients with a 10% or greater risk of developing cardiovascular disease within the next 10 years. By using statins in conjunction with risk stratification, healthcare professionals can provide more targeted and effective treatment for patients with hypercholesterolemia and acute coronary syndrome.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Correct
-
A 55-year-old man is undergoing investigation for a secondary cause of early-onset heart failure and a systolic murmur. He is referred for an echocardiogram, which reveals an ejection fraction of 62% and impaired diastolic function of the myocardial tissue. Additionally, the report notes a septal wall thickness of 17mm. What is the most probable condition responsible for these findings?
Your Answer: Hypertrophic obstructive cardiomyopathy
Explanation:Hypertrophic obstructive cardiomyopathy (HOCM) is a likely cause of diastolic dysfunction, which can lead to heart failure with preserved ejection fraction (HF-pEF). This genetic cardiomyopathy is associated with sudden cardiac death, syncope, and heart failure. Unlike other conditions, such as degenerative calcification of the aortic valve or dilated cardiomyopathy, HOCM typically presents with diastolic dysfunction rather than systolic dysfunction. Ischaemic heart disease is also unlikely to be the cause of diastolic dysfunction and would typically present with heart failure and systolic dysfunction.
Types of Heart Failure
Heart failure is a clinical syndrome where the heart cannot pump enough blood to meet the body’s metabolic needs. It can be classified in multiple ways, including by ejection fraction, time, and left/right side. Patients with heart failure may have a normal or abnormal left ventricular ejection fraction (LVEF), which is measured using echocardiography. Reduced LVEF is typically defined as < 35 to 40% and is termed heart failure with reduced ejection fraction (HF-rEF), while preserved LVEF is termed heart failure with preserved ejection fraction (HF-pEF). Heart failure can also be described as acute or chronic, with acute heart failure referring to an acute exacerbation of chronic heart failure. Left-sided heart failure is more common and may be due to increased left ventricular afterload or preload, while right-sided heart failure is caused by increased right ventricular afterload or preload. High-output heart failure is another type of heart failure that occurs when a normal heart is unable to pump enough blood to meet the body's metabolic needs. By classifying heart failure in these ways, healthcare professionals can better understand the underlying causes and tailor treatment plans accordingly. It is important to note that many guidelines for the management of heart failure only cover HF-rEF patients and do not address the management of HF-pEF patients. Understanding the different types of heart failure can help healthcare professionals provide more effective care for their patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 44-year-old male presents to the hospital with a headache and blurry vision that started two hours ago. He appears drowsy but is oriented to time, place, and person. He has no history of similar episodes and cannot recall the last time he saw a doctor. He denies any chest pain or shortness of breath. His respiratory rate is 16 breaths per minute, heart rate is 91 beats per minute, and blood pressure is 185/118 mmHg. A random blood glucose level is 6.1 mmol/l. The physician decides to initiate treatment with hydralazine, the only available drug at the time. How does this medication work in this patient?
Your Answer: It elevates the levels of cyclic GMP by causing a release of nitric oxide which then produce a relaxation of the smooth muscle
Correct Answer: It elevates the levels of cyclic GMP leading to a relaxation of the smooth muscle to a greater extent in the arterioles than the veins
Explanation:Hydralazine is a medication commonly used in the acute setting to lower blood pressure. It works by increasing the levels of cyclic GMP, which leads to smooth muscle relaxation. This effect is more pronounced in the arterioles than the veins. The increased levels of cyclic GMP activate protein kinase G, which phosphorylates and activates myosin light chain phosphatase. This prevents the smooth muscle from contracting, resulting in vasodilation. This mechanism of action is different from calcium channel blockers such as amlodipine, which work by blocking calcium channels. Nitroprusside is another medication that increases cyclic GMP levels, but it is not mentioned as an option in this scenario.
Hydralazine: An Antihypertensive with Limited Use
Hydralazine is an antihypertensive medication that is not commonly used nowadays. It is still prescribed for severe hypertension and hypertension in pregnancy. The drug works by increasing cGMP, which leads to smooth muscle relaxation. However, there are certain contraindications to its use, such as systemic lupus erythematosus and ischaemic heart disease/cerebrovascular disease.
Despite its potential benefits, hydralazine can cause adverse effects such as tachycardia, palpitations, flushing, fluid retention, headache, and drug-induced lupus. Therefore, it is not the first choice for treating hypertension in most cases. Overall, hydralazine is an older medication that has limited use due to its potential side effects and newer, more effective antihypertensive options available.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
You are shadowing a cardiologist during a clinic session and the first patient is an 80-year-old man who has come for his annual check-up. He reports experiencing swollen ankles, increased shortness of breath, and difficulty sleeping flat. He has a history of heart failure but has been stable for the past 10 years. He believes that his condition has worsened since starting a new medication, but he cannot recall the name of the drug. Unfortunately, the electronic medical records are down, and you cannot access his medication history. Which of the following medications is most likely responsible for his symptoms?
Your Answer: Ramipril
Correct Answer: Hydralazine
Explanation:Hydralazine is unique among these drugs as it has been known to cause fluid retention by elevating the plasma concentration of renin. Conversely, the other drugs listed are recognized for their ability to reduce fluid overload and promote fluid elimination.
Hydralazine: An Antihypertensive with Limited Use
Hydralazine is an antihypertensive medication that is not commonly used nowadays. It is still prescribed for severe hypertension and hypertension in pregnancy. The drug works by increasing cGMP, which leads to smooth muscle relaxation. However, there are certain contraindications to its use, such as systemic lupus erythematosus and ischaemic heart disease/cerebrovascular disease.
Despite its potential benefits, hydralazine can cause adverse effects such as tachycardia, palpitations, flushing, fluid retention, headache, and drug-induced lupus. Therefore, it is not the first choice for treating hypertension in most cases. Overall, hydralazine is an older medication that has limited use due to its potential side effects and newer, more effective antihypertensive options available.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Incorrect
-
A 48-year-old man with a history of hypertension and type 2 diabetes mellitus arrives at the emergency department with loss of vision on the right side.
Which artery disease could be responsible for his symptoms?Your Answer: Facial artery
Correct Answer: Internal carotid artery
Explanation:The ophthalmic artery is the first branch of the internal carotid artery and supplies the orbit. If the internal carotid artery is affected by disease, it can lead to vision loss. However, disease of the external carotid artery, which supplies structures of the face and neck, or its branches such as the facial artery (which supplies skin and muscles of the face), lingual artery (which supplies the tongue and oral mucosa), or middle meningeal artery (which supplies the cranial dura), would not result in vision loss. Disease of the middle meningeal artery is commonly associated with extradural hematoma.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
A 82-year-old male is admitted to the Emergency Room with complaints of severe chest pain that spreads to his left arm and jaw. Upon conducting an Electrocardiography (ECG), it is confirmed that he is suffering from ST-elevation myocardial infarction. He is then transferred for percutaneous coronary intervention but unfortunately, he suffers a cardiac arrest and passes away 12 hours after his initial presentation. What are the probable histological findings that would be observed in his heart?
Your Answer: Coagulative necrosis, macrophage, fibroblast
Correct Answer: Coagulative necrosis, neutrophils, wavy fibres, hypercontraction of myofibrils
Explanation:In the first 24 hours after a myocardial infarction (MI), histology findings show early coagulative necrosis, neutrophils, wavy fibers, and hypercontraction of myofibrils. This stage carries a high risk of ventricular arrhythmia, heart failure, and cardiogenic shock.
Between 1 and 3 days post-MI, extensive coagulative necrosis and neutrophils are present, which can be associated with fibrinous pericarditis.
From 3 to 14 days post-MI, macrophages and granulation tissue appear at the margins. This stage carries a high risk of free wall rupture, papillary muscle rupture, and left ventricular pseudoaneurysm.
Between 2 weeks and several months post-MI, the contracted scar is complete. This stage is associated with Dressler syndrome, heart failure, arrhythmias, and mural thrombus.
Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Correct
-
A 65-year-old male with chronic cardiac failure visits his doctor and reports experiencing dyspnoea even with minimal physical exertion, and only feeling comfortable when at rest. What class of the New York Heart Association scale does he fall under?
Your Answer: III
Explanation:The NYHA Scale for Cardiac Failure Patients
The NYHA scale is a tool used to standardize the description of the severity of cardiac failure patients. It classifies patients into four categories based on their symptoms and limitations of activities. Class I patients have no limitations and do not experience any symptoms during ordinary activities. Class II patients have mild limitations and are comfortable with rest or mild exertion. Class III patients have marked limitations and are only comfortable at rest. Finally, Class IV patients should be at complete rest and are confined to bed or chair. Any physical activity brings discomfort and symptoms occur even at rest.
The NYHA scale is an important tool for healthcare professionals to assess the severity of cardiac failure in patients. It helps to determine the appropriate treatment plan and level of care needed for each patient. By using this scale, healthcare professionals can communicate more effectively with each other and with patients about the severity of their condition. It also helps patients to understand their limitations and adjust their activities accordingly. Overall, the NYHA scale is a valuable tool in the management of cardiac failure patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
A 70-year-old male presents to the Emergency Department with a 3-hour history of tearing chest pain. He has a past medical history of poorly controlled hypertension. His observations show:
Respiratory rate of 20 breaths/min
Pulse of 95 beats/min
Temperature of 37.3ºC
Blood pressure of 176/148 mmHg
Oxygen saturations of 97% on room air
Auscultation of the heart identifies a diastolic murmur, heard loudest over the 2nd intercostal space, right sternal border.
What CT angiography findings would be expected in this patient's likely diagnosis?Your Answer: Thrombus in the right pulmonary artery
Correct Answer: False lumen of the ascending aorta
Explanation:A false lumen in the descending aorta is a significant indication of aortic dissection on CT angiography. This condition is characterized by tearing chest pain, hypertension, and aortic regurgitation, which can be detected through a diastolic murmur over the 2nd intercostal space, right sternal border. The false lumen is formed due to a tear in the tunica intima of the aortic wall, which fills with a large volume of blood and is easily visible on angiographic CT.
Ballooning of the aortic arch is an incorrect answer as it refers to an aneurysm, which is a condition where the artery walls weaken and abnormally bulge out or widen. Aneurysms are prone to rupture and can have varying effects depending on their location.
Blurring of the posterior wall of the descending aorta is also an incorrect answer as it is a sign of a retroperitoneal, contained rupture of an aortic aneurysm. This condition may present with hypovolemic shock, hypotension, tachycardia, and tachypnea, leading to collapse.
Total occlusion of the left anterior descending artery is another incorrect answer as it would likely result in ST-elevation myocardial infarction (STEMI). Although chest pain is a symptom of both conditions, the nature of the pain and investigation findings make aortic dissection more likely. It is important to note that coronary arteries can only be viewed through coronary angiography, which involves injecting contrast directly into the coronary arteries using a catheter, and not through CT angiography.
Aortic dissection is classified according to the location of the tear in the aorta. The Stanford classification divides it into type A, which affects the ascending aorta in two-thirds of cases, and type B, which affects the descending aorta distal to the left subclavian origin in one-third of cases. The DeBakey classification divides it into type I, which originates in the ascending aorta and propagates to at least the aortic arch and possibly beyond it distally, type II, which originates in and is confined to the ascending aorta, and type III, which originates in the descending aorta and rarely extends proximally but will extend distally.
To diagnose aortic dissection, a chest x-ray may show a widened mediastinum, but CT angiography of the chest, abdomen, and pelvis is the investigation of choice. However, the choice of investigations should take into account the patient’s clinical stability, as they may present acutely and be unstable. Transoesophageal echocardiography (TOE) is more suitable for unstable patients who are too risky to take to the CT scanner.
The management of type A aortic dissection is surgical, but blood pressure should be controlled to a target systolic of 100-120 mmHg while awaiting intervention. On the other hand, type B aortic dissection is managed conservatively with bed rest and IV labetalol to reduce blood pressure and prevent progression. Complications of a backward tear include aortic incompetence/regurgitation and MI, while complications of a forward tear include unequal arm pulses and BP, stroke, and renal failure. Endovascular repair of type B aortic dissection may have a role in the future.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
A 57-year-old Asian man arrived at the emergency department with complaints of chest pain. After initial investigations, he was diagnosed with a non-ST elevation myocardial infarction. The patient was prescribed dual antiplatelet therapy, consisting of aspirin and ticagrelor, along with subcutaneous fondaparinux. However, a few days after starting the treatment, he reported experiencing shortness of breath. What is the mechanism of action of the drug responsible for this adverse reaction?
Your Answer: Non-selective COX-1 and COX-2 inhibitor
Correct Answer: Inhibits ADP binding to platelet receptors
Explanation:ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Correct
-
A 68-year-old woman arrives at the emergency department with complaints of shortness of breath and palpitations. During the examination, you observe an irregularly irregular pulse. To check for signs of atrial fibrillation, you opt to conduct an ECG. In a healthy individual, where is the SA node located in the heart?
Your Answer: Right atrium
Explanation:The SA node is situated at the junction of the superior vena cava and the right atrium, and is responsible for initiating cardiac impulses in a healthy heart. The AV node, located in the atrioventricular septum, regulates the spread of excitation from the atria to the ventricles. The patient’s symptoms of palpitations and shortness of breath, along with an irregularly irregular pulse, strongly indicate atrial fibrillation. ECG findings consistent with atrial fibrillation include an irregularly irregular rhythm and the absence of P waves.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Correct
-
A 63-year-old man visits his physician complaining of exertional dyspnea. To assess his heart function, he undergoes a transthoracic echocardiogram.
What is the method used to determine his cardiac output from the echocardiogram?Your Answer: (end diastolic LV volume - end systolic LV volume) x heart rate
Explanation:Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.
Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.
Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
A 26-year-old man collapses during a game of cricket. He has previously experienced chest pain and shortness of breath while running, which subsides on rest. Upon examination, he is found to have an ejection systolic murmur that intensifies with Valsalva maneuvers and diminishes with squatting. His echocardiogram reveals mitral regurgitation, asymmetric hypertrophy, and systolic anterior motion of the anterior mitral valve leaflet. What is the expected inheritance pattern for this diagnosis?
Your Answer: X-linked recessive
Correct Answer: Autosomal dominant
Explanation:The inheritance pattern of HOCM is autosomal dominant, which means that it can be passed down from generation to generation. Symptoms of HOCM may include exertional dyspnoea, angina, syncope, and an ejection systolic murmur. It is important to note that there may be a family history of similar cardiac problems or sudden death due to ventricular arrhythmias. Autosomal recessive, mitochondrial inheritance, and X-linked dominant inheritance are not applicable to HOCM.
Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
As a medical student in general practice, you come across a patient with poorly controlled hypertension. The decision is made to initiate Bendroflumethiazide therapy. What could be a possible contraindication for starting this medication?
Your Answer: Refractory hyperkalaemia
Correct Answer: Gout
Explanation:Gout may be a potential side effect of thiazides.
It is important to note that spironolactone and bendroflumethiazide belong to different drug classes, so being allergic to one does not necessarily mean the other cannot be prescribed.
Bendroflumethiazide is a type of diuretic that causes the body to lose potassium, so it may actually be prescribed in cases of refractory hyperkalemia rather than being avoided.
Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)