00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 59-year-old man presents to the emergency department with pleuritic thoracic pain and...

    Correct

    • A 59-year-old man presents to the emergency department with pleuritic thoracic pain and fever. His medical history includes an inferior STEMI that occurred 3 weeks ago. During auscultation, a pericardial rub is detected, and his ECG shows diffuse ST segment elevation and PR segment depression. What is the complication of myocardial infarction that the patient is experiencing?

      Your Answer: Dressler syndrome

      Explanation:

      The patient’s symptoms strongly suggest Dressler syndrome, which is an autoimmune-related inflammation of the pericardium that typically occurs 2-6 weeks after a heart attack. This condition is characterized by fever, pleuritic pain, and diffuse ST elevation and PR depression on an electrocardiogram. A pleural friction rub can also be heard during a physical exam.

      While another heart attack is a possibility, the absence of diffuse ST elevation and the presence of a pleural friction rub make this diagnosis less likely.

      A left ventricular aneurysm would present with persistent ST elevation but no chest pain.

      Ventricular free wall rupture typically occurs 1-2 weeks after a heart attack and would present with acute heart failure due to cardiac tamponade, which is characterized by raised jugular venous pressure, pulsus paradoxus, and diminished heart sounds.

      A ventricular septal defect usually occurs within the first week and would present with acute heart failure and a pansystolic murmur.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      35.7
      Seconds
  • Question 2 - A 47-year-old woman has a laparoscopic cholecystectomy as a day case procedure. The...

    Correct

    • A 47-year-old woman has a laparoscopic cholecystectomy as a day case procedure. The surgery proves to be more challenging than expected, and a drain is inserted at the surgical site. During recovery, the patient experiences a significant loss of 1800ml of visible blood into the drain. Which of the following outcomes is not expected?

      Your Answer: Release of aldosterone via the Bainbridge reflex

      Explanation:

      The Bainbridge reflex is a response where the heart rate is elevated due to the activation of atrial stretch receptors following a sudden infusion of blood.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      25.7
      Seconds
  • Question 3 - You are on the ward and notice that an elderly patient lying supine...

    Incorrect

    • You are on the ward and notice that an elderly patient lying supine in a monitored bed is hypotensive, with a blood pressure of 90/70 mmHg and tachycardic, with a heart rate of 120 beats/minute.

      You adjust the bed to raise the patient's legs by 45 degrees and after 1 minute you measure the blood pressure again. The blood pressure increases to 100/75 and you prescribe a 500mL bag of normal saline to be given IV over 15 minutes.

      What physiological association explains the increase in the elderly patient's blood pressure?

      Your Answer: Venous return is proportional to contractility

      Correct Answer: Venous return is proportional to stroke volume

      Explanation:

      Fluid responsiveness is typically indicated by changes in cardiac output or stroke volume in response to fluid administration. However, the strength of cardiac muscle contraction is influenced by adrenaline and noradrenaline, which enhance cardiac contractility rather than Starling’s law.

      Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.

      Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.

      Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      24.1
      Seconds
  • Question 4 - A 67-year-old woman visits her GP for a check-up after suffering from a...

    Correct

    • A 67-year-old woman visits her GP for a check-up after suffering from a significant anterior ST-elevation myocardial infarction (STEMI) 3 months ago. She has been feeling constantly fatigued and unwell and is worried that her heart may be causing these symptoms. Additionally, she has been experiencing sharp chest pain that worsens when she lies down and feels slightly breathless.

      During the examination, the GP observes that her blood pressure drops by approximately 10mmHg when she inhales.

      What is the probable reason for her symptoms and examination results?

      Your Answer: Dressler syndrome (DS)

      Explanation:

      The most likely pathology in this case is Dressler syndrome (DS), which is a complication that can occur after a myocardial infarction (MI) from 2 weeks to several months post-MI. The patient’s symptoms of fatigue, malaise, pleuritic chest pain, and mild dyspnoea are consistent with DS. Additionally, the physical examination finding of decreased blood pressure (>10mmHg) on inspiration, known as ‘pulsus paradoxes’, is associated with DS.

      Heart failure with reduced ejection fraction (HFrEF) is an incorrect option as it does not typically cause pleuritic chest pain or pulsus paradoxes. Medication-related causes are also unlikely as the combination of symptoms described in this stem would not be caused by post-MI medications alone. Post-MI depression is another incorrect option as it would not account for all the symptoms present.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      60.8
      Seconds
  • Question 5 - A 79-year-old man presents to a heart failure clinic with worsening peripheral oedema...

    Incorrect

    • A 79-year-old man presents to a heart failure clinic with worsening peripheral oedema and seeks advice on potential treatment options. The patient has a medical history of heart failure with reduced ejection fraction and chronic kidney disease. His current medication regimen includes ramipril, bisoprolol, atorvastatin, and furosemide.

      The patient's laboratory results show a sodium level of 139 mmol/L (135 - 145), potassium level of 3.6 mmol/L (3.5 - 5.0), bicarbonate level of 24 mmol/L (22 - 29), urea level of 7.4 mmol/L (2.0 - 7.0), creatinine level of 132 µmol/L (55 - 120), and an estimated glomerular filtration rate (eGFR) of 53 ml/min/1.73m2 (>60).

      What adjustments should be made to the patient's furosemide treatment?

      Your Answer: Withhold until eGFR increases

      Correct Answer: Increase the dose

      Explanation:

      To ensure sufficient concentration of loop diuretics within the tubules, patients with poor renal function may require increased doses. This is because loop diuretics, such as furosemide, work by inhibiting the Na-K-Cl cotransporter in the thick ascending limb of the loop of Henle, which reduces the absorption of NaCl. As these diuretics work on the apical membrane, they must first be filtered into the tubules by the glomerulus before they can have an effect. Therefore, increasing the dose can help achieve the desired concentration within the tubules. The other options, such as changing to amlodipine, keeping the dose the same, or stopping immediately, are not appropriate in this scenario.

      Loop Diuretics: Mechanism of Action and Clinical Applications

      Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.

      Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.

    • This question is part of the following fields:

      • Cardiovascular System
      85.7
      Seconds
  • Question 6 - A 25-year-old man is scheduled for cardiac catheterisation to repair a possible atrial...

    Incorrect

    • A 25-year-old man is scheduled for cardiac catheterisation to repair a possible atrial septal defect. What is the typical oxygen saturation level in the right atrium for a person in good health?

      Your Answer: 60%

      Correct Answer: 70%

      Explanation:

      Understanding Oxygen Saturation Levels in Cardiac Catheterisation

      Cardiac catheterisation and oxygen saturation levels can be confusing, but with a few basic rules and logical deduction, it can be easily understood. Deoxygenated blood returns to the right side of the heart through the superior and inferior vena cava with an oxygen saturation level of around 70%. The right atrium, right ventricle, and pulmonary artery also have oxygen saturation levels of around 70%. The lungs oxygenate the blood to a level of around 98-100%, resulting in the left atrium, left ventricle, and aorta having oxygen saturation levels of 98-100%.

      Different scenarios can affect oxygen saturation levels. For instance, in an atrial septal defect (ASD), the oxygenated blood in the left atrium mixes with the deoxygenated blood in the right atrium, resulting in intermediate levels of oxygenation from the right atrium onwards. In a ventricular septal defect (VSD), the oxygenated blood in the left ventricle mixes with the deoxygenated blood in the right ventricle, resulting in intermediate levels of oxygenation from the right ventricle onwards. In a patent ductus arteriosus (PDA), the higher pressure aorta connects with the lower pressure pulmonary artery, resulting in only the pulmonary artery having intermediate oxygenation levels.

      Understanding the expected oxygen saturation levels in different scenarios can help in diagnosing and treating cardiac conditions. The table above shows the oxygen saturation levels that would be expected in different diagnoses, including VSD with Eisenmenger’s and ASD with Eisenmenger’s. By understanding these levels, healthcare professionals can provide better care for their patients.

    • This question is part of the following fields:

      • Cardiovascular System
      20.4
      Seconds
  • Question 7 - A middle-aged man is informed of his hypertension during routine check-ups. The physician...

    Incorrect

    • A middle-aged man is informed of his hypertension during routine check-ups. The physician clarifies that his age increases the likelihood of a secondary cause for his hypertension. What is the primary cause of secondary hypertension?

      Your Answer: Endocrine disease

      Correct Answer: Renal disease

      Explanation:

      Secondary hypertension is primarily caused by renal disease, while other endocrine diseases like hyperaldosteronism, phaeochromocytoma, and acromegaly are less common culprits. Malignancy and pregnancy typically do not lead to hypertension, although pregnancy can result in pre-eclampsia, which is characterized by high blood pressure. Certain medications, such as NSAIDs and glucocorticoids, can also induce hypertension.

      Secondary Causes of Hypertension

      Hypertension, or high blood pressure, can be caused by various factors. While primary hypertension has no identifiable cause, secondary hypertension is caused by an underlying medical condition. The most common cause of secondary hypertension is primary hyperaldosteronism, which accounts for 5-10% of cases. Other causes include renal diseases such as glomerulonephritis, pyelonephritis, adult polycystic kidney disease, and renal artery stenosis. Endocrine disorders like phaeochromocytoma, Cushing’s syndrome, Liddle’s syndrome, congenital adrenal hyperplasia, and acromegaly can also result in increased blood pressure. Certain medications like steroids, monoamine oxidase inhibitors, the combined oral contraceptive pill, NSAIDs, and leflunomide can also cause hypertension. Pregnancy and coarctation of the aorta are other possible causes. Identifying and treating the underlying condition is crucial in managing secondary hypertension.

    • This question is part of the following fields:

      • Cardiovascular System
      20.9
      Seconds
  • Question 8 - A 28-year-old pregnant woman discusses her varicose veins with her midwife. She has...

    Correct

    • A 28-year-old pregnant woman discusses her varicose veins with her midwife. She has noticed these veins for a couple of weeks now, and they appeared during her pregnancy. Lately, she has observed red-brown discoloration around the veins on the back of her calf. What could be the probable root cause of this?

      Your Answer: Haemosiderin deposition

      Explanation:

      The hyperpigmentation observed in patients with varicose eczema/venous ulcers is likely caused by haemosiderin deposition. This occurs when red blood cells burst due to venous stasis, leading to the release of haemoglobin which is stored as haemosiderin. The excess haemosiderin causes a local red-brown discolouration around areas of varicose veins.

      Acanthosis nigricans is an unlikely cause as it is associated with metabolic disorders and not varicose veins. Atrophie blanche describes hypopigmentation seen in venous ulcers, while lipodermatosclerosis causes thickening of the skin in varicose veins without changing the skin color. Melanoma, a skin cancer that causes dark discolouration, is unlikely to be associated with varicose veins and is an unlikely explanation for the observed discolouration on the back of the calf.

      Understanding Varicose Veins

      Varicose veins are enlarged and twisted veins that occur when the valves in the veins become weak or damaged, causing blood to flow backward and pool in the veins. They are most commonly found in the legs and can be caused by various factors such as age, gender, pregnancy, obesity, and genetics. While many people seek treatment for cosmetic reasons, others may experience symptoms such as aching, throbbing, and itching. In severe cases, varicose veins can lead to skin changes, bleeding, superficial thrombophlebitis, and venous ulceration.

      To diagnose varicose veins, a venous duplex ultrasound is typically performed to detect retrograde venous flow. Treatment options vary depending on the severity of the condition. Conservative treatments such as leg elevation, weight loss, regular exercise, and compression stockings may be recommended for mild cases. However, patients with significant or troublesome symptoms, skin changes, or a history of bleeding or ulcers may require referral to a specialist for further evaluation and treatment. Possible treatments include endothermal ablation, foam sclerotherapy, or surgery.

      In summary, varicose veins are a common condition that can cause discomfort and cosmetic concerns. While many cases do not require intervention, it is important to seek medical attention if symptoms or complications arise. With proper diagnosis and treatment, patients can manage their condition and improve their quality of life.

    • This question is part of the following fields:

      • Cardiovascular System
      15.2
      Seconds
  • Question 9 - A 23-year-old male university student presents to the emergency department with lightheadedness and...

    Correct

    • A 23-year-old male university student presents to the emergency department with lightheadedness and a fall an hour earlier, associated with loss of consciousness. He admits to being short of breath on exertion with chest pain for several months. The patient denies vomiting or haemoptysis. The symptoms are not exacerbated or relieved by any positional changes or during phases of respiration.

      He has no relevant past medical history, is not on any regular medications, and has no documented drug allergies. There is no relevant family history. He is a non-smoker and drinks nine unite of alcohol a week. He denies any recent travel or drug use.

      On examination, the patient appears to be comfortable at rest. His heart rate is 68/min, blood pressure 112/84 mmHg, oxygen saturation 99% on air, respiratory rate of 16 breaths per minute, temperature 36.7ºC.

      An ejection systolic murmur is audible throughout the praecordium, loudest over the sternum bilaterally. No heaves or thrills are palpable, and there are no radiations. The murmur gets louder when the patient is asked to perform the Valsalva manoeuvre. The murmur is noted as grade II. Lung fields are clear on auscultation. The abdomen is soft and non-tender, with bowel sounds present. His body mass index is 20 kg/m².

      His ECG taken on admission reveals sinus rhythm, with generalised deep Q waves and widespread T waves. There is evidence of left ventricular hypertrophy.

      What is the most likely diagnosis?

      Your Answer: Hypertrophic obstructive cardiomyopathy

      Explanation:

      The patient’s symptoms and findings suggest the possibility of hypertrophic obstructive cardiomyopathy (HOCM), which is characterized by exertional dyspnea, chest pain, syncope, and ejection systolic murmur that is louder during Valsalva maneuver and quieter during squatting. The ECG changes observed are also consistent with HOCM. Given the patient’s young age, it is crucial to rule out this diagnosis as HOCM is a leading cause of sudden cardiac death in young individuals.

      Brugada syndrome, an autosomal dominant cause of sudden cardiac death in young people, may also present with unexplained falls. However, the absence of a family history of cardiac disease and the unlikely association with the murmur and ECG changes described make this diagnosis less likely. It is important to note that performing Valsalva maneuver in a patient with Brugada syndrome can be life-threatening due to the risk of arrhythmias such as ventricular fibrillation.

      Chagas disease, a parasitic disease prevalent in South America, is caused by an insect bite and has a long dormant period before causing ventricular damage. However, the patient’s age and absence of exposure to the disease make this diagnosis less likely.

      Myocardial infarction can cause central chest pain and ECG changes, but it is rare for it to present with falls. Moreover, the ECG changes observed are not typical of myocardial infarction. The patient’s young age and lack of cardiac risk factors also make this diagnosis less likely.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      103.8
      Seconds
  • Question 10 - A 25-year-old man comes to the clinic complaining of shortness of breath during...

    Incorrect

    • A 25-year-old man comes to the clinic complaining of shortness of breath during physical activity. He has no significant medical history but mentions that his mother passed away while playing netball at the age of 28. During the physical exam, the doctor detects an ejection systolic murmur when listening to his heart. The intensity of the murmur decreases when the patient squats. An echocardiogram is ordered to further investigate.

      What findings may be observed on the echocardiogram of this patient?

      Your Answer: Endomyocardial echogenicity

      Correct Answer: Systolic anterior motion (SAM)

      Explanation:

      The presence of asymmetric septal hypertrophy and systolic anterior movement (SAM) of the anterior leaflet of the mitral valve on echocardiogram or cMR strongly suggests the diagnosis of hypertrophic obstructive cardiomyopathy (HOCM) in this patient. This is further supported by his symptoms of exertional dyspnoea and family history of sudden cardiac death, possibly related to HOCM. The observation of SAM on echocardiogram is a common finding in patients with HOCM.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      25.3
      Seconds
  • Question 11 - A 24-year-old patient is brought to the emergency department after ingesting a bottle...

    Correct

    • A 24-year-old patient is brought to the emergency department after ingesting a bottle of insecticide and experiencing multiple episodes of vomiting. The suspected diagnosis is organophosphate poisoning and the patient is being treated with supportive measures and atropine. What potential side effect of atropine administration should be monitored for in this patient?

      Your Answer: Hypohidrosis

      Explanation:

      Hypohidrosis is a possible side-effect of Atropine.

      Atropine is an anticholinergic drug that works by blocking the muscarinic acetylcholine receptor in a competitive manner. Its side-effects may include tachycardia, mydriasis, dry mouth, hypohidrosis, constipation, and urinary retention. It is important to note that the other listed side-effects are typically associated with muscarinic agonist drugs like pilocarpine.

      Understanding Atropine and Its Uses

      Atropine is a medication that works against the muscarinic acetylcholine receptor. It is commonly used to treat symptomatic bradycardia and organophosphate poisoning. In cases of bradycardia with adverse signs, IV atropine is the first-line treatment. However, it is no longer recommended for routine use in asystole or pulseless electrical activity (PEA) during advanced life support.

      Atropine has several physiological effects, including tachycardia and mydriasis. However, it is important to note that it may trigger acute angle-closure glaucoma in susceptible patients. Therefore, it is crucial to use atropine with caution and under the guidance of a healthcare professional. Understanding the uses and effects of atropine can help individuals make informed decisions about their healthcare.

    • This question is part of the following fields:

      • Cardiovascular System
      37.9
      Seconds
  • Question 12 - A 75-year-old woman is hospitalized with acute mesenteric ischemia. During a CT angiogram,...

    Correct

    • A 75-year-old woman is hospitalized with acute mesenteric ischemia. During a CT angiogram, a narrowing is observed at the point where the superior mesenteric artery originates. At what level does this artery branch off from the aorta?

      Your Answer: L1

      Explanation:

      The inferior pancreatico-duodenal artery is the first branch of the SMA, which exits the aorta at L1 and travels beneath the neck of the pancreas.

      The Superior Mesenteric Artery and its Branches

      The superior mesenteric artery is a major blood vessel that branches off the aorta at the level of the first lumbar vertebrae. It supplies blood to the small intestine from the duodenum to the mid transverse colon. However, due to its more oblique angle from the aorta, it is more susceptible to receiving emboli than the coeliac axis.

      The superior mesenteric artery is closely related to several structures, including the neck of the pancreas superiorly, the third part of the duodenum and uncinate process postero-inferiorly, and the left renal vein posteriorly. Additionally, the right superior mesenteric vein is also in close proximity.

      The superior mesenteric artery has several branches, including the inferior pancreatico-duodenal artery, jejunal and ileal arcades, ileo-colic artery, right colic artery, and middle colic artery. These branches supply blood to various parts of the small and large intestine. An overview of the superior mesenteric artery and its branches can be seen in the accompanying image.

    • This question is part of the following fields:

      • Cardiovascular System
      24.6
      Seconds
  • Question 13 - A 65-year-old man with heart failure visits his GP complaining of peripheral edema....

    Incorrect

    • A 65-year-old man with heart failure visits his GP complaining of peripheral edema. Upon examination, he is diagnosed with fluid overload, leading to the release of atrial natriuretic peptide by the atrial myocytes. What is the mechanism of action of atrial natriuretic peptide?

      Your Answer: Agonist of aldosterone

      Correct Answer: Antagonist of angiotensin II

      Explanation:

      Angiotensin II is opposed by atrial natriuretic peptide, while B-type natriuretic peptides inhibit the renin-angiotensin-aldosterone system and sympathetic activity. Additionally, aldosterone is antagonized by atrial natriuretic peptide. Renin catalyzes the conversion of angiotensinogen into angiotensin I.

      Atrial natriuretic peptide is a hormone that is primarily secreted by the myocytes of the right atrium and ventricle in response to an increase in blood volume. It is also secreted by the left atrium, although to a lesser extent. This peptide hormone is composed of 28 amino acids and acts through the cGMP pathway. It is broken down by endopeptidases.

      The main actions of atrial natriuretic peptide include promoting the excretion of sodium and lowering blood pressure. It achieves this by antagonizing the actions of angiotensin II and aldosterone. Overall, atrial natriuretic peptide plays an important role in regulating fluid and electrolyte balance in the body.

    • This question is part of the following fields:

      • Cardiovascular System
      21.2
      Seconds
  • Question 14 - The venous drainage of the heart is aided by the Thebesian veins. To...

    Correct

    • The venous drainage of the heart is aided by the Thebesian veins. To which primary structure do they drain?

      Your Answer: Atrium

      Explanation:

      The surface of the heart is covered by numerous small veins known as thebesian veins, which drain directly into the heart, typically into the atrium.

      The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.

    • This question is part of the following fields:

      • Cardiovascular System
      14
      Seconds
  • Question 15 - Where is troponin T located within the body? ...

    Correct

    • Where is troponin T located within the body?

      Your Answer: Heart

      Explanation:

      Troponin and Its Significance in Cardiac Health

      Troponin is an enzyme that is specific to the heart and is used to detect injury to the heart muscle. It is commonly measured in patients who present with chest pain that may be related to heart problems. Elevated levels of troponin can indicate a heart attack or other acute coronary syndromes. However, it is important to note that troponin levels may also be slightly elevated in other conditions such as renal failure, cardiomyopathy, myocarditis, and large pulmonary embolism.

      Troponin is a crucial marker in the diagnosis and management of cardiac conditions. It is a reliable indicator of heart muscle damage and can help healthcare professionals determine the best course of treatment for their patients. Additionally, troponin levels can provide prognostic information, allowing doctors to predict the likelihood of future cardiac events. It is important for individuals to understand the significance of troponin in their cardiac health and to seek medical attention if they experience any symptoms of heart problems.

    • This question is part of the following fields:

      • Cardiovascular System
      3.7
      Seconds
  • Question 16 - An 80-year-old man presents with progressive shortness of breath, easy fatigue, and ankle...

    Incorrect

    • An 80-year-old man presents with progressive shortness of breath, easy fatigue, and ankle swelling over the past few weeks. He has a significant smoking history of 50 pack-years. Physical examination reveals bibasilar crackles, and echocardiography shows no valvular disease and a non-dilated left ventricle with an ejection fraction of 55%. What is the most likely cause of the patient's current condition?

      Your Answer: Right-to-left intracardiac shunting

      Correct Answer: Increased left ventricular afterload

      Explanation:

      The correct answer is increased left ventricular afterload. HFpEF, which is characterized by diastolic dysfunction, often develops due to prolonged systemic hypertension, leading to increased afterload on the left ventricle.

      Glomerular hyper-filtration is not the correct answer as heart failure leads to decreased renal perfusion pressure and glomerular hypo-filtration.

      Increased left ventricular compliance is also not the correct answer as diastolic dysfunction involves a decrease in LV compliance. LV compliance may increase with eccentric hypertrophy, which occurs in response to left ventricular volume overload.

      Left ventricular thrombus formation is not typically associated with diastolic dysfunction and HFpEF. It typically results from localized stagnation of blood, which can occur with a left ventricular aneurysm or in the setting of a severely dilated left ventricle cavity with systolic dysfunction.

      Types of Heart Failure

      Heart failure is a clinical syndrome where the heart cannot pump enough blood to meet the body’s metabolic needs. It can be classified in multiple ways, including by ejection fraction, time, and left/right side. Patients with heart failure may have a normal or abnormal left ventricular ejection fraction (LVEF), which is measured using echocardiography. Reduced LVEF is typically defined as < 35 to 40% and is termed heart failure with reduced ejection fraction (HF-rEF), while preserved LVEF is termed heart failure with preserved ejection fraction (HF-pEF). Heart failure can also be described as acute or chronic, with acute heart failure referring to an acute exacerbation of chronic heart failure. Left-sided heart failure is more common and may be due to increased left ventricular afterload or preload, while right-sided heart failure is caused by increased right ventricular afterload or preload. High-output heart failure is another type of heart failure that occurs when a normal heart is unable to pump enough blood to meet the body's metabolic needs. By classifying heart failure in these ways, healthcare professionals can better understand the underlying causes and tailor treatment plans accordingly. It is important to note that many guidelines for the management of heart failure only cover HF-rEF patients and do not address the management of HF-pEF patients. Understanding the different types of heart failure can help healthcare professionals provide more effective care for their patients.

    • This question is part of the following fields:

      • Cardiovascular System
      57.6
      Seconds
  • Question 17 - A 50-year-old man is having a lymph node biopsy taken from the posterior...

    Correct

    • A 50-year-old man is having a lymph node biopsy taken from the posterior triangle of his neck. What structure creates the posterior boundary of this area?

      Your Answer: Trapezius muscle

      Explanation:

      The posterior triangle of the neck is an area that is bound by the sternocleidomastoid and trapezius muscles, the occipital bone, and the middle third of the clavicle. Within this triangle, there are various nerves, vessels, muscles, and lymph nodes. The nerves present include the accessory nerve, phrenic nerve, and three trunks of the brachial plexus, as well as branches of the cervical plexus such as the supraclavicular nerve, transverse cervical nerve, great auricular nerve, and lesser occipital nerve. The vessels found in this area are the external jugular vein and subclavian artery. Additionally, there are muscles such as the inferior belly of omohyoid and scalene, as well as lymph nodes including the supraclavicular and occipital nodes.

    • This question is part of the following fields:

      • Cardiovascular System
      463.4
      Seconds
  • Question 18 - A 67-year-old woman has been prescribed amiodarone. She has been advised to take...

    Correct

    • A 67-year-old woman has been prescribed amiodarone. She has been advised to take higher doses initially and then switch to a lower maintenance dose for long-term use.

      What is the rationale behind this initial dosing regimen?

      Your Answer: Slow metabolism of amiodarone due to extensive lipid binding

      Explanation:

      A loading dose is necessary for amiodarone to achieve therapeutic levels quickly before transitioning to a maintenance dose. This is because a 50mg once daily maintenance dose would take a long time to reach the required 1000mg for therapeutic effect. The fast metabolism of amiodarone due to extensive protein binding, extensive hepatic P450 breakdown, and slow absorption via the enteral route are not the reasons for a loading regime.

      Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.

    • This question is part of the following fields:

      • Cardiovascular System
      14.6
      Seconds
  • Question 19 - A 68-year-old man presents to the emergency department after experiencing a syncopal episode....

    Correct

    • A 68-year-old man presents to the emergency department after experiencing a syncopal episode. His ECG reveals a prolonged PR interval, with every other QRS complex being dropped. The QRS complex width is within normal limits.

      From which area of the heart is the conduction delay most likely originating?

      Your Answer: Atrio-Ventricular node

      Explanation:

      The PR interval is the duration between the depolarization of the atria and the depolarization of the ventricles. In this case, the man is experiencing a 2:1 block, which is a type of second-degree heart block. Since his PR interval is prolonged, the issue must be occurring in the pathway between the atria and ventricles. However, since his QRS complex is normal, it is likely that the problem is in the AV node rather than the bundles of His. If the issue were in the sino-atrial node, it would not cause a prolonged PR interval with dropped QRS complexes. Similarly, if there were a slowing of conduction in the ventricles, it would cause a wide QRS complex but not a prolonged PR interval.

      Understanding the Normal ECG

      The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.

      The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.

      Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      17.9
      Seconds
  • Question 20 - During a tricuspid valve repair, the right atrium is opened after establishing cardiopulmonary...

    Incorrect

    • During a tricuspid valve repair, the right atrium is opened after establishing cardiopulmonary bypass. Which of the following structures is not located within the right atrium?

      Your Answer: Musculi pectinati

      Correct Answer: Trabeculae carnae

      Explanation:

      The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.

    • This question is part of the following fields:

      • Cardiovascular System
      18.4
      Seconds
  • Question 21 - A teenage boy suddenly collapses outside his home. He is found to be...

    Incorrect

    • A teenage boy suddenly collapses outside his home. He is found to be in cardiac arrest and unfortunately passed away in the hospital. Posthumously, he is diagnosed with arrhythmogenic right ventricular cardiomyopathy. What alterations would this condition bring about in the heart?

      Your Answer: Asymmetrical thickening of the ventricle and septum

      Correct Answer: Myocardium replaced by fatty and fibrofatty tissue

      Explanation:

      Arrhythmogenic right ventricular cardiomyopathy is characterized by the replacement of the right ventricular myocardium with fatty and fibrofatty tissue. Hypertrophic obstructive cardiomyopathy, which is the leading cause of sudden cardiac death, is associated with asymmetrical thickening of the septum. Left ventricular hypertrophy can be caused by hypertension, aortic valve stenosis, hypertrophic cardiomyopathy, and athletic training. While arrhythmogenic right ventricular cardiomyopathy can cause ventricular dilation in later stages, it is not transient. Transient ballooning would suggest a diagnosis of Takotsubo cardiomyopathy, which is triggered by acute stress.

      Arrhythmogenic right ventricular cardiomyopathy (ARVC), also known as arrhythmogenic right ventricular dysplasia or ARVD, is a type of inherited cardiovascular disease that can lead to sudden cardiac death or syncope. It is considered the second most common cause of sudden cardiac death in young individuals, following hypertrophic cardiomyopathy. The disease is inherited in an autosomal dominant pattern with variable expression, and it is characterized by the replacement of the right ventricular myocardium with fatty and fibrofatty tissue. Approximately 50% of patients with ARVC have a mutation in one of the several genes that encode components of desmosome.

      The presentation of ARVC may include palpitations, syncope, or sudden cardiac death. ECG abnormalities in V1-3, such as T wave inversion, are typically observed. An epsilon wave, which is best described as a terminal notch in the QRS complex, is found in about 50% of those with ARVC. Echo changes may show an enlarged, hypokinetic right ventricle with a thin free wall, although these changes may be subtle in the early stages. Magnetic resonance imaging is useful in showing fibrofatty tissue.

      Management of ARVC may involve the use of drugs such as sotalol, which is the most widely used antiarrhythmic. Catheter ablation may also be used to prevent ventricular tachycardia, and an implantable cardioverter-defibrillator may be recommended. Naxos disease is an autosomal recessive variant of ARVC that is characterized by a triad of ARVC, palmoplantar keratosis, and woolly hair.

    • This question is part of the following fields:

      • Cardiovascular System
      18.7
      Seconds
  • Question 22 - A 51-year-old woman has just had a right hemiarthroplasty and is now experiencing...

    Correct

    • A 51-year-old woman has just had a right hemiarthroplasty and is now experiencing sudden onset of shortness of breath and sharp pleuritic pain on the right side of her chest. A chest x-ray is done as part of the initial evaluation, revealing a wedge-shaped opacification. What is the probable diagnosis?

      Your Answer: Pulmonary embolism

      Explanation:

      Symptoms and Signs of Pulmonary Embolism

      Pulmonary embolism is a medical condition that can be difficult to diagnose due to its varied symptoms and signs. While chest pain, dyspnoea, and haemoptysis are commonly associated with pulmonary embolism, only a small percentage of patients present with this textbook triad. The symptoms and signs of pulmonary embolism can vary depending on the location and size of the embolism.

      The PIOPED study conducted in 2007 found that tachypnea, or a respiratory rate greater than 16/min, was the most common clinical sign in patients diagnosed with pulmonary embolism, occurring in 96% of cases. Other common signs included crackles in the chest (58%), tachycardia (44%), and fever (43%). Interestingly, the Well’s criteria for diagnosing a PE uses tachycardia rather than tachypnea. It is important for healthcare professionals to be aware of the varied symptoms and signs of pulmonary embolism to ensure prompt diagnosis and treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      13.2
      Seconds
  • Question 23 - During a routine visit, a 76-year-old man with a history of stable angina...

    Correct

    • During a routine visit, a 76-year-old man with a history of stable angina informs his GP about his recent hospitalization due to decompensated heart failure. The hospital staff had taken a brain natriuretic peptide (BNP) level which was found to be significantly elevated. He was treated with intravenous furosemide and responded positively. What are the cardiovascular impacts of BNP?

      Your Answer: Decreases preload and afterload

      Explanation:

      Brain natriuretic peptide is a peptide that is secreted by the myocardium in response to excessive stretching, typically seen in cases of heart failure. Its primary physiological roles include reducing systemic vascular resistance, thereby decreasing afterload, and increasing natriuresis and diuresis. This increased diuresis results in a decrease in venous blood volume, leading to a reduction in preload. The BNP level can be a valuable diagnostic tool for heart failure and may also serve as a prognostic indicator.

      B-type natriuretic peptide (BNP) is a hormone that is primarily produced by the left ventricular myocardium in response to strain. Although heart failure is the most common cause of elevated BNP levels, any condition that causes left ventricular dysfunction, such as myocardial ischemia or valvular disease, may also raise levels. In patients with chronic kidney disease, reduced excretion may also lead to elevated BNP levels. Conversely, treatment with ACE inhibitors, angiotensin-2 receptor blockers, and diuretics can lower BNP levels.

      BNP has several effects, including vasodilation, diuresis, natriuresis, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. Clinically, BNP is useful in diagnosing patients with acute dyspnea. A low concentration of BNP (<100 pg/mL) makes a diagnosis of heart failure unlikely, but elevated levels should prompt further investigation to confirm the diagnosis. Currently, NICE recommends BNP as a helpful test to rule out a diagnosis of heart failure. In patients with chronic heart failure, initial evidence suggests that BNP is an extremely useful marker of prognosis and can guide treatment. However, BNP is not currently recommended for population screening for cardiac dysfunction.

    • This question is part of the following fields:

      • Cardiovascular System
      19.7
      Seconds
  • Question 24 - Which one of the following is a recognised tributary of the retromandibular vein?...

    Incorrect

    • Which one of the following is a recognised tributary of the retromandibular vein?

      Your Answer: Anterior temporal diploic vein

      Correct Answer: Maxillary vein

      Explanation:

      The retromandibular vein is created by the merging of the maxillary and superficial temporal veins.

      The Retromandibular Vein: Anatomy and Function

      The retromandibular vein is a blood vessel that is formed by the union of the maxillary vein and the superficial temporal vein. It descends through the parotid gland, which is a salivary gland located in front of the ear, and then bifurcates, or splits into two branches, within the gland. The anterior division of the retromandibular vein passes forward to join the facial vein, which drains blood from the face and scalp, while the posterior division is one of the tributaries, or smaller branches, of the external jugular vein, which is a major vein in the neck.

      The retromandibular vein plays an important role in the circulation of blood in the head and neck. It receives blood from the maxillary and superficial temporal veins, which drain the teeth, gums, and other structures in the face and scalp. The retromandibular vein then carries this blood through the parotid gland and into the larger veins of the neck, where it eventually returns to the heart. Understanding the anatomy and function of the retromandibular vein is important for healthcare professionals who work with patients who have conditions affecting the head and neck, such as dental infections, facial trauma, or head and neck cancer.

    • This question is part of the following fields:

      • Cardiovascular System
      12.1
      Seconds
  • Question 25 - A 25-year-old is suffering from tonsillitis and experiencing significant pain. Which nerve is...

    Correct

    • A 25-year-old is suffering from tonsillitis and experiencing significant pain. Which nerve is responsible for providing sensory innervation to the tonsillar fossa?

      Your Answer: Glossopharyngeal nerve

      Explanation:

      The tonsillar fossa is primarily innervated by the glossopharyngeal nerve, with a smaller contribution from the lesser palatine nerve. As a result, patients may experience ear pain (otalgia) after undergoing a tonsillectomy.

      Tonsil Anatomy and Tonsillitis

      The tonsils are located in the pharynx and have two surfaces, a medial and lateral surface. They vary in size and are usually supplied by the tonsillar artery and drained by the jugulodigastric and deep cervical nodes. Tonsillitis is a common condition that is usually caused by bacteria, with group A Streptococcus being the most common culprit. It can also be caused by viruses. In some cases, tonsillitis can lead to the development of an abscess, which can distort the uvula. Tonsillectomy is recommended for patients with recurrent acute tonsillitis, suspected malignancy, or enlargement causing sleep apnea. The preferred technique for tonsillectomy is dissection, but it can be complicated by hemorrhage, which is the most common complication. Delayed otalgia may also occur due to irritation of the glossopharyngeal nerve.

    • This question is part of the following fields:

      • Cardiovascular System
      8
      Seconds
  • Question 26 - A 50-year-old patient is admitted to the cardiology department with infective endocarditis. While...

    Incorrect

    • A 50-year-old patient is admitted to the cardiology department with infective endocarditis. While examining the patient's hands, the physician observes a collapsing pulse. What other findings can be expected during the examination?

      Your Answer: Ejection systolic murmur in the aortic area

      Correct Answer: Diastolic murmur in the aortic area

      Explanation:

      Aortic regurgitation is often associated with a collapsing pulse, which is a clinical sign. This condition occurs when the aortic valve allows blood to flow back into the left ventricle during diastole. As a result, a diastolic murmur can be heard in the aortic area. While infective endocarditis can cause aortic regurgitation, it can also affect other valves in the heart, leading to a diastolic murmur in the pulmonary area. However, this would not cause a collapsing pulse. A diastolic murmur in the mitral area is indicative of mitral stenosis, which is not associated with a collapsing pulse. Aortic stenosis, which is characterized by restricted blood flow between the left ventricle and aorta, is associated with an ejection systolic murmur in the aortic area, but not a collapsing pulse. Finally, mitral valve regurgitation, which affects blood flow between the left atrium and ventricle, is associated with a pansystolic murmur in the mitral area, but not a collapsing pulse.

      Aortic regurgitation is a condition where the aortic valve of the heart leaks, causing blood to flow in the opposite direction during ventricular diastole. This can be caused by disease of the aortic valve or by distortion or dilation of the aortic root and ascending aorta. The most common causes of AR due to valve disease include rheumatic fever, calcific valve disease, and infective endocarditis. On the other hand, AR due to aortic root disease can be caused by conditions such as aortic dissection, hypertension, and connective tissue diseases like Marfan’s and Ehler-Danlos syndrome.

      The features of AR include an early diastolic murmur, a collapsing pulse, wide pulse pressure, Quincke’s sign, and De Musset’s sign. In severe cases, a mid-diastolic Austin-Flint murmur may also be present. Suspected AR should be investigated with echocardiography.

      Management of AR involves medical management of any associated heart failure and surgery in symptomatic patients with severe AR or asymptomatic patients with severe AR who have LV systolic dysfunction.

    • This question is part of the following fields:

      • Cardiovascular System
      22.1
      Seconds
  • Question 27 - A 65-year-old man presents to his GP with worsening breathlessness. He reports difficulty...

    Correct

    • A 65-year-old man presents to his GP with worsening breathlessness. He reports difficulty climbing stairs and sleeping, and finds it easier to sleep in his living room chair. He used to manage stairs fine a year ago, but now has to stop twice on the way up.

      When asked about other symptoms, he reports feeling slightly wheezy and occasionally coughing up white sputum. He denies any weight loss. His medical history includes angina, non-diabetic hyperglycaemia, and hypertension. He has smoked 15 cigarettes per day since he was 25 and drinks around 5 pints of lager every Friday and Saturday night.

      On examination, his oxygen saturations are 96%, respiratory rate 16/min at rest, heart rate 78/min, and blood pressure 141/88 mmHg. Bibasal crackles are heard on auscultation of his lungs.

      What is the most likely diagnosis?

      Your Answer: Heart failure

      Explanation:

      Orthopnoea is a distinguishing symptom that can help differentiate between heart failure and COPD in patients. While the symptoms may be non-specific, the presence of orthopnoea, or breathlessness when lying down, is a key indicator of heart failure rather than COPD.

      Although the patient has a significant history of smoking, there are no other signs of lung cancer such as weight loss, persistent cough, or coughing up blood. However, it is recommended to conduct an urgent chest X-ray to rule out any serious underlying conditions.

      In cases of occupational asthma, symptoms tend to worsen when exposed to triggers in the workplace and improve during time off. However, in this patient’s case, the symptoms have been gradually worsening over time.

      Features of Chronic Heart Failure

      Chronic heart failure is a condition that affects the heart’s ability to pump blood effectively. It is characterized by several features that can help in its diagnosis. Dyspnoea, or shortness of breath, is a common symptom of chronic heart failure. Patients may also experience coughing, which can be worse at night and accompanied by pink or frothy sputum. Orthopnoea, or difficulty breathing while lying down, and paroxysmal nocturnal dyspnoea, or sudden shortness of breath at night, are also common symptoms.

      Another feature of chronic heart failure is the presence of a wheeze, known as a cardiac wheeze. Patients may also experience weight loss, known as cardiac cachexia, which occurs in up to 15% of patients. However, this may be hidden by weight gained due to oedema. On examination, bibasal crackles may be heard, and signs of right-sided heart failure, such as a raised JVP, ankle oedema, and hepatomegaly, may be present.

      In summary, chronic heart failure is a condition that can be identified by several features, including dyspnoea, coughing, orthopnoea, paroxysmal nocturnal dyspnoea, wheezing, weight loss, bibasal crackles, and signs of right-sided heart failure. Early recognition and management of these symptoms can help improve outcomes for patients with chronic heart failure.

    • This question is part of the following fields:

      • Cardiovascular System
      30
      Seconds
  • Question 28 - A 65-year-old farmer arrives at the Emergency department with complaints of intense chest...

    Correct

    • A 65-year-old farmer arrives at the Emergency department with complaints of intense chest pain that spreads to his left arm and causes breathing difficulties. His heart rate is 94 bpm. What ECG changes would you expect to observe based on the probable diagnosis?

      Your Answer: ST elevation in leads II, III, aVF

      Explanation:

      ECG Changes in Myocardial Infarction

      When interpreting an electrocardiogram (ECG) in a patient with suspected myocardial infarction (MI), it is important to consider the specific changes that may be present. In the case of a ST-elevation MI (STEMI), the ECG may show ST elevation in affected leads, such as II, III, and aVF. However, it is possible to have a non-ST elevation MI (NSTEMI) with a normal ECG, or with T wave inversion instead of upright T waves.

      Other ECG changes that may be indicative of cardiac issues include a prolonged PR interval, which could suggest heart block, and ST depression, which may reflect ischemia. Additionally, tall P waves may be seen in hyperkalemia.

      It is important to note that a patient may have an MI without displaying any ECG changes at all. In these cases, checking cardiac markers such as troponin T can help confirm the diagnosis. Overall, the various ECG changes that may be present in MI can aid in prompt and accurate diagnosis and treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      48.2
      Seconds
  • Question 29 - A 75-year-old collapses at home and is rushed to the Emergency Room but...

    Incorrect

    • A 75-year-old collapses at home and is rushed to the Emergency Room but dies despite resuscitation efforts. He had a myocardial infarction five weeks prior. What histological findings would be expected in his heart?

      Your Answer: Macrophages and granulation tissue at margins

      Correct Answer: Contracted scar

      Explanation:

      The histology findings of a myocardial infarction (MI) vary depending on the time elapsed since the event. Within the first 24 hours, early coagulative necrosis, neutrophils, wavy fibres, and hypercontraction of myofibrils are observed, which increase the risk of ventricular arrhythmia, heart failure, and cardiogenic shock. Between 1-3 days post-MI, extensive coagulative necrosis and neutrophils are present, which can lead to fibrinous pericarditis. From 3-14 days post-MI, macrophages and granulation tissue are seen at the margins, and there is a high risk of complications such as free wall rupture (resulting in mitral regurgitation), papillary muscle rupture, and left ventricular pseudoaneurysm. Finally, from 2 weeks to several months post-MI, a contracted scar is formed, which is associated with Dressler syndrome, heart failure, arrhythmias, and mural thrombus.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      13.6
      Seconds
  • Question 30 - A 72-year-old male is admitted post myocardial infarction.
    Suddenly, on day seven, he...

    Incorrect

    • A 72-year-old male is admitted post myocardial infarction.
      Suddenly, on day seven, he collapses without warning. The physician observes the presence of Kussmaul's sign.
      What is the most probable complication of MI in this case?

      Your Answer: Papillary muscle rupture

      Correct Answer: Ventricular rupture

      Explanation:

      Complications of Myocardial Infarction: Cardiac Tamponade

      Myocardial infarction can lead to a range of complications, including cardiac tamponade. This occurs when there is ventricular rupture, which can be life-threatening. One way to diagnose cardiac tamponade is through Kussmaul’s sign, which is the detection of a rising jugular venous pulse on inspiration. However, the classic diagnostic triad for cardiac tamponade is Beck’s triad, which includes hypotension, raised JVP, and muffled heart sounds.

      It is important to note that Dressler’s syndrome, a type of pericarditis that can occur after a myocardial infarction, typically has a gradual onset and is associated with chest pain. Therefore, it is important to differentiate between these complications in order to provide appropriate treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      19.5
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (17/30) 57%
Passmed