-
Question 1
Incorrect
-
A 57-year-old-male presents to the clinic with a complaint of a lump in his stomach. During the examination, a lump is observed on coughing and is located within Hesselbach's triangle. Can you identify the structures that form the borders of this region?
Your Answer: Inguinal ligament inferiorly, ASIS laterally, pubic tubercle medially
Correct Answer: Inguinal ligament inferiorly, inferior epigastric vessels laterally, lateral border of rectus sheath medially
Explanation:A possible exam question could be related to a patient displaying symptoms indicative of a hernia. Hesselbach’s triangle is the area where a direct inguinal hernia may manifest. Direct hernias are caused by deficiencies or vulnerabilities in the posterior abdominal wall, whereas indirect hernias protrude through the inguinal canal.
Hesselbach’s Triangle and Direct Hernias
Hesselbach’s triangle is an anatomical region located in the lower abdomen. It is bordered by the epigastric vessels on the superolateral side, the lateral edge of the rectus muscle medially, and the inguinal ligament inferiorly. This triangle is important in the diagnosis and treatment of direct hernias, which pass through this region.
To better understand the location of direct hernias, it is essential to know the boundaries of Hesselbach’s triangle. The epigastric vessels are located on the upper and outer side of the triangle, while the lateral edge of the rectus muscle is on the inner side. The inguinal ligament forms the lower boundary of the triangle.
In medical exams, it is common to test the knowledge of Hesselbach’s triangle and its boundaries. Understanding this region is crucial for identifying and treating direct hernias, which can cause discomfort and other complications. By knowing the location of Hesselbach’s triangle, medical professionals can better diagnose and treat patients with direct hernias.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 2
Incorrect
-
A 32-year-old female patient visits your clinic complaining of fatigue and unexplained weight gain. She mentions feeling extremely sensitive to cold temperatures. You suspect hypothyroidism and decide to conduct a test on her serum levels of thyroid stimulating hormone (TSH) and free thyroxine (T4). Which of the following hormones is not secreted from the anterior pituitary gland, where TSH is released?
Your Answer: Growth hormone
Correct Answer: antidiuretic hormone
Explanation:The hormone ADH (also known as vasopressin) is secreted by the posterior pituitary gland and acts in the collecting ducts of the kidneys to increase water reabsorption. Unlike ADH, all of the other hormone options presented are released from the anterior pituitary. ACTH is a component of the hypothalamic-pituitary-axis and increases the production and release of cortisol from the adrenal gland. GH (also called somatotropin) is an anabolic hormone that stimulates growth in childhood and has metabolic effects on protein, glucose, and lipids. FSH is a gonadotropin that promotes the maturation of germ cells.
Thyroid disorders are commonly encountered in clinical practice, with hypothyroidism and thyrotoxicosis being the most prevalent. Women are ten times more likely to develop these conditions than men. The thyroid gland is a bi-lobed structure located in the anterior neck and is part of a hypothalamus-pituitary-end organ system that regulates the production of thyroxine and triiodothyronine hormones. These hormones help regulate energy sources, protein synthesis, and the body’s sensitivity to other hormones. Hypothyroidism can be primary or secondary, while thyrotoxicosis is mostly primary. Autoimmunity is the leading cause of thyroid problems in the developed world.
Thyroid disorders can present in various ways, with symptoms often being the opposite depending on whether the thyroid gland is under or overactive. For example, hypothyroidism may result in weight gain, while thyrotoxicosis leads to weight loss. Thyroid function tests are the primary investigation for diagnosing thyroid disorders. These tests primarily look at serum TSH and T4 levels, with T3 being measured in specific cases. TSH levels are more sensitive than T4 levels for monitoring patients with existing thyroid problems.
Treatment for thyroid disorders depends on the cause. Patients with hypothyroidism are given levothyroxine to replace the underlying deficiency. Patients with thyrotoxicosis may be treated with propranolol to control symptoms such as tremors, carbimazole to reduce thyroid hormone production, or radioiodine treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 3
Correct
-
A 32-year-old construction worker becomes dehydrated after spending the day working under the sun.
What can be inferred about this person?Your Answer: Most of the ultrafiltrated water in the nephron to be reabsorbed in the proximal tubule
Explanation:The majority of filtered water is absorbed in the proximal tubule, while the highest amount of sodium reabsorption occurs in this area due to the Na+/K+ ATPase mechanism. This results in the movement of fluid from the proximal tubules to peritubular capillaries.
After a strenuous run, the individual is likely to be slightly dehydrated, leading to an increased activation of the renin-angiotensin-aldosterone system. This would cause an increase in aldosterone release from the zona glomerulosa. Additionally, vasopressin (also known as ADH) would be elevated to enhance water reabsorption in the collecting duct.
Renal cortical blood flow is higher than medullary blood flow, as tubular cells are more susceptible to ischaemia.
The Loop of Henle and its Role in Renal Physiology
The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.
-
This question is part of the following fields:
- Renal System
-
-
Question 4
Correct
-
A 35-year-old male who has recently traveled to Nigeria visits the GP complaining of muscle weakness. During the clinical examination, the doctor observes reduced tone in his limbs, diminished reflexes, and fasciculations.
What is the probable diagnosis?Your Answer: Poliomyelitis
Explanation:Lower motor neuron signs are a common result of poliomyelitis, which is a viral infection that can cause reduced reflexes and tone. On the other hand, upper motor neuron signs are typically associated with conditions such as multiple sclerosis, stroke, and Huntington’s disease.
Understanding Poliomyelitis and Its Immunisation
Poliomyelitis is a sudden illness that occurs when one of the polio viruses invades the gastrointestinal tract. The virus then multiplies in the gastrointestinal tissues and targets the nervous system, particularly the anterior horn cells. This can lead to paralysis, which is usually unilateral and accompanied by lower motor neuron signs.
To prevent the spread of polio, immunisation is crucial. In the UK, the live attenuated oral polio vaccine (OPV – Sabin) was used for routine immunisation until 2004. However, this vaccine carried a risk of vaccine-associated paralytic polio. As the risk of polio importation to the UK has decreased, the country switched to inactivated polio vaccine (IPV – Salk) in 2004. This vaccine is administered via an intramuscular injection and does not carry the same risk of vaccine-associated paralytic polio as the OPV.
Certain factors can increase the risk of severe paralysis from polio, including being an adult, being pregnant, or having undergone a tonsillectomy. It is important to understand the features and risks associated with poliomyelitis to ensure proper prevention and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 5
Incorrect
-
A 45-year-old woman visits her doctor for a follow-up appointment after commencing metformin treatment half a year ago. She expresses worry about the potential long-term impact of diabetes on her kidneys, based on information she read online.
What is the primary mechanism through which kidney damage occurs in this demographic of patients?Your Answer: Osmotic damage
Correct Answer: Non-enzymatic glycosylation
Explanation:The non-enzymatic glycosylation of the basement membrane is responsible for the complications of diabetes nephropathy.
Understanding Diabetic Nephropathy: The Common Cause of End-Stage Renal Disease
Diabetic nephropathy is the leading cause of end-stage renal disease in the western world. It affects approximately 33% of patients with type 1 diabetes mellitus by the age of 40 years, and around 5-10% of patients with type 1 diabetes mellitus develop end-stage renal disease. The pathophysiology of diabetic nephropathy is not fully understood, but changes to the haemodynamics of the glomerulus, such as increased glomerular capillary pressure, and non-enzymatic glycosylation of the basement membrane are thought to play a key role. Histological changes include basement membrane thickening, capillary obliteration, mesangial widening, and the development of nodular hyaline areas in the glomeruli, known as Kimmelstiel-Wilson nodules.
There are both modifiable and non-modifiable risk factors for developing diabetic nephropathy. Modifiable risk factors include hypertension, hyperlipidaemia, smoking, poor glycaemic control, and raised dietary protein. On the other hand, non-modifiable risk factors include male sex, duration of diabetes, and genetic predisposition, such as ACE gene polymorphisms. Understanding these risk factors and the pathophysiology of diabetic nephropathy is crucial in the prevention and management of this condition.
-
This question is part of the following fields:
- Renal System
-
-
Question 6
Incorrect
-
A 45-year-old woman comes to see her doctor with complaints of muscle cramps and facial twitching that have been going on for two weeks. During the examination, the doctor notes that she has paraesthesia in her upper limbs and a positive Trousseau's sign. Her blood tests show that she has low levels of calcium, phosphorus, and vitamin D, so the doctor prescribes calcium supplements and calcitriol.
What is the mechanism of action of the new medication?Your Answer: Decreased gut absorption of phosphate
Correct Answer: Increased renal reabsorption of phosphate
Explanation:The renal reabsorption of phosphate is increased by calcitriol.
Hormones Controlling Calcium Metabolism
Calcium metabolism is primarily controlled by two hormones, parathyroid hormone (PTH) and 1,25-dihydroxycholecalciferol (calcitriol). Other hormones such as calcitonin, thyroxine, and growth hormone also play a role. PTH increases plasma calcium levels and decreases plasma phosphate levels. It also increases renal tubular reabsorption of calcium, osteoclastic activity, and renal conversion of 25-hydroxycholecalciferol to 1,25-dihydroxycholecalciferol. On the other hand, 1,25-dihydroxycholecalciferol increases plasma calcium and plasma phosphate levels, renal tubular reabsorption and gut absorption of calcium, osteoclastic activity, and renal phosphate reabsorption. It is important to note that osteoclastic activity is increased indirectly by PTH as osteoclasts do not have PTH receptors. Understanding the actions of these hormones is crucial in maintaining proper calcium metabolism in the body.
-
This question is part of the following fields:
- General Principles
-
-
Question 7
Incorrect
-
A 65-year-old patient is undergoing a selective neck dissection of the posterior triangle of the neck. What structures will be identified during the dissection?
Your Answer: The internal jugular vein
Correct Answer: The inferior belly of omohyoid
Explanation:Anatomy of the Posterior Triangle of the Neck
The posterior triangle of the neck is an anatomical region that contains various nerves, arteries, veins, and lymph nodes. The nerves found in this area include the spinal accessory nerve (Xi) and the cervical plexus, which consists of the lesser occipital, greater auricular, transverse cervical, and supraclavicular nerves. The arteries present in the posterior triangle of the neck include the 3rd part of the subclavian artery, the transverse cervical and suprascapular arteries (both branches of the thyrocervical trunk), and the occipital artery. The external jugular vein is also located in this region. Additionally, there are lymph nodes located in the inferior belly of the omohyoid muscle.
It is important to note that the brachial plexus lies deep to the prevertebral fascia in this area. the anatomy of the posterior triangle of the neck is crucial for medical professionals, as it can aid in the diagnosis and treatment of various conditions that may affect this region.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 8
Correct
-
As an out-of-hours GP, you encounter a 44-year-old man with a head injury who needs to be admitted for observation. He discloses that he has hepatitis B and lives alone in a remote area, making it impossible for him to have someone monitor him for the next 24 hours. Although he reluctantly agrees to a brief hospital stay, he insists that you keep his hepatitis B status confidential from the medical team who will be caring for him. The most recent hepatitis serology results indicate that he has inactive disease, and his most recent liver function tests were not significantly abnormal. What is your course of action?
Your Answer: Advise him that you ought to inform the medical team involved in his care for their safety and that they will keep this medical information confidential. His rights and comfort will be maintained but should his clinical condition warrant blood tests or a blood transfusion, it would be better that the clinical team are aware from the outset. All patients are treated equally with universal precautions.
Explanation:Balancing Confidentiality and Patient Safety in Healthcare
When faced with a patient who refuses to disclose their hepatitis B status, healthcare professionals must weigh the potential harms and benefits of admission. The potential harms include the patient self-discharging, healthcare workers being exposed to contaminated equipment, and a breach of confidentiality. On the other hand, admission ensures that the patient does not come to harm as a result of their injury.
In this scenario, the likelihood of a healthcare worker contracting hepatitis B is low, but it is still important to persuade the patient to share their status with the clinical team responsible for their care. A conversation that emphasizes the importance of sharing this information for the patient’s care and the safety of healthcare personnel is likely to resolve the situation. It is crucial to prioritize clinical need and assure the patient that they will be looked after sincerely and honestly, with no judgement.
It is important to note that other options, such as breaching confidentiality or coercing the patient into disclosing their status, are not appropriate. Healthcare professionals must balance the need for patient confidentiality with the need to ensure patient safety. By having open and honest conversations with patients, healthcare professionals can navigate this delicate balance and provide the best possible care.
-
This question is part of the following fields:
- Ethics And Law
-
-
Question 9
Incorrect
-
A 50-year-old man undergoes a colonoscopy and a colonic polyp is identified. It is located on a stalk in the sigmoid colon and has a lobular appearance. What is the most likely cause of this condition?
Your Answer: Metaplasia
Correct Answer: Dysplasia
Explanation:The majority of colonic polyps mentioned earlier are adenomas, which can be accompanied by dysplasia. The severity of dysplasia is directly proportional to the level of clinical apprehension.
Understanding Colonic Polyps and Follow-Up Procedures
Colonic polyps can occur in isolation or as part of polyposis syndromes, with greater than 100 polyps typically present in FAP. The risk of malignancy is related to size, with a 10% risk in a 1 cm adenoma. While isolated adenomas seldom cause symptoms, distally sited villous lesions may produce mucous and electrolyte disturbances if very large.
Follow-up procedures for colonic polyps depend on the number and size of the polyps. Low-risk cases with 1 or 2 adenomas less than 1 cm require no follow-up or re-colonoscopy for 5 years. Moderate-risk cases with 3 or 4 small adenomas or 1 adenoma greater than 1 cm require a re-scope at 3 years. High-risk cases with more than 5 small adenomas or more than 3 with 1 of them greater than 1 cm require a re-scope at 1 year.
Segmental resection or complete colectomy may be necessary in cases of incomplete excision of malignant polyps, malignant sessile polyps, malignant pedunculated polyps with submucosal invasion, polyps with poorly differentiated carcinoma, or familial polyposis coli. Screening from teenager up to 40 years by 2 yearly sigmoidoscopy/colonoscopy is recommended. Rectal polypoidal lesions may be treated with trans anal endoscopic microsurgery.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 10
Correct
-
A 67-year-old man is admitted to the geriatric ward following a recent fall. As the on-call psychiatrist, you have been asked to review his medication. He has a medical history of Parkinson's disease, major depression, diverticulosis, and recurrent falls. Despite this, he reports feeling well. The patient's current medication list includes paracetamol, aspirin, phenelzine, codeine, naproxen, fluoxetine, lactulose, and senna.
What changes, if any, may need to be made to his medication regimen?Your Answer: Remove phenelzine
Explanation:Due to the increased risk of central serotonin syndrome, fluoxetine should not be prescribed alongside phenelzine, a non-selective and irreversible monoamine oxidase inhibitor (MAOI).
As the patient is not experiencing nausea or vomiting, there is no need to prescribe metoclopramide. Additionally, metoclopramide is not suitable for this patient with Parkinson’s disease as it can worsen their symptoms as a dopamine antagonist.
The patient’s senna should not be discontinued as it is likely necessary for regular bowel movements due to their history of diverticulosis. Lactulose may also be needed for this purpose.
As the patient is not reporting any pain, there is no need to increase their pain relief at this time.
Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for depression, with citalopram and fluoxetine being the preferred options. They should be used with caution in children and adolescents, and patients should be monitored for increased anxiety and agitation. Gastrointestinal symptoms are the most common side-effect, and there is an increased risk of gastrointestinal bleeding. Citalopram and escitalopram are associated with dose-dependent QT interval prolongation and should not be used in certain patients. SSRIs have a higher propensity for drug interactions, and patients should be reviewed after 2 weeks of treatment. When stopping a SSRI, the dose should be gradually reduced over a 4 week period. Use of SSRIs during pregnancy should be weighed against the risks and benefits.
-
This question is part of the following fields:
- Psychiatry
-
-
Question 11
Correct
-
A 12-year-old child presents to the emergency department with polyarthritis and chest pain that is relieved by leaning forward. Blood tests reveal a raised ESR and leucocytosis, but are otherwise normal. The child's parents mention that they have never vaccinated their child as they themselves are unvaccinated and rarely fall ill. In light of this information, you decide to order an anti-streptolysin-O-titre to investigate for recent streptococcal infection. What is the immunological term used to describe the mechanism behind the development of this condition?
Your Answer: Molecular mimicry
Explanation:Rheumatic fever is caused by molecular mimicry, where the M protein on the cell wall of Streptococcus pyogenes cross-reacts with myosin in the smooth muscles of arteries, leading to autoimmunity. This is evidenced by the patient’s symptoms of polyarthritis and chest pain, as well as the presence of anti-streptolysin-O-titre in their blood. Bystander activation, exposure to cryptic antigens, and super-antigens are all pathophysiological mechanisms that can lead to autoimmune destruction of tissues.
Rheumatic fever is a condition that occurs as a result of an immune response to a recent Streptococcus pyogenes infection, typically occurring 2-4 weeks after the initial infection. The pathogenesis of rheumatic fever involves the activation of the innate immune system, leading to antigen presentation to T cells. B and T cells then produce IgG and IgM antibodies, and CD4+ T cells are activated. This immune response is thought to be cross-reactive, mediated by molecular mimicry, where antibodies against M protein cross-react with myosin and the smooth muscle of arteries. This response leads to the clinical features of rheumatic fever, including Aschoff bodies, which are granulomatous nodules found in rheumatic heart fever.
To diagnose rheumatic fever, evidence of recent streptococcal infection must be present, along with 2 major criteria or 1 major criterion and 2 minor criteria. Major criteria include erythema marginatum, Sydenham’s chorea, polyarthritis, carditis and valvulitis, and subcutaneous nodules. Minor criteria include raised ESR or CRP, pyrexia, arthralgia, and prolonged PR interval.
Management of rheumatic fever involves antibiotics, typically oral penicillin V, as well as anti-inflammatories such as NSAIDs as first-line treatment. Any complications that develop, such as heart failure, should also be treated. It is important to diagnose and treat rheumatic fever promptly to prevent long-term complications such as rheumatic heart disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Incorrect
-
A 65-year-old man with a history of claudication for several years is evaluated in the clinic. A duplex scan reveals an 85% stenosis of the superficial femoral artery. After two weeks, he returns with a sudden onset of severe leg pain that has been present for an hour. Upon examination, absent pulses are noted in the affected limb, and it is significantly cooler than the opposite limb. What is the most likely cause of this presentation?
Your Answer: Embolus
Correct Answer: Thrombosis
Explanation:When dealing with an already present lesion, the probability of encountering a complication like thrombosis is higher than that of an embolus. To address this, patients should be administered heparin and undergo imaging with duplex scanning. Although an early surgical bypass or intra-arterial thrombolysis may be necessary, performing an embolectomy is generally not recommended as the lesion is not an embolus, rendering the operation ineffective.
Understanding Claudication
Claudication is a medical condition that causes pain in the limbs during physical activity. It is usually caused by arterial insufficiency, which occurs when atheroma develops in the arterial wall and blocks the blood flow to the tissues. The most common symptom of claudication is calf pain that worsens during exercise and improves with rest. However, if the disease is located in more proximal areas, other symptoms such as buttock claudication and impotence may occur.
The condition usually develops progressively, and in severe cases, it can lead to critical limb ischemia, which is characterized by severe pain, diminished sensation, pallor, and absent pulses. Risk factors for claudication include smoking, diabetes, and hyperlipidemia.
To diagnose claudication, doctors may measure ankle-brachial pressure indices, perform duplex scanning, or conduct formal angiography. Treatment options depend on the severity of the condition. Patients with long claudication distances and no ulceration or gangrene may be managed conservatively, while those with rest pain, ulceration, or gangrene will require intervention. All patients should receive an antiplatelet agent and a statin, unless there are compelling contraindications.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
A 35-year-old man presents with sudden onset of severe lower back pain on the right side after lifting a heavy suitcase and twisting. He experiences some paraesthesia on the postero-lateral aspect of his right lower leg and foot.
Upon examination, he appears to be in significant discomfort with his lower back and has a positive sciatic nerve street test. Additionally, there is evident weakness in plantar flexion (MRC grading 3/5) and a reduced ankle reflex.
Based on these findings, it is suspected that the patient has a herniated intervertebral disc with radiculopathy. What is the level of nerve root compression in this case?Your Answer: S2
Correct Answer: S1
Explanation:The patient exhibits sensory loss in the posterolateral aspect of the leg and lateral aspect of the foot, weakness in plantar flexion of the foot, a reduced ankle reflex, and a positive sciatic nerve stretch test. These features suggest compression of the S1 nerve root. Symptoms and signs associated with L3, L4, and L5 nerve root compression differ significantly and are not present in this patient.
Understanding Prolapsed Disc and its Features
A prolapsed disc in the lumbar region can cause leg pain and neurological deficits. The pain is usually more severe in the leg than in the back and worsens when sitting. The features of the prolapsed disc depend on the site of compression. For instance, compression of the L3 nerve root can cause sensory loss over the anterior thigh, weak quadriceps, reduced knee reflex, and a positive femoral stretch test. On the other hand, compression of the L4 nerve root can cause sensory loss in the anterior aspect of the knee, weak quadriceps, reduced knee reflex, and a positive femoral stretch test.
Similarly, compression of the L5 nerve root can cause sensory loss in the dorsum of the foot, weakness in foot and big toe dorsiflexion, intact reflexes, and a positive sciatic nerve stretch test. Lastly, compression of the S1 nerve root can cause sensory loss in the posterolateral aspect of the leg and lateral aspect of the foot, weakness in plantar flexion of the foot, reduced ankle reflex, and a positive sciatic nerve stretch test.
The management of prolapsed disc is similar to that of other musculoskeletal lower back pain, which includes analgesia, physiotherapy, and exercises. However, if the symptoms persist even after 4-6 weeks, referral for an MRI is appropriate. Understanding the features of prolapsed disc can help in early diagnosis and prompt management.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 14
Correct
-
A 43-year-old woman visits the GP with her spouse. She reports experiencing dryness in her eyes for the past four months. You suspect that the gland responsible for tear production may be impaired.
What is the venous drainage of this gland?Your Answer: Superior ophthalmic vein
Explanation:The superior ophthalmic vein is where the lacrimal gland drains its venous blood. The lacrimal gland is a gland that produces tears in response to emotional events or conjunctival irritation. The submandibular gland drains its venous blood into the anterior facial vein, which is located deep to the marginal mandibular nerve. The basilic vein is one of the main pathways for venous drainage in the arm and hand, connecting to the palmar venous arch distally and the axillary vein proximally. The retromandibular vein is formed by the union of the maxillary vein and the superficial temporal vein, and it is the venous drainage of the parotid gland. The inferior mesenteric vein, along with the superior mesenteric vein, is responsible for draining the colon.
The Lacrimation Reflex
The lacrimation reflex is a response to conjunctival irritation or emotional events. When the conjunctiva is irritated, it sends signals via the ophthalmic nerve to the superior salivary center. From there, efferent signals pass via the greater petrosal nerve (parasympathetic preganglionic fibers) and the deep petrosal nerve (postganglionic sympathetic fibers) to the lacrimal apparatus. The parasympathetic fibers relay in the pterygopalatine ganglion, while the sympathetic fibers do not synapse.
This reflex is important for maintaining the health of the eye by keeping it moist and protecting it from foreign particles. It is also responsible for the tears that are shed during emotional events, such as crying. The lacrimal gland, which produces tears, is innervated by the secretomotor parasympathetic fibers from the pterygopalatine ganglion. The nasolacrimal duct, which carries tears from the eye to the nose, opens anteriorly in the inferior meatus of the nose. Overall, the lacrimal system plays a crucial role in maintaining the health and function of the eye.
-
This question is part of the following fields:
- Neurological System
-
-
Question 15
Incorrect
-
A 25-year-old suffers a groin stab wound resulting in hypovolaemic shock. What would be the probable observation on examining his urine?
Your Answer: Decreased specific gravity
Correct Answer: Increased specific gravity
Explanation:When blood pressure drops below the level at which the kidney can regulate its blood flow, hypovolemic shock can lead to a reduction in renal blood flow. This can cause an increase in specific gravity as the body tries to retain water to maintain blood volume.
The Loop of Henle and its Role in Renal Physiology
The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.
-
This question is part of the following fields:
- Renal System
-
-
Question 16
Incorrect
-
A 55-year-old woman arrives at the emergency department after falling from a stepladder onto her left arm. She reports experiencing elbow pain and limited movement in her left hand.
During the examination, the left elbow is tender to the touch, and there is a decrease in wrist flexion and adduction.
Which nerve is affected by this patient's injury?Your Answer: Median nerve
Correct Answer: Ulnar nerve
Explanation:The flexor carpi ulnaris muscle, responsible for wrist flexion and adduction, is innervated by the ulnar nerve. This patient’s reduced wrist flexion and adduction, along with elbow pain, suggest ulnar nerve injury. The axillary, median, and musculocutaneous nerves are not responsible for these symptoms, as they innervate different muscles. The radial nerve, which innervates the extensor compartments, would not cause reduced wrist flexion.
Upper limb anatomy is a common topic in examinations, and it is important to know certain facts about the nerves and muscles involved. The musculocutaneous nerve is responsible for elbow flexion and supination, and typically only injured as part of a brachial plexus injury. The axillary nerve controls shoulder abduction and can be damaged in cases of humeral neck fracture or dislocation, resulting in a flattened deltoid. The radial nerve is responsible for extension in the forearm, wrist, fingers, and thumb, and can be damaged in cases of humeral midshaft fracture, resulting in wrist drop. The median nerve controls the LOAF muscles and can be damaged in cases of carpal tunnel syndrome or elbow injury. The ulnar nerve controls wrist flexion and can be damaged in cases of medial epicondyle fracture, resulting in a claw hand. The long thoracic nerve controls the serratus anterior and can be damaged during sports or as a complication of mastectomy, resulting in a winged scapula. The brachial plexus can also be damaged, resulting in Erb-Duchenne palsy or Klumpke injury, which can cause the arm to hang by the side and be internally rotated or associated with Horner’s syndrome, respectively.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 17
Incorrect
-
The blood-brain barrier is not easily penetrated by which of the following substances?
Your Answer: Oxygen
Correct Answer: Hydrogen ions
Explanation:The blood brain barrier restricts the passage of highly dissociated compounds.
Cerebrospinal Fluid: Circulation and Composition
Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.
The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.
The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 18
Incorrect
-
A 68-year-old man comes to the memory clinic with a complaint of subjective memory impairment for the past 8 months. During the assessment, the physician you are observing mentions that they will not be evaluating sensory memory. What makes this type of memory unique?
Your Answer: A form of this is termed episodic memory
Correct Answer: It cannot be prolonged by repetition
Explanation:Understanding Sensory Memory
Sensory memory is a type of memory that holds sensory information for a brief period of time, typically a few seconds. It is important to note that this memory only lasts for a few seconds and not the commonly believed 5-8 minutes. The capacity of sensory memory is 12 items, which is higher than the commonly believed 3 items. However, this memory degrades very quickly and cannot be prolonged through repetition or rehearsal.
There are different types of sensory memory, such as iconic memory for visual information and echoic memory for auditory information. It is important to note that sensory memory is not the same as episodic memory, which is responsible for remembering events and experiences.
The hippocampus plays a crucial role in transforming short-term memory into long-term memory. Without the hippocampus, it would be difficult to retain information for an extended period of time. Understanding sensory memory is important in understanding how our brain processes and stores information.
-
This question is part of the following fields:
- General Principles
-
-
Question 19
Correct
-
A 75-year-old woman has experienced a TIA during her hospital stay. An ultrasound revealed an 80% blockage in one of her carotid arteries, leading to a carotid endarterectomy. After the procedure, the doctor examines the patient and notices that when asked to stick out her tongue, it deviates towards the left side.
Which cranial nerve has been affected in this scenario?Your Answer: Right hypoglossal nerve
Explanation:When the hypoglossal nerve is damaged, the tongue deviates towards the side of the lesion. This is because the genioglossus muscle, which normally pushes the tongue to the opposite side, is weakened. In the case of a carotid endarterectomy, the hypoglossal nerve may be damaged as it passes through the hypoglossal canal and down the neck. A good memory aid is the tongue never lies as it points towards the side of the lesion. The correct answer in this case is the right hypoglossal nerve, as the patient’s tongue deviates towards the right. Lesions of the left glossopharyngeal nerve, right glossopharyngeal nerve, left hypoglossal nerve, and left trigeminal nerve would result in different symptoms and are therefore incorrect answers.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 20
Incorrect
-
A 29-year-old female presents to the emergency department after a mixed overdose. According to her parents, she had locked herself in her room after an argument and they found her drowsy on the floor after forcing open the door. The patient has a history of depression and previous suicide attempts. Her grandmother's medical box, containing paracetamol, gliclazide, bisoprolol, and atorvastatin, was found empty, but the amount ingested is unknown. On examination, the patient is sweaty with a global tremor and is confused. She is tachycardic and appears generally weak.
Which molecule is likely to be the first produced by the patient in response to the overdose?Your Answer: Glycogen phosphorylase
Correct Answer: Glucagon
Explanation:The initial hormone response to hypoglycaemia is the secretion of glucagon. In the case of a suspected gliclazide overdose, the most likely presentation would be hypoglycaemia, as evidenced by the patient’s sudden onset of sweating, weakness, and confusion. Other medications ingested are unlikely to produce these symptoms. When the body experiences hypoglycaemia, it first reduces insulin production and then increases glucagon secretion, which promotes gluconeogenesis to raise blood glucose levels.
Glycogen synthase is an enzyme involved in glycogenesis, the process of converting glucose into glycogen for storage in the body. However, in the case of hypoglycaemia caused by gliclazide ingestion, the body would carry out gluconeogenesis to release glucose, rather than glycogenesis.
While cortisol is released in response to hypoglycaemia, it is a later response and is secreted after glucagon. Cortisol is a glucocorticoid hormone that also promotes gluconeogenesis and glucose production.
Glutathione is an antioxidant found in the liver that helps neutralize and eliminate the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI) produced by paracetamol. In cases of paracetamol overdose, glutathione levels are depleted, but this patient’s symptoms are too acute for a paracetamol overdose. Liver failure resulting from paracetamol overdose takes several hours to develop and even longer before physical symptoms appear. The antidote treatment for paracetamol overdose is acetylcysteine, which replenishes glutathione levels.
Understanding Hypoglycaemia: Causes, Features, and Management
Hypoglycaemia is a condition characterized by low blood sugar levels, which can lead to a range of symptoms and complications. There are several possible causes of hypoglycaemia, including insulinoma, liver failure, Addison’s disease, and alcohol consumption. The physiological response to hypoglycaemia involves hormonal and sympathoadrenal responses, which can result in autonomic and neuroglycopenic symptoms. While blood glucose levels and symptom severity are not always correlated, common symptoms of hypoglycaemia include sweating, shaking, hunger, anxiety, nausea, weakness, vision changes, confusion, and dizziness. In severe cases, hypoglycaemia can lead to convulsions or coma.
Managing hypoglycaemia depends on the severity of the symptoms and the setting in which it occurs. In the community, individuals with diabetes who inject insulin may be advised to consume oral glucose or a quick-acting carbohydrate such as GlucoGel or Dextrogel. A ‘HypoKit’ containing glucagon may also be prescribed for home use. In a hospital setting, treatment may involve administering a quick-acting carbohydrate or subcutaneous/intramuscular injection of glucagon for unconscious or unable to swallow patients. Alternatively, intravenous glucose solution may be given through a large vein.
Overall, understanding the causes, features, and management of hypoglycaemia is crucial for individuals with diabetes or other conditions that increase the risk of low blood sugar levels. Prompt and appropriate treatment can help prevent complications and improve outcomes.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 21
Incorrect
-
A 6-year-old girl visits her GP with her parents as they have noticed a localized area of red and blistered swelling on her forehead. The GP suspects a superficial skin infection and prescribes appropriate antibiotics.
What is the most common microorganism associated with this condition, based on the likely diagnosis?Your Answer: Treponema pallidum
Correct Answer: Streptococcus pyogenes
Explanation:Streptococcus pyogenes is the primary cause of erysipelas, a localized skin infection. However, Staphylococcus aureus can also be a culprit. Haemophilus influenzae type B used to be a common cause before vaccination was available. Diphtheria, which can lead to serious renal and nervous system complications if left untreated, is caused by Corynebacterium diphtheriae. Enterococcus faecium, a gut bacterium, may also be involved in meningitis and endocarditis.
Understanding Erysipelas: A Superficial Skin Infection
Erysipelas is a skin infection that is caused by Streptococcus pyogenes. It is a less severe form of cellulitis, which is a more widespread skin infection. Erysipelas is a localized infection that affects the skin’s upper layers, causing redness, swelling, and warmth. The infection can occur anywhere on the body, but it is most commonly found on the face, arms, and legs.
The treatment of choice for erysipelas is flucloxacillin, an antibiotic that is effective against Streptococcus pyogenes. Other antibiotics may also be used, depending on the severity of the infection and the patient’s medical history.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 22
Incorrect
-
A 79-year-old man comes to your clinic with a protruding lump in his upper arm that he noticed while gardening last week. He experienced a dull ache in the front of his shoulder at the time, but he is now pain-free and has full use of his arm. During the examination, you observe an asymmetry in the patient's arms, with a circular mass on the lower portion of his left arm. When you ask him to flex his biceps muscles, you notice that the affected arm displays the 'popeye sign.' Based on the patient's history and physical examination, it appears that he has a rupture of the long head of biceps brachii tendon. What is the origin of the long head of biceps brachii tendon?
Your Answer: Greater tubercle of the humerus
Correct Answer: Supraglenoid tubercle of the scapula
Explanation:The long head of biceps tendon runs from the supraglenoid tubercle of the scapula. A ruptured tendon of the long head of biceps brachii is more common in older individuals and may present with the ‘Popeye’ sign. Management is dependent on the patient, with surgical repair for younger patients or those with co-existing rotator cuff tears, and a conservative approach for most patients.
The shoulder joint is a shallow synovial ball and socket joint that is inherently unstable but capable of a wide range of movement. Stability is provided by the muscles of the rotator cuff. The glenoid labrum is a fibrocartilaginous rim attached to the free edge of the glenoid cavity. The fibrous capsule attaches to the scapula, humerus, and tendons of various muscles. Movements of the shoulder joint are controlled by different muscles. The joint is closely related to important anatomical structures such as the brachial plexus, axillary artery and vein, and various nerves and vessels.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 23
Incorrect
-
A 16-year old girl comes to the clinic with a complaint of fever. Upon examination, Gram negative diplococci are observed in her blood cultures. What is the probable causative agent?
Your Answer: Escherichia coli
Correct Answer: Neisseria meningitidis
Explanation:Meningococcus: A Unique Gram Negative Diplococcus
Meningococcus, also known as Neisseria meningitidis, is a rare Gram negative organism that presents itself as diplococci. This means that the bacteria are paired together, forming two spherical shapes that resemble a pair of eyes. While other Neisseria species and Diphtheria are also Gram negative organisms, meningococcus is the only possible organism that presents as diplococci.
Meningococcus is a dangerous pathogen that can cause meningitis, septicaemia, or both. It is important to note that meningococcus is not the only organism that can cause these illnesses, but it is one of the most common culprits.
In contrast, Escherichia coli is a Gram negative rod-shaped bacterium that is not present as diplococci. It is a single organism that does not form pairs. Haemophilus influenzae are Gram negative coccobacilli, but they do not present as paired organisms. Staphylococcus aureus and Streptococcus pyogenes are both Gram positive bacteria and are not related to meningococcus.
-
This question is part of the following fields:
- Microbiology
-
-
Question 24
Correct
-
What type of epithelial cells can be found in the choroid plexus?
Your Answer: Ependymal cells
Explanation:Cells in the Central Nervous System
Ependymal cells are responsible for the production of cerebrospinal fluid (CSF) in the choroid plexus, which is a highly vascular tissue found in all CNS ventricles. These cells are specialised for secretion and have apical microvilli. Enterochromaffin cells, on the other hand, are catecholamine-secreting cells found in the adrenal medulla. Mesangial cells are supporting cells of the glomerulus, while mesothelial cells form a monolayer that comprises the pleura, peritoneum, and pericardium. Lastly, microglial cells are phagocytic glial cells of the CNS. Each of these cells plays a unique role in the central nervous system and contributes to its overall function.
-
This question is part of the following fields:
- Histology
-
-
Question 25
Incorrect
-
A 16-year-old girl complains of pain in her right iliac fossa and is diagnosed with acute appendicitis. You bring her to the operating room for a laparoscopic appendectomy. While performing the procedure, you are distracted by the scrub nurse and accidentally tear the appendicular artery, causing significant bleeding. Which vessel is likely to be the primary source of the hemorrhage?
Your Answer: Inferior mesenteric artery
Correct Answer: Ileo-colic artery
Explanation:The ileocolic artery gives rise to the appendicular artery.
Appendix Anatomy and Location
The appendix is a small, finger-like projection located at the base of the caecum. It can be up to 10cm long and is mainly composed of lymphoid tissue, which can sometimes lead to confusion with mesenteric adenitis. The caecal taenia coli converge at the base of the appendix, forming a longitudinal muscle cover over it. This convergence can aid in identifying the appendix during surgery, especially if it is retrocaecal and difficult to locate. The arterial supply to the appendix comes from the appendicular artery, which is a branch of the ileocolic artery. It is important to note that the appendix is intra-peritoneal.
McBurney’s Point and Appendix Positions
McBurney’s point is a landmark used to locate the appendix during physical examination. It is located one-third of the way along a line drawn from the Anterior Superior Iliac Spine to the Umbilicus. The appendix can be found in six different positions, with the retrocaecal position being the most common at 74%. Other positions include pelvic, postileal, subcaecal, paracaecal, and preileal. It is important to be aware of these positions as they can affect the presentation of symptoms and the difficulty of locating the appendix during surgery.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 26
Incorrect
-
A 38-year-old male visits his primary care physician complaining of polyuria, nocturia, and chronic dry mouth that have persisted for 4 months. He has a medical history of systemic lupus erythematosus (SLE) with associated renal involvement. His recent eGFR result was:
eGFR 23ml/min/1.73m²
The physician orders a water deprivation test along with other investigations.
What is the probable diagnosis for this patient, and what can be expected from his water deprivation test?Your Answer: Low urine osmolality after fluid deprivation, but normal after desmopressin
Correct Answer: Low urine osmolality after both fluid deprivation and desmopressin
Explanation:The correct answer is low urine osmolality after both fluid deprivation and desmopressin in the water deprivation test for a patient with nephrogenic diabetes insipidus (DI). This condition is characterized by renal insensitivity to antidiuretic hormone (ADH), resulting in an inability to concentrate urine. As a result, urine osmolality will be low even during water deprivation and will not respond to desmopressin (synthetic ADH). This is in contrast to primary polydipsia, where high urine osmolality would be seen after both fluid deprivation and desmopressin, and cranial DI, where low urine osmolality would be seen during water deprivation but high urine osmolality would be seen after desmopressin.
The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 27
Incorrect
-
As you help the FY1 draft discharge summaries for the care of the elderly ward, you come across a patient who is reported to have profound apraxia. This individual is 89 years old and has significant dementia. Can you explain what apraxia is?
Your Answer: The observation of painful movements
Correct Answer: Inability to perform voluntary movements
Explanation:Apraxia refers to the incapacity to execute deliberate movements even when the motor and sensory systems are functioning properly. This condition impacts activities like dressing, eating, artistic endeavors (such as drawing), and ideomotor actions (like waving goodbye).
Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.
In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 28
Incorrect
-
An 81-year-old female is admitted to the hospital with a Colles fracture in her left wrist. Upon conducting a bone scan, it is revealed that she has osteoporosis. The medical team decides to initiate treatment. What category of medications is recommended?
Your Answer: Vitamin D
Correct Answer: Bisphosphonates
Explanation:Bisphosphonates, particularly alendronate, are the recommended treatment for fragility fractures in postmenopausal women. Additionally, calcium and vitamin D supplementation should be considered, along with lifestyle advice on nutrition, exercise, and fall prevention.
Bisphosphonates: Uses, Adverse Effects, and Patient Counselling
Bisphosphonates are drugs that mimic the action of pyrophosphate, a molecule that helps prevent bone demineralization. They work by inhibiting osteoclasts, the cells responsible for breaking down bone tissue. Bisphosphonates are commonly used to prevent and treat osteoporosis, hypercalcemia, Paget’s disease, and pain from bone metastases.
However, bisphosphonates can cause adverse effects such as oesophageal reactions, osteonecrosis of the jaw, and an increased risk of atypical stress fractures of the proximal femoral shaft in patients taking alendronate. Patients may also experience an acute phase response, which includes fever, myalgia, and arthralgia following administration. Hypocalcemia may also occur due to reduced calcium efflux from bone, but this is usually clinically unimportant.
To minimize the risk of adverse effects, patients taking oral bisphosphonates should swallow the tablets whole with plenty of water while sitting or standing. They should take the medication on an empty stomach at least 30 minutes before breakfast or another oral medication and remain upright for at least 30 minutes after taking the tablet. Hypocalcemia and vitamin D deficiency should be corrected before starting bisphosphonate treatment. However, calcium supplements should only be prescribed if dietary intake is inadequate when starting bisphosphonate treatment for osteoporosis. Vitamin D supplements are usually given.
The duration of bisphosphonate treatment varies depending on the level of risk. Some experts recommend stopping bisphosphonates after five years if the patient is under 75 years old, has a femoral neck T-score of more than -2.5, and is at low risk according to FRAX/NOGG.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 29
Correct
-
A 68-year-old man is hospitalized with pneumonia, which is suspected to be a complication of a recent infection. He had visited his doctor a week ago, complaining of a high fever and symptoms resembling a cold. Additionally, he had developed a red rash around his hairline that seemed to be spreading down his neck. Based on this information, what is the primary method of transmission for the initial infection?
Your Answer: Aerosol
Explanation:The most likely mode of transmission for measles is through aerosols. The woman’s symptoms and subsequent rash near the hairline indicate a measles infection, which is highly contagious and can be spread through the air when an infected person coughs or sneezes. While contaminated surfaces may also transmit the virus, it is not the primary mode of transmission. Measles is not transmitted through the faecal-oral route or intravenously, as it is found in the nose and throat of an infected person and not in their faeces or blood.
Measles: A Highly Infectious Disease
Measles is a viral infection caused by an RNA paramyxovirus. It is one of the most infectious viruses known and is spread through aerosol transmission. The incubation period is 10-14 days, and the virus is infective from the prodromal phase until four days after the rash starts. Measles is now rare in developed countries due to immunization programs, but outbreaks can occur when vaccination rates drop.
The prodromal phase of measles is characterized by irritability, conjunctivitis, fever, and Koplik spots. These white spots on the buccal mucosa typically develop before the rash. The rash starts behind the ears and then spreads to the whole body, becoming a discrete maculopapular rash that may become blotchy and confluent. Desquamation may occur after a week, typically sparing the palms and soles. Diarrhea occurs in around 10% of patients.
Measles is mainly managed through supportive care, and admission may be considered for immunosuppressed or pregnant patients. It is a notifiable disease, and public health should be informed. Complications of measles include otitis media, pneumonia, encephalitis, subacute sclerosing panencephalitis, febrile convulsions, keratoconjunctivitis, corneal ulceration, diarrhea, increased incidence of appendicitis, and myocarditis.
If an unvaccinated child comes into contact with measles, MMR should be offered within 72 hours. Vaccine-induced measles antibody develops more rapidly than that following natural infection.
-
This question is part of the following fields:
- General Principles
-
-
Question 30
Incorrect
-
A 16-year-old girl visits the clinic with concerns about a possible pregnancy. She is provided with a pregnancy test, which indicates a positive result. From which part of her body would the beta-hCG, detected on the pregnancy test, have been secreted?
Your Answer: The corpus luteum
Correct Answer: The placenta
Explanation:During pregnancy, the placenta produces beta-hCG, which helps to sustain the corpus luteum. This, in turn, continues to secrete progesterone and estrogen throughout the pregnancy to maintain the endometrial lining. Eventually, after 6 weeks of gestation, the placenta takes over the production of progesterone.
Endocrine Changes During Pregnancy
During pregnancy, there are several physiological changes that occur in the body, including endocrine changes. Progesterone, which is produced by the fallopian tubes during the first two weeks of pregnancy, stimulates the secretion of nutrients required by the zygote/blastocyst. At six weeks, the placenta takes over the production of progesterone, which inhibits uterine contractions by decreasing sensitivity to oxytocin and inhibiting the production of prostaglandins. Progesterone also stimulates the development of lobules and alveoli.
Oestrogen, specifically oestriol, is another major hormone produced during pregnancy. It stimulates the growth of the myometrium and the ductal system of the breasts. Prolactin, which increases during pregnancy, initiates and maintains milk secretion of the mammary gland. It is essential for the expression of the mammotropic effects of oestrogen and progesterone. However, oestrogen and progesterone directly antagonize the stimulating effects of prolactin on milk synthesis.
Human chorionic gonadotropin (hCG) is secreted by the syncitiotrophoblast and can be detected within nine days of pregnancy. It mimics LH, rescuing the corpus luteum from degenerating and ensuring early oestrogen and progesterone secretion. It also stimulates the production of relaxin and may inhibit contractions induced by oxytocin. Other hormones produced during pregnancy include relaxin, which suppresses myometrial contractions and relaxes the pelvic ligaments and pubic symphysis, and human placental lactogen (hPL), which has lactogenic actions and enhances protein metabolism while antagonizing insulin.
-
This question is part of the following fields:
- Reproductive System
-
-
Question 31
Correct
-
A 30-year-old female patient visits her general practitioner complaining of persistent fatigue, muscle and joint pain, low-grade fever, and a butterfly-shaped rash on her face. After diagnosis, she is found to have systemic lupus erythematosus, an autoimmune disorder caused by deficiencies in the complement system and the formation of antigen-antibody complexes.
What types of antibodies are commonly involved in this condition?Your Answer: IgM and IgG
Explanation:Complement fixation is only initiated by IgM and IgG immunoglobulins. This is because they activate the classical pathway through antigen-antibody complexes. IgA, IgD, and IgE do not activate the classical complement pathway. IgA provides localized protection through mucous membranes, while IgD and IgE are involved in other immune responses. The alternative pathway, on the other hand, is triggered by polysaccharides such as those found in Gram-negative bacteria.
Immunoglobulins, also known as antibodies, are proteins produced by the immune system to help fight off infections and diseases. There are five types of immunoglobulins found in the body, each with their own unique characteristics.
IgG is the most abundant type of immunoglobulin in blood serum and plays a crucial role in enhancing phagocytosis of bacteria and viruses. It also fixes complement and can be passed to the fetal circulation.
IgA is the most commonly produced immunoglobulin in the body and is found in the secretions of digestive, respiratory, and urogenital tracts and systems. It provides localized protection on mucous membranes and is transported across the interior of the cell via transcytosis.
IgM is the first immunoglobulin to be secreted in response to an infection and fixes complement, but does not pass to the fetal circulation. It is also responsible for producing anti-A, B blood antibodies.
IgD’s role in the immune system is largely unknown, but it is involved in the activation of B cells.
IgE is the least abundant type of immunoglobulin in blood serum and is responsible for mediating type 1 hypersensitivity reactions. It provides immunity to parasites such as helminths and binds to Fc receptors found on the surface of mast cells and basophils.
-
This question is part of the following fields:
- General Principles
-
-
Question 32
Correct
-
A 42-year-old male presents to his primary care physician with a 4-month history of changes in bowel movements and occasional blood in his stool. Following various tests, he is diagnosed with colon cancer and undergoes a successful semi-colectomy. As part of his treatment plan, what method would be utilized to screen for mutated oncogenes in this patient?
Your Answer: Polymerase chain reaction
Explanation:The technique used to detect mutated oncogenes is polymerase chain reaction, which involves replicating DNA to screen for genes of interest. Centrifugation, electron microscopy, and enzyme-linked immunosorbent assay (ELISA) are not commonly used for this purpose.
Reverse Transcriptase PCR
Reverse transcriptase PCR (RT-PCR) is a molecular genetic technique used to amplify RNA. This technique is useful for analyzing gene expression in the form of mRNA. The process involves converting RNA to DNA using reverse transcriptase. The resulting DNA can then be amplified using PCR.
To begin the process, a sample of RNA is added to a test tube along with two DNA primers and a thermostable DNA polymerase (Taq). The mixture is then heated to almost boiling point, causing denaturing or uncoiling of the RNA. The mixture is then allowed to cool, and the complimentary strands of DNA pair up. As there is an excess of the primer sequences, they preferentially pair with the DNA.
The above cycle is then repeated, with the amount of DNA doubling each time. This process allows for the amplification of the RNA, making it easier to analyze gene expression. RT-PCR is a valuable tool in molecular biology and has many applications in research, including the study of diseases and the development of new treatments.
-
This question is part of the following fields:
- General Principles
-
-
Question 33
Incorrect
-
What structures are found alongside the median nerve in the carpal tunnel?
Your Answer: Flexor carpi ulnaris
Correct Answer: Flexor digitorum profundis
Explanation:The Carpal Tunnel: A Passage for Nerves and Tendons
The carpal tunnel is a narrow passage located in the wrist that is made up of the flexor retinaculum, a band of connective tissue. This tunnel serves as a pathway for the median nerve and the tendons of the long flexor muscles of the fingers. These structures pass through the tunnel to reach the hand and fingers. However, all other structures, such as blood vessels and other nerves, are located outside of the carpal tunnel.
In summary, the carpal tunnel is a crucial passage for the median nerve and tendons of the long flexor muscles of the digits. It is formed by the flexor retinaculum and is located in the wrist. the anatomy of the carpal tunnel is important in diagnosing and treating conditions that affect the hand and wrist.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 34
Incorrect
-
What does the first heart sound indicate in terms of cardiac activity?
Your Answer: Opening of the mitral/tricupid valves
Correct Answer: Closing of the mitral/tricuspid valves
Explanation:Valvular Sounds and the Cardiac Cycle
Valvular sounds are the audible representation of the closure of the heart valves. The first heart sound occurs during systole, when the pressure in the ventricles increases and the mitral and tricuspid valves close, forcing blood through the aorta or pulmonary artery. As the ventricles empty and their pressure drops, the aortic or pulmonary valves close, creating the second heart sound. During diastole, the ventricles relax and their pressure decreases even further. When this pressure falls below that of the atria, the mitral and tricuspid valves open once again.
the cardiac cycle and the sounds associated with it is crucial in diagnosing and treating heart conditions. By listening to the timing and quality of the valvular sounds, healthcare professionals can identify abnormalities in the heart’s function and structure. Additionally, monitoring changes in these sounds over time can help track the progression of certain conditions and guide treatment decisions.
In summary, the valvular sounds of the heart represent the opening and closing of the heart valves during the cardiac cycle. These sounds are important indicators of heart health and can provide valuable information for healthcare professionals in diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 35
Correct
-
A pediatric patient with a rare immunodeficiency disorder has been included in a research investigation exploring immunoglobulins and immune system activation. The latest findings indicate that the patient is unable to activate B-cells. The researchers are curious if there is a deficiency in a specific immunoglobulin that could explain the inadequate B-cell activation.
What immunoglobulin is probably affected?Your Answer: IgD
Explanation:The immunoglobulin IgG is a crucial component of the immune system, with high levels in serum and potent activity against bacterial and viral pathogens. It plays a role in activating the complement system and is also involved in type 2 and type 3 hypersensitivity reactions.
Immunoglobulins, also known as antibodies, are proteins produced by the immune system to help fight off infections and diseases. There are five types of immunoglobulins found in the body, each with their own unique characteristics.
IgG is the most abundant type of immunoglobulin in blood serum and plays a crucial role in enhancing phagocytosis of bacteria and viruses. It also fixes complement and can be passed to the fetal circulation.
IgA is the most commonly produced immunoglobulin in the body and is found in the secretions of digestive, respiratory, and urogenital tracts and systems. It provides localized protection on mucous membranes and is transported across the interior of the cell via transcytosis.
IgM is the first immunoglobulin to be secreted in response to an infection and fixes complement, but does not pass to the fetal circulation. It is also responsible for producing anti-A, B blood antibodies.
IgD’s role in the immune system is largely unknown, but it is involved in the activation of B cells.
IgE is the least abundant type of immunoglobulin in blood serum and is responsible for mediating type 1 hypersensitivity reactions. It provides immunity to parasites such as helminths and binds to Fc receptors found on the surface of mast cells and basophils.
-
This question is part of the following fields:
- General Principles
-
-
Question 36
Incorrect
-
You are designing a research project looking at the complement system, in-particular the alternative complement pathway. As your dependent variable you choose the time taken to reduce levels of different strains of Salmonella bacteria to undetectable levels in vitro.
What will you choose as your independent variable?Your Answer: Th2 lymphocytes
Correct Answer: Polysaccharides
Explanation:The activation of the alternative complement pathway is triggered by polysaccharides found on pathogens, such as gram negative bacteria. The research study is focused on evaluating the effectiveness of this pathway, making polysaccharides the suitable dependent variable to measure. On the other hand, the classical complement pathway is activated by the formation of antigen-antibody complexes, specifically IgM/IgG. Th1 lymphocytes play a role in the cell-mediated response, while Th2 lymphocytes are involved in the humoral or antibody response.
Overview of Complement Pathways
Complement pathways are a group of proteins that play a crucial role in the body’s immune and inflammatory response. These proteins are involved in various processes such as chemotaxis, cell lysis, and opsonisation. There are two main complement pathways: classical and alternative.
The classical pathway is initiated by antigen-antibody complexes, specifically IgM and IgG. The proteins involved in this pathway include C1qrs, C2, and C4. On the other hand, the alternative pathway is initiated by polysaccharides found in Gram-negative bacteria and IgA. The proteins involved in this pathway are C3, factor B, and properdin.
Understanding the complement pathways is important in the diagnosis and treatment of various diseases. Dysregulation of these pathways can lead to autoimmune disorders, infections, and other inflammatory conditions. By identifying the specific complement pathway involved in a disease, targeted therapies can be developed to effectively treat the condition.
-
This question is part of the following fields:
- General Principles
-
-
Question 37
Correct
-
A 67-year-old woman visits the anticoagulation clinic for her regular INR test. She has a medical history of deep vein thrombosis and pulmonary embolism and is currently taking warfarin for life. During this visit, her INR level is found to be 4.4, which is higher than her target of 3.0. Upon further inquiry, she reveals that she had been prescribed antibiotics by her GP recently. Can you identify the clotting factors that warfarin affects?
Your Answer: Factors II, VII, IX, X
Explanation:Warfarin is an oral anticoagulant that is widely used to prevent blood clotting in various medical conditions, including stroke prevention in atrial fibrillation and venous thromboembolism. Warfarin primarily targets the Vitamin K dependent clotting factors, which include factors II, VII, IX, and X.
To monitor the effectiveness of warfarin therapy, the International Normalized Ratio (INR) is used. However, the INR can be affected by drug interactions, such as those with antibiotics. Therefore, it is important to be aware of the common drug interactions associated with warfarin.
Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 38
Incorrect
-
A 45-year-old man presents to the emergency department with worsening shortness of breath. He reports experiencing these symptoms for the past three months, which worsen with physical activity or walking long distances. He has a history of multiple sexual partners and recalls having painless ulcer-like lesions on his genitals and a rash on his hands many years ago, but did not seek treatment due to lack of medical insurance. The patient denies chest pain and fever. A Doppler echocardiography reveals significant aortic root dilatation and aortic regurgitation. What is the most likely underlying pathology in this case?
Your Answer: Untreated infection by a gram-positive and coagulase-positive bacterium
Correct Answer: Untreated infection by a spiral-shaped bacterium
Explanation:The patient’s symptoms suggest aortic insufficiency, which is commonly caused by age-related calcification. However, given the patient’s young age and history of unsafe sexual practices and previous syphilis infection, syphilitic heart disease is the most likely diagnosis. Gonococcal infection is unlikely as the patient had painless lesions characteristic of syphilis.
Syphilis is a sexually transmitted infection caused by the bacterium Treponema pallidum. The infection progresses through primary, secondary, and tertiary stages, with an incubation period of 9-90 days. The primary stage is characterized by a painless ulcer at the site of sexual contact, along with local lymphadenopathy. Women may not always exhibit visible symptoms. The secondary stage occurs 6-10 weeks after primary infection and presents with systemic symptoms such as fevers and lymphadenopathy, as well as a rash on the trunk, palms, and soles. Other symptoms may include buccal ulcers and genital warts. Tertiary syphilis can lead to granulomatous lesions of the skin and bones, ascending aortic aneurysms, general paralysis of the insane, tabes dorsalis, and Argyll-Robertson pupil. Congenital syphilis can cause blunted upper incisor teeth, linear scars at the angle of the mouth, keratitis, saber shins, saddle nose, and deafness.
-
This question is part of the following fields:
- General Principles
-
-
Question 39
Correct
-
A 35-year-old man has arrived at the emergency department following a car crash. He is experiencing tachycardia and his blood pressure is rapidly decreasing from 90/60mmHg. He is feeling dizzy and disoriented, and is experiencing pain in his left upper quadrant and left shoulder. Which organ is most likely to have sustained damage?
Your Answer: Spleen
Explanation:The patient’s tachycardia and low blood pressure indicate internal bleeding due to trauma. Although he experiences pain in his upper left abdominal quadrant, it does not rule out the possibility of internal bleeding. However, it makes heart and lung injuries less likely as he would have also complained of chest pain. The pain in his left shoulder suggests that the left phrenic nerve has been affected, which indicates damage to the spleen rather than the liver, as it would have been on the right side. The spleen is commonly damaged in trauma and could explain the rapid drop in blood pressure.
Understanding the Anatomy of the Spleen
The spleen is a vital organ in the human body, serving as the largest lymphoid organ. It is located below the 9th-12th ribs and has a clenched fist shape. The spleen is an intraperitoneal organ, and its peritoneal attachments condense at the hilum, where the vessels enter the spleen. The blood supply of the spleen is from the splenic artery, which is derived from the coeliac axis, and the splenic vein, which is joined by the IMV and unites with the SMV.
The spleen is derived from mesenchymal tissue during embryology. It weighs between 75-150g and has several relations with other organs. The diaphragm is superior to the spleen, while the gastric impression is anterior, the kidney is posterior, and the colon is inferior. The hilum of the spleen is formed by the tail of the pancreas and splenic vessels. The spleen also forms the apex of the lesser sac, which contains short gastric vessels.
In conclusion, understanding the anatomy of the spleen is crucial in comprehending its functions and the role it plays in the human body. The spleen’s location, weight, and relations with other organs are essential in diagnosing and treating spleen-related conditions.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 40
Incorrect
-
Which one of the following statements are not typically true in hypokalaemia?
Your Answer: It may cause hyponatraemia
Correct Answer: It often accompanies acidosis
Explanation:Potassium depletion can occur through the gastrointestinal tract or the kidneys. Chronic vomiting is less likely to cause potassium loss than diarrhea because gastric secretions contain less potassium than lower GI secretions. However, if vomiting leads to metabolic alkalosis, renal potassium wasting may occur as the body excretes potassium instead of hydrogen ions. Conversely, potassium depletion can result in acidic urine.
Hypokalemia is often associated with metabolic alkalosis due to two factors. Firstly, common causes of metabolic alkalosis, such as vomiting and diuretics, directly cause loss of H+ and K+ (via aldosterone), leading to hypokalemia. Secondly, hypokalemia can cause metabolic alkalosis through three mechanisms. Firstly, it causes a transcellular shift where K+ leaves and H+ enters cells, raising extracellular pH. Secondly, it causes an intracellular acidosis in the proximal tubules, promoting ammonium production and excretion. Thirdly, in the presence of hypokalemia, hydrogen secretion in the proximal and distal tubules increases, leading to further reabsorption of HCO3-. Overall, this results in an increase in net acid excretion.
Understanding Hypokalaemia and its Causes
Hypokalaemia is a condition characterized by low levels of potassium in the blood. Potassium and hydrogen ions are competitors, and as potassium levels decrease, more hydrogen ions enter the cells. Hypokalaemia can occur with either alkalosis or acidosis. In cases of alkalosis, hypokalaemia may be caused by vomiting, thiazide and loop diuretics, Cushing’s syndrome, or Conn’s syndrome. On the other hand, hypokalaemia with acidosis may be caused by diarrhoea, renal tubular acidosis, acetazolamide, or partially treated diabetic ketoacidosis.
It is important to note that magnesium deficiency may also cause hypokalaemia. In such cases, normalizing potassium levels may be difficult until the magnesium deficiency has been corrected. Understanding the causes of hypokalaemia can help in its diagnosis and treatment.
-
This question is part of the following fields:
- Renal System
-
-
Question 41
Incorrect
-
A 65-year-old woman is admitted to the ICU with a multidrug-resistant urinary tract infection. She has a medical history of type 2 diabetes, hypertension, and a previous cerebrovascular accident. After three days, she experiences an altered sensorium and her urine output has been 100 ml over the past 12 hours. Her creatinine level has increased from 1 mg/dl to almost 5 mg/dl, and her blood pressure is currently 180/100 mmHg. The patient is currently taking amikacin, insulin, atorvastatin, atenolol, ramipril, and clopidogrel.
Which medication, other than ramipril, should be discontinued for this patient?Your Answer: Atorvastatin
Correct Answer: Amikacin
Explanation:The patient’s symptoms suggest that they may be experiencing acute kidney injury (AKI) as a result of a severe urinary tract infection and potential sepsis. It is important to note that ACE inhibitors such as ramipril should not be used in cases of AKI, and aminoglycosides like amikacin should also be discontinued. Beta-blockers like atenolol, on the other hand, are generally safe to use in AKI patients and may be preferred over ACE inhibitors and ARBs as antihypertensives. While statins like atorvastatin are generally safe in AKI, they can rarely cause rhabdomyolysis, which can worsen renal function and lead to renal failure. Therefore, patients who experience muscle pain should be evaluated further to rule out the possibility of rhabdomyolysis.
Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.
The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.
Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.
-
This question is part of the following fields:
- Renal System
-
-
Question 42
Incorrect
-
Which one of the following forms the floor of the anatomical snuffbox?
Your Answer: Extensor pollicis brevis
Correct Answer: Scaphoid bone
Explanation:The anatomical snuffbox is situated above the scaphoid bone. The radial nerve’s cutaneous branch is located closer to the surface and closer to the center.
The Anatomical Snuffbox: A Triangle on the Wrist
The anatomical snuffbox is a triangular depression located on the lateral aspect of the wrist. It is bordered by tendons of the extensor pollicis longus, extensor pollicis brevis, and abductor pollicis longus muscles, as well as the styloid process of the radius. The floor of the snuffbox is formed by the trapezium and scaphoid bones. The apex of the triangle is located distally, while the posterior border is formed by the tendon of the extensor pollicis longus. The radial artery runs through the snuffbox, making it an important landmark for medical professionals.
In summary, the anatomical snuffbox is a small triangular area on the wrist that is bordered by tendons and bones. It is an important landmark for medical professionals due to the presence of the radial artery.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 43
Correct
-
A 57-year-old woman is scheduled for a left hemicolectomy to treat splenic flexure carcinoma. The surgical team plans to perform a high ligation of the inferior mesenteric vein. Typically, what does this structure drain into?
Your Answer: Splenic vein
Explanation:Colonic surgery carries the risk of ureteric injury, which should be taken into consideration.
Ileus can be caused during surgery when the inferior mesenteric vein joins the splenic vein near the duodenum, which is a known complication.
Anatomy of the Left Colon
The left colon is a part of the large intestine that passes inferiorly and becomes extraperitoneal in its posterior aspect. It is closely related to the ureter and gonadal vessels, which may be affected by disease processes. At a certain level, the left colon becomes the sigmoid colon, which is wholly intraperitoneal once again. The sigmoid colon is highly mobile and may even be found on the right side of the abdomen. As it passes towards the midline, the taenia blend marks the transition between the sigmoid colon and upper rectum.
The blood supply of the left colon comes from the inferior mesenteric artery. However, the marginal artery, which comes from the right colon, also contributes significantly. This contribution becomes clinically significant when the inferior mesenteric artery is divided surgically, such as during an abdominal aortic aneurysm repair. Understanding the anatomy of the left colon is important for diagnosing and treating diseases that affect this part of the large intestine.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 44
Incorrect
-
A 75-year-old woman complains of increasing shortness of breath in the past few months, especially when lying down at night. She has a history of type 2 diabetes and high blood pressure, which is managed with ramipril. She smokes 15 cigarettes per day. Her heart rate is 76 bpm, blood pressure is 160/95 mmHg, and oxygen saturation is 94% on room air. An ECG reveals sinus rhythm and left ventricular hypertrophy. On physical examination, there are no heart murmurs, but there is wheezing throughout the chest and coarse crackles at both bases. She has pitting edema in both ankles. Her troponin T level is 0.01 (normal range <0.02). What is the diagnosis for this patient?
Your Answer: Right heart failure
Correct Answer: Biventricular failure
Explanation:Diagnosis and Assessment of Biventricular Failure
This patient is exhibiting symptoms of both peripheral and pulmonary edema, indicating biventricular failure. The ECG shows left ventricular hypertrophy, which is likely due to her long-standing hypertension. While she is at an increased risk for a myocardial infarction as a diabetic and smoker, her low troponin T levels suggest that this is not the immediate cause of her symptoms. However, it is important to rule out acute coronary syndromes in diabetics, as they may not experience pain.
Mitral stenosis, if present, would be accompanied by a diastolic murmur and left atrial hypertrophy. In severe cases, back-pressure can lead to pulmonary edema. Overall, a thorough assessment and diagnosis of biventricular failure is crucial in determining the appropriate treatment plan for this patient.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 45
Correct
-
A previously healthy 8-year-old girl comes to the GP with a recent onset limp. She experiences tenderness in her right leg during all hip movements. Blood tests reveal no abnormalities. An MRI scan shows an irregular femoral head. What is the probable underlying diagnosis?
Your Answer: Legg-Calve-Perthes disease
Explanation:Idiopathic Osteonecrosis of the Femoral Head in Children
Idiopathic osteonecrosis of the femoral head, also known as Perthes disease, is a condition that primarily affects boys between the ages of 5 and 11. It is characterized by pain in the hip during movement and difficulty bearing weight. Unlike septic arthritis, the child is not systemically unwell. The cause of Perthes disease is unknown, although trauma may sometimes be a contributing factor.
Examination findings can help localize the pathology to the hip, and irregularities in the femoral head may be visible on x-ray. However, MRI is the preferred imaging modality. Treatment options depend on the extent of the affected area. If less than 50% of the head is affected, bed rest and analgesia may be sufficient. If more than 50% is affected, surgery may be necessary.
Other conditions that can cause a limping child include caisson disease, septic arthritis, sickle cell disease, and slipped upper femoral epiphysis (SUFE). However, each of these conditions has distinct characteristics that can help differentiate them from Perthes disease. For example, caisson disease is associated with nitrogen decompression sickness after diving, while SUFE tends to occur in teenagers and involves a fracture through the growth plate with a displaced femoral head.
-
This question is part of the following fields:
- Rheumatology
-
-
Question 46
Incorrect
-
A patient is being anaesthetised for a minor bowel surgery. Sarah, a second year medical student is present and is asked to assist the anaesthetist during intubation. The anaesthetist inserts a laryngoscope in the patient's mouth and asks Sarah to identify the larynx.
Which one of the following anatomical landmarks corresponds to the position of the structure being identified by the student?Your Answer: C5
Correct Answer: C3-C6
Explanation:The larynx is located in the front of the neck, specifically at the level of the vertebrae C3-C6. This area also includes important anatomical landmarks such as the Atlas and Axis vertebrae (C1-C2), the thyroid cartilage (C5), and the pulmonary hilum (T5-T7).
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 47
Incorrect
-
As a medical student on a surgical team, the FY1 doctor requests that you conduct a group and save blood test for a patient prior to their operation. The patient, who is identified as being in their 50s, has blood group A and therefore has anti-B antibodies. What type of antibodies will they possess?
Your Answer: IgA
Correct Answer: IgM
Explanation:The IgM antibody is composed of five antibodies joined together and is primarily responsible for clumping antigens. Anti-A and anti-B antibodies are typically IgM and are produced during early childhood due to exposure to environmental factors like bacteria, viruses, and food.
On the other hand, IgG is the most prevalent antibody and exists as a single antibody complex. IgD, on the other hand, is located on the surface of B-lymphocytes.
Blood product transfusion complications can be categorized into immunological, infective, and other complications. Immunological complications include acute haemolytic reactions, non-haemolytic febrile reactions, and allergic/anaphylaxis reactions. Infective complications may arise due to transmission of vCJD, although measures have been taken to minimize this risk. Other complications include transfusion-related acute lung injury (TRALI), transfusion-associated circulatory overload (TACO), hyperkalaemia, iron overload, and clotting.
Non-haemolytic febrile reactions are thought to be caused by antibodies reacting with white cell fragments in the blood product and cytokines that have leaked from the blood cell during storage. These reactions may occur in 1-2% of red cell transfusions and 10-30% of platelet transfusions. Minor allergic reactions may also occur due to foreign plasma proteins, while anaphylaxis may be caused by patients with IgA deficiency who have anti-IgA antibodies.
Acute haemolytic transfusion reaction is a serious complication that results from a mismatch of blood group (ABO) which causes massive intravascular haemolysis. Symptoms begin minutes after the transfusion is started and include a fever, abdominal and chest pain, agitation, and hypotension. Treatment should include immediate transfusion termination, generous fluid resuscitation with saline solution, and informing the lab. Complications include disseminated intravascular coagulation and renal failure.
TRALI is a rare but potentially fatal complication of blood transfusion that is characterized by the development of hypoxaemia/acute respiratory distress syndrome within 6 hours of transfusion. On the other hand, TACO is a relatively common reaction due to fluid overload resulting in pulmonary oedema. As well as features of pulmonary oedema, the patient may also be hypertensive, a key difference from patients with TRALI.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 48
Correct
-
A 29-year-old man visits his GP with a complaint of a persistent cough. He reports coughing up large amounts of yellow sputum and occasionally blood on a daily basis for the past few years. Lately, he has noticed that his clothes seem loose on him and he frequently feels fatigued.
What is the most probable underlying condition responsible for this patient's symptoms?Your Answer: Kartagener's syndrome
Explanation:Kartagener’s syndrome is a condition that can lead to bronchiectasis due to a defect in the cilia, which impairs the lungs’ ability to clear mucus. Bronchiectasis is diagnosed when a person produces large amounts of sputum daily, experiences haemoptysis, and loses weight. While other conditions may cause tiredness, weight loss, or haemoptysis, they are not typically associated with bronchiectasis.
Understanding Kartagener’s Syndrome
Kartagener’s syndrome, also known as primary ciliary dyskinesia, is a rare genetic disorder that was first described in 1933. It is often associated with dextrocardia, which can be detected through quiet heart sounds and small volume complexes in lateral leads during examinations. The pathogenesis of Kartagener’s syndrome is caused by a dynein arm defect, which results in immotile cilia.
The features of Kartagener’s syndrome include dextrocardia or complete situs inversus, bronchiectasis, recurrent sinusitis, and subfertility. The latter is due to diminished sperm motility and defective ciliary action in the fallopian tubes. It is important to note that Kartagener’s syndrome is a rare disorder, and diagnosis can be challenging. However, early detection and management can help improve the quality of life for those affected by this condition.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 49
Incorrect
-
A pharmaceutical representative visits your clinic and informs you about a new medication that is currently undergoing a trial to determine its appropriate dosage and potential side effects. What categories of patients would you recommend for the trial, and at which stage of the trial is the drug currently in?
Your Answer: Diseased participants, Phase 1
Correct Answer: Healthy participants, Phase 1
Explanation:Experimental drugs must pass through several phases of testing before they can be approved for use. Phase 0 trials involve microdosing and are used to speed up drug development by testing how the drug behaves in humans. However, no therapeutic effect or safety and efficacy data can be measured from these trials. Phase 2 trials, on the other hand, aim to determine the best dosage and evaluate the drug’s effectiveness by testing it on patients with the targeted disease.
Phases of Clinical Trials
Clinical trials are conducted to determine the safety and efficacy of new treatments or drugs. These trials are commonly classified into four phases. The first phase involves determining the pharmacokinetics and pharmacodynamics of the drug, as well as any potential side effects. This phase is conducted on healthy volunteers.
The second phase assesses the efficacy and dosage of the drug. It involves a small number of patients affected by a particular disease. This phase may be further subdivided into IIa, which assesses optimal dosing, and IIb, which assesses efficacy.
The third phase involves assessing the effectiveness of the drug. This phase typically involves a larger number of people, often as part of a randomized controlled trial, comparing the new treatment with established treatments.
The fourth and final phase is postmarketing surveillance. This phase monitors the long-term effectiveness and side effects of the drug after it has been approved and is on the market.
Overall, the phases of clinical trials are crucial in determining the safety and efficacy of new treatments and drugs. They provide valuable information that can help improve patient outcomes and advance medical research.
-
This question is part of the following fields:
- General Principles
-
-
Question 50
Incorrect
-
A 33-year-old man presents to the emergency department with complaints of pain in his left hand following a fall that occurred 4 days ago. The pain is located on the dorsum of his hand, near the base of his index finger. He reports that he tripped and fell while running and used his left hand to break his fall.
Upon examination, there is significant tenderness upon palpation of the base of the first metacarpal on the dorsum of his hand. There is also noticeable swelling in the affected area.
What type of fracture is the patient most likely to have sustained?Your Answer: Boxer's fracture
Correct Answer: Scaphoid fracture
Explanation:The most likely cause of the patient’s pain in the anatomical snuffbox is a scaphoid fracture, which is often the result of falling onto an outstretched hand (FOOSH). Scaphoid fractures are the most common type of carpal fracture. In contrast, a boxer’s fracture involves the 5th metacarpal bone and is typically caused by punching something with a closed fist, while a Colles’ fracture affects the distal radius and causes a dorsal displacement of the fragments. A Galeazzi fracture involves the radial bone and dislocation of the distal radioulnar joint, and is typically caused by a fall on the hand with rotational force.
A scaphoid fracture is a type of wrist fracture that usually occurs when a person falls onto an outstretched hand or during contact sports. It is important to identify scaphoid fractures as they can lead to avascular necrosis due to the unusual blood supply of the scaphoid bone. Patients with scaphoid fractures typically experience pain along the radial aspect of the wrist and loss of grip or pinch strength. Clinical examination involves checking for tenderness over the anatomical snuffbox, wrist joint effusion, pain on telescoping of the thumb, tenderness of the scaphoid tubercle, and pain on ulnar deviation of the wrist. Plain film radiographs and scaphoid views are used to diagnose scaphoid fractures, but MRI is considered the definitive investigation. Initial management involves immobilization with a splint or backslab and referral to orthopaedics. Orthopaedic management depends on the type of fracture, with undisplaced fractures typically treated with a cast and displaced fractures requiring surgical fixation. Complications of scaphoid fractures include non-union and avascular necrosis.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 51
Incorrect
-
You are developing a research plan to investigate the impact of prolonged fasting on lipid stores in elderly individuals. Your aim is to examine the influence of diet on the breakdown of fats. To achieve this, you opt to track the levels of the rate limiting enzyme involved in this process following a high glucose load.
Which specific enzyme will you be monitoring?Your Answer: Phosphofructokinase-1
Correct Answer: Carnitine-palmitoyl transferase I
Explanation:Carnitine-palmitoyl transferase I is the enzyme that limits the rate of lipolysis, while glycogen phosphorylase is the rate limiting enzyme for glycogenolysis. Isocitrate dehydrogenase is the rate limiting enzyme for the citric acid cycle, while phosphofructokinase-1 controls the rate of glycolysis. Finally, glycogen synthase is the enzyme that limits the rate of glycogenesis.
Rate-Determining Enzymes in Metabolic Processes
Metabolic processes involve a series of chemical reactions that occur in living organisms to maintain life. Enzymes play a crucial role in these processes by catalyzing the reactions. However, not all enzymes have the same impact on the rate of the reaction. Some enzymes are rate-determining, meaning that they control the overall rate of the process. The table above lists the rate-determining enzymes involved in common metabolic processes.
For example, in the TCA cycle, isocitrate dehydrogenase is the rate-determining enzyme. In glycolysis, phosphofructokinase-1 controls the rate of the process. In gluconeogenesis, fructose-1,6-bisphosphatase is the rate-determining enzyme. Similarly, glycogen synthase controls the rate of glycogenesis, while glycogen phosphorylase controls the rate of glycogenolysis.
Other metabolic processes, such as lipogenesis, lipolysis, cholesterol synthesis, and ketogenesis, also have rate-determining enzymes. Acetyl-CoA carboxylase controls the rate of lipogenesis, while carnitine-palmitoyl transferase I controls the rate of lipolysis. HMG-CoA reductase is the rate-determining enzyme in cholesterol synthesis, while HMG-CoA synthase controls the rate of ketogenesis.
The urea cycle, de novo pyrimidine synthesis, and de novo purine synthesis also have rate-determining enzymes. Carbamoyl phosphate synthetase I controls the rate of the urea cycle, while carbamoyl phosphate synthetase II controls the rate of de novo pyrimidine synthesis. Glutamine-PRPP amidotransferase is the rate-determining enzyme in de novo purine synthesis.
Understanding the rate-determining enzymes in metabolic processes is crucial for developing treatments for metabolic disorders and diseases. By targeting these enzymes, researchers can potentially regulate the rate of the process and improve the health outcomes of individuals with these conditions.
-
This question is part of the following fields:
- General Principles
-
-
Question 52
Incorrect
-
A 32-year-old man comes to you complaining of persistent diarrhoea for the past 10 days. He describes his diarrhoea as watery and foul-smelling, but denies any blood. He feels exhausted and asks for a prescription for an antidiarrhoeal medication. He has no notable medical history.
The stool cultures come back negative, and you contemplate starting the patient on diphenoxylate. Can you explain the mechanism of action of this drug?Your Answer: Acts on muscarinic receptors in the myenteric plexus and slows down gut motility
Correct Answer: Inhibits peristalsis by acting on μ-opioid in the GI tract
Explanation:Diphenoxylate slows down peristalsis in the GI tract by acting on μ-opioid receptors.
Increased gut motility can be achieved through the positive cholinergic effect of muscarinic receptor activation.
All other options are inaccurate.
Antidiarrhoeal Agents: Opioid Agonists
Antidiarrhoeal agents are medications used to treat diarrhoea. Opioid agonists are a type of antidiarrhoeal agent that work by slowing down the movement of the intestines, which reduces the frequency and urgency of bowel movements. Two common opioid agonists used for this purpose are loperamide and diphenoxylate.
Loperamide is available over-the-counter and is often used to treat acute diarrhoea. It works by binding to opioid receptors in the intestines, which reduces the contractions of the muscles in the intestinal wall. This slows down the movement of food and waste through the intestines, allowing more time for water to be absorbed and resulting in firmer stools.
Diphenoxylate is a prescription medication that is often used to treat chronic diarrhoea. It works in a similar way to loperamide, but is often combined with atropine to discourage abuse and overdose.
Overall, opioid agonists are effective at treating diarrhoea, but should be used with caution and under the guidance of a healthcare professional. They can cause side effects such as constipation, dizziness, and nausea, and may interact with other medications.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 53
Correct
-
Which of these nerves passes through the greater and lesser sciatic foramina?
Your Answer: Pudendal nerve
Explanation:The structures passing through the lesser and greater sciatic foramina, from medial to lateral, are the pudendal nerve, internal pudendal artery, and nerve to obturator internus. The pudendal nerve originates from the ventral rami of the second, third, and fourth sacral nerves and passes through the greater sciatic foramen before crossing the spine of the ischium and reentering the pelvis through the lesser sciatic foramen. It gives off the inferior rectal nerves and terminates into the perineal nerve and the dorsal nerve of the penis or clitoris.
The Greater Sciatic Foramen and its Contents
The greater sciatic foramen is a space in the pelvis that is bounded by various ligaments and bones. It serves as a passageway for several important structures, including nerves and blood vessels. The piriformis muscle is a landmark for identifying these structures as they pass through the sciatic notch. Above the piriformis muscle, the superior gluteal vessels can be found, while below it are the inferior gluteal vessels, the sciatic nerve (which passes through it in only 10% of cases), and the posterior cutaneous nerve of the thigh.
The boundaries of the greater sciatic foramen include the greater sciatic notch of the ilium, the sacrotuberous ligament, the sacrospinous ligament, and the ischial spine. The anterior sacroiliac ligament forms the superior boundary. Structures passing through the greater sciatic foramen include the pudendal nerve, the internal pudendal artery, and the nerve to the obturator internus.
In contrast, the lesser sciatic foramen is a smaller space that contains the tendon of the obturator internus, the pudendal nerve, the internal pudendal artery and vein, and the nerve to the obturator internus. Understanding the contents and boundaries of these foramina is important for clinicians who may need to access or avoid these structures during surgical procedures or other interventions.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 54
Incorrect
-
A 67-year-old man arrives at the emergency department with a sudden onset of visual disturbance. He has a medical history of hypertension and takes amlodipine. He smokes 10 cigarettes daily.
During the eye examination, a field defect is observed in the right lower quadrant of both eyes. Apart from this, the examination is unremarkable.
What is the anatomical location of the lesion causing the vision problem?Your Answer: Left inferior optic radiation
Correct Answer: Left superior optic radiation
Explanation:Lesions in the parietal lobe affecting the superior optic radiations result in inferior homonymous quadrantanopias.
Understanding Visual Field Defects
Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.
When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.
Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.
Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.
-
This question is part of the following fields:
- Neurological System
-
-
Question 55
Correct
-
A 26-year-old man with a strong family history of Huntington's disease undergoes genome analysis. The analysis reveals the presence of a single nucleotide polymorphism (SNP) within the Huntington gene. This SNP causes a GUA codon to be transcribed as GUC. However, after careful examination, it is determined that this SNP did not affect the primary structure of the Huntington protein synthesized by the patient.
What is the type of mutation that occurred in this case?Your Answer: Silent
Explanation:Types of DNA Mutations
There are different types of DNA mutations that can occur in an organism’s genetic material. One type is called a silent mutation, which does not change the amino acid sequence of a protein. This type of mutation often occurs in the third position of a codon, where the change in the DNA base does not affect the final amino acid produced.
Another type of mutation is called a nonsense mutation, which results in the formation of a stop codon. This means that the protein being produced is truncated and may not function properly.
A missense mutation is a point mutation that changes the amino acid sequence of a protein. This can have significant effects on the protein’s function, as the altered amino acid may not be able to perform its intended role.
Finally, a frameshift mutation occurs when a number of nucleotides are inserted or deleted from the DNA sequence. This can cause a shift in the reading frame of the DNA, resulting in a completely different amino acid sequence downstream. These mutations can have serious consequences for the organism, as the resulting protein may be non-functional or even harmful.
-
This question is part of the following fields:
- General Principles
-
-
Question 56
Incorrect
-
A young man presents with polyuria, polydipsia and weight loss. He is subsequently diagnosed with type 1 diabetes mellitus. What is he at an increased risk of developing?
Your Answer: Addison's disease, Grave's disease, irritable bowel syndrome
Correct Answer: Addison's disease, Grave's disease, coeliac disease
Explanation:Type 1 diabetes is linked to other autoimmune disorders like Addison’s disease, Grave’s disease, and coeliac disease, due to its own autoimmune nature. The other choices are incorrect as they contain a non-autoimmune disorder.
Understanding Diabetes Mellitus: A Basic Overview
Diabetes mellitus is a chronic condition characterized by abnormally raised levels of blood glucose. It is one of the most common conditions encountered in clinical practice and represents a significant burden on the health systems of the developed world. The management of diabetes mellitus is crucial as untreated type 1 diabetes would usually result in death. Poorly treated type 1 diabetes mellitus can still result in significant morbidity and mortality. The main focus of diabetes management now is reducing the incidence of macrovascular and microvascular complications.
There are different types of diabetes mellitus, including type 1 diabetes mellitus, type 2 diabetes mellitus, prediabetes, gestational diabetes, maturity onset diabetes of the young, latent autoimmune diabetes of adults, and other types. The presentation of diabetes mellitus depends on the type, with type 1 diabetes mellitus often presenting with weight loss, polydipsia, polyuria, and diabetic ketoacidosis. On the other hand, type 2 diabetes mellitus is often picked up incidentally on routine blood tests and presents with polydipsia and polyuria.
There are four main ways to check blood glucose, including a finger-prick bedside glucose monitor, a one-off blood glucose, a HbA1c, and a glucose tolerance test. The diagnostic criteria are determined by WHO, with a fasting glucose greater than or equal to 7.0 mmol/l and random glucose greater than or equal to 11.1 mmol/l being diagnostic of diabetes mellitus. Management of diabetes mellitus involves drug therapy to normalize blood glucose levels, monitoring for and treating any complications related to diabetes, and modifying any other risk factors for other conditions such as cardiovascular disease. The first-line drug for the vast majority of patients with type 2 diabetes mellitus is metformin, with second-line drugs including sulfonylureas, gliptins, and pioglitazone. Insulin is used if oral medication is not controlling the blood glucose to a sufficient degree.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 57
Incorrect
-
A 45-year-old female is admitted to the hospital for investigation of recently developed hypertension, myalgia, and a facial rash. She experiences a decline in kidney function and complains of muscle aches and ankle swelling during her hospital stay. A kidney biopsy and urine sample are taken, revealing a proliferative 'wire-loop' glomerular lesion on histopathological assessment. The urinalysis shows proteinuria but no presence of leukocytes or nitrites. What is the most probable diagnosis?
Your Answer: Acute tubular necrosis
Correct Answer: Systemic lupus erythematosus
Explanation:Lupus nephritis is characterized by proliferative ‘wire-loop’ glomerular histology, proteinuria, and systemic symptoms. This condition occurs when autoimmune processes in SLE cause inflammation and damage to the glomeruli. Symptoms may include oedema, myalgia, arthralgia, hypertension, and foamy-appearing urine due to high levels of protein. Acute tubular necrosis primarily affects the tubules and does not typically present with proteinuria. Congestive heart failure and IgA nephropathy can cause proteinuria, but they do not result in the ‘wire-loop’ glomerular lesion seen in lupus nephritis. Pyelonephritis may also cause proteinuria, but it is an infectious process and would present with additional symptoms such as nitrites, leukocytes, and blood in the urine.
Renal Complications in Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) can lead to severe renal complications, including lupus nephritis, which can result in end-stage renal disease. Regular check-ups with urinalysis are necessary to detect proteinuria in SLE patients. The WHO classification system categorizes lupus nephritis into six classes, with class IV being the most common and severe form. Renal biopsy shows characteristic findings such as endothelial and mesangial proliferation, a wire-loop appearance, and subendothelial immune complex deposits.
Management of lupus nephritis involves treating hypertension and using glucocorticoids with either mycophenolate or cyclophosphamide for initial therapy in cases of focal (class III) or diffuse (class IV) lupus nephritis. Mycophenolate is generally preferred over azathioprine for subsequent therapy to decrease the risk of developing end-stage renal disease. Early detection and proper management of renal complications in SLE patients are crucial to prevent irreversible damage to the kidneys.
-
This question is part of the following fields:
- Renal System
-
-
Question 58
Correct
-
A 39-year-old male patient is presented to the neurology outpatient department by his GP due to recurring episodes of déjà vu. Apart from this, he has no significant medical history.
During the examination, the patient suddenly starts smacking his lips for about a minute. After the event, he experiences temporary difficulty in expressing himself fluently, which resolves on its own.
Based on the symptoms, which area of the brain is likely to be affected?Your Answer: Temporal lobe
Explanation:Temporal lobe seizures can be identified by the presence of lip smacking and postictal dysphasia. These symptoms, along with a recurrent sense of déjà vu, suggest that the seizure is localized in the temporal lobe. Seizures in other parts of the brain, such as the frontal, occipital, or parietal lobes, typically present with different symptoms. Generalized seizures affecting the entire brain result in loss of consciousness and generalized tonic-clonic seizures.
Localising Features of Focal Seizures in Epilepsy
Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.
On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.
-
This question is part of the following fields:
- Neurological System
-
-
Question 59
Correct
-
A patient in their mid-30s has suffered a carotid canal fracture due to a traffic collision resulting in severe head trauma. The medical team must evaluate the potential damage to the adjacent structures. What structure is located directly posterior to the fracture?
Your Answer: Jugular foramen
Explanation:The jugular foramen is situated at the back of the carotid canal, while the foramen magnum is even further posterior within the skull. The mental foramen can be found on the front surface of the mandible, while the optic canal is located in the sphenoid bone and serves as a passage for the optic nerve. The femoral canal is not relevant to the skull and is therefore an inappropriate answer to this question.
Foramina of the Skull
The foramina of the skull are small openings in the bones that allow for the passage of nerves and blood vessels. These foramina are important for the proper functioning of the body and can be tested on exams. Some of the major foramina include the optic canal, superior and inferior orbital fissures, foramen rotundum, foramen ovale, and jugular foramen. Each of these foramina has specific vessels and nerves that pass through them, such as the ophthalmic artery and optic nerve in the optic canal, and the mandibular nerve in the foramen ovale. It is important to have a basic understanding of these foramina and their contents in order to understand the anatomy and physiology of the head and neck.
-
This question is part of the following fields:
- Neurological System
-
-
Question 60
Incorrect
-
A 12-year-old girl is admitted with arthralgia. On examination she has purpura of her lower limbs. Urinalysis reveals haematuria.
Blood results are as follows:
Na+ 133 mmol/l
K+ 3.8 mmol/l
Urea 10.2 mmol/l
Creatinine 114 µmol/l
What is the underlying mechanism causing the renal dysfunction in this case?Your Answer: Th2 lymphocytes
Correct Answer: Classical complement pathway
Explanation:The activation of the classical complement pathway is triggered by the presence of antigen-antibody complexes, specifically IgM/IgG. However, in cases of systemic diseases like systemic lupus erythematosus, anti-GBM disease, and ANCA-associated glomerulonephritis, the involvement of autoantibodies in the classical pathway can lead to glomerulonephritis.
The cell-mediated response involves Th1 lymphocytes, while the humoral (antibody) response involves Th2 lymphocytes. Antigen presenting cells, such as macrophages and dendritic cells, play a crucial role in processing antigenic material and presenting it to lymphocytes.
Overview of Complement Pathways
Complement pathways are a group of proteins that play a crucial role in the body’s immune and inflammatory response. These proteins are involved in various processes such as chemotaxis, cell lysis, and opsonisation. There are two main complement pathways: classical and alternative.
The classical pathway is initiated by antigen-antibody complexes, specifically IgM and IgG. The proteins involved in this pathway include C1qrs, C2, and C4. On the other hand, the alternative pathway is initiated by polysaccharides found in Gram-negative bacteria and IgA. The proteins involved in this pathway are C3, factor B, and properdin.
Understanding the complement pathways is important in the diagnosis and treatment of various diseases. Dysregulation of these pathways can lead to autoimmune disorders, infections, and other inflammatory conditions. By identifying the specific complement pathway involved in a disease, targeted therapies can be developed to effectively treat the condition.
-
This question is part of the following fields:
- General Principles
-
-
Question 61
Incorrect
-
A 26-year-old male patient comes to the follow-up clinic after undergoing surgery to remove an endocrine gland. He had been experiencing symptoms such as profuse sweating, headaches, palpitations, and high blood pressure (200/120mmHg) prior to the decision for surgery. What type of cells would be revealed through histological staining of the removed organ?
Your Answer:
Correct Answer: Chromaffin cells
Explanation:The man’s initial symptoms are consistent with a diagnosis of phaeochromocytoma, a type of neuroendocrine tumor that affects the chromaffin cells in the adrenal medulla. This condition leads to an overproduction of adrenaline and noradrenaline, resulting in an excessive sympathetic response.
Calcitonin is secreted by the parafollicular C cells in the thyroid gland.
The anterior pituitary gland contains gonadotropes, lactotropes, and thyrotropes, which secrete gonadotropins (FSH, LH), prolactin, and TSH, respectively.
Phaeochromocytoma: A Rare Tumor that Secretes Catecholamines
Phaeochromocytoma is a type of tumor that secretes catecholamines and is considered rare. It is familial in about 10% of cases and may be associated with certain syndromes such as MEN type II, neurofibromatosis, and von Hippel-Lindau syndrome. This tumor can be bilateral in 10% of cases and malignant in 10%. It can also occur outside of the adrenal gland, with the most common site being the organ of Zuckerkandl, which is adjacent to the bifurcation of the aorta.
The symptoms of phaeochromocytoma are typically episodic and include hypertension (which is present in around 90% of cases and may be sustained), headaches, palpitations, sweating, and anxiety. To diagnose this condition, a 24-hour urinary collection of metanephrines is preferred over a 24-hour urinary collection of catecholamines due to its higher sensitivity (97%).
Surgery is the definitive management for phaeochromocytoma. However, before surgery, the patient must first be stabilized with medical management, which includes an alpha-blocker (such as phenoxybenzamine) given before a beta-blocker (such as propranolol).
-
This question is part of the following fields:
- Endocrine System
-
-
Question 62
Incorrect
-
A 72-year-old man visits his GP complaining of hesitancy, frequency, poor flow, and incomplete emptying for the past 8 months. During the examination, the GP discovers a hard, craggy, and enlarged prostate on one side. The GP urgently refers the patient to a urologist within 2 weeks and orders a prostate-specific antigen (PSA) test.
Upon seeing the urologist, the patient is informed that his PSA level is 22ng/ml. The urologist repeats the digital rectal examination and requests a multiparametric MRI to confirm the diagnosis. The urologist prescribes medication to the patient, explaining that it will initially cause a flare of tumor growth before shrinking.
What type of medication is the urologist describing that will cause this initial flare of tumor growth?Your Answer:
Correct Answer: Gonadotropin-releasing hormone agonists
Explanation:Prostate cancer management involves inhibiting or down-regulating hormones involved in the hypothalamic-pituitary-gonadal axis at different stages to prevent tumour growth. Testosterone, converted to dihydrotestosterone (DHT) in the prostate, causes growth and proliferation of prostate cells.
Gonadotropin-releasing hormone (GnRH) agonists like goserelin suppress both GnRH and LH production, causing downregulation of GnRH and LH after an initial stimulatory effect that can cause a flare in tumour growth. GnRH agonists outmatch the body’s natural production rhythm, leading to reduced LH and GnRH production.
GnRH antagonists like abarelix suppress LH production by the anterior pituitary, preventing stimulation of testosterone production in the testes and reducing DHT production. This can cause the prostate to shrink instead of growing.
Anti-androgens like bicalutamide directly block the actions of testosterone and DHT within the cells of the prostate, preventing growth. They are often prescribed alongside GnRH agonists to prevent the flare in tumour growth.
5-a-reductase inhibitors, also known as DHT-blockers, shrink the prostate by stopping the conversion of testosterone to DHT. This prevents tumour growth and overall shrinkage of the prostate, but does not cause initial tumour growth.
Prostate cancer management varies depending on the stage of the disease and the patient’s life expectancy and preferences. For localized prostate cancer (T1/T2), treatment options include active monitoring, watchful waiting, radical prostatectomy, and radiotherapy (external beam and brachytherapy). For localized advanced prostate cancer (T3/T4), options include hormonal therapy, radical prostatectomy, and radiotherapy. Patients may develop proctitis and are at increased risk of bladder, colon, and rectal cancer following radiotherapy for prostate cancer.
In cases of metastatic prostate cancer, reducing androgen levels is a key aim of treatment. A combination of approaches is often used, including anti-androgen therapy, synthetic GnRH agonist or antagonists, bicalutamide, cyproterone acetate, abiraterone, and bilateral orchidectomy. GnRH agonists, such as Goserelin (Zoladex), initially cause a rise in testosterone levels before falling to castration levels. To prevent a rise in testosterone, anti-androgens are often used to cover the initial therapy. GnRH antagonists, such as degarelix, are being evaluated to suppress testosterone while avoiding the flare phenomenon. Chemotherapy with docetaxel is also an option for the treatment of hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after androgen deprivation therapy has failed, and before chemotherapy is indicated.
-
This question is part of the following fields:
- Renal System
-
-
Question 63
Incorrect
-
A 24-year-old male patient visits his GP after observing swelling in his legs. He mentions that his urine has turned frothy. Upon conducting blood tests, the doctor discovers elevated cholesterol levels and reduced albumin.
What type of electrolyte imbalances should the GP anticipate in this individual?Your Answer:
Correct Answer: Hypervolaemic hyponatraemia
Explanation:Hypervolaemic hyponatraemia can be caused by nephrotic syndrome.
Nephrotic syndrome is characterized by oedema, proteinuria, hypercholesterolaemia, and hypoalbuminaemia. It results in fluid retention, which can lead to hypervolaemic hyponatraemia. Urinary sodium levels would not show an increase if tested.
Understanding Hyponatraemia: Causes and Diagnosis
Hyponatraemia is a condition that can be caused by either an excess of water or a depletion of sodium in the body. However, it is important to note that there are also cases of pseudohyponatraemia, which can be caused by factors such as hyperlipidaemia or taking blood from a drip arm. To diagnose hyponatraemia, doctors often look at the levels of urinary sodium and osmolarity.
If the urinary sodium level is above 20 mmol/l, it may indicate sodium depletion due to renal loss or the use of diuretics such as thiazides or loop diuretics. Other possible causes include Addison’s disease or the diuretic stage of renal failure. On the other hand, if the patient is euvolaemic, it may be due to conditions such as SIADH (urine osmolality > 500 mmol/kg) or hypothyroidism.
If the urinary sodium level is below 20 mmol/l, it may indicate sodium depletion due to extrarenal loss caused by conditions such as diarrhoea, vomiting, sweating, burns, or adenoma of rectum. Alternatively, it may be due to water excess, which can cause the patient to be hypervolaemic and oedematous. This can be caused by conditions such as secondary hyperaldosteronism, nephrotic syndrome, IV dextrose, or psychogenic polydipsia.
In summary, hyponatraemia can be caused by a variety of factors, and it is important to diagnose the underlying cause in order to provide appropriate treatment. By looking at the levels of urinary sodium and osmolarity, doctors can determine the cause of hyponatraemia and provide the necessary interventions.
-
This question is part of the following fields:
- Renal System
-
-
Question 64
Incorrect
-
A 70-year-old man with chronic back pain and renal failure presents with the following blood test results:
Reference range
Ca2+ 2.10 2.15-2.55 mmol/l
Parathyroid hormone 9.8 1-6.5 pmol/l
Phosphate 0.75 0.6-1.25 mmol/l
What is the probable diagnosis?Your Answer:
Correct Answer: Secondary hyperparathyroidism
Explanation:Secondary hyperparathyroidism is characterized by elevated levels of PTH, while calcium levels are either normal or low. This condition occurs due to the parathyroid glands’ hyperplasia in response to chronic hypocalcemia or hyperphosphatemia, which is a natural physiological reaction. The body releases calcium from the kidneys, gastrointestinal system, and bones.
Parathyroid Glands and Disorders of Calcium Metabolism
The parathyroid glands play a crucial role in regulating calcium levels in the body. Hyperparathyroidism is a disorder that occurs when these glands produce too much parathyroid hormone (PTH), leading to abnormal calcium metabolism. Primary hyperparathyroidism is the most common form and is usually caused by a solitary adenoma. Secondary hyperparathyroidism occurs as a result of low calcium levels, often in the setting of chronic renal failure. Tertiary hyperparathyroidism is a rare condition that occurs when hyperplasia of the parathyroid glands persists after correction of underlying renal disorder.
Diagnosis of hyperparathyroidism is based on hormone profiles and clinical features. Treatment options vary depending on the type and severity of the disorder. Surgery is usually indicated for primary hyperparathyroidism if certain criteria are met, such as elevated serum calcium levels, hypercalciuria, and nephrolithiasis. Secondary hyperparathyroidism is typically managed with medical therapy, while surgery may be necessary for persistent symptoms such as bone pain and soft tissue calcifications. Tertiary hyperparathyroidism may resolve on its own within a year after transplant, but surgery may be required if an autonomously functioning parathyroid gland is present. It is important to consider differential diagnoses, such as benign familial hypocalciuric hypercalcaemia, which is a rare but relatively benign condition.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 65
Incorrect
-
A 32-year-old woman is brought to the emergency department by her partner after an altercation. She is discovered unconscious in their bedroom with multiple packets of aspirin nearby. Medical intervention is initiated.
What is the underlying cause of this aspirin overdose?Your Answer:
Correct Answer: Decreased ATP production
Explanation:An overdose of aspirin is likely to be intentional and can result in a decrease in ATP production by inhibiting the electron transport chain in mitochondria. Aspirin and paracetamol are easily accessible medications that are commonly used. Inhibition of the electron transport chain in mitochondria due to aspirin overdose leads to a decrease in ATP production, increased oxygen consumption, increased carbon dioxide levels, and increased heat generation.
Emergency medical treatment for aspirin overdose may include activated charcoal (if given within 1 hour of overdose), sodium bicarbonate (to enhance aspirin urinary excretion by making urine alkaline), and haemodialysis.
The answer ‘Central nervous system depression’ is incorrect as it is the underlying mechanism in benzodiazepine overdose.
The answer ‘Decreased NAPQI production’ is incorrect as NAPQI is the toxic metabolite produced in paracetamol overdose, and decreased levels of NAPQI are actually beneficial.
The answer ‘Increased ATP production’ is incorrect as an aspirin overdose causes uncoupling of the electron transport chain, leading to a decrease in ATP production in the mitochondria.
Salicylate overdose can cause a combination of respiratory alkalosis and metabolic acidosis. The respiratory center is initially stimulated, leading to hyperventilation and respiratory alkalosis. However, the direct acid effects of salicylates, combined with acute renal failure, can later cause metabolic acidosis. In children, metabolic acidosis tends to be more prominent. Other symptoms of salicylate overdose include tinnitus, lethargy, sweating, pyrexia, nausea/vomiting, hyperglycemia and hypoglycemia, seizures, and coma.
The treatment for salicylate overdose involves general measures such as airway, breathing, and circulation support, as well as administering activated charcoal. Urinary alkalinization with intravenous sodium bicarbonate can help eliminate aspirin in the urine. In severe cases, hemodialysis may be necessary. Indications for hemodialysis include a serum concentration of over 700 mg/L, metabolic acidosis that is resistant to treatment, acute renal failure, pulmonary edema, seizures, and coma.
Salicylates can also cause the uncoupling of oxidative phosphorylation, which leads to decreased adenosine triphosphate production, increased oxygen consumption, and increased carbon dioxide and heat production. It is important to recognize the symptoms of salicylate overdose and seek prompt medical attention to prevent serious complications.
-
This question is part of the following fields:
- General Principles
-
-
Question 66
Incorrect
-
A 55-year-old inpatient needs to undergo a magnetic resonance cholangiopancreatography (MRCP) to investigate possible gallstones. However, it was discovered that the patient had consumed a fatty meal in the morning, and the medical team wants to postpone the procedure. The reason being that the patient's gallbladder would be harder to visualize due to the release of cholecystokinin (CCK) in response to the meal.
What type of cells in the intestine are responsible for secreting CCK?Your Answer:
Correct Answer: I cells
Explanation:The I cells located in the upper small intestine release cholecystokinin, a hormone that triggers the contraction of the gallbladder when fats, proteins, and amino acids are ingested. Additionally, cholecystokinin stimulates the exocrine pancreas, slows down gastric emptying by relaxing the stomach, and induces a feeling of fullness through vagal stimulation.
K and L cells secrete gastric inhibitory peptide (GIP) and glucagon-like peptide-1 (GLP-1), respectively. These incretins increase in response to glucose and regulate metabolism. GLP-1 agonists, also known as incretin mimetics, are medications that enhance the effects of these hormones.
ECL cells, found in the stomach, secrete histamine, which increases acid secretion to aid in digestion.
Overview of Gastrointestinal Hormones
Gastrointestinal hormones play a crucial role in the digestion and absorption of food. These hormones are secreted by various cells in the stomach and small intestine in response to different stimuli such as the presence of food, pH changes, and neural signals.
One of the major hormones involved in food digestion is gastrin, which is secreted by G cells in the antrum of the stomach. Gastrin increases acid secretion by gastric parietal cells, stimulates the secretion of pepsinogen and intrinsic factor, and increases gastric motility. Another hormone, cholecystokinin (CCK), is secreted by I cells in the upper small intestine in response to partially digested proteins and triglycerides. CCK increases the secretion of enzyme-rich fluid from the pancreas, contraction of the gallbladder, and relaxation of the sphincter of Oddi. It also decreases gastric emptying and induces satiety.
Secretin is another hormone secreted by S cells in the upper small intestine in response to acidic chyme and fatty acids. Secretin increases the secretion of bicarbonate-rich fluid from the pancreas and hepatic duct cells, decreases gastric acid secretion, and has a trophic effect on pancreatic acinar cells. Vasoactive intestinal peptide (VIP) is a neural hormone that stimulates secretion by the pancreas and intestines and inhibits acid secretion.
Finally, somatostatin is secreted by D cells in the pancreas and stomach in response to fat, bile salts, and glucose in the intestinal lumen. Somatostatin decreases acid and pepsin secretion, decreases gastrin secretion, decreases pancreatic enzyme secretion, and decreases insulin and glucagon secretion. It also inhibits the trophic effects of gastrin and stimulates gastric mucous production.
In summary, gastrointestinal hormones play a crucial role in regulating the digestive process and maintaining homeostasis in the gastrointestinal tract.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 67
Incorrect
-
A 65-year-old male patient is started on azathioprine treatment by a gastroenterologist for Crohn's disease. After six months of treatment, you receive a request from the gastroenterology department to assist with monitoring his treatment.
What is the current recommended protocol for monitoring patients on long-term azathioprine therapy?
Note:
FBC - Full blood count
LFT - Liver function tests
U&E - Urea and electrolytes.Your Answer:
Correct Answer: FBC, LFT and U&E every three months
Explanation:Azathioprine: A Cytotoxic Agent for Severe Refractory Eczema and Other Conditions
Azathioprine is a cytotoxic drug that is converted to mercaptopurine, which acts as a purine analogue that inhibits DNA synthesis. It is used off-label for severe refractory eczema, post-transplant, and in patients with rheumatoid arthritis and inflammatory bowel disease. However, bone marrow suppression and hepatotoxicity are serious and well-known complications of azathioprine therapy. Other side effects include nausea, vomiting, and skin eruptions. Patients with low levels of the enzyme thiopurine methyltransferase (TPMT), which metabolizes azathioprine, are at increased risk of toxicity, and their enzyme activity is often measured before starting treatment.
To minimize the risk of complications, current guidelines from the British Association of Dermatologists and the British National Formulary recommend monitoring full blood count (FBC), liver function tests (LFT), and urea and electrolytes (U&E) every three months once patients are established on azathioprine treatment. By following these guidelines, healthcare providers can ensure that patients receive the benefits of azathioprine while minimizing the risk of adverse effects.
-
This question is part of the following fields:
- Pharmacology
-
-
Question 68
Incorrect
-
A 35-year-old male patient is feeling impatient as he waits in a crowded Emergency Room (ER) waiting area. He snaps at his daughter in annoyance.
What ego defence mechanism is he utilizing?Your Answer:
Correct Answer: Displacement
Explanation:Understanding Ego Defenses
Ego defenses are psychological mechanisms that individuals use to protect themselves from unpleasant emotions or thoughts. These defenses are classified into four levels, each with its own set of defense mechanisms. The first level, psychotic defenses, is considered pathological as it distorts reality to avoid dealing with it. The second level, immature defenses, includes projection, acting out, and projective identification. The third level, neurotic defenses, has short-term benefits but can lead to problems in the long run. These defenses include repression, rationalization, and regression. The fourth and most advanced level, mature defenses, includes altruism, sublimation, and humor.
Despite the usefulness of understanding ego defenses, their classification and definitions can be inconsistent and frustrating to learn for exams. It is important to note that these defenses are not necessarily good or bad, but rather a natural part of human behavior. By recognizing and understanding our own ego defenses, we can better manage our emotions and thoughts in a healthy way.
-
This question is part of the following fields:
- Psychiatry
-
-
Question 69
Incorrect
-
A 33-year-old woman visits an ophthalmology clinic complaining of reduced sensation in her left eye for the past 2 months. She first noticed it while putting on contact lenses. Her medical history includes multiple facial fractures due to a traumatic equestrian event that occurred 2 months ago.
During the examination, the corneal reflex is absent in her left eye, while her right eye shows bilateral tearing and blinking. There is no facial asymmetry, and the strength of the facial muscles is normal on both sides.
Which structure is most likely to have been affected by the trauma?Your Answer:
Correct Answer: Superior orbital fissure
Explanation:The ophthalmic nerve passes through the superior orbital fissure, which is the correct answer. This nerve is responsible for the afferent limb of the corneal reflex, while the efferent limb is controlled by the facial nerve. Since the patient has no facial asymmetry and normal power, it suggests that the lesion affects the afferent limb controlled by the ophthalmic nerve.
The other options are incorrect. The foramen rotundum transmits the mandibular nerve, the internal acoustic meatus transmits the facial nerve, the infraorbital foramen transmits the nasopalatine nerve, and the optic canal transmits the optic nerve. None of these nerves play a role in the corneal reflex.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 70
Incorrect
-
During an abdominal aortic aneurysm repair, a 78-year-old man has two clamps placed on his aorta, with the inferior clamp positioned at the point of aortic bifurcation. Which vertebral body will be located posterior to the clamp at this level?
Your Answer:
Correct Answer: L4
Explanation:The point at which the aorta divides into two branches is known as the bifurcation, which is a crucial anatomical landmark that is frequently assessed. This bifurcation typically occurs at the level of the fourth lumbar vertebrae (L4).
The abdominal aorta is a major blood vessel that originates from the 12th thoracic vertebrae and terminates at the fourth lumbar vertebrae. It is located in the abdomen and is surrounded by various organs and structures. The posterior relations of the abdominal aorta include the vertebral bodies of the first to fourth lumbar vertebrae. The anterior relations include the lesser omentum, liver, left renal vein, inferior mesenteric vein, third part of the duodenum, pancreas, parietal peritoneum, and peritoneal cavity. The right lateral relations include the right crus of the diaphragm, cisterna chyli, azygos vein, and inferior vena cava (which becomes posterior distally). The left lateral relations include the fourth part of the duodenum, duodenal-jejunal flexure, and left sympathetic trunk. Overall, the abdominal aorta is an important blood vessel that supplies oxygenated blood to various organs in the abdomen.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 71
Incorrect
-
These thyroid function tests were obtained on a 55-year-old female who has recently been treated for hypertension:
Free T4 28.5 pmol/L (9.8-23.1)
TSH <0.02 mU/L (0.35-5.5)
Free T3 10.8 pmol/L (3.5-6.5)
She now presents with typical symptoms of hyperthyroidism.
Which medication is likely to have caused this?Your Answer:
Correct Answer: Amiodarone
Explanation:Amiodarone and its Effects on Thyroid Function
Amiodarone is a medication that can have an impact on thyroid function, resulting in both hypo- and hyperthyroidism. This is due to the high iodine content in the drug, which contributes to its antiarrhythmic effects. Atenolol, on the other hand, is a beta blocker that is commonly used to treat thyrotoxicosis. Warfarin is another medication that is used to treat atrial fibrillation.
There are two types of thyrotoxicosis that can be caused by amiodarone. Type 1 results in excess thyroxine synthesis, while type 2 leads to the release of excess thyroxine but normal levels of synthesis. It is important for healthcare professionals to monitor thyroid function in patients taking amiodarone and adjust treatment as necessary to prevent complications.
-
This question is part of the following fields:
- Pharmacology
-
-
Question 72
Incorrect
-
A 14-month-old boy is presented to the surgical clinic by his mother due to the absence of his left testicle in the scrotum. If the testicle were ectopic, where would it be located?
Your Answer:
Correct Answer: Superficial inguinal pouch
Explanation:Testes that are located outside of their normal embryological descent range are known as ectopic testes. These can be found in various locations such as the superficial inguinal pouch, base of the penis, femoral triangle, and perineum.
Common Testicular Disorders in Paediatric Urology
Testicular disorders are frequently encountered in paediatric urological practice. One of the most common conditions is cryptorchidism, which refers to the failure of the testicle to descend from the abdominal cavity into the scrotum. It is important to differentiate between a non-descended testis and a retractile testis. Ectopic testes are those that lie outside the normal path of embryological descent. Undescended testes occur in approximately 1% of male infants and should be placed in the scrotum after one year of age. Magnetic resonance imaging (MRI) may be used to locate intra-abdominal testes, but laparoscopy is often necessary in this age group. Testicular torsion is another common condition that presents with sudden onset of severe scrotal pain. Surgical exploration is the management of choice, and delay beyond six hours is associated with low salvage rates. Hydroceles, which are fluid-filled sacs in the scrotum or spermatic cord, may be treated with surgical ligation of the patent processus vaginalis or scrotal exploration in older children with cystic hydroceles.
Overall, prompt diagnosis and appropriate management of testicular disorders are crucial in paediatric urology to prevent long-term complications and ensure optimal outcomes for patients.
-
This question is part of the following fields:
- Renal System
-
-
Question 73
Incorrect
-
A 70-year-old man is receiving treatment for pneumonia and is currently experiencing delirium. He has been catheterized and is receiving IV antibiotics. The nurse has observed that he has not urinated overnight, despite attempts to flush the catheter.
The patient has a medical history of hypertension, chronic back pain, and type 2 diabetes, for which he takes ramipril, furosemide, naproxen, and gliclazide. His daily blood tests are pending, and the morning medication round has begun.
What is the appropriate course of action regarding his medications?Your Answer:
Correct Answer: Withhold furosemide, naproxen, and ramipril, continue gliclazide and IV antibiotics
Explanation:When a patient is suspected to have acute kidney injury (AKI), it is important to stop nephrotoxic medications such as ACE inhibitors, ARBs, diuretics, and NSAIDs. In this case, the patient is on ramipril, furosemide, and naproxen, which should be withheld. Gliclazide and IV antibiotics can be continued, but blood sugar levels should be monitored closely due to the increased risk of hypoglycemia in renal impairment. It is incorrect to give morning medication and wait for blood test results, increase furosemide, withhold all regular medications, or withhold only furosemide and gliclazide while continuing everything else. The appropriate action is to withhold all nephrotoxic medications and continue necessary treatments while monitoring the patient’s condition closely.
Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.
The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.
Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.
-
This question is part of the following fields:
- Renal System
-
-
Question 74
Incorrect
-
A person experiences a haemorrhage in a specific area of their brain. As a result, they are no longer able to control their body temperature. Which region of the brain has been affected?
Your Answer:
Correct Answer: Hypothalamus
Explanation:The hypothalamus plays a crucial role in regulating body temperature. Specifically, the anterior portion of the hypothalamus helps to lower body temperature by activating the parasympathetic nervous system, while the posterior nucleus helps to raise body temperature by activating the sympathetic nervous system. In contrast, the thalamus serves as a relay center in the brain, the pituitary gland secretes hormones, the midbrain is the uppermost part of the brainstem, and the medulla is the lowermost part of the brainstem. Lesions to these areas would not have a significant impact on body temperature regulation.
The hypothalamus is a part of the brain that plays a crucial role in maintaining the body’s internal balance, or homeostasis. It is located in the diencephalon and is responsible for regulating various bodily functions. The hypothalamus is composed of several nuclei, each with its own specific function. The anterior nucleus, for example, is involved in cooling the body by stimulating the parasympathetic nervous system. The lateral nucleus, on the other hand, is responsible for stimulating appetite, while lesions in this area can lead to anorexia. The posterior nucleus is involved in heating the body and stimulating the sympathetic nervous system, and damage to this area can result in poikilothermia. Other nuclei include the septal nucleus, which regulates sexual desire, the suprachiasmatic nucleus, which regulates circadian rhythm, and the ventromedial nucleus, which is responsible for satiety. Lesions in the paraventricular nucleus can lead to diabetes insipidus, while lesions in the dorsomedial nucleus can result in savage behavior.
-
This question is part of the following fields:
- Neurological System
-
-
Question 75
Incorrect
-
Isabella is an 82-year-old female who visits the cardiology clinic for a check-up. She experienced a heart attack half a year ago and has been experiencing swollen ankles and difficulty breathing when lying down. You suspect heart failure and arrange for an echocardiogram, prescribe diuretic medications, and conduct a blood test. What blood marker can indicate excessive stretching of the heart muscle?
Your Answer:
Correct Answer: Brain natriuretic peptide (BNP)
Explanation:BNP is produced by the ventricles of the heart when the cardiomyocytes are excessively stretched. Its overall effect is to reduce blood pressure by decreasing systemic vascular resistance and increasing natriuresis.
Troponin is a protein that plays a role in cardiac muscle contraction and is a specific and sensitive marker for myocardial damage in cases of myocardial infarction.
Creatine kinase and LDH can be used as acute markers for myocardial infarction.
Myoglobin is released after muscle damage, but it is not specific to acute myocardial infarction and is typically measured in cases of rhabdomyolysis.
B-type natriuretic peptide (BNP) is a hormone that is primarily produced by the left ventricular myocardium in response to strain. Although heart failure is the most common cause of elevated BNP levels, any condition that causes left ventricular dysfunction, such as myocardial ischemia or valvular disease, may also raise levels. In patients with chronic kidney disease, reduced excretion may also lead to elevated BNP levels. Conversely, treatment with ACE inhibitors, angiotensin-2 receptor blockers, and diuretics can lower BNP levels.
BNP has several effects, including vasodilation, diuresis, natriuresis, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. Clinically, BNP is useful in diagnosing patients with acute dyspnea. A low concentration of BNP (<100 pg/mL) makes a diagnosis of heart failure unlikely, but elevated levels should prompt further investigation to confirm the diagnosis. Currently, NICE recommends BNP as a helpful test to rule out a diagnosis of heart failure. In patients with chronic heart failure, initial evidence suggests that BNP is an extremely useful marker of prognosis and can guide treatment. However, BNP is not currently recommended for population screening for cardiac dysfunction.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 76
Incorrect
-
A 63-year-old male on the wards has come to you with recent onset indigestion. He denies any red flag symptoms and has a medical history of hypertension, congestive heart failure, depression, and gout. Later in the day, while reviewing his routine blood results, you notice an abnormality.
Here are his blood results from two days ago and today:
Parameter 2 days ago Today
Hb 135 g/l 134 g/l
Platelets 310 * 109/l 312 * 109/l
WBC 6.5 * 109/l 6.4 * 109/l
Na+ 142 mmol/l 128 mmol/l
K+ 4.2 mmol/l 3.8 mmol/l
Urea 4.8 mmol/l 4.8 mmol/l
Creatinine 60 µmol/l 61 µmol/l
What could be the reason for the discrepancy in his blood results?Your Answer:
Correct Answer: Combined use of indapamide and omeprazole
Explanation:Severe hyponatraemia can occur when PPIs and thiazide diuretics are used together. The patient in question has recently experienced hyponatraemia, which is most likely caused by the combination of indapamide and omeprazole. It is probable that omeprazole was prescribed for his indigestion, while he is likely taking indapamide due to his history of congestive heart failure. It is important to note that the other options listed can cause hypernatraemia, not hyponatraemia.
Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 77
Incorrect
-
Into which of the following structures does the superior part of the fibrous capsule of the shoulder joint insert?
Your Answer:
Correct Answer: The anatomical neck of the humerus
Explanation:Due to its shallow nature, the shoulder joint has a high degree of mobility, but this is achieved at the cost of stability. The fibrous capsule is connected to the anatomical neck in a superior position and the surgical neck in an inferior position.
The shoulder joint is a shallow synovial ball and socket joint that is inherently unstable but capable of a wide range of movement. Stability is provided by the muscles of the rotator cuff. The glenoid labrum is a fibrocartilaginous rim attached to the free edge of the glenoid cavity. The fibrous capsule attaches to the scapula, humerus, and tendons of various muscles. Movements of the shoulder joint are controlled by different muscles. The joint is closely related to important anatomical structures such as the brachial plexus, axillary artery and vein, and various nerves and vessels.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 78
Incorrect
-
A study aims to evaluate the effectiveness of a new proton pump inhibitor (PPI) in older adults who are on aspirin therapy. The new PPI is administered to 120 patients, while the standard PPI is given to a control group of 240 individuals. During a five-year follow-up, 24 patients in the new PPI group experienced upper gastrointestinal bleeding, whereas 60 patients in the standard PPI group had the same outcome. What is the absolute risk reduction?
Your Answer:
Correct Answer: 5%
Explanation:Numbers needed to treat (NNT) is a measure that determines how many patients need to receive a particular intervention to reduce the expected number of outcomes by one. To calculate NNT, you divide 1 by the absolute risk reduction (ARR) and round up to the nearest whole number. ARR can be calculated by finding the absolute difference between the control event rate (CER) and the experimental event rate (EER). There are two ways to calculate ARR, depending on whether the outcome of the study is desirable or undesirable. If the outcome is undesirable, then ARR equals CER minus EER. If the outcome is desirable, then ARR is equal to EER minus CER. It is important to note that ARR may also be referred to as absolute benefit increase.
-
This question is part of the following fields:
- General Principles
-
-
Question 79
Incorrect
-
You are observing a GP during their morning consultations. A 60-year-old man has presented to the clinic with elevated liver function tests discovered during routine blood tests over the past month. Despite being asymptomatic, the patient has a history of osteoarthritis in his knees, one of which underwent total replacement surgery three months ago. He also has arthritis affecting the small joints in his hands and feet, which is well-controlled with medication, as well as hypertension that is stable with medication. What is an important cause of hepatic damage that should be ruled out in this case?
Your Answer:
Correct Answer: Immune suppression medication for arthritis
Explanation:The patient has both osteoarthritis and rheumatoid arthritis, with the latter affecting the smaller joints of the hands and feet. Methotrexate is a commonly used immunosuppressive medication for rheumatoid arthritis, but it can cause hepatotoxicity as a significant side effect.
Although fat emboli are a potential risk after orthopaedic surgery, they usually cause neural and respiratory symptoms rather than liver damage. Additionally, the onset of fat emboli occurs within hours to days after the operation, not three months later.
While calcium channel blockers, ACE inhibitors, and opioid medications have their own side effects, they typically do not affect liver function.
Methotrexate is an antimetabolite that hinders the activity of dihydrofolate reductase, an enzyme that is crucial for the synthesis of purines and pyrimidines. It is a significant drug that can effectively control diseases, but its side-effects can be life-threatening. Therefore, careful prescribing and close monitoring are essential. Methotrexate is commonly used to treat inflammatory arthritis, especially rheumatoid arthritis, psoriasis, and acute lymphoblastic leukaemia. However, it can cause adverse effects such as mucositis, myelosuppression, pneumonitis, pulmonary fibrosis, and liver fibrosis.
Women should avoid pregnancy for at least six months after stopping methotrexate treatment, and men using methotrexate should use effective contraception for at least six months after treatment. Prescribing methotrexate requires familiarity with guidelines relating to its use. It is taken weekly, and FBC, U&E, and LFTs need to be regularly monitored. Folic acid 5 mg once weekly should be co-prescribed, taken more than 24 hours after methotrexate dose. The starting dose of methotrexate is 7.5 mg weekly, and only one strength of methotrexate tablet should be prescribed.
It is important to avoid prescribing trimethoprim or co-trimoxazole concurrently as it increases the risk of marrow aplasia. High-dose aspirin also increases the risk of methotrexate toxicity due to reduced excretion. In case of methotrexate toxicity, the treatment of choice is folinic acid. Overall, methotrexate is a potent drug that requires careful prescribing and monitoring to ensure its effectiveness and safety.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 80
Incorrect
-
What is the anatomical level of the transpyloric plane?
Your Answer:
Correct Answer: L1
Explanation:The Transpyloric Plane and its Anatomical Landmarks
The transpyloric plane is an imaginary horizontal line that passes through the body of the first lumbar vertebrae (L1) and the pylorus of the stomach. It is an important anatomical landmark used in clinical practice to locate various organs and structures in the abdomen.
Some of the structures that lie on the transpyloric plane include the left and right kidney hilum (with the left one being at the same level as L1), the fundus of the gallbladder, the neck of the pancreas, the duodenojejunal flexure, the superior mesenteric artery, and the portal vein. The left and right colic flexure, the root of the transverse mesocolon, and the second part of the duodenum also lie on this plane.
In addition, the upper part of the conus medullaris (the tapered end of the spinal cord) and the spleen are also located on the transpyloric plane. Knowing the location of these structures is important for various medical procedures, such as abdominal surgeries and diagnostic imaging.
Overall, the transpyloric plane serves as a useful reference point for clinicians to locate important anatomical structures in the abdomen.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 81
Incorrect
-
A 5-year-old boy comes to his family doctor with a purple rash on his buttocks and behind his knees. His parents have observed that his urine has been slightly pink for the past few days. The boy had recently recuperated from a mild cold. The doctor suspects that he may have an IgA-mediated small vessel vasculitis.
What is the suspected diagnosis of this condition?Your Answer:
Correct Answer: Henoch-Schonlein purpura
Explanation:The correct answer is Henoch-Schonlein purpura, which is a type of small vessel vasculitis mediated by IgA. It typically affects children who have recently had a viral infection and is characterized by a purplish rash on the buttocks and flexor surfaces of the upper and lower limbs. Treatment is mainly supportive.
Granulomatosis with polyangitis is not the correct answer as it is a different type of vasculitis that is not IgA-mediated. It usually presents with a triad of upper respiratory symptoms (such as sinusitis and epistaxis), lower respiratory tract symptoms (like cough and haemoptysis), and glomerulonephritis (which causes haematuria and proteinuria leading to frothy urine).
Kawasaki disease is another type of vasculitis that affects children, but it is a medium vessel vasculitis triggered by unknown mechanisms. The classic presentation includes prolonged fever (lasting over 5 days) and redness of the eyes, hands, and feet. There may also be mucosal involvement with the characteristic strawberry tongue.
Minimal change disease is the most common cause of nephrotic syndrome in young children. It can also be associated with a preceding viral infection, but it does not present with a purplish rash. Instead, it is characterized by facial swelling and frothy urine.
Understanding Henoch-Schonlein Purpura
Henoch-Schonlein purpura (HSP) is a type of small vessel vasculitis that is mediated by IgA. It is often associated with IgA nephropathy, also known as Berger’s disease. HSP is commonly observed in children following an infection.
The condition is characterized by a palpable purpuric rash, which is accompanied by localized oedema over the buttocks and extensor surfaces of the arms and legs. Other symptoms include abdominal pain and polyarthritis. In some cases, patients may also experience haematuria and renal failure, which are indicative of IgA nephropathy.
Treatment for HSP typically involves analgesia for arthralgia. While there is inconsistent evidence for the use of steroids and immunosuppressants, supportive care is generally recommended for patients with nephropathy. The prognosis for HSP is usually excellent, particularly in children without renal involvement. However, it is important to monitor blood pressure and urinalysis to detect any signs of progressive renal involvement. Approximately one-third of patients may experience a relapse.
In summary, Henoch-Schonlein purpura is a self-limiting condition that is often seen in children following an infection. While the symptoms can be uncomfortable, the prognosis is generally good. However, it is important to monitor patients for any signs of renal involvement and provide appropriate supportive care.
-
This question is part of the following fields:
- Renal System
-
-
Question 82
Incorrect
-
A 44-year-old heavy smoker presents with a productive cough and progressively worsening shortness of breath on exertion. The patient's spirometry results are forwarded to you in clinic for review.
Tidal volume (TV) = 400 mL.
Vital capacity (VC) = 3,300 mL.
Inspiratory capacity (IC) = 2,600 mL.
FEV1/FVC = 60%
Body plethysmography is undertaken, demonstrating a residual volume (RV) of 1,200 mL.
What is this patient's total lung capacity (TLC)?Your Answer:
Correct Answer: 4,500 mL
Explanation:To calculate the total lung capacity, one can add the vital capacity and residual volume. For example, if the vital capacity is 3300 mL and the residual volume is 1200 mL, the total lung capacity would be 4500 mL. It is important to note that tidal volume, inspiratory capacity, and the FEV1/FVC ratio are other measurements related to lung function. Residual volume refers to the amount of air left in the lungs after a maximal exhalation, while total lung capacity refers to the volume of air in the lungs after a maximal inhalation.
Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 83
Incorrect
-
A 65-year-old woman with hypocalcaemia has elevated parathyroid hormone levels. Is it a typical physiological response to increase calcium levels? In the kidney, where does parathyroid hormone act to enhance calcium reabsorption?
Your Answer:
Correct Answer: Distal convoluted tubule
Explanation:Understanding Parathyroid Hormone and Its Effects
Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.
The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.
Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 84
Incorrect
-
You are giving a lecture to a group of high school students on the pathophysiology of pemphigus vulgaris.
Halfway through your talk, you briefly mention the importance of cadherins, transmembrane proteins that are crucial for cell-cell adhesion, and explain that they rely on certain ions to function properly.
What specific ions are you referring to?Your Answer:
Correct Answer: Calcium ions
Explanation:Cadherins require calcium ions for their proper functioning.
Understanding Cadherins: Proteins that Play a Vital Role in Cell Adhesion
Cadherins are a type of transmembrane proteins that are crucial for cell adhesion. They are also known as ‘calcium-dependent adhesion’ proteins. These proteins are responsible for maintaining the integrity of tissues and organs by binding cells together. Cadherins are found in various tissues and organs, including epithelial tissues and neurons.
One of the most well-known cadherins is E-cadherin, which is found in epithelial tissues. Dysfunction of E-cadherin is often associated with tumour metastasis. Another type of cadherin is N-cadherin, which is found in neurons. It plays a crucial role in the development and maintenance of the nervous system. Desmoglein is another type of cadherin that is found in desmosomes, which are structures that hold cells together in tissues such as the skin. Pemphigus vulgaris is a disease that is caused by the formation of antibodies against desmoglein 3.
In summary, cadherins are essential proteins that play a vital role in cell adhesion. They are found in various tissues and organs and are responsible for maintaining the integrity of tissues and organs by binding cells together. Dysfunction of cadherins can lead to various diseases, including cancer and autoimmune disorders.
-
This question is part of the following fields:
- General Principles
-
-
Question 85
Incorrect
-
A patient in his late 60s presents with dyspnoea, orthopnoea, paroxysmal nocturnal dyspnoea, fatigue, cyanosis. A diagnosis of acute heart failure is made. He is started on diuretics, ACE inhibitors, beta-blockers but shows minimal improvement with medications.
What should be considered if he continues to fail to improve?Your Answer:
Correct Answer: Continuous positive airway pressure
Explanation:If a patient with acute heart failure does not show improvement with appropriate medication, CPAP should be considered as a viable treatment option.
Heart failure requires acute management, with recommended treatments including IV loop diuretics such as furosemide or bumetanide. Oxygen may also be given in accordance with British Thoracic Society guidelines to maintain oxygen saturations between 94-98%. Vasodilators such as nitrates should not be routinely given to all patients, but may be considered for those with concomitant myocardial ischaemia, severe hypertension, or regurgitant aortic or mitral valve disease. However, hypotension is a major side-effect and contraindication.
For patients with respiratory failure, CPAP may be used. In cases of hypotension or cardiogenic shock, treatment can be challenging as loop diuretics and nitrates may exacerbate hypotension. Inotropic agents like dobutamine may be considered for patients with severe left ventricular dysfunction and potentially reversible cardiogenic shock. Vasopressor agents like norepinephrine are typically only used if there is insufficient response to inotropes and evidence of end-organ hypoperfusion. Mechanical circulatory assistance such as intra-aortic balloon counterpulsation or ventricular assist devices may also be used.
While opiates were previously used routinely to reduce dyspnoea/distress in patients, NICE now advises against routine use due to studies suggesting increased morbidity in patients given opiates. Regular medication for heart failure such as beta-blockers and ACE-inhibitors should be continued, with beta-blockers only stopped if the patient has a heart rate less than 50 beats per minute, second or third degree atrioventricular block, or shock.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 86
Incorrect
-
A 42-year-old female patient arrives at the emergency department complaining of intense abdominal pain on the right side. Upon further inquiry, she describes the pain as crampy, intermittent, and spreading to her right shoulder. She has no fever. The patient notes that the pain worsens after meals.
Which hormone is accountable for the fluctuation in pain?Your Answer:
Correct Answer: Cholecystokinin
Explanation:The hormone that increases gallbladder contraction is Cholecystokinin (CCK). It is secreted by I cells in the upper small intestine, particularly in response to a high-fat meal. Although it has many functions, its role in increasing gallbladder contraction may exacerbate biliary colic caused by gallstones in the patient described.
Gastrin, insulin, and secretin are also hormones that can be released in response to food intake, but they do not have any known effect on gallbladder contraction. Therefore, CCK is the most appropriate answer.
Overview of Gastrointestinal Hormones
Gastrointestinal hormones play a crucial role in the digestion and absorption of food. These hormones are secreted by various cells in the stomach and small intestine in response to different stimuli such as the presence of food, pH changes, and neural signals.
One of the major hormones involved in food digestion is gastrin, which is secreted by G cells in the antrum of the stomach. Gastrin increases acid secretion by gastric parietal cells, stimulates the secretion of pepsinogen and intrinsic factor, and increases gastric motility. Another hormone, cholecystokinin (CCK), is secreted by I cells in the upper small intestine in response to partially digested proteins and triglycerides. CCK increases the secretion of enzyme-rich fluid from the pancreas, contraction of the gallbladder, and relaxation of the sphincter of Oddi. It also decreases gastric emptying and induces satiety.
Secretin is another hormone secreted by S cells in the upper small intestine in response to acidic chyme and fatty acids. Secretin increases the secretion of bicarbonate-rich fluid from the pancreas and hepatic duct cells, decreases gastric acid secretion, and has a trophic effect on pancreatic acinar cells. Vasoactive intestinal peptide (VIP) is a neural hormone that stimulates secretion by the pancreas and intestines and inhibits acid secretion.
Finally, somatostatin is secreted by D cells in the pancreas and stomach in response to fat, bile salts, and glucose in the intestinal lumen. Somatostatin decreases acid and pepsin secretion, decreases gastrin secretion, decreases pancreatic enzyme secretion, and decreases insulin and glucagon secretion. It also inhibits the trophic effects of gastrin and stimulates gastric mucous production.
In summary, gastrointestinal hormones play a crucial role in regulating the digestive process and maintaining homeostasis in the gastrointestinal tract.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 87
Incorrect
-
Which drug is most likely to trigger an episode of acute intermittent porphyria?
Your Answer:
Correct Answer: Oral contraceptive pill
Explanation:Drugs to Avoid and Use in Acute Intermittent Porphyria
Acute intermittent porphyria (AIP) is a genetic disorder that affects the production of haem. It is characterized by abdominal and neuropsychiatric symptoms and is more common in females. AIP is caused by a defect in the porphobilinogen deaminase enzyme. Certain drugs can trigger an attack in individuals with AIP, including barbiturates, halothane, benzodiazepines, alcohol, oral contraceptive pills, and sulphonamides. Therefore, it is important to avoid these drugs in individuals with AIP. However, there are some drugs that are considered safe to use, such as paracetamol, aspirin, codeine, morphine, chlorpromazine, beta-blockers, penicillin, and metformin.
-
This question is part of the following fields:
- General Principles
-
-
Question 88
Incorrect
-
A 38-year-old male with a history of alcohol abuse is under the care of a nursing home due to a diagnosis of Wernicke's encephalopathy. What vitamin deficiency is the cause of this condition?
Your Answer:
Correct Answer: Thiamine
Explanation:Wernicke’s Encephalopathy
Wernicke’s encephalopathy is a condition that is linked to bleeding in the mamillary bodies of the brain. This condition is commonly seen in patients who have a deficiency in thiamine. The symptoms of Wernicke’s encephalopathy include an altered mental state, difficulty with coordination and balance, and ophthalmoplegia. This condition is particularly problematic for individuals who abuse alcohol as they often rely on alcohol for their daily caloric intake.
Wernicke’s encephalopathy is a serious condition that can have long-lasting effects on a person’s health. With proper treatment and care, it is possible to manage the symptoms of Wernicke’s encephalopathy and improve overall health and well-being.
-
This question is part of the following fields:
- Psychiatry
-
-
Question 89
Incorrect
-
A 7-year-old girl comes to the hospital with symptoms indicating Turner syndrome. What is the underlying genetic cause of this disorder?
Your Answer:
Correct Answer: Autosomal dominant defect
Explanation:Achondroplasia is typically the result of a random mutation and is inherited in an autosomal dominant manner.
Achondroplasia is a genetic disorder that causes short stature due to abnormal cartilage development. It is caused by a mutation in the FGFR-3 gene and is inherited in an autosomal dominant manner. The condition is characterized by short limbs with shortened fingers, a large head with frontal bossing and narrow foramen magnum, midface hypoplasia with a flattened nasal bridge, ‘trident’ hands, and lumbar lordosis. In most cases, it occurs as a sporadic mutation, with advancing parental age being a risk factor.
There is currently no specific treatment for achondroplasia. However, some individuals may benefit from limb lengthening procedures, which involve the use of Ilizarov frames and targeted bone fractures. It is important to have a clearly defined need and end point for these procedures in order to achieve success.
-
This question is part of the following fields:
- General Principles
-
-
Question 90
Incorrect
-
A 38-year-old female comes to see her GP complaining of severe constipation. She reports feeling very thirsty and waking up in the middle of the night to use the bathroom. She was also hospitalized recently for a kidney stone. After a blood test shows elevated calcium levels, she is referred to an endocrinologist. The diagnosis of a parathyroid adenoma is confirmed through a sestamibi parathyroid scan. Which pharyngeal pouch does the superior parathyroid gland originate from?
Your Answer:
Correct Answer: Fourth pharyngeal pouch
Explanation:The superior parathyroid glands come from the 4th pharyngeal pouch, while other structures like the Eustachian tube, middle ear cavity, mastoid antrum, palatine tonsils, inferior parathyroid glands, thymus, and thyroid C-cells come from other pharyngeal pouches.
Embryology of Branchial (Pharyngeal) Pouches
During embryonic development, the branchial (pharyngeal) pouches give rise to various structures in the head and neck region. The first pharyngeal pouch forms the Eustachian tube, middle ear cavity, and mastoid antrum. The second pharyngeal pouch gives rise to the palatine tonsils. The third pharyngeal pouch divides into dorsal and ventral wings, with the dorsal wings forming the inferior parathyroid glands and the ventral wings forming the thymus. Finally, the fourth pharyngeal pouch gives rise to the superior parathyroid glands.
Understanding the embryology of the branchial pouches is important in the diagnosis and treatment of certain congenital abnormalities and diseases affecting these structures. By knowing which structures arise from which pouches, healthcare professionals can better understand the underlying pathophysiology and develop appropriate management strategies. Additionally, knowledge of the embryology of these structures can aid in the development of new treatments and therapies for related conditions.
-
This question is part of the following fields:
- General Principles
-
-
Question 91
Incorrect
-
A 42-year-old man is stabbed in the back. During examination, it is observed that he has a total absence of sensation at the nipple level. Which specific dermatome is accountable for this?
Your Answer:
Correct Answer: T4
Explanation:The dermatome for T4 can be found at the nipples, which can be remembered as Teat Pore.
Understanding Dermatomes: Major Landmarks and Mnemonics
Dermatomes are areas of skin that are innervated by a single spinal nerve. Understanding dermatomes is important in diagnosing and treating various neurological conditions. The major dermatome landmarks are listed in the table above, along with helpful mnemonics to aid in memorization.
Starting at the top of the body, the C2 dermatome covers the posterior half of the skull, resembling a cap. Moving down to C3, it covers the area of a high turtleneck shirt, while C4 covers the area of a low-collar shirt. The C5 dermatome runs along the ventral axial line of the upper limb, while C6 covers the thumb and index finger. To remember this, make a 6 with your left hand by touching the tip of your thumb and index finger together.
Moving down to the middle finger and palm of the hand, the C7 dermatome is located here, while the C8 dermatome covers the ring and little finger. The T4 dermatome is located at the nipples, while T5 covers the inframammary fold. The T6 dermatome is located at the xiphoid process, and T10 covers the umbilicus. To remember this, think of BellybuT-TEN.
The L1 dermatome covers the inguinal ligament, while L4 covers the knee caps. To remember this, think of being Down on aLL fours with the number 4 representing the knee caps. The L5 dermatome covers the big toe and dorsum of the foot (except the lateral aspect), while the S1 dermatome covers the lateral foot and small toe. To remember this, think of S1 as the smallest one. Finally, the S2 and S3 dermatomes cover the genitalia.
Understanding dermatomes and their landmarks can aid in diagnosing and treating various neurological conditions. The mnemonics provided can help in memorizing these important landmarks.
-
This question is part of the following fields:
- Neurological System
-
-
Question 92
Incorrect
-
A 50-year-old woman who has gone through menopause is being evaluated for vaginal bleeding that has persisted for the past 3 months. There is no history of cancer in her family, and her recent cervical screening test came back normal. A transvaginal ultrasound revealed an endometrial thickness of 5 mm. What is the recommended course of action?
Your Answer:
Correct Answer: Endometrial biopsy
Explanation:If a woman experiences postmenopausal bleeding, it is important for medical professionals to consider the possibility of endometrial cancer. According to NICE guidelines from 2015, women aged 55 or older with postmenopausal bleeding should be urgently referred for further evaluation.
One common method of evaluation is a transvaginal ultrasound, which can measure the thickness of the endometrial lining. A 3-mm cut-off is often used and has been found to be highly effective in detecting endometrial cancer. This method can also identify women who are unlikely to have endometrial cancer, which can help avoid more invasive procedures such as endometrial biopsy. However, some medical centers may use a cut-off of 4 mm or even 5 mm for endometrial biopsy.
In the case of a woman with an endometrial thickness of 6mm, the next step would be to perform an endometrial biopsy.
Endometrial cancer is a type of cancer that is commonly found in women who have gone through menopause, but it can also occur in around 25% of cases before menopause. The prognosis for this type of cancer is usually good due to early detection. There are several risk factors associated with endometrial cancer, including obesity, nulliparity, early menarche, late menopause, unopposed estrogen, diabetes mellitus, tamoxifen, polycystic ovarian syndrome, and hereditary non-polyposis colorectal carcinoma. Symptoms of endometrial cancer include postmenopausal bleeding, which is usually slight and intermittent at first before becoming heavier, and changes in intermenstrual bleeding for premenopausal women. Pain is not common and typically signifies extensive disease, while vaginal discharge is unusual.
When investigating endometrial cancer, women who are 55 years or older and present with postmenopausal bleeding should be referred using the suspected cancer pathway. The first-line investigation is trans-vaginal ultrasound, which has a high negative predictive value for a normal endometrial thickness of less than 4 mm. Hysteroscopy with endometrial biopsy is also commonly used for diagnosis. Treatment for localized disease typically involves total abdominal hysterectomy with bilateral salpingo-oophorectomy, while patients with high-risk disease may require postoperative radiotherapy. Progestogen therapy may be used in frail elderly women who are not considered suitable for surgery. It is important to note that the combined oral contraceptive pill and smoking are protective against endometrial cancer.
-
This question is part of the following fields:
- Reproductive System
-
-
Question 93
Incorrect
-
Which one of the following does not pass through the greater sciatic foramen?
Your Answer:
Correct Answer: Obturator nerve
Explanation:The obturator foramen is the exit point for the obturator nerve.
The Greater Sciatic Foramen and its Contents
The greater sciatic foramen is a space in the pelvis that is bounded by various ligaments and bones. It serves as a passageway for several important structures, including nerves and blood vessels. The piriformis muscle is a landmark for identifying these structures as they pass through the sciatic notch. Above the piriformis muscle, the superior gluteal vessels can be found, while below it are the inferior gluteal vessels, the sciatic nerve (which passes through it in only 10% of cases), and the posterior cutaneous nerve of the thigh.
The boundaries of the greater sciatic foramen include the greater sciatic notch of the ilium, the sacrotuberous ligament, the sacrospinous ligament, and the ischial spine. The anterior sacroiliac ligament forms the superior boundary. Structures passing through the greater sciatic foramen include the pudendal nerve, the internal pudendal artery, and the nerve to the obturator internus.
In contrast, the lesser sciatic foramen is a smaller space that contains the tendon of the obturator internus, the pudendal nerve, the internal pudendal artery and vein, and the nerve to the obturator internus. Understanding the contents and boundaries of these foramina is important for clinicians who may need to access or avoid these structures during surgical procedures or other interventions.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 94
Incorrect
-
A 70-year-old man visits the endocrinology clinic complaining of muscle cramps, headaches, and lethargy. During the clinic visit, his vital signs are heart rate 80/min, respiratory rate 18/min, blood pressure 150/100 mmHg, temperature 36.5ºC, and saturations 99% on air. Recent blood tests reveal:
- Na+ 147 mmol/L (135 - 145)
- K+ 3.2 mmol/L (3.5 - 5.0)
- Bicarbonate 28 mmol/L (22 - 29)
- Urea 6.0 mmol/L (2.0 - 7.0)
- Creatinine 95 µmol/L (55 - 120)
An adrenal mass is detected on his abdominal CT scan. Can you identify where the hormone responsible for his symptoms is produced?Your Answer:
Correct Answer: Zona glomerulosa
Explanation:The correct answer is the zona glomerulosa. This patient is experiencing symptoms of hyperaldosteronism, which is likely caused by an adenoma in the zona glomerulosa, as indicated by the mass seen on CT scan (also known as Conn’s syndrome). The adenoma stimulates the production of aldosterone, leading to hypertension and hypokalemia.
The adrenal medulla produces catecholamines, such as adrenaline and noradrenaline.
The juxtaglomerular apparatus is located in the kidney and produces renin in response to decreased renal perfusion.
The zona fasciculata is the middle layer of the adrenal cortex and is responsible for producing glucocorticoids, such as cortisol.
The zona reticularis is the innermost layer of the adrenal cortex and produces androgens, such as dehydroepiandrosterone (DHEA).
The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.
-
This question is part of the following fields:
- Renal System
-
-
Question 95
Incorrect
-
A 22-year-old male arrives at the emergency department with excessive epistaxis. Despite applying pressure on the anterior nares for the past four hours, the bleeding has not stopped. Nasal packing has also failed to control the bleeding. The on-call ENT specialist administers topical tranexamic acid to a visibly bleeding artery, which results in a reduction in bleeding.
What is the mode of action of tranexamic acid?Your Answer:
Correct Answer: Prevents plasmin from breaking down fibrin clots
Explanation:Tranexamic acid prevents major haemorrhage by binding to plasminogen and preventing plasmin from breaking down fibrin clots. Its mechanism of action is not related to increasing the availability of vitamin K or inhibiting anticlotting factors protein C and S. Similarly, reducing the availability of vitamin K would not be the mechanism of action of tranexamic acid. While stimulating anticlotting factors protein C and S would maintain clots, it is not the mechanism of action of tranexamic acid.
Understanding Tranexamic Acid
Tranexamic acid is a synthetic derivative of lysine that acts as an antifibrinolytic. Its primary function is to bind to lysine receptor sites on plasminogen or plasmin, preventing plasmin from degrading fibrin. This medication is commonly prescribed to treat menorrhagia.
In addition to its use in treating menorrhagia, tranexamic acid has been investigated for its role in trauma. The CRASH 2 trial found that administering tranexamic acid within the first 3 hours of bleeding trauma can be beneficial. In cases of major haemorrhage, tranexamic acid is given as an IV bolus followed by an infusion.
Ongoing research is also exploring the potential of tranexamic acid in treating traumatic brain injury. Overall, tranexamic acid is a medication with important applications in managing bleeding disorders and trauma.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 96
Incorrect
-
A 27-year-old vegetarian male visits his GP complaining of fatigue despite getting adequate sleep. The doctor conducts a thorough examination and orders a complete blood count and thyroid function tests. The results reveal that the patient has macrocytic anemia, and the doctor suspects B12 deficiency due to his dietary habits. If the body uses up vitamin B12 at a regular rate but is not replenished, how long can the body's stores last?
Your Answer:
Correct Answer: 3 years
Explanation:Vitamin B12 can be found in animal products, including meat. In order for it to be absorbed in the body’s terminal ileum, intrinsic factor is necessary. This factor is produced by the stomach’s parietal cells. The body stores around 2-3 mg of vitamin B12, which can last for 2-4 years. As a result, signs of B12 deficiency usually do not appear until after a prolonged period of insufficient consumption.
Vitamin B12 is essential for the development of red blood cells and the maintenance of the nervous system. It is absorbed through the binding of intrinsic factor, which is secreted by parietal cells in the stomach, and actively absorbed in the terminal ileum. A deficiency in vitamin B12 can be caused by pernicious anaemia, post gastrectomy, a vegan or poor diet, disorders or surgery of the terminal ileum, Crohn’s disease, or metformin use.
Symptoms of vitamin B12 deficiency include macrocytic anaemia, a sore tongue and mouth, neurological symptoms, and neuropsychiatric symptoms such as mood disturbances. The dorsal column is usually affected first, leading to joint position and vibration issues before distal paraesthesia.
Management of vitamin B12 deficiency involves administering 1 mg of IM hydroxocobalamin three times a week for two weeks, followed by once every three months if there is no neurological involvement. If a patient is also deficient in folic acid, it is important to treat the B12 deficiency first to avoid subacute combined degeneration of the cord.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 97
Incorrect
-
A patient with gastric ulcers has been diagnosed with significantly low levels of somatostatin. The medical consultant suspects that a particular type of cell found in both the pancreas and stomach is affected, leading to the disruption of somatostatin release.
Which type of cell is impacted in this case?Your Answer:
Correct Answer: D cells
Explanation:Somatostatin is released by D cells found in both the pancreas and stomach. These cells release somatostatin to inhibit the hormone gastrin and reduce gastric secretions. The patient’s low levels of somatostatin may have led to an increase in gastrin secretion and stomach acid, potentially causing gastric ulcers. G cells secrete gastrin, while parietal cells secrete gastric acid. Pancreatic cells is too general of a term and does not specify the specific type of cell responsible for somatostatin production.
Overview of Gastrointestinal Hormones
Gastrointestinal hormones play a crucial role in the digestion and absorption of food. These hormones are secreted by various cells in the stomach and small intestine in response to different stimuli such as the presence of food, pH changes, and neural signals.
One of the major hormones involved in food digestion is gastrin, which is secreted by G cells in the antrum of the stomach. Gastrin increases acid secretion by gastric parietal cells, stimulates the secretion of pepsinogen and intrinsic factor, and increases gastric motility. Another hormone, cholecystokinin (CCK), is secreted by I cells in the upper small intestine in response to partially digested proteins and triglycerides. CCK increases the secretion of enzyme-rich fluid from the pancreas, contraction of the gallbladder, and relaxation of the sphincter of Oddi. It also decreases gastric emptying and induces satiety.
Secretin is another hormone secreted by S cells in the upper small intestine in response to acidic chyme and fatty acids. Secretin increases the secretion of bicarbonate-rich fluid from the pancreas and hepatic duct cells, decreases gastric acid secretion, and has a trophic effect on pancreatic acinar cells. Vasoactive intestinal peptide (VIP) is a neural hormone that stimulates secretion by the pancreas and intestines and inhibits acid secretion.
Finally, somatostatin is secreted by D cells in the pancreas and stomach in response to fat, bile salts, and glucose in the intestinal lumen. Somatostatin decreases acid and pepsin secretion, decreases gastrin secretion, decreases pancreatic enzyme secretion, and decreases insulin and glucagon secretion. It also inhibits the trophic effects of gastrin and stimulates gastric mucous production.
In summary, gastrointestinal hormones play a crucial role in regulating the digestive process and maintaining homeostasis in the gastrointestinal tract.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 98
Incorrect
-
A laceration of the wrist produces a median nerve transection in a 50-year-old patient. The wound is clean and seen immediately after injury. Collateral soft tissue damage is absent. The patient asks what the prognosis is. You indicate that the nerve should regrow at approximately:
Your Answer:
Correct Answer: 1 mm per day
Explanation:When a peripheral nerve is cut, it causes bleeding and the nerve ends retract. The axon, which is the part of the nerve that transmits signals, starts to degenerate immediately after the injury. This degeneration occurs both in the part of the nerve that is distal to the injury and in the part that is proximal to the first node of Ranvier. As the degenerated axonal fragments are removed by phagocytosis, empty spaces are left in the neurilemmal sheath where the axons used to be.
After a few days, axons from the proximal part of the nerve start to regrow. If they are able to make contact with the distal neurilemmal sheath, they can regrow at a rate of about 1 mm per day. However, if there is any trauma, fracture, infection, or separation of the neurilemmal sheath ends that prevents contact between the axons, the regrowth can be erratic and may result in the formation of a traumatic neuroma.
In cases where the nerve injury is accompanied by significant soft tissue damage and bleeding (which increases the risk of infection), some surgeons may choose to delay the reattachment of the severed nerve ends for several weeks.
Nerve injuries can be classified into three types: neuropraxia, axonotmesis, and neurotmesis. Neuropraxia occurs when the nerve is intact but its electrical conduction is affected. However, full recovery is possible, and autonomic function is preserved. Wallerian degeneration, which is the degeneration of axons distal to the site of injury, does not occur. Axonotmesis, on the other hand, happens when the axon is damaged, but the myelin sheath is preserved, and the connective tissue framework is not affected. Wallerian degeneration occurs in this type of injury. Lastly, neurotmesis is the most severe type of nerve injury, where there is a disruption of the axon, myelin sheath, and surrounding connective tissue. Wallerian degeneration also occurs in this type of injury.
Wallerian degeneration typically begins 24-36 hours following the injury. Axons are excitable before degeneration occurs, and the myelin sheath degenerates and is phagocytosed by tissue macrophages. Neuronal repair may only occur physiologically where nerves are in direct contact. However, nerve regeneration may be hampered when a large defect is present, and it may not occur at all or result in the formation of a neuroma. If nerve regrowth occurs, it typically happens at a rate of 1mm per day.
-
This question is part of the following fields:
- Neurological System
-
-
Question 99
Incorrect
-
A 68-year-old man with a history of bladder cancer due to beta-naphthylamine exposure presents with painless haematuria and suprapubic pain. He underwent successful surgical resection for bladder cancer 5 years ago and is now retired as a chemical engineer. The urology team suspects a possible recurrence with locoregional spread. What imaging modality is most suitable for determining the extent of cancer spread in this patient?
Your Answer:
Correct Answer: Pelvic MRI
Explanation:The most effective imaging technique for identifying the locoregional spread of bladder cancer is pelvic MRI.
Bladder cancer is a common urological cancer that primarily affects males aged 50-80 years old. Smoking and exposure to hydrocarbons increase the risk of developing the disease. Chronic bladder inflammation from Schistosomiasis infection is also a common cause of squamous cell carcinomas in countries where the disease is endemic. Benign tumors of the bladder, such as inverted urothelial papilloma and nephrogenic adenoma, are rare. The most common bladder malignancies are urothelial (transitional cell) carcinoma, squamous cell carcinoma, and adenocarcinoma. Urothelial carcinomas may be solitary or multifocal, with papillary growth patterns having a better prognosis. The remaining tumors may be of higher grade and prone to local invasion, resulting in a worse prognosis.
The TNM staging system is used to describe the extent of bladder cancer. Most patients present with painless, macroscopic hematuria, and a cystoscopy and biopsies or TURBT are used to provide a histological diagnosis and information on depth of invasion. Pelvic MRI and CT scanning are used to determine locoregional spread, and PET CT may be used to investigate nodes of uncertain significance. Treatment options include TURBT, intravesical chemotherapy, surgery (radical cystectomy and ileal conduit), and radical radiotherapy. The prognosis varies depending on the stage of the cancer, with T1 having a 90% survival rate and any T, N1-N2 having a 30% survival rate.
-
This question is part of the following fields:
- Renal System
-
-
Question 100
Incorrect
-
A 70-year-old male presents to the Emergency Department with a 3-hour history of tearing chest pain. He has a past medical history of poorly controlled hypertension. His observations show:
Respiratory rate of 20 breaths/min
Pulse of 95 beats/min
Temperature of 37.3ºC
Blood pressure of 176/148 mmHg
Oxygen saturations of 97% on room air
Auscultation of the heart identifies a diastolic murmur, heard loudest over the 2nd intercostal space, right sternal border.
What CT angiography findings would be expected in this patient's likely diagnosis?Your Answer:
Correct Answer: False lumen of the ascending aorta
Explanation:A false lumen in the descending aorta is a significant indication of aortic dissection on CT angiography. This condition is characterized by tearing chest pain, hypertension, and aortic regurgitation, which can be detected through a diastolic murmur over the 2nd intercostal space, right sternal border. The false lumen is formed due to a tear in the tunica intima of the aortic wall, which fills with a large volume of blood and is easily visible on angiographic CT.
Ballooning of the aortic arch is an incorrect answer as it refers to an aneurysm, which is a condition where the artery walls weaken and abnormally bulge out or widen. Aneurysms are prone to rupture and can have varying effects depending on their location.
Blurring of the posterior wall of the descending aorta is also an incorrect answer as it is a sign of a retroperitoneal, contained rupture of an aortic aneurysm. This condition may present with hypovolemic shock, hypotension, tachycardia, and tachypnea, leading to collapse.
Total occlusion of the left anterior descending artery is another incorrect answer as it would likely result in ST-elevation myocardial infarction (STEMI). Although chest pain is a symptom of both conditions, the nature of the pain and investigation findings make aortic dissection more likely. It is important to note that coronary arteries can only be viewed through coronary angiography, which involves injecting contrast directly into the coronary arteries using a catheter, and not through CT angiography.
Aortic dissection is classified according to the location of the tear in the aorta. The Stanford classification divides it into type A, which affects the ascending aorta in two-thirds of cases, and type B, which affects the descending aorta distal to the left subclavian origin in one-third of cases. The DeBakey classification divides it into type I, which originates in the ascending aorta and propagates to at least the aortic arch and possibly beyond it distally, type II, which originates in and is confined to the ascending aorta, and type III, which originates in the descending aorta and rarely extends proximally but will extend distally.
To diagnose aortic dissection, a chest x-ray may show a widened mediastinum, but CT angiography of the chest, abdomen, and pelvis is the investigation of choice. However, the choice of investigations should take into account the patient’s clinical stability, as they may present acutely and be unstable. Transoesophageal echocardiography (TOE) is more suitable for unstable patients who are too risky to take to the CT scanner.
The management of type A aortic dissection is surgical, but blood pressure should be controlled to a target systolic of 100-120 mmHg while awaiting intervention. On the other hand, type B aortic dissection is managed conservatively with bed rest and IV labetalol to reduce blood pressure and prevent progression. Complications of a backward tear include aortic incompetence/regurgitation and MI, while complications of a forward tear include unequal arm pulses and BP, stroke, and renal failure. Endovascular repair of type B aortic dissection may have a role in the future.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 101
Incorrect
-
A 15-year-old girl presents with difficulty breathing and is unable to speak in full sentences due to panic. She has a history of asthma. Upon examination, her respiratory rate is 28 breaths/minute, heart rate is 105 beats/minute, and her chest is silent. What is the most concerning feature in this girl's history?
Your Answer:
Correct Answer: Silent chest
Explanation:Identify the life-threatening features of an asthma attack.
Assessing the severity of asthma attacks in children is crucial for effective management. The 2016 BTS/SIGN guidelines provide criteria for assessing the severity of asthma in general practice. These criteria include measuring SpO2 levels, PEF (peak expiratory flow) rates, heart rate, respiratory rate, use of accessory neck muscles, and other symptoms such as breathlessness, agitation, altered consciousness, and cyanosis.
A severe asthma attack is characterized by a SpO2 level below 92%, PEF rates between 33-50% of the best or predicted, being too breathless to talk or feed, and a high heart and respiratory rate. On the other hand, a life-threatening asthma attack is indicated by a SpO2 level below 92%, PEF rates below 33% of the best or predicted, a silent chest, poor respiratory effort, use of accessory neck muscles, agitation, altered consciousness, and cyanosis.
It is important for healthcare professionals to be familiar with these criteria to ensure prompt and appropriate management of asthma attacks in children. Early recognition of the severity of an asthma attack can help prevent complications and reduce the risk of hospitalization or death.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 102
Incorrect
-
A 32-year-old male complains of a sudden onset of severe headache that has been ongoing for an hour. He has no significant medical history. Upon examination, he appears to be in pain, with a pulse rate of 106 bpm, blood pressure of 138/70 mmHg, and a temperature of 37°C. He also exhibits neck stiffness and mild photophobia, but no specific neurological deficit is observed. What is the probable diagnosis?
Your Answer:
Correct Answer: Subarachnoid haemorrhage
Explanation:Sudden and Severe Headache with Meningism: Possible Subarachnoid Haemorrhage
This young male is experiencing a sudden and severe headache with meningism, which may indicate subarachnoid haemorrhage. To confirm the diagnosis, the presence of red cells in the cerebrospinal fluid (CSF) or xanthochromia in the CSF may be demonstrated. Meningitis is unlikely due to the acute onset of headache and apyrexia, while subdural haematomas are not common unless there is associated trauma. On the other hand, HSV meningitis typically affects the temporal lobe and may cause symptoms of memory or personality changes.
Overall, a sudden and severe headache with meningism should be taken seriously as it may indicate a potentially life-threatening condition such as subarachnoid haemorrhage. Prompt diagnosis and treatment are crucial to prevent further complications and improve the patient’s prognosis.
-
This question is part of the following fields:
- Neurological System
-
-
Question 103
Incorrect
-
Which of the following symptoms is least commonly associated with salicylate overdose?
Your Answer:
Correct Answer: Tremor
Explanation:Salicylate overdose can cause a combination of respiratory alkalosis and metabolic acidosis. The respiratory center is initially stimulated, leading to hyperventilation and respiratory alkalosis. However, the direct acid effects of salicylates, combined with acute renal failure, can later cause metabolic acidosis. In children, metabolic acidosis tends to be more prominent. Other symptoms of salicylate overdose include tinnitus, lethargy, sweating, pyrexia, nausea/vomiting, hyperglycemia and hypoglycemia, seizures, and coma.
The treatment for salicylate overdose involves general measures such as airway, breathing, and circulation support, as well as administering activated charcoal. Urinary alkalinization with intravenous sodium bicarbonate can help eliminate aspirin in the urine. In severe cases, hemodialysis may be necessary. Indications for hemodialysis include a serum concentration of over 700 mg/L, metabolic acidosis that is resistant to treatment, acute renal failure, pulmonary edema, seizures, and coma.
Salicylates can also cause the uncoupling of oxidative phosphorylation, which leads to decreased adenosine triphosphate production, increased oxygen consumption, and increased carbon dioxide and heat production. It is important to recognize the symptoms of salicylate overdose and seek prompt medical attention to prevent serious complications.
-
This question is part of the following fields:
- General Principles
-
-
Question 104
Incorrect
-
Sarah, a 65-year-old woman, undergoes a routine MRI scan of her head due to persistent headaches. The scan reveals a small lesion situated on the right side of the cerebellum. Although Sarah does not exhibit any neurological symptoms at present, she is worried about the potential development of symptoms if the lesion is left untreated.
What part of the body is most likely to experience symptoms in Sarah's situation?Your Answer:
Correct Answer: Left side of his body
Explanation:If Mark has a unilateral cerebellar lesion, he is likely to experience symptoms on the same side of his body as the lesion, which would be the left side in this case. The signs associated with cerebellar lesions include dysdiadochokinesia & dysmetria, ataxia, nystagmus, intention tremor, slurred speech, and hypotonia, and they would be more pronounced on the affected side of the body. As the lesion grows and affects both hemispheres, both sides of the body may become affected, but initially, left-sided symptoms are more likely. It is unlikely that Mark would develop right-sided symptoms, as this would be contralateral to the lesion. The location of the lesion within each hemisphere determines whether the upper or lower parts of the body are more affected.
Cerebellar syndrome is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. When there is damage or injury to one side of the cerebellum, it can cause symptoms on the same side of the body. These symptoms can be remembered using the mnemonic DANISH, which stands for Dysdiadochokinesia, Dysmetria, Ataxia, Nystagmus, Intention tremour, Slurred staccato speech, and Hypotonia.
There are several possible causes of cerebellar syndrome, including genetic conditions like Friedreich’s ataxia and ataxia telangiectasia, neoplastic growths like cerebellar haemangioma, strokes, alcohol use, multiple sclerosis, hypothyroidism, and certain medications or toxins like phenytoin or lead poisoning. In some cases, cerebellar syndrome may be a paraneoplastic condition, meaning it is a secondary effect of an underlying cancer like lung cancer. It is important to identify the underlying cause of cerebellar syndrome in order to provide appropriate treatment and management.
-
This question is part of the following fields:
- Neurological System
-
-
Question 105
Incorrect
-
Which of the structures listed below articulates with the head of the radius superiorly?
Your Answer:
Correct Answer: Capitulum
Explanation:The capitulum of the humerus forms a joint with the head of the radius.
Anatomy of the Radius Bone
The radius bone is one of the two long bones in the forearm that extends from the lateral side of the elbow to the thumb side of the wrist. It has two expanded ends, with the distal end being the larger one. The upper end of the radius bone has articular cartilage that covers the medial to lateral side and articulates with the radial notch of the ulna by the annular ligament. The biceps brachii muscle attaches to the tuberosity of the upper end.
The shaft of the radius bone has several muscle attachments. The upper third of the body has the supinator, flexor digitorum superficialis, and flexor pollicis longus muscles. The middle third of the body has the pronator teres muscle, while the lower quarter of the body has the pronator quadratus muscle and the tendon of supinator longus.
The lower end of the radius bone is quadrilateral in shape. The anterior surface is covered by the capsule of the wrist joint, while the medial surface has the head of the ulna. The lateral surface ends in the styloid process, and the posterior surface has three grooves that contain the tendons of extensor carpi radialis longus and brevis, extensor pollicis longus, and extensor indicis. Understanding the anatomy of the radius bone is crucial in diagnosing and treating injuries and conditions that affect this bone.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 106
Incorrect
-
A female patient complains of continuous vaginal bleeding a month after undergoing a hydatidiform mole evacuation. What could be the probable diagnosis?
Your Answer:
Correct Answer: Choriocarcinoma
Explanation:The woman’s history of molar pregnancy suggests choriocarcinoma as a potential complication. Bleeding lasting one month after vaginal trauma, vaginitis, or uterine atony is not normal. Endometrial cancer is unlikely in women of childbearing age.
Gestational trophoblastic disorders refer to a range of conditions that originate from the placental trophoblast. These disorders include complete hydatidiform mole, partial hydatidiform mole, and choriocarcinoma. Complete hydatidiform mole is a benign tumor of trophoblastic material that occurs when an empty egg is fertilized by a single sperm that duplicates its own DNA, resulting in all 46 chromosomes being of paternal origin. Symptoms of this disorder include bleeding in the first or early second trimester, exaggerated pregnancy symptoms, a large uterus for dates, and high levels of human chorionic gonadotropin (hCG) in the blood. Hypertension and hyperthyroidism may also be present. Urgent referral to a specialist center is necessary, and evacuation of the uterus is performed. Effective contraception is recommended to avoid pregnancy in the next 12 months. About 2-3% of cases may progress to choriocarcinoma. In partial mole, a normal haploid egg may be fertilized by two sperms or one sperm with duplication of paternal chromosomes, resulting in DNA that is both maternal and paternal in origin. Fetal parts may be visible, and the condition is usually triploid.
-
This question is part of the following fields:
- Reproductive System
-
-
Question 107
Incorrect
-
A 68-year-old man visits his GP complaining of an 8-week cough and an unintentional weight loss of 7kg. He has a smoking history of 35 pack-years. The GP observes some alterations in his left eye, which are indicative of Horner's syndrome.
The man is referred to the suspected cancer pathway and is subsequently diagnosed with a Pancoast tumour.
What symptom is this individual most likely to exhibit?Your Answer:
Correct Answer: Anhidrosis
Explanation:Horner’s syndrome is characterized by meiosis, ptosis, and enophthalmos, and may also present with anhidrosis. Anhidrosis is a common symptom in preganglionic and central causes of Horner’s syndrome, while postganglionic causes do not typically result in anhidrosis. Exophthalmos is not associated with Horner’s syndrome, but rather with other conditions. Hypopyon and mydriasis are also not symptoms of Horner’s syndrome.
Horner’s syndrome is a condition characterized by several features, including a small pupil (miosis), drooping of the upper eyelid (ptosis), a sunken eye (enophthalmos), and loss of sweating on one side of the face (anhidrosis). The cause of Horner’s syndrome can be determined by examining additional symptoms. For example, congenital Horner’s syndrome may be identified by a difference in iris color (heterochromia), while anhidrosis may be present in central or preganglionic lesions. Pharmacologic tests, such as the use of apraclonidine drops, can also be helpful in confirming the diagnosis and identifying the location of the lesion. Central lesions may be caused by conditions such as stroke or multiple sclerosis, while postganglionic lesions may be due to factors like carotid artery dissection or cluster headaches. It is important to note that the appearance of enophthalmos in Horner’s syndrome is actually due to a narrow palpebral aperture rather than true enophthalmos.
-
This question is part of the following fields:
- Neurological System
-
-
Question 108
Incorrect
-
A 23-year-old, nursing student arrives at the emergency department with profuse epistaxis. The bleeding is controlled with silver nitrate cautery.
Coincidentally, the doctor attending to her is also her nursing instructor. During their conversation about bleeding and clot formation, the nursing instructor explains that platelet disorders or a deficiency in thromboxane, a type of eicosanoid that aids in platelet aggregation and halts bleeding, can cause bleeding. Additionally, the nursing instructor mentions that thromboxane has another crucial role.
What is another function of thromboxane?Your Answer:
Correct Answer: Causes vasoconstriction
Explanation:Thromboxane, which is produced by the action of thromboxane-A synthase on prostaglandin H2, not only promotes platelet aggregation but also acts as a powerful vasoconstrictor and hypertensive agent. By causing vasoconstriction, thromboxane reduces blood flow to the area where a clot has formed. It should be noted that thromboxane does not activate antithrombin or promote platelet degradation, contrary to the given incorrect answers.
Arachidonic Acid Metabolism: The Role of Leukotrienes and Endoperoxides
Arachidonic acid is a fatty acid that plays a crucial role in the body’s inflammatory response. The metabolism of arachidonic acid involves the production of various compounds, including leukotrienes and endoperoxides. Leukotrienes are produced by leukocytes and can cause constriction of the lungs. LTB4 is produced before leukocytes arrive, while the rest of the leukotrienes (A, C, D, and E) cause lung constriction.
Endoperoxides, on the other hand, are produced by the cyclooxygenase enzyme and can lead to the formation of thromboxane and prostacyclin. Thromboxane is associated with platelet aggregation and vasoconstriction, which can lead to thrombosis. Prostacyclin, on the other hand, has the opposite effect and can cause vasodilation and inhibit platelet aggregation.
Understanding the metabolism of arachidonic acid and the role of these compounds can help in the development of treatments for inflammatory conditions and cardiovascular diseases.
-
This question is part of the following fields:
- General Principles
-
-
Question 109
Incorrect
-
A 42-year-old patient with motor neuron disease experiences muscle weakness in a cranial nerve innervated muscle. Which muscle is most likely affected?
Your Answer:
Correct Answer: Trapezius
Explanation:The trapezius muscle is supplied by the spinal accessory nerve (CN XI), while the levator scapulae muscle is innervated by the fourth and fifth cervical nerves (C4 and C5) as well as the dorsal scapular nerve. The middle scalene muscle receives innervation from the anterior rami of C3-C8. The sternohyoid and sternothyroid muscles, located in the muscular triangle of the anterior neck, are innervated by the ansa cervicalis, which is a component of the cervical plexus and responsible for raising the thyroid cartilage during talking and swallowing.
The trapezius muscle originates from the medial third of the superior nuchal line of the occiput, the external occipital protruberance, the ligamentum nuchae, the spines of C7 and all thoracic vertebrae, and all intervening interspinous ligaments. Its insertion points are the posterior border of the lateral third of the clavicle, the medial border of the acromion, and the upper border of the crest of the spine of the scapula. The spinal portion of the accessory nerve supplies this muscle. The trapezius muscle is responsible for elevating the shoulder girdle and laterally rotating the scapula.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 110
Incorrect
-
A middle-aged patient from East Asia is presenting symptoms of distal peripheral polyneuropathy, including paraesthesia and reduced knee jerks, which are caused by a chronic deficiency of a certain vitamin. This vitamin's specific diphosphate form acts as a co-factor for the pyruvate dehydrogenase complex during the conversion of pyruvate into acetyl-CoA.
What is the name of the vitamin that this patient is lacking?Your Answer:
Correct Answer: B1
Explanation:The correct answer is Vitamin B1, which is a cofactor for the pyruvate dehydrogenase complex. The patient is experiencing dry beriberi, which is a chronic deficiency of Vitamin B1 that can cause distal peripheral polyneuropathy. The deficiency can be caused by alcohol dependence, malabsorption, or inadequate intake. Vitamin B1’s phosphate derivative, thiamine pyrophosphate, acts as a coenzyme for multiple carbohydrates and amino-acid complexes, including the pyruvate dehydrogenase complex.
Vitamin A is an incorrect answer as its deficiency does not cause the symptoms experienced by the patient. Vitamin A is essential for the function of the retina and its deficiency can lead to skin and ocular impairment, such as xerophthalmia and night blindness. Inadequate intake, fat malabsorption, or pancreatic, liver, and intestinal disease are common causes of Vitamin A deficiency.
Vitamin B6 is also an incorrect answer as the symptoms listed are not relevant to its deficiency.
The Importance of Vitamin B1 (Thiamine) in the Body
Vitamin B1, also known as thiamine, is a water-soluble vitamin that belongs to the B complex group. It plays a crucial role in the body as one of its phosphate derivatives, thiamine pyrophosphate (TPP), acts as a coenzyme in various enzymatic reactions. These reactions include the catabolism of sugars and amino acids, such as pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain amino acid dehydrogenase complex.
Thiamine deficiency can lead to clinical consequences, particularly in highly aerobic tissues like the brain and heart. The brain can develop Wernicke-Korsakoff syndrome, which presents symptoms such as nystagmus, ophthalmoplegia, and ataxia. Meanwhile, the heart can develop wet beriberi, which causes dilated cardiomyopathy. Other conditions associated with thiamine deficiency include dry beriberi, which leads to peripheral neuropathy, and Korsakoff’s syndrome, which causes amnesia and confabulation.
The primary causes of thiamine deficiency are alcohol excess and malnutrition. Alcoholics are routinely recommended to take thiamine supplements to prevent deficiency. Overall, thiamine is an essential vitamin that plays a vital role in the body’s metabolic processes.
-
This question is part of the following fields:
- General Principles
-
-
Question 111
Incorrect
-
A 25-year-old male is admitted with non-severe community acquired pneumonia. You prescribe oral amoxicillin for two days. Despite treatment, the patient's condition worsens. Serology confirms Mycoplasma pneumoniae infection.
What could be the possible reason for this deterioration?Your Answer:
Correct Answer: The strain of the likely causative agent is intrinsically resistant to the antibiotic
Explanation:Intrinsic resistance is observed in Mycoplasma pneumoniae, which is responsible for atypical pneumonia, as it lacks a cell wall and is not susceptible to beta-lactam antibiotics such as amoxicillin.
Comparison of Legionella and Mycoplasma pneumonia
Legionella and Mycoplasma pneumonia are both causes of atypical pneumonia, but they have some differences. Legionella is associated with outbreaks in buildings with contaminated water systems, while Mycoplasma pneumonia is more common in younger patients and is associated with epidemics every 4 years. Both diseases have flu-like symptoms, but Mycoplasma pneumonia has a more gradual onset and a dry cough. On x-ray, both diseases show bilateral consolidation. However, it is important to recognize Mycoplasma pneumonia as it may not respond to penicillins or cephalosporins due to it lacking a peptidoglycan cell wall.
Complications of Mycoplasma pneumonia include cold autoimmune haemolytic anaemia, erythema multiforme, meningoencephalitis, and other immune-mediated neurological diseases. In contrast, Legionella can cause Legionnaires’ disease, which is a severe form of pneumonia that can lead to respiratory failure and death.
Diagnosis of Legionella is generally by urinary antigen testing, while diagnosis of Mycoplasma pneumonia is generally by serology. Treatment for Legionella includes fluoroquinolones or macrolides, while treatment for Mycoplasma pneumonia includes doxycycline or a macrolide. Overall, while both diseases are causes of atypical pneumonia, they have some distinct differences in their epidemiology, symptoms, and complications.
-
This question is part of the following fields:
- General Principles
-
-
Question 112
Incorrect
-
A 20-year-old male is having a scrotal orchidectomy. During the procedure, the surgeons manipulate the spermatic cord. What is the origin of the outermost layer of this structure?
Your Answer:
Correct Answer: External oblique aponeurosis
Explanation:The external oblique aponeurosis provides the outermost layer of the spermatic cord, which is acquired during its passage through the superficial inguinal ring.
Anatomy of the Scrotum and Testes
The scrotum is composed of skin and dartos fascia, with an arterial supply from the anterior and posterior scrotal arteries. It is also the site of lymphatic drainage to the inguinal lymph nodes. The testes are surrounded by the tunica vaginalis, a closed peritoneal sac, with the parietal layer adjacent to the internal spermatic fascia. The testicular arteries arise from the aorta, just below the renal arteries, and the pampiniform plexus drains into the testicular veins. The left testicular vein drains into the left renal vein, while the right testicular vein drains into the inferior vena cava. Lymphatic drainage occurs to the para-aortic nodes.
The spermatic cord is formed by the vas deferens and is covered by the internal spermatic fascia, cremasteric fascia, and external spermatic fascia. The cord contains the vas deferens, testicular artery, artery of vas deferens, cremasteric artery, pampiniform plexus, sympathetic nerve fibers, genital branch of the genitofemoral nerve, and lymphatic vessels. The vas deferens transmits sperm and accessory gland secretions, while the testicular artery supplies the testis and epididymis. The cremasteric artery arises from the inferior epigastric artery, and the pampiniform plexus is a venous plexus that drains into the right or left testicular vein. The sympathetic nerve fibers lie on the arteries, while the parasympathetic fibers lie on the vas. The genital branch of the genitofemoral nerve supplies the cremaster. Lymphatic vessels drain to lumbar and para-aortic nodes.
-
This question is part of the following fields:
- Reproductive System
-
-
Question 113
Incorrect
-
A 30-year-old woman presents to the emergency department with sudden onset of left-sided lower abdominal pain, shoulder tip pain, and small amounts of dark brown vaginal discharge. She reports missing her period for the past 8 weeks despite having a regular 30-day cycle. She is sexually active with multiple partners and does not always use contraception. Additionally, she has been experiencing diarrhea and dizziness for the past 2 days. A transvaginal ultrasound scan reveals a gestational sac in the left Fallopian tube, and her β-hCG level is >1500 IU (<5 IU). What is the most likely underlying factor that increases her risk for this condition?
Your Answer:
Correct Answer: Pelvic inflammatory disease
Explanation:An ectopic pregnancy is likely in this case, as the symptoms suggest a diagnosis of pelvic inflammatory disease. This condition can cause scarring and damage to the Fallopian tubes, which can impede the fertilized egg’s passage to the uterus, resulting in an ectopic pregnancy.
The combined oral contraceptive pill is not a well-documented risk factor for ectopic pregnancy, but the progesterone-only pill and intrauterine contraceptive device are. Both IVF and subfertility are also risk factors for ectopic pregnancies, while smoking or exposure to cigarette smoke increases the risk.
Understanding Ectopic Pregnancy: Incidence and Risk Factors
Ectopic pregnancy occurs when a fertilized egg implants outside the uterus, usually in the fallopian tubes. This condition is a serious medical emergency that requires immediate attention. According to epidemiological studies, ectopic pregnancy occurs in approximately 0.5% of all pregnancies.
Several risk factors can increase the likelihood of ectopic pregnancy. These include damage to the fallopian tubes due to pelvic inflammatory disease or surgery, a history of previous ectopic pregnancy, endometriosis, the use of intrauterine contraceptive devices (IUCDs), and the progesterone-only pill. In vitro fertilization (IVF) also increases the risk of ectopic pregnancy, with approximately 3% of IVF pregnancies resulting in ectopic implantation.
It is important for women to be aware of the risk factors associated with ectopic pregnancy and to seek medical attention immediately if they experience symptoms such as abdominal pain, vaginal bleeding, or shoulder pain. Early diagnosis and treatment can help prevent serious complications and improve outcomes for both the mother and the fetus.
-
This question is part of the following fields:
- Reproductive System
-
-
Question 114
Incorrect
-
During a radical gastrectomy for carcinoma of the stomach, if the patient is elderly, would the surgeons still remove the omentum? What is the main source of its blood supply?
Your Answer:
Correct Answer: Gastroepiploic artery
Explanation:The omental branches of the right and left gastro-epiploic arteries provide the blood supply to the omentum, while the colonic vessels do not play a role in this. The left gastro-epiploic artery originates from the splenic artery, and the right gastro-epiploic artery is the final branch of the gastroduodenal artery.
The Omentum: A Protective Structure in the Abdomen
The omentum is a structure in the abdomen that invests the stomach and is divided into two parts: the greater and lesser omentum. The greater omentum is attached to the lower lateral border of the stomach and contains the gastro-epiploic arteries. It varies in size and is less developed in children. However, it plays an important role in protecting against visceral perforation, such as in cases of appendicitis.
The lesser omentum is located between the omentum and transverse colon, providing a potential entry point into the lesser sac. Malignant processes can affect the omentum, with ovarian cancer being the most notable. Overall, the omentum is a crucial structure in the abdomen that serves as a protective barrier against potential injuries and diseases.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 115
Incorrect
-
In fungal cell walls, which molecule is present in a notably high concentration?
Your Answer:
Correct Answer: Chitin
Explanation:Differences in Cell Wall Composition between Fungi and Bacteria
Fungi and bacteria both have cell walls, but the composition of their cell walls differs. While bacterial cell walls contain lipopolysaccharide in Gram negative bacteria and lipoteichoic acid in Gram positive bacteria, fungal cell walls contain chitin and glucans. These polysaccharides are not found in bacterial cell walls, which do not contain cellulose like plant cell walls do.
Peptidoglycan is a major structural component of Gram positive cell walls and a minor component of Gram negative cell walls. This compound is responsible for the ability of Gram positive cells to stain dark purple and Gram negative cells to stain pink. Peptidoglycan binds crystal violet, which is used in the Gram staining process. Overall, the differences in cell wall composition between fungi and bacteria contribute to their distinct characteristics and functions.
-
This question is part of the following fields:
- Microbiology
-
-
Question 116
Incorrect
-
Which statement about agonists and antagonists is accurate?
Your Answer:
Correct Answer: A partial agonist has affinity but reduced efficacy
Explanation:Affinity and Efficacy in Pharmacology
In pharmacology, the terms affinity and efficacy are used to describe the relationship between a drug and its target receptor. Affinity refers to the strength of the binding between the drug and the receptor, while efficacy refers to the ability of the drug to activate the receptor and produce a response.
An agonist is a drug that binds to a receptor and activates it, producing a response. An agonist has both high affinity and high efficacy, meaning it binds strongly to the receptor and produces a strong response.
An antagonist, on the other hand, binds to the receptor but does not activate it, blocking the action of other agonists. An antagonist has high affinity but no efficacy, meaning it binds strongly to the receptor but does not produce a response.
A partial agonist is a drug that binds to the receptor and produces a response, but the response is weaker than that produced by a full agonist. A partial agonist has high affinity but reduced efficacy, meaning it binds strongly to the receptor but produces a weaker response.
the concepts of affinity and efficacy is important in drug development and in the effects of drugs on the body. By manipulating these properties, researchers can develop drugs that selectively target specific receptors and produce desired effects with minimal side effects.
-
This question is part of the following fields:
- Pharmacology
-
-
Question 117
Incorrect
-
An ENT surgeon is performing a radical neck dissection. She wishes to fully expose the external carotid artery. To do so she inserts a self retaining retractor close to its origin. Which one of the following structures lies posterolaterally to the external carotid at this point?
Your Answer:
Correct Answer: Internal carotid artery
Explanation:At its origin from the common carotid, the internal carotid artery is located at the posterolateral position in relation to the external carotid artery. Its anterior surface gives rise to the superior thyroid, lingual, and facial arteries.
Anatomy of the External Carotid Artery
The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.
To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.
The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 118
Incorrect
-
A 56-year-old woman visits her primary care physician with concerns about recent weight gain. She reports maintaining her usual diet and exercise routine, but has noticed her face appearing rounder and the development of purplish stretch marks on her abdomen. During the exam, her heart rate is 89 beats per minute, respiratory rate is 16 breaths per minute, and blood pressure is 157/84 mmHg. Her waist circumference measures 41 inches and her body mass index is 28 kg/m2. What is one effect of the primary hormone involved in this patient's condition?
Your Answer:
Correct Answer: Upregulation of alpha-1-adrenoceptors on arterioles
Explanation:The patient is exhibiting symptoms consistent with a state of elevated cortisol levels, known as Cushing syndrome. These symptoms include recent weight gain, a round face (moon face), abdominal striae, high blood pressure, and truncal obesity. Cushing syndrome can have various causes, including the use of glucocorticoids or an ectopic ACTH secretion.
Elevated cortisol levels can lead to an increase in blood glucose levels, putting individuals at risk for hyperglycemia and diabetes. Cortisol can also suppress the immune system, inhibiting the production of prostaglandins, leukotrienes, and interleukin-2, and decreasing the adhesion of white blood cells. Additionally, cortisol can up-regulate alpha-1-adrenoceptors on arterioles, resulting in high blood pressure. High cortisol levels can also decrease osteoblast activity, leading to weakened bones, and reduce fibroblast activity and collagen synthesis, resulting in delayed wound healing. The abdominal striae seen in patients with high cortisol levels are typically due to decreased collagen synthesis.
Causes of Cushing’s Syndrome
Cushing’s syndrome is a condition that can be caused by both endogenous and exogenous factors. However, it is important to note that exogenous causes, such as the use of glucocorticoid therapy, are more common than endogenous ones. The condition can be classified into two categories: ACTH dependent and ACTH independent causes.
ACTH dependent causes of Cushing’s syndrome include Cushing’s disease, which is caused by a pituitary tumor secreting ACTH and producing adrenal hyperplasia. Ectopic ACTH production, which is caused by small cell lung cancer, is another ACTH dependent cause. On the other hand, ACTH independent causes include iatrogenic factors such as steroid use, adrenal adenoma, adrenal carcinoma, Carney complex, and micronodular adrenal dysplasia.
In some cases, a condition called Pseudo-Cushing’s can mimic Cushing’s syndrome. This is often caused by alcohol excess or severe depression and can cause false positive results in dexamethasone suppression tests or 24-hour urinary free cortisol tests. To differentiate between Cushing’s syndrome and Pseudo-Cushing’s, an insulin stress test may be used.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 119
Incorrect
-
A 65-year-old woman presents to the surgical clinic with iron deficiency anemia. She has a history of left hemicolectomy but no other medical conditions. Where in the body does dietary iron absorption primarily occur?
Your Answer:
Correct Answer: Duodenum
Explanation:The most efficient absorption of iron occurs in the duodenum and jejunum of the proximal small intestine when it is in the Fe 2+ state. A divalent membrane transporter protein facilitates the transportation of iron across the small intestine mucosa, resulting in better absorption of Fe 2+. Ferritin is the form in which the intestinal cells store the bound iron. When cells require iron, they absorb the complex as necessary.
Iron Metabolism: Absorption, Distribution, Transport, Storage, and Excretion
Iron is an essential mineral that plays a crucial role in various physiological processes. The absorption of iron occurs mainly in the upper small intestine, particularly the duodenum. Only about 10% of dietary iron is absorbed, and ferrous iron (Fe2+) is much better absorbed than ferric iron (Fe3+). The absorption of iron is regulated according to the body’s need and can be increased by vitamin C and gastric acid. However, it can be decreased by proton pump inhibitors, tetracycline, gastric achlorhydria, and tannin found in tea.
The total body iron is approximately 4g, with 70% of it being present in hemoglobin, 25% in ferritin and haemosiderin, 4% in myoglobin, and 0.1% in plasma iron. Iron is transported in the plasma as Fe3+ bound to transferrin. It is stored in tissues as ferritin, and the lost iron is excreted via the intestinal tract following desquamation.
In summary, iron metabolism involves the absorption, distribution, transport, storage, and excretion of iron in the body. Understanding these processes is crucial in maintaining iron homeostasis and preventing iron-related disorders.
-
This question is part of the following fields:
- General Principles
-
-
Question 120
Incorrect
-
A 76-year-old woman is being reviewed for her medications on the geriatrics ward. She has a medical history of left ventricular failure, atrial fibrillation, gout, left-sided hemianopia, hyperthyroidism, and renal colic. The medications she is taking include ramipril, atenolol, digoxin, allopurinol, warfarin, carbamazepine, and diclofenac. Can you identify which of her medications is classified as a narrow therapeutic index (NTI) drug?
Your Answer:
Correct Answer: Digoxin
Explanation:Digoxin falls under the category of narrow therapeutic index drugs, which are medications that require precise dosing and blood concentration levels to avoid severe therapeutic failures or life-threatening adverse reactions. Other examples of narrow therapeutic index drugs include lithium, phenytoin, and certain antibiotics like gentamicin, vancomycin, and amikacin. In contrast, high therapeutic index drugs like NSAIDs, benzodiazepines, and beta-blockers have a wider margin of safety and are less likely to cause serious harm if dosing errors occur.
Understanding Digoxin and Its Toxicity
Digoxin is a medication used for rate control in atrial fibrillation and for improving symptoms in heart failure patients. It works by decreasing conduction through the atrioventricular node and increasing the force of cardiac muscle contraction. However, it has a narrow therapeutic index and can cause toxicity even when the concentration is within the therapeutic range.
Toxicity may present with symptoms such as lethargy, nausea, vomiting, confusion, and yellow-green vision. Arrhythmias and gynaecomastia may also occur. Hypokalaemia is a classic precipitating factor as it increases the inhibitory effects of digoxin. Other factors include increasing age, renal failure, myocardial ischaemia, and various electrolyte imbalances. Certain drugs, such as amiodarone and verapamil, can also contribute to toxicity.
If toxicity is suspected, digoxin concentrations should be measured within 8 to 12 hours of the last dose. However, plasma concentration alone does not determine toxicity. Management includes the use of Digibind, correcting arrhythmias, and monitoring potassium levels.
In summary, understanding the mechanism of action, monitoring, and potential toxicity of digoxin is crucial for its safe and effective use in clinical practice.
-
This question is part of the following fields:
- General Principles
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)