00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - These thyroid function tests were obtained on a 55-year-old female who has recently...

    Correct

    • These thyroid function tests were obtained on a 55-year-old female who has recently been treated for hypertension:
      Free T4 28.5 pmol/L (9.8-23.1)
      TSH <0.02 mU/L (0.35-5.5)
      Free T3 10.8 pmol/L (3.5-6.5)
      She now presents with typical symptoms of hyperthyroidism.
      Which medication is likely to have caused this?

      Your Answer: Amiodarone

      Explanation:

      Amiodarone and its Effects on Thyroid Function

      Amiodarone is a medication that can have an impact on thyroid function, resulting in both hypo- and hyperthyroidism. This is due to the high iodine content in the drug, which contributes to its antiarrhythmic effects. Atenolol, on the other hand, is a beta blocker that is commonly used to treat thyrotoxicosis. Warfarin is another medication that is used to treat atrial fibrillation.

      There are two types of thyrotoxicosis that can be caused by amiodarone. Type 1 results in excess thyroxine synthesis, while type 2 leads to the release of excess thyroxine but normal levels of synthesis. It is important for healthcare professionals to monitor thyroid function in patients taking amiodarone and adjust treatment as necessary to prevent complications.

    • This question is part of the following fields:

      • Endocrine System
      60.9
      Seconds
  • Question 2 - A 23-year-old man was diagnosed with maturity-onset diabetes of the young (MODY) type...

    Incorrect

    • A 23-year-old man was diagnosed with maturity-onset diabetes of the young (MODY) type 1 and has been on an oral anti-diabetic agent for the past year. What is the mechanism of action of the drug he is most likely taking?

      Your Answer: Inhibition of hepatic glucose production and increased peripheral glucose uptake in skeletal muscle

      Correct Answer: Binding to ATP-dependent K+ channel on the pancreatic beta cell membrane

      Explanation:

      The patient is likely taking a sulfonylurea medication, which works by binding to the ATP-dependent K+ channel on the pancreatic beta-cell membrane to promote endogenous insulin secretion. This is the recommended first-line treatment for patients with MODY type 1, as their genetic defect results in reduced insulin secretion. Thiazolidinediones (glitazones) activate peroxisome proliferator-activated receptor-gamma (PPARγ) and are not typically used in this population. Metformin (biguanide class) inhibits hepatic glucose production and increases peripheral uptake, but is less effective than sulfonylureas in MODY type 1. Acarbose inhibits intestinal alpha-glucosidase and is not used in MODY patients. Dipeptidyl peptidase-4 inhibitors (gliptins) are commonly used in type 2 diabetes but are not first-line treatment for MODY.

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      77.8
      Seconds
  • Question 3 - A 14-year-old boy presents to the emergency department with complaints of severe abdominal...

    Correct

    • A 14-year-old boy presents to the emergency department with complaints of severe abdominal pain, nausea, and vomiting for the past 6 hours. The patient appears drowsy and has dry mucous membranes. His vital signs include a heart rate of 94 beats per minute, respiratory rate of 19 breaths per minute, and blood pressure of 89/62 mmHg. There is a fruity smell to his breath, and a bedside glucose finger prick reveals a glucose level of 263 mg/dL. The doctor orders an insulin infusion while waiting for laboratory results. Which insulin preparation is most appropriate for this patient's management?

      Your Answer: Short-acting (regular) insulin

      Explanation:

      The onset of action and peak of NPH and regular insulin are a result of the combination of both human recombinant insulin preparations in the mixture.

      Understanding Insulin Therapy

      Insulin therapy has been a game-changer in the management of diabetes mellitus since its development in the 1920s. It remains the only available treatment for type 1 diabetes mellitus (T1DM) and is widely used in type 2 diabetes mellitus (T2DM) when oral hypoglycemic agents fail to provide adequate control. However, understanding the different types of insulin can be overwhelming, and it is crucial to have a basic grasp to avoid potential harm to patients.

      Insulin can be classified by manufacturing process, duration of action, and type of insulin analogues. Patients often require a combination of preparations to ensure stable glycemic control throughout the day. Rapid-acting insulin analogues act faster and have a shorter duration of action than soluble insulin and may be used as the bolus dose in ‘basal-bolus’ regimes. Short-acting insulins, such as Actrapid and Humulin S, may also be used as the bolus dose in ‘basal-bolus’ regimes. Intermediate-acting insulins, like isophane insulin, are often used in a premixed formulation with long-acting insulins, such as insulin determir and insulin glargine, given once or twice daily. Premixed preparations combine intermediate-acting insulin with either a rapid-acting insulin analogue or soluble insulin.

      The vast majority of patients administer insulin subcutaneously, and it is essential to rotate injection sites to prevent lipodystrophy. Insulin pumps are available, which delivers a continuous basal infusion and a patient-activated bolus dose at meal times. Intravenous insulin is used for patients who are acutely unwell, such as those with diabetic ketoacidosis. Inhaled insulin is available but not widely used, and oral insulin analogues are in development but have considerable technical hurdles to clear. Overall, understanding insulin therapy is crucial for healthcare professionals to provide safe and effective care for patients with diabetes mellitus.

    • This question is part of the following fields:

      • Endocrine System
      380.3
      Seconds
  • Question 4 - A patient currently being treated for bipolar disorder with lithium is referred to...

    Incorrect

    • A patient currently being treated for bipolar disorder with lithium is referred to hospital after developing severe polyuria. She denies polydipsia.

      Blood tests reveal the following:

      Na+ 154 mmol/L (135 - 145)
      K+ 3.5 mmol/L (3.5 - 5.0)
      Bicarbonate 24 mmol/L (22 - 29)
      Urea 8 mmol/L (2.0 - 7.0)
      Creatinine 110 µmol/L (55 - 120)
      Blood glucose 7mmol/L (4 - 11)

      Based on the results, a decision is made to carry out a water deprivation test. The patient is considered to have capacity and agrees to this. As part of this test, desmopressin is given.

      Considering the most likely diagnosis, which of the following results would be most likely to be seen in a 45-year-old patient?

      Your Answer: Low urine osmolality after fluid deprivation and normal urine osmolality after desmopressin provision

      Correct Answer: Low urine osmolality after fluid deprivation and low urine osmolality after desmopressin provision

      Explanation:

      The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.

    • This question is part of the following fields:

      • Endocrine System
      215.4
      Seconds
  • Question 5 - Sam, a 75-year-old man, presents to the GP with a complaint of breast...

    Incorrect

    • Sam, a 75-year-old man, presents to the GP with a complaint of breast growth that has developed rapidly over the past 3 months. Sam insists that he has no trouble with sexual function. He has recently been diagnosed with a heart problem and is taking multiple medications for it, although he cannot recall their names. Other than that, he claims to be in good health. Upon examination, all of Sam's vital signs are within normal limits. After measuring his height and weight, his body mass index is calculated to be 24 kg/m². Each breast is approximately 10 cm in diameter, with large nipples and tenderness but no pain. Moderate cardiomegaly and a 3rd heart sound are noted during chest assessment. No abnormalities are found during an abdominal examination. Pitting edema is present up to his mid calf. Based on the history and examination, what is the most probable cause of Sam's gynaecomastia?

      Your Answer: Oestrogen secreting tumour

      Correct Answer: Digoxin

      Explanation:

      Digoxin is the correct answer as it can lead to drug-induced gynaecomastia. Sam is likely taking digoxin due to his heart failure, and this medication has a side effect of causing breast tissue growth in men. This is thought to occur because digoxin has a similar structure to oestrogen and can directly stimulate oestrogen receptors.

      While cirrhosis can also cause gynaecomastia, it is unlikely in this case as there are no signs or symptoms of liver disease. Cirrhosis typically causes gynaecomastia due to the liver’s reduced ability to clear oestrogens from the bloodstream.

      Obesity is not the correct answer as Sam is not obese, with a BMI of 24 kg/m². However, obesity is a common cause of gynaecomastia as excess fat can be distributed to the breasts and result in increased aromatisation of androgens to oestrogens.

      An oestrogen-secreting tumour is not the correct answer as there is no evidence in Sam’s history or examination to suggest he has one, although these tumours can cause gynaecomastia in men.

      Understanding Gynaecomastia: Causes and Drug Triggers

      Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.

      Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.

      Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.

      In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.

    • This question is part of the following fields:

      • Endocrine System
      256.1
      Seconds
  • Question 6 - A 42-year-old man with schizophrenia undergoes his yearly physical examination. He is currently...

    Correct

    • A 42-year-old man with schizophrenia undergoes his yearly physical examination. He is currently taking risperidone as part of his medication regimen.

      What is the most common issue that can be linked to the use of risperidone in this patient?

      Your Answer: Galactorrhoea

      Explanation:

      Risperidone, an atypical antipsychotic, has the potential to increase prolactin levels. This is because it inhibits dopamine, which reduces dopamine-mediated inhibition of prolactin. Although elevated prolactin may not cause any symptoms, it can have adverse effects if persistently elevated. One of the major roles of prolactin is to stimulate milk production in the mammary glands. Therefore, any cause of raised prolactin can result in milk production, which is known as galactorrhoea. This can occur in both males and females due to raised prolactin levels. Galactorrhoea is the most likely side effect caused by risperidone.

      Raised prolactin levels can also lead to reduced libido and infertility in both sexes. However, it is unlikely to result in increased libido. Prolactin can interfere with other hormones, such as oestrogen and progesterone, which can cause irregular periods, but it does not specifically cause painful periods. Elevated levels of prolactin would not result in seizures. Risperidone is more likely to be associated with weight gain rather than weight loss, as it acts on the histamine receptor.

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      161.7
      Seconds
  • Question 7 - As a medical student observing a health visitor in community care, I noticed...

    Incorrect

    • As a medical student observing a health visitor in community care, I noticed that she was measuring the height and weight of all the children. I was curious about what drives growth during the early childhood stage (from birth to 3 years old). Can you explain this to me?

      Your Answer: Growth hormone and thyroid function

      Correct Answer: Nutrition and insulin

      Explanation:

      Understanding Growth and Factors Affecting It

      Growth is a significant difference between children and adults, and it occurs in three stages: infancy, childhood, and puberty. Several factors affect fetal growth, including environmental, placental, hormonal, and genetic factors. Maternal nutrition and uterine capacity are the most crucial environmental factors that affect fetal growth.

      In infancy, nutrition and insulin are the primary drivers of growth. High fetal insulin levels result from poorly controlled diabetes in the mother, leading to hypoglycemia and macrosomia in the baby. Growth hormone is not a significant factor in infancy, as babies have low amounts of receptors. Hypopituitarism and thyroid have no effect on growth in infancy.

      In childhood, growth is driven by growth hormone and thyroxine, while in puberty, growth is driven by growth hormone and sex steroids. Genetic factors are the most important determinant of final adult height.

      It is essential to monitor growth in children regularly. Infants aged 0-1 years should have at least five weight recordings, while children aged 1-2 years should have at least three weight recordings. Children older than two years should have annual weight recordings. Children below the 2nd centile for height should be reviewed by their GP, while those below the 0.4th centile for height should be reviewed by a paediatrician.

    • This question is part of the following fields:

      • Endocrine System
      53.3
      Seconds
  • Question 8 - A 65-year-old woman with hypocalcaemia has elevated parathyroid hormone levels. Is it a...

    Incorrect

    • A 65-year-old woman with hypocalcaemia has elevated parathyroid hormone levels. Is it a typical physiological response to increase calcium levels? In the kidney, where does parathyroid hormone act to enhance calcium reabsorption?

      Your Answer: Proximal convoluted tubule

      Correct Answer: Distal convoluted tubule

      Explanation:

      Understanding Parathyroid Hormone and Its Effects

      Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.

      The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.

      Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.

    • This question is part of the following fields:

      • Endocrine System
      61.5
      Seconds
  • Question 9 - A 23-year-old female patient visits her GP clinic due to her struggle with...

    Correct

    • A 23-year-old female patient visits her GP clinic due to her struggle with weight loss. Her BMI is almost 40 kg/m², which is severely impacting her mental and physical well-being. Despite following a strict diet and exercise routine, she has not seen any significant improvement. The GP decides to prescribe orlistat as an anti-obesity medication.

      What is the mechanism of action of orlistat in promoting weight loss?

      Your Answer: Reduces fat digestion by inhibiting lipase

      Explanation:

      Orlistat functions by inhibiting gastric and pancreatic lipase, which reduces the digestion of fat.

      2,4-Dinitrophenol (DNP) induces mitochondrial uncoupling and can result in weight loss without calorie reduction. However, it is hazardous when used improperly and is not prescribed outside of the US.

      Weight gain can be caused by increased insulin secretion.

      Orlistat reduces fat digestion by inhibiting lipase, which decreases the amount of fat that can be absorbed. This can result in light-colored, floating stools due to the high fat content.

      Liraglutide is a medication that slows gastric emptying to increase satiety and is primarily prescribed as an adjunct in type 2 diabetics.

      Serotonin reuptake inhibitors are not utilized for weight loss.

      Obesity can be managed through a step-wise approach that includes conservative, medical, and surgical options. The first step is usually conservative, which involves implementing changes in diet and exercise. If this is not effective, medical options such as Orlistat may be considered. Orlistat is a pancreatic lipase inhibitor that is used to treat obesity. However, it can cause adverse effects such as faecal urgency/incontinence and flatulence. A lower dose version of Orlistat is now available without prescription, known as ‘Alli’. The National Institute for Health and Care Excellence (NICE) has defined criteria for the use of Orlistat. It should only be prescribed as part of an overall plan for managing obesity in adults who have a BMI of 28 kg/m^2 or more with associated risk factors, or a BMI of 30 kg/m^2 or more, and continued weight loss of at least 5% at 3 months. Orlistat is typically used for less than one year.

    • This question is part of the following fields:

      • Endocrine System
      35.7
      Seconds
  • Question 10 - A 36-year-old woman visits her GP complaining of frequent urination. She has been...

    Incorrect

    • A 36-year-old woman visits her GP complaining of frequent urination. She has been waking up several times at night to urinate for the past two weeks and has been feeling more thirsty than usual. Her temperature is 37.3ºC. She has a history of bipolar disorder and is currently on lithium medication.

      What could be the possible cause of her polyuria?

      Your Answer: Central diabetes insipidus

      Correct Answer: Lithium reducing ADH-dependent water reabsorption in the collecting duct

      Explanation:

      The site of action for antidiuretic hormone (ADH) is the collecting ducts. Lithium treatment for bipolar disorder can lead to diabetes insipidus, which is characterized by increased thirst (polydipsia) and increased urination (polyuria). Lithium use can cause nephrogenic diabetes insipidus, where the kidneys are unable to respond adequately to ADH. Normally, ADH induces the expression of aquaporin 2 channels in the collecting duct, which stimulates water reabsorption.

      Central diabetes insipidus occurs when there is damage to the posterior pituitary gland, resulting in insufficient production and release of ADH. However, lithium use causes nephrogenic diabetes insipidus instead of central diabetes insipidus.

      Although insulin resistance and hyperglycemia can also cause polyuria and polydipsia, as seen in diabetic ketoacidosis, the use of lithium suggests that the patient’s symptoms are due to diabetes insipidus rather than diabetes mellitus.

      Lithium inhibits the expression of aquaporin channels in the renal collecting duct, rather than the distal convoluted tubule, which causes diabetes insipidus.

      While a urinary tract infection can also present with polyuria and nocturia, the presence of lithium in the patient’s drug history and the fact that the patient also has polydipsia suggest nephrogenic diabetes insipidus. Diabetes insipidus causes increased thirst due to the excessive volume of urine produced, leading to water loss from the body. In addition, a urinary tract infection would likely cause dysuria (burning or stinging when passing urine) and lower abdominal pain.

      Understanding Antidiuretic Hormone (ADH)

      Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.

      ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.

      Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.

      Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.

    • This question is part of the following fields:

      • Endocrine System
      155.8
      Seconds
  • Question 11 - A 25-year-old regular gym attendee has been using growth hormone injections to enhance...

    Correct

    • A 25-year-old regular gym attendee has been using growth hormone injections to enhance his muscle mass. What potential risks is he now more susceptible to?

      Your Answer: Diabetes mellitus type II

      Explanation:

      Excessive growth hormone can elevate the likelihood of developing type II diabetes mellitus. This is due to the hormone’s ability to release glucose from fat reserves, which raises its concentration in the bloodstream. As a result, the pancreas must produce more insulin to counteract the heightened glucose levels.

      Additional indications of surplus growth hormone may involve thickened skin, enlarged extremities, a protruding jaw, carpal tunnel syndrome, fatigue, muscle frailty, and high blood pressure.

      Understanding Growth Hormone and Its Functions

      Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.

      GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.

      In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.

    • This question is part of the following fields:

      • Endocrine System
      51.5
      Seconds
  • Question 12 - A teenage girl and her mother come to the doctor's office with concerns...

    Incorrect

    • A teenage girl and her mother come to the doctor's office with concerns about ambiguous genitalia. After gathering information and conducting various tests, the doctor determines that the cause is congenital adrenal hyperplasia, which is linked to a deficiency in which specific enzyme?

      Your Answer: Aldosterone synthase

      Correct Answer: 21-hydroxylase

      Explanation:

      Insufficient production of cortisol and compensatory adrenal hyperplasia are the consequences of 21-hydroxylase deficiency. This leads to elevated androgen production and ambiguous genitalia. However, enzymes such as 5-a reductase, aromatase, 17B-HSD, and aldosterone synthase are not involved in this disorder. Other enzymes, including 11-beta hydroxylase and 17-hydroxylase, may also be involved.

      Congenital adrenal hyperplasia is a genetic condition that affects the adrenal glands and can result in various symptoms depending on the specific enzyme deficiency. One common form is 21-hydroxylase deficiency, which can cause virilization of female genitalia, precocious puberty in males, and a salt-losing crisis in 60-70% of patients during the first few weeks of life. Another form is 11-beta hydroxylase deficiency, which can also cause virilization and precocious puberty, as well as hypertension and hypokalemia. A third form is 17-hydroxylase deficiency, which typically does not cause virilization in females but can result in intersex characteristics in boys and hypertension.

      Overall, congenital adrenal hyperplasia can have significant impacts on a person’s physical development and health, and early diagnosis and treatment are important for managing symptoms and preventing complications.

    • This question is part of the following fields:

      • Endocrine System
      34.1
      Seconds
  • Question 13 - What is the association between brown tumours of bone and a specific condition...

    Incorrect

    • What is the association between brown tumours of bone and a specific condition or disease?

      Your Answer: Hypoparathyroidism

      Correct Answer: Hyperparathyroidism

      Explanation:

      Brown tumors are bone tumors that develop due to excessive osteoclast activity, typically in cases of hyperparathyroidism. These tumors are composed of fibrous tissue, woven bone, and supporting blood vessels, but lack any matrix. They do not appear on x-rays due to their radiolucent nature. Osteoclasts consume the trabecular bone that osteoblasts produce, leading to a cycle of reparative bone deposition and resorption that can cause bone pain and involve the periosteum, resulting in an expansion beyond the typical shape of the bone. The tumors are called brown due to the deposition of haemosiderin at the site.

      Primary Hyperparathyroidism: Causes, Symptoms, and Treatment

      Primary hyperparathyroidism is a condition that is commonly seen in elderly females and is characterized by an unquenchable thirst and an inappropriately normal or raised parathyroid hormone level. It is usually caused by a solitary adenoma, hyperplasia, multiple adenoma, or carcinoma. While around 80% of patients are asymptomatic, the symptomatic features of primary hyperparathyroidism may include polydipsia, polyuria, depression, anorexia, nausea, constipation, peptic ulceration, pancreatitis, bone pain/fracture, renal stones, and hypertension.

      Primary hyperparathyroidism is associated with hypertension and multiple endocrine neoplasia, such as MEN I and II. To diagnose this condition, doctors may perform a technetium-MIBI subtraction scan or look for a characteristic X-ray finding of hyperparathyroidism called the pepperpot skull.

      The definitive management for primary hyperparathyroidism is total parathyroidectomy. However, conservative management may be offered if the calcium level is less than 0.25 mmol/L above the upper limit of normal, the patient is over 50 years old, and there is no evidence of end-organ damage. Patients who are not suitable for surgery may be treated with cinacalcet, a calcimimetic that mimics the action of calcium on tissues by allosteric activation of the calcium-sensing receptor.

      In summary, primary hyperparathyroidism is a condition that can cause various symptoms and is commonly seen in elderly females. It can be diagnosed through various tests and managed through surgery or medication.

    • This question is part of the following fields:

      • Endocrine System
      41.7
      Seconds
  • Question 14 - Which hormonal agent will enhance the secretion of water and electrolytes in pancreatic...

    Correct

    • Which hormonal agent will enhance the secretion of water and electrolytes in pancreatic juice?

      Your Answer: Secretin

      Explanation:

      The secretion of water and electrolytes is stimulated by secretin, while cholecystokinin stimulates the secretion of enzymes. Secretin generally leads to an increase in the volume of electrolytes and water in secretions, whereas cholecystokinin increases the enzyme content. Secretion volume is reduced by somatostatin, while aldosterone tends to preserve electrolytes.

      Pancreatic Secretions and their Regulation

      Pancreatic secretions are composed of enzymes and aqueous substances, with a pH of 8 and a volume of 1000-1500ml per day. The acinar cells secrete enzymes such as trypsinogen, procarboxylase, amylase, and elastase, while the ductal and centroacinar cells secrete sodium, bicarbonate, water, potassium, and chloride. The regulation of pancreatic secretions is mainly stimulated by CCK and ACh, which are released in response to digested material in the small bowel. Secretin, released by the S cells of the duodenum, also stimulates ductal cells and increases bicarbonate secretion.

      Trypsinogen is converted to active trypsin in the duodenum via enterokinase, and trypsin then activates the other inactive enzymes. The cephalic and gastric phases have less of an impact on regulating pancreatic secretions. Understanding the composition and regulation of pancreatic secretions is important in the diagnosis and treatment of pancreatic disorders.

    • This question is part of the following fields:

      • Endocrine System
      20.6
      Seconds
  • Question 15 - A 56-year-old man visits the breast clinic with a solitary lump in the...

    Correct

    • A 56-year-old man visits the breast clinic with a solitary lump in the upper-right quadrant of his right breast. He has a history of non-alcoholic liver disease, hypertension, and gout, and is currently taking Bisoprolol, Naproxen, and Allopurinol. The lump is smooth and firm. Based on his medical history and current medications, what is the probable cause of his breast lump?

      Your Answer: Liver disease

      Explanation:

      Understanding Gynaecomastia: Causes and Drug Triggers

      Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.

      Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.

      Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.

      In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.

    • This question is part of the following fields:

      • Endocrine System
      46.1
      Seconds
  • Question 16 - A 43-year-old obese man comes to your clinic for a diabetes check-up. Despite...

    Incorrect

    • A 43-year-old obese man comes to your clinic for a diabetes check-up. Despite being treated with metformin and gliclazide, his HbA1c remains elevated at 55 mmol/mol. He has previously found it difficult to follow dietary advice and lose weight. To enhance his diabetic management, you prescribe sitagliptin, a DPP-4 inhibitor. What is the mode of action of this novel medication?

      Your Answer: Stimulates the release of insulin from beta cells in the pancreas

      Correct Answer: Inhibits the breakdown of incretins

      Explanation:

      DPP-4 inhibitors, GLP-1 agonists, SGLT-2 inhibitors, thiazolidinediones, and sulfonylureas are all medications used to treat diabetes. DPP-4 inhibitors work by inhibiting the breakdown of incretins such as GLP-1 and GIP, which are released in response to food and help to lower blood glucose levels. GLP-1 agonists directly stimulate incretin receptors, while SGLT-2 inhibitors increase the urinary secretion of glucose. Thiazolidinediones stimulate intracellular signaling molecules responsible for glucose and lipid metabolism, and sulfonylureas stimulate beta cells to secrete more insulin. However, sulfonylureas may be less effective in long-standing diabetes as many beta cells may no longer function properly.

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      50.7
      Seconds
  • Question 17 - A 7-year-old boy is brought to the doctor by his father with a...

    Correct

    • A 7-year-old boy is brought to the doctor by his father with a complaint of frequent urination and excessive thirst. Upon conducting a fasting blood glucose test, the results are found to be abnormally high. The doctor suspects type 1 diabetes and initiates first-line injectable therapy.

      What characteristic of this medication should be noted?

      Your Answer: Decreases serum potassium

      Explanation:

      Insulin stimulates the Na+/K+ ATPase pump, which leads to a decrease in serum potassium levels. This is the primary treatment for type 1 diabetes, where the pancreas no longer produces insulin, causing high blood sugar levels. Injectable insulin allows glucose to enter cells, and insulin also increases cellular uptake of potassium while decreasing serum potassium levels. Insulin also stimulates muscle protein synthesis, reducing muscle protein loss. Insulin is secreted in response to hyperglycaemia, where high blood sugar levels trigger the beta cells of the pancreas to release insulin in healthy individuals.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      52.8
      Seconds
  • Question 18 - A 65-year-old man with a history of poorly-controlled type 2 diabetes presents to...

    Correct

    • A 65-year-old man with a history of poorly-controlled type 2 diabetes presents to the emergency department with altered mental status. His daughter reports that he has been complaining of increased thirst and urination over the past few days and has been skipping his insulin injections. On examination, he is dehydrated with a GCS of 3. His vital signs are recorded, and he is intubated and given ventilatory support. An arterial blood gas shows mild metabolic acidosis and his capillary blood glucose is undetectable. What is the next most appropriate step in his treatment?

      Your Answer: 0.9% sodium chloride

      Explanation:

      In the ABCDE approach, the patient should be promptly given sodium chloride to restore their intravascular volume and maintain circulatory function. However, insulin is not recommended as an initial treatment for HHS. This is because glucose in the intravascular space helps maintain circulating volume, which is crucial for dehydrated patients. Administering insulin before fluid resuscitation can cause a reduction in intravascular volume and worsen hypotension. It may also worsen pre-existing hypokalaemia by driving potassium into the intracellular space. Potassium chloride should be administered only after fluid resuscitation and guided by potassium levels obtained from an arterial blood gas. Thiamine supplementation is not indicated at the moment as urgent resuscitation should be the priority.

      Hyperosmolar hyperglycaemic state (HHS) is a serious medical emergency that can be challenging to manage and has a high mortality rate of up to 20%. It is typically seen in elderly patients with type 2 diabetes mellitus (T2DM) and is caused by hyperglycaemia leading to osmotic diuresis, severe dehydration, and electrolyte imbalances. HHS develops gradually over several days, resulting in extreme dehydration and metabolic disturbances. Symptoms include polyuria, polydipsia, lethargy, nausea, vomiting, altered consciousness, and focal neurological deficits. Diagnosis is based on hypovolaemia, marked hyperglycaemia, significantly raised serum osmolarity, and no significant hyperketonaemia or acidosis.

      Management of HHS involves fluid replacement with IV 0.9% sodium chloride solution at a rate of 0.5-1 L/hour, depending on clinical assessment. Potassium levels should be monitored and added to fluids as needed. Insulin should not be given unless blood glucose stops falling while giving IV fluids. Patients are at risk of thrombosis due to hyperviscosity, so venous thromboembolism prophylaxis is recommended. Complications of HHS include vascular complications such as myocardial infarction and stroke.

    • This question is part of the following fields:

      • Endocrine System
      27.4
      Seconds
  • Question 19 - A 28-year-old female patient presents to her GP with concerns about the appearance...

    Incorrect

    • A 28-year-old female patient presents to her GP with concerns about the appearance of lumps in her lower abdomen. She has been diagnosed with type 1 diabetes and has been using insulin for more than a decade. The lumps have developed in the areas where she administers her insulin injections.

      What is the probable cause of the lumps?

      Your Answer: Lipoma

      Correct Answer: Lipodystrophy

      Explanation:

      Small subcutaneous lumps at injection sites, known as lipodystrophy, can be caused by insulin.

      The type and location of the lump suggest that lipodystrophy is the most probable cause.

      Deposits of insulin and glucose are not responsible for the formation of these lumps.

      While a lipoma could also cause similar lumps, it is less likely than lipodystrophy, which is a known complication of insulin injections, especially at the injection site. These lumps can occur in multiple locations.

      Insulin therapy can have side-effects that patients should be aware of. One of the most common side-effects is hypoglycaemia, which can cause sweating, anxiety, blurred vision, confusion, and aggression. Patients should be taught to recognize these symptoms and take 10-20g of a short-acting carbohydrate, such as a glass of Lucozade or non-diet drink, three or more glucose tablets, or glucose gel. It is also important for every person treated with insulin to have a glucagon kit for emergencies where the patient is not able to orally ingest a short-acting carbohydrate. Patients who have frequent hypoglycaemic episodes may develop reduced awareness, and beta-blockers can further reduce hypoglycaemic awareness.

      Another potential side-effect of insulin therapy is lipodystrophy, which typically presents as atrophy or lumps of subcutaneous fat. This can be prevented by rotating the injection site, as using the same site repeatedly can cause erratic insulin absorption. It is important for patients to be aware of these potential side-effects and to discuss any concerns with their healthcare provider. By monitoring their blood sugar levels and following their treatment plan, patients can manage the risks associated with insulin therapy and maintain good health.

    • This question is part of the following fields:

      • Endocrine System
      26.4
      Seconds
  • Question 20 - A 55-year-old man with a smoking history of over 30 years presented to...

    Incorrect

    • A 55-year-old man with a smoking history of over 30 years presented to the emergency department with acute confusion and disorientation. He was unable to recognize his family members and relatives. He had been experiencing unexplained weight loss, loss of appetite, and occasional episodes of haemoptysis for the past few months. Urgent blood tests were performed, revealing abnormal levels of electrolytes and renal function.

      Based on the likely diagnosis, what is the mechanism of action of the hormone that is being secreted excessively in this case?

      Your Answer: Increased portal blood flow

      Correct Answer: Insertion of aquaporin-2 channels

      Explanation:

      Antidiuretic hormone (ADH) plays a crucial role in promoting water reabsorption by inserting aquaporin-2 channels in principal cells. In small-cell lung cancer patients, decreased serum sodium levels are commonly caused by the paraneoplastic syndrome of inadequate ADH secretion (SIADH) or ADH released during the initial lysis of tumour cells after chemotherapy. It is important to note that arteriolar vasodilation, promoting water excretion, decreased urine osmolarity, and increased portal blood flow are not functions of ADH.

      Understanding Antidiuretic Hormone (ADH)

      Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.

      ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.

      Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.

      Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.

    • This question is part of the following fields:

      • Endocrine System
      106.3
      Seconds
  • Question 21 - Which one of the following does not trigger insulin secretion? ...

    Correct

    • Which one of the following does not trigger insulin secretion?

      Your Answer: Atenolol

      Explanation:

      The release of insulin is prevented by beta blockers.

      Factors that trigger insulin release include glucose, amino acids, vagal cholinergic stimulation, secretin/gastrin/CCK, fatty acids, and beta adrenergic drugs.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      12.8
      Seconds
  • Question 22 - A 27-year-old man who has been morbidly obese for the past six years...

    Incorrect

    • A 27-year-old man who has been morbidly obese for the past six years is being evaluated at the surgical bariatric clinic. Which hormone release would lead to an increase in appetite in this patient?

      Your Answer: Adiponectin

      Correct Answer: Ghrelin

      Explanation:

      Leptin is a hormone that reduces appetite, while ghrelin is a hormone that stimulates appetite. Although thyroxine can increase appetite, it is not consistent with the symptoms being described.

      The Physiology of Obesity: Leptin and Ghrelin

      Leptin is a hormone produced by adipose tissue that plays a crucial role in regulating body weight. It acts on the hypothalamus, specifically on the satiety centers, to decrease appetite and induce feelings of fullness. In cases of obesity, where there is an excess of adipose tissue, leptin levels are high. Leptin also stimulates the release of melanocyte-stimulating hormone (MSH) and corticotrophin-releasing hormone (CRH), which further contribute to the regulation of appetite. On the other hand, low levels of leptin stimulate the release of neuropeptide Y (NPY), which increases appetite.

      Ghrelin, on the other hand, is a hormone that stimulates hunger. It is mainly produced by the P/D1 cells lining the fundus of the stomach and epsilon cells of the pancreas. Ghrelin levels increase before meals, signaling the body to prepare for food intake, and decrease after meals, indicating that the body has received enough nutrients.

      In summary, the balance between leptin and ghrelin plays a crucial role in regulating appetite and body weight. In cases of obesity, there is an imbalance in this system, with high levels of leptin and potentially disrupted ghrelin signaling, leading to increased appetite and weight gain.

    • This question is part of the following fields:

      • Endocrine System
      32.7
      Seconds
  • Question 23 - A 23-year-old woman presents with clinical manifestations of hyperthyroidism and is diagnosed with...

    Correct

    • A 23-year-old woman presents with clinical manifestations of hyperthyroidism and is diagnosed with Graves disease. What is the most appropriate explanation for the pathophysiology of this condition?

      Your Answer: Formation of IgG antibodies to the TSH receptors on the thyroid gland

      Explanation:

      Graves disease typically results in the formation of IgG antibodies that target the TSH receptors located on the thyroid gland, leading to a significant decrease in TSH levels.

      Thyroid Hormones and LATS in Graves Disease

      Thyroid hormones are produced by the thyroid gland and include triiodothyronine (T3) and thyroxine (T4), with T3 being the major hormone active in target cells. The synthesis and secretion of these hormones involves the active concentration of iodide by the thyroid, which is then oxidized and iodinated by peroxidase in the follicular cells. This process is stimulated by thyroid-stimulating hormone (TSH), which is released by the pituitary gland. The normal thyroid has approximately three months’ worth of reserves of thyroid hormones.

      In Graves disease, patients develop IgG antibodies to the TSH receptors on the thyroid gland. This results in chronic and long-term stimulation of the gland with the release of thyroid hormones. As a result, individuals with Graves disease typically have raised thyroid hormones and low TSH levels. It is important to check for thyroid receptor autoantibodies in individuals presenting with hyperthyroidism, as they are present in up to 85% of cases. This condition is known as LATS (long-acting thyroid stimulator) and can lead to a range of symptoms and complications if left untreated.

    • This question is part of the following fields:

      • Endocrine System
      37
      Seconds
  • Question 24 - A 57-year-old man with a history of type 2 diabetes visits his GP...

    Incorrect

    • A 57-year-old man with a history of type 2 diabetes visits his GP for a check-up and is prescribed a new medication, a glucagon-like peptide (GLP-1) analogue. Where is this hormone typically secreted from in the body?

      Your Answer: Liver

      Correct Answer: Ileum

      Explanation:

      When comparing the effects of oral glucose and IV glucose on insulin release, it was found that oral glucose resulted in a higher insulin release. This suggests that the response of the gut plays a role in insulin release. Incretins are a group of hormones produced in the gastrointestinal tract that stimulate insulin release from β-cells, even before blood glucose levels become elevated.

      There are two main types of incretins: gastric inhibitory peptide (GIP), which is released from the duodenum and is glucose-dependent, and glucagon-like peptide (GLP-1), which is produced in the distal ileum.

      The glucagon gene is processed differently in the brain and intestines than in the pancreas. In the brain and intestines, GLP1&2 are released, which function as appetite suppressants. In the pancreas, they increase insulin release and β-cell proliferation.

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      39.4
      Seconds
  • Question 25 - A 15-year-old girl comes to the Emergency Department complaining of sudden onset pain...

    Incorrect

    • A 15-year-old girl comes to the Emergency Department complaining of sudden onset pain in the right iliac fossa, along with nausea, vomiting, and fever. She has no significant medical or surgical history. During the examination, you observe rebound tenderness at McBurney's point, guarding, and a positive Rovsing's sign. You suspect appendicitis and decide to take her for surgery.

      What is the most probable physiological response in this situation?

      Your Answer: Reduced cortisol secretion

      Correct Answer: Increased glucagon secretion

      Explanation:

      Glucagon secretion increases in response to physiological stresses such as inflammation of the appendix and surgery. This is because glucagon helps to increase glucose availability in the body through glycogenolysis and gluconeogenesis. During times of stress, the body’s response is to increase glucose and oxygen availability, increased sympathetic activity, and redirect energy towards more crucial functions such as increasing blood pressure and heart rate.

      However, insulin and glucagon have opposite effects on glucose regulation. Therefore, any factor that stimulates glucagon secretion must decrease insulin levels. This is because insulin reduces glucose availability in the body, which weakens the body’s ability to cope with stress.

      The hypothalamic-pituitary-adrenal axis is also activated during times of stress, leading to the production of cortisol. Cortisol plays an important role in releasing glucose from fat storage, which is necessary for the body’s stress response. Therefore, the level of ACTH, which stimulates cortisol production, would increase rather than decrease.

      Cortisol and glucocorticoids also inhibit thyroid hormone secretion. As a result, the level of T4, which is a modulator of metabolic rate, would decrease during times of stress. This is because the body needs to divert energy away from metabolism and towards more acute functions during times of stress.

      Glucagon: The Hormonal Antagonist to Insulin

      Glucagon is a hormone that is released from the alpha cells of the Islets of Langerhans in the pancreas. It has the opposite metabolic effects to insulin, resulting in increased plasma glucose levels. Glucagon functions by promoting glycogenolysis, gluconeogenesis, and lipolysis. It is regulated by various factors such as hypoglycemia, stresses like infections, burns, surgery, increased catecholamines, and sympathetic nervous system stimulation, as well as increased plasma amino acids. On the other hand, glucagon secretion decreases with hyperglycemia, insulin, somatostatin, and increased free fatty acids and keto acids.

      Glucagon is used to rapidly reverse the effects of hypoglycemia in diabetics. It is an essential hormone that plays a crucial role in maintaining glucose homeostasis in the body. Its antagonistic relationship with insulin helps to regulate blood glucose levels and prevent hyperglycemia. Understanding the regulation and function of glucagon is crucial in the management of diabetes and other metabolic disorders.

    • This question is part of the following fields:

      • Endocrine System
      49.6
      Seconds
  • Question 26 - A father is concerned about his 14-month-old child who has been having up...

    Incorrect

    • A father is concerned about his 14-month-old child who has been having up to 10 wet nappies a day. He recalls that his cousin had a kidney condition and wonders if it could be affecting his child. After being referred to a paediatrician, the doctor mentions the possibility of Bartter's syndrome.

      What is the root cause of Bartter's syndrome?

      Your Answer: Mutated ADH receptors in the collecting duct

      Correct Answer: Mutated NKCC2 channel in the ascending loop of Henle

      Explanation:

      The cause of Bartter’s syndrome is a faulty NKCC2 channel located in the ascending loop of Henle.

      Polydipsia, polyuria, and dehydration are common symptoms of Bartter’s syndrome, which is an inherited disorder resulting from mutated NKCC2 channels.

      Gitelman syndrome is a related condition caused by a mutated NCl symporter.

      Nephrogenic and central diabetes insipidus are characterized by mutated ADH receptors and a lack of ADH production, respectively.

      Bartter’s syndrome is a genetic disorder that causes severe hypokalaemia due to a defect in the absorption of chloride at the Na+ K+ 2Cl- cotransporter in the ascending loop of Henle. This disorder is usually inherited in an autosomal recessive manner. Unlike other endocrine causes of hypokalaemia, such as Conn’s, Cushing’s, and Liddle’s syndrome, Bartter’s syndrome is associated with normotension. Loop diuretics work by inhibiting NKCC2, which is similar to the effects of Bartter’s syndrome. The symptoms of Bartter’s syndrome usually appear in childhood and include failure to thrive, polyuria, polydipsia, hypokalaemia, normotension, and weakness.

    • This question is part of the following fields:

      • Endocrine System
      28
      Seconds
  • Question 27 - A 29-year-old woman presents to her GP complaining of a tingling sensation around...

    Correct

    • A 29-year-old woman presents to her GP complaining of a tingling sensation around her mouth and intermittent cramps in her legs. Trousseau's sign is positive. Blood results are shown below.

      Urea 4.0 mmol/L (2.0 - 7.0)
      Creatinine 80 µmol/L (55 - 120)
      Calcium 1.95 mmol/L (2.1-2.6)
      Phosphate 1.2 mmol/L (0.8-1.4)
      Vitamin D 150 nmol/L (50-250)
      Parathyroid hormone (PTH) 1.7 pmol/L (1.6-8.5)

      Derangement of what substance may be responsible for this patient's presentation?

      Your Answer: Magnesium

      Explanation:

      The correct answer is magnesium. Adequate levels of magnesium are necessary for the proper functioning of parathyroid hormone, which can lead to hypocalcemia if magnesium levels are low. Magnesium is also essential for PTH secretion and sensitivity. Amylase, chloride, and potassium are not associated with hypocalcemia. While severe pancreatitis may cause hypocalcemia, it is typically accompanied by other symptoms such as vomiting and epigastric pain. Chloride is not linked to hypocalcemia, and hypomagnesemia can cause hypokalemia, which can lead to muscle weakness, tremors, and arrhythmias, as well as ECG changes such as flattened T waves, prolonged PR and QT intervals, and U waves.

      Understanding Parathyroid Hormone and Its Effects

      Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.

      The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.

      Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.

    • This question is part of the following fields:

      • Endocrine System
      59
      Seconds
  • Question 28 - Mr. Smith is a 54-year-old man who visits your GP clinic for his...

    Correct

    • Mr. Smith is a 54-year-old man who visits your GP clinic for his annual review of his type 2 diabetes. He informs you that he has been managing it through diet for a few years, but lately, he has gained some weight. His latest HbA1C reading is 9.8% (normal range 3.7-5.0%). You suggest continuous dietary advice and prescribe metformin to regulate his blood glucose levels. Which of the following statements about metformin is accurate?

      Your Answer: It decreases hepatic gluconeogenesis

      Explanation:

      While some diabetic treatments such as insulin and sulfonylureas can lead to weight gain, metformin is not associated with this side effect. Metformin functions by enhancing insulin sensitivity and reducing hepatic gluconeogenesis, without directly impacting insulin secretion from pancreatic beta cells, thus it does not cause significant hypoglycemia. Ghrelin, a hormone that controls appetite, is not influenced by any diabetic medications.

      Understanding Diabetes Mellitus: A Basic Overview

      Diabetes mellitus is a chronic condition characterized by abnormally raised levels of blood glucose. It is one of the most common conditions encountered in clinical practice and represents a significant burden on the health systems of the developed world. The management of diabetes mellitus is crucial as untreated type 1 diabetes would usually result in death. Poorly treated type 1 diabetes mellitus can still result in significant morbidity and mortality. The main focus of diabetes management now is reducing the incidence of macrovascular and microvascular complications.

      There are different types of diabetes mellitus, including type 1 diabetes mellitus, type 2 diabetes mellitus, prediabetes, gestational diabetes, maturity onset diabetes of the young, latent autoimmune diabetes of adults, and other types. The presentation of diabetes mellitus depends on the type, with type 1 diabetes mellitus often presenting with weight loss, polydipsia, polyuria, and diabetic ketoacidosis. On the other hand, type 2 diabetes mellitus is often picked up incidentally on routine blood tests and presents with polydipsia and polyuria.

      There are four main ways to check blood glucose, including a finger-prick bedside glucose monitor, a one-off blood glucose, a HbA1c, and a glucose tolerance test. The diagnostic criteria are determined by WHO, with a fasting glucose greater than or equal to 7.0 mmol/l and random glucose greater than or equal to 11.1 mmol/l being diagnostic of diabetes mellitus. Management of diabetes mellitus involves drug therapy to normalize blood glucose levels, monitoring for and treating any complications related to diabetes, and modifying any other risk factors for other conditions such as cardiovascular disease. The first-line drug for the vast majority of patients with type 2 diabetes mellitus is metformin, with second-line drugs including sulfonylureas, gliptins, and pioglitazone. Insulin is used if oral medication is not controlling the blood glucose to a sufficient degree.

    • This question is part of the following fields:

      • Endocrine System
      46.2
      Seconds
  • Question 29 - A 60-year-old patient visits their doctor complaining of dehydration caused by vomiting and...

    Incorrect

    • A 60-year-old patient visits their doctor complaining of dehydration caused by vomiting and diarrhoea. The kidneys detect reduced renal perfusion, leading to activation of the renin-angiotensin-aldosterone system. What is the specific part of the adrenal gland required for this system?

      Your Answer: Zona fasciculata

      Correct Answer: Zona glomerulosa

      Explanation:

      Aldosterone is produced in the zona glomerulosa of the adrenal gland.

      Renin is released by juxtaglomerular cells located in the nephron.

      ACE is produced by the pulmonary endothelium in the lungs.

      The adrenal gland is composed of the zona glomerulosa, fasciculata, and reticularis.

      Glucocorticoids are produced in the zona fasciculata.

      Adrenal Physiology: Medulla and Cortex

      The adrenal gland is composed of two main parts: the medulla and the cortex. The medulla is responsible for secreting the catecholamines noradrenaline and adrenaline, which are released in response to sympathetic nervous system stimulation. The chromaffin cells of the medulla are innervated by the splanchnic nerves, and the release of these hormones is triggered by the secretion of acetylcholine from preganglionic sympathetic fibers. Phaeochromocytomas, which are tumors derived from chromaffin cells, can cause excessive secretion of both adrenaline and noradrenaline.

      The adrenal cortex is divided into three distinct zones: the zona glomerulosa, zona fasciculata, and zona reticularis. Each zone is responsible for secreting different hormones. The outer zone, zona glomerulosa, secretes aldosterone, which regulates electrolyte balance and blood pressure. The middle zone, zona fasciculata, secretes glucocorticoids, which are involved in the regulation of metabolism, immune function, and stress response. The inner zone, zona reticularis, secretes androgens, which are involved in the development and maintenance of male sex characteristics.

      Most of the hormones secreted by the adrenal cortex, including glucocorticoids and aldosterone, are bound to plasma proteins in the circulation. Glucocorticoids are inactivated and excreted by the liver. Understanding the physiology of the adrenal gland is important for the diagnosis and treatment of various endocrine disorders.

    • This question is part of the following fields:

      • Endocrine System
      56.2
      Seconds
  • Question 30 - Release of somatostatin from the pancreas will lead to what outcome? ...

    Incorrect

    • Release of somatostatin from the pancreas will lead to what outcome?

      Your Answer: Increased synthesis of growth hormone

      Correct Answer: Decrease in pancreatic exocrine secretions

      Explanation:

      Octreotide is utilized to treat high output pancreatic fistulae by reducing exocrine pancreatic secretions, although parenteral feeding is the most effective treatment. It is also used to treat variceal bleeding and acromegaly.

      Octreotide inhibits the release of growth hormone and insulin from the pancreas. Additionally, somatostatin, which is released by the hypothalamus, triggers a negative feedback response on growth hormone.

      Somatostatin: The Inhibitor Hormone

      Somatostatin, also known as growth hormone inhibiting hormone (GHIH), is a hormone produced by delta cells found in the pancreas, pylorus, and duodenum. Its main function is to inhibit the secretion of growth hormone, insulin, and glucagon. It also decreases acid and pepsin secretion, as well as pancreatic enzyme secretion. Additionally, somatostatin inhibits the trophic effects of gastrin and stimulates gastric mucous production.

      Somatostatin analogs are commonly used in the management of acromegaly, a condition characterized by excessive growth hormone secretion. These analogs work by inhibiting growth hormone secretion, thereby reducing the symptoms associated with acromegaly.

      The secretion of somatostatin is regulated by various factors. Its secretion increases in response to fat, bile salts, and glucose in the intestinal lumen, as well as glucagon. On the other hand, insulin decreases the secretion of somatostatin.

      In summary, somatostatin plays a crucial role in regulating the secretion of various hormones and enzymes in the body. Its inhibitory effects on growth hormone, insulin, and glucagon make it an important hormone in the management of certain medical conditions.

    • This question is part of the following fields:

      • Endocrine System
      10.4
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Endocrine System (13/30) 43%
Passmed