00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - What is the term used to describe the likelihood of correctly rejecting the...

    Correct

    • What is the term used to describe the likelihood of correctly rejecting the null hypothesis when it is actually false?

      Your Answer: Power of the test

      Explanation:

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      14.9
      Seconds
  • Question 2 - What is the appropriate interpretation of a standardised mortality ratio of 120% (95%...

    Correct

    • What is the appropriate interpretation of a standardised mortality ratio of 120% (95% CI 90-130) for a cohort of patients diagnosed with antisocial personality disorder?

      Your Answer: The result is not statistically significant

      Explanation:

      The statistical significance of the result is questionable as the confidence interval encompasses values below 100. This implies that there is a possibility that the actual value could be lower than 100, which contradicts the observed value of 120 indicating a rise in mortality in this population.

      Calculation of Standardised Mortality Ratio (SMR)

      To calculate the SMR, age and sex-specific death rates in the standard population are obtained. An estimate for the number of people in each category for both the standard and study populations is needed. The number of expected deaths in each age-sex group of the study population is calculated by multiplying the age-sex-specific rates in the standard population by the number of people in each category of the study population. The sum of all age- and sex-specific expected deaths gives the expected number of deaths for the whole study population. The observed number of deaths is then divided by the expected number of deaths to obtain the SMR.

      The SMR can be standardised using the direct of indirect method. The direct method is used when the age-sex-specific rates for the study population and the age-sex-structure of the standard population are known. The indirect method is used when the age-specific rates for the study population are unknown of not available. This method uses the observed number of deaths in the study population and compares it to the number of deaths that would be expected if the age distribution was the same as that of the standard population.

      The SMR can be interpreted as follows: an SMR less than 1.0 indicates fewer than expected deaths in the study population, an SMR of 1.0 indicates the number of observed deaths equals the number of expected deaths in the study population, and an SMR greater than 1.0 indicates more than expected deaths in the study population (excess deaths). It is sometimes expressed after multiplying by 100.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      12.1
      Seconds
  • Question 3 - What is the typical measure of outcome in a case-control study investigating the...

    Correct

    • What is the typical measure of outcome in a case-control study investigating the potential association between autism and a recently developed varicella vaccine?

      Your Answer: Odds ratio

      Explanation:

      The odds ratio is used in case-control studies to measure the association between exposure and outcome, while the relative risk is used in cohort studies to measure the risk of developing an outcome in the exposed group compared to the unexposed group. To convert the odds ratio to a relative risk, one can use the formula: relative risk = odds ratio / (1 – incidence in the unexposed group x odds ratio).

      Types of Primary Research Studies and Their Advantages and Disadvantages

      Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.

      Type of Question Best Type of Study

      Therapy Randomized controlled trial (RCT), cohort, case control, case series
      Diagnosis Cohort studies with comparison to gold standard test
      Prognosis Cohort studies, case control, case series
      Etiology/Harm RCT, cohort studies, case control, case series
      Prevention RCT, cohort studies, case control, case series
      Cost Economic analysis

      Study Type Advantages Disadvantages

      Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
      Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
      Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
      Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
      Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)

      In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      8.3
      Seconds
  • Question 4 - A study examines the likelihood of stroke in middle-aged patients prescribed antipsychotic medication....

    Incorrect

    • A study examines the likelihood of stroke in middle-aged patients prescribed antipsychotic medication. Group A receives standard treatment, and after 5 years, 20 out of 100 patients experience a stroke. Group B receives standard treatment plus a new drug intended to decrease the risk of stroke. After 5 years, 10 out of 60 patients have a stroke. What are the chances of having a stroke while taking the new drug compared to the chances of having a stroke in those receiving standard treatment?

      Your Answer: 0.83

      Correct Answer: 0.8

      Explanation:

      If the odds ratio is less than 1, it means that the likelihood of experiencing a stroke is lower for individuals who are taking the new drug compared to those who are receiving the usual treatment.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      7962.3
      Seconds
  • Question 5 - What type of evidence is considered the most robust and reliable? ...

    Correct

    • What type of evidence is considered the most robust and reliable?

      Your Answer: Meta-analysis

      Explanation:

      Levels and Grades of Evidence in Evidence-Based Medicine

      To evaluate the quality of evidence on a subject of question, levels of grades are used. The traditional hierarchy approach places systematic reviews of randomized control trials at the top and case-series/report at the bottom. However, this approach is overly simplistic as certain research questions cannot be answered using RCTs. To address this, the Oxford Centre for Evidence-Based Medicine introduced their 2011 Levels of Evidence system, which separates the type of study questions and gives a hierarchy for each.

      The grading approach to be aware of is the GRADE system, which classifies the quality of evidence as high, moderate, low, of very low. The process begins by formulating a study question and identifying specific outcomes. Outcomes are then graded as critical of important. The evidence is then gathered and criteria are used to grade the evidence, with the type of evidence being a significant factor. Evidence can be promoted of downgraded based on certain criteria, such as limitations to study quality, inconsistency, uncertainty about directness, imprecise of sparse data, and reporting bias. The GRADE system allows for the promotion of observational studies to high-quality evidence under the right circumstances.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      5.1
      Seconds
  • Question 6 - A pediatrician becomes interested in a newly identified and rare pediatric syndrome. They...

    Correct

    • A pediatrician becomes interested in a newly identified and rare pediatric syndrome. They are interested to investigate if previous exposure to herpes viruses may put children at increased risk. Which of the following study designs would be most appropriate?

      Your Answer: Case-control study

      Explanation:

      Case-control studies are useful in studying rare diseases as it would be impractical to follow a large group of people for a long period of time to accrue enough incident cases. For instance, if a disease occurs very infrequently, say 1 in 1,000,000 per year, it would require following 1,000,000 people for ten years of 1000 people for 1000 years to accrue ten total cases. However, this is not feasible. Therefore, a case-control study provides a more practical approach to studying rare diseases.

      Types of Primary Research Studies and Their Advantages and Disadvantages

      Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.

      Type of Question Best Type of Study

      Therapy Randomized controlled trial (RCT), cohort, case control, case series
      Diagnosis Cohort studies with comparison to gold standard test
      Prognosis Cohort studies, case control, case series
      Etiology/Harm RCT, cohort studies, case control, case series
      Prevention RCT, cohort studies, case control, case series
      Cost Economic analysis

      Study Type Advantages Disadvantages

      Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
      Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
      Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
      Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
      Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)

      In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      9.8
      Seconds
  • Question 7 - The average survival time for people diagnosed with Alzheimer's at age 65 is...

    Correct

    • The average survival time for people diagnosed with Alzheimer's at age 65 is reported to be 8 years. A new pilot scheme consisting of early screening and the provision of high dose fish oils is offered to a designated subgroup of the population. The screening test enables the early detection of Alzheimer's before symptoms arise. A study is conducted on the scheme and reports an increase in survival time and attributes this to the use of fish oils.

      What type of bias could be responsible for the observed increase in survival time?

      Your Answer: Lead Time bias

      Explanation:

      It is possible that the longer survival time is a result of detecting the condition earlier rather than an actual extension of life.

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      11.5
      Seconds
  • Question 8 - What is a characteristic of a type II error? ...

    Correct

    • What is a characteristic of a type II error?

      Your Answer: Occurs when the null hypothesis is incorrectly accepted

      Explanation:

      Hypothesis testing involves the possibility of two types of errors, namely type I and type II errors. A type I error occurs when the null hypothesis is wrongly rejected of the alternative hypothesis is incorrectly accepted. This error is also referred to as an alpha error, error of the first kind, of a false positive. On the other hand, a type II error occurs when the null hypothesis is wrongly accepted. This error is also known as the beta error, error of the second kind, of the false negative.

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      6.8
      Seconds
  • Question 9 - What is the primary benefit of conducting non-inferiority trials in the evaluation of...

    Correct

    • What is the primary benefit of conducting non-inferiority trials in the evaluation of a new medication?

      Your Answer: Small sample size is required

      Explanation:

      Study Designs for New Drugs: Options and Considerations

      When launching a new drug, there are various study design options available. One common approach is a placebo-controlled trial, which can provide strong evidence but may be deemed unethical if established treatments are available. Additionally, it does not allow for a comparison with standard treatments. Therefore, statisticians must decide whether the trial aims to demonstrate superiority, equivalence, of non-inferiority to an existing treatment.

      Superiority trials may seem like the obvious choice, but they require a large sample size to show a significant benefit over an existing treatment. Equivalence trials define an equivalence margin on a specified outcome, and if the confidence interval of the difference between the two drugs falls within this margin, the drugs are assumed to have a similar effect. Non-inferiority trials are similar to equivalence trials, but only the lower confidence interval needs to fall within the equivalence margin. These trials require smaller sample sizes, and once a drug has been shown to be non-inferior, larger studies may be conducted to demonstrate superiority.

      It is important to note that drug companies may not necessarily aim to show superiority over an existing product. If they can demonstrate that their product is equivalent of even non-inferior, they may compete on price of convenience. Overall, the choice of study design depends on various factors, including ethical considerations, sample size, and the desired outcome.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      5.2
      Seconds
  • Question 10 - Which data type does age in years belong to? ...

    Correct

    • Which data type does age in years belong to?

      Your Answer: Ratio

      Explanation:

      Age is a type of measurement that follows a ratio scale, which means that the values can be compared as multiples of each other. For instance, if someone is 20 years old, they are twice as old as someone who is 10 years old.

      Scales of Measurement in Statistics

      In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.

      Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.

      Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.

      Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      6.9
      Seconds
  • Question 11 - Which of the following checklists would be most helpful in preparing the manuscript...

    Incorrect

    • Which of the following checklists would be most helpful in preparing the manuscript of a survey analyzing the opinions of college students on mental health, as evaluated through a set of questionnaires?

      Your Answer: QUOROM

      Correct Answer: COREQ

      Explanation:

      There are several reporting guidelines available for different types of research studies. The COREQ checklist, consisting of 32 items, is designed for reporting qualitative research that involves interviews and focus groups. The CONSORT Statement provides a 25-item checklist to aid in reporting randomized controlled trials (RCTs). For reporting the pooled findings of multiple studies, the QUOROM and PRISMA guidelines are useful. The STARD statement includes a checklist of 30 items and is designed for reporting diagnostic accuracy studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      8.4
      Seconds
  • Question 12 - Which of the following is an example of selection bias? ...

    Correct

    • Which of the following is an example of selection bias?

      Your Answer: Berkson's bias

      Explanation:

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      13.3
      Seconds
  • Question 13 - For which of the following research areas are qualitative methods least effective? ...

    Incorrect

    • For which of the following research areas are qualitative methods least effective?

      Your Answer: Investigating anomalous results

      Correct Answer: Treatment evaluation

      Explanation:

      While quantitative methods are typically used for treatment evaluation, qualitative studies can also provide valuable insights by interpreting, qualifying, of illuminating findings. This is especially beneficial when examining unexpected results, as they can help to test the primary hypothesis.

      Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      7.4
      Seconds
  • Question 14 - What standardized mortality ratio indicates a lower mortality rate in a sample group...

    Correct

    • What standardized mortality ratio indicates a lower mortality rate in a sample group compared to a reference group?

      Your Answer: 0.5

      Explanation:

      A negative SMR is not possible. An SMR less than 1.0 suggests that there were fewer deaths than expected in the study population, while an SMR of 1.0 indicates that the observed and expected deaths were equal. An SMR greater than 1.0 indicates that there were excess deaths in the study population.

      Calculation of Standardised Mortality Ratio (SMR)

      To calculate the SMR, age and sex-specific death rates in the standard population are obtained. An estimate for the number of people in each category for both the standard and study populations is needed. The number of expected deaths in each age-sex group of the study population is calculated by multiplying the age-sex-specific rates in the standard population by the number of people in each category of the study population. The sum of all age- and sex-specific expected deaths gives the expected number of deaths for the whole study population. The observed number of deaths is then divided by the expected number of deaths to obtain the SMR.

      The SMR can be standardised using the direct of indirect method. The direct method is used when the age-sex-specific rates for the study population and the age-sex-structure of the standard population are known. The indirect method is used when the age-specific rates for the study population are unknown of not available. This method uses the observed number of deaths in the study population and compares it to the number of deaths that would be expected if the age distribution was the same as that of the standard population.

      The SMR can be interpreted as follows: an SMR less than 1.0 indicates fewer than expected deaths in the study population, an SMR of 1.0 indicates the number of observed deaths equals the number of expected deaths in the study population, and an SMR greater than 1.0 indicates more than expected deaths in the study population (excess deaths). It is sometimes expressed after multiplying by 100.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      3.3
      Seconds
  • Question 15 - What term is used to describe an association between two variables that is...

    Correct

    • What term is used to describe an association between two variables that is influenced by a confounding factor?

      Your Answer: Indirect

      Explanation:

      Stats Association and Causation

      When two variables are found to be more commonly present together, they are said to be associated. However, this association can be of three types: spurious, indirect, of direct. Spurious association is one that has arisen by chance and is not real, while indirect association is due to the presence of another factor, known as a confounding variable. Direct association, on the other hand, is a true association not linked by a third variable.

      Once an association has been established, the next question is whether it is causal. To determine causation, the Bradford Hill Causal Criteria are used. These criteria include strength, temporality, specificity, coherence, and consistency. The stronger the association, the more likely it is to be truly causal. Temporality refers to whether the exposure precedes the outcome. Specificity asks whether the suspected cause is associated with a specific outcome of disease. Coherence refers to whether the association fits with other biological knowledge. Finally, consistency asks whether the same association is found in many studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      5.9
      Seconds
  • Question 16 - What is the appropriate denominator for calculating the incidence rate? ...

    Correct

    • What is the appropriate denominator for calculating the incidence rate?

      Your Answer: The total person time at risk during a specified time period

      Explanation:

      Measures of Disease Frequency: Incidence and Prevalence

      Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.

      Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.

      It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.

      Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      7.3
      Seconds
  • Question 17 - Which statement accurately describes box and whisker plots? ...

    Correct

    • Which statement accurately describes box and whisker plots?

      Your Answer: Each whisker represents approximately 25% of the data

      Explanation:

      Box and whisker plots are a useful tool for displaying information about the range, median, and quartiles of a data set. The whiskers only contain values within 1.5 times the interquartile range (IQR), and any values outside of this range are considered outliers and displayed as dots. The IQR is the difference between the 3rd and 1st quartiles, which divide the data set into quarters. Quartiles can also be used to determine the percentage of observations that fall below a certain value. However, quartiles and ranges have limitations because they do not take into account every score in a data set. To get a more representative idea of spread, measures such as variance and standard deviation are needed. Box plots can also provide information about the shape of a data set, such as whether it is skewed or symmetric. Notched boxes on the plot represent the confidence intervals of the median values.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      10.7
      Seconds
  • Question 18 - What is the average age of the 7 women who participated in the...

    Incorrect

    • What is the average age of the 7 women who participated in the qualitative study on self-harm among females, with ages of 18, 22, 40, 17, 23, 18, and 44?

      Your Answer: 26

      Correct Answer: 18

      Explanation:

      Measures of Central Tendency

      Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.

      The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.

      The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.

      In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      54.5
      Seconds
  • Question 19 - What is a true statement about correlation? ...

    Correct

    • What is a true statement about correlation?

      Your Answer: Complete absence of correlation is expressed by a value of 0

      Explanation:

      Stats: Correlation and Regression

      Correlation and regression are related but not interchangeable terms. Correlation is used to test for association between variables, while regression is used to predict values of dependent variables from independent variables. Correlation can be linear, non-linear, of non-existent, and can be strong, moderate, of weak. The strength of a linear relationship is measured by the correlation coefficient, which can be positive of negative and ranges from very weak to very strong. However, the interpretation of a correlation coefficient depends on the context and purposes. Correlation can suggest association but cannot prove of disprove causation. Linear regression, on the other hand, can be used to predict how much one variable changes when a second variable is changed. Scatter graphs are used in correlation and regression analyses to visually determine if variables are associated and to detect outliers. When constructing a scatter graph, the dependent variable is typically placed on the vertical axis and the independent variable on the horizontal axis.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      6.8
      Seconds
  • Question 20 - If the new antihypertensive therapy is implemented for the secondary prevention of stroke,...

    Correct

    • If the new antihypertensive therapy is implemented for the secondary prevention of stroke, it would result in an absolute annual risk reduction of 0.5% compared to conventional therapy. However, the cost of the new treatment is £100 more per patient per year. Therefore, what would the cost of implementing the new therapy for each stroke prevented?

      Your Answer: £20,000

      Explanation:

      The new drug reduces the annual incidence of stroke by 0.5% and costs £100 more than conventional therapy. This means that for every 200 patients treated, one stroke would be prevented with the new drug compared to conventional therapy. The Number Needed to Treat (NNT) is 200 per year to prevent one stroke. Therefore, the annual cost of this treatment to prevent one stroke would be £20,000, which is the cost of treating 200 patients with the new drug (£100 x 200).

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      94.5
      Seconds
  • Question 21 - What is the significance of the cut off of 5 on the MDQ...

    Correct

    • What is the significance of the cut off of 5 on the MDQ in diagnosing depression?

      Your Answer: The optimal threshold

      Explanation:

      The threshold score that results in the lowest misclassification rate, achieved by minimizing both false positive and false negative rates, is known as the optimal threshold. Based on the findings of the previous study, the ideal cut off for identifying caseness on the MDQ is five, making it the optimal threshold.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      12.9
      Seconds
  • Question 22 - What percentage of values fall within one standard deviation above and below the...

    Correct

    • What percentage of values fall within one standard deviation above and below the mean?

      Your Answer: 68.20%

      Explanation:

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      9.3
      Seconds
  • Question 23 - A team of scientists aims to perform a systematic review and meta-analysis of...

    Correct

    • A team of scientists aims to perform a systematic review and meta-analysis of the environmental impacts and benefits of using solar energy in residential homes. They want to investigate how their findings would be affected by potential future changes, such as an increase in the cost of solar panels of a shift in government policies promoting renewable energy. What type of analysis should they undertake to address this inquiry?

      Your Answer: Sensitivity analysis

      Explanation:

      A sensitivity analysis is a tool utilized to evaluate the degree to which the outcomes of a study of systematic review are influenced by modifications in the methodology employed. It is employed to determine the resilience of the findings to uncertain judgments of assumptions regarding the data and techniques employed.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      10.4
      Seconds
  • Question 24 - What is another name for admission rate bias? ...

    Incorrect

    • What is another name for admission rate bias?

      Your Answer: Neyman bias

      Correct Answer: Berkson's bias

      Explanation:

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      8.5
      Seconds
  • Question 25 - What is the most suitable measure to describe the most common test grades...

    Correct

    • What is the most suitable measure to describe the most common test grades collected by a college professor?

      Your Answer: Mode

      Explanation:

      The median represents the middle value in a set of data. For example, if there were 7 results (A, B, C, D, E, F, F), the median would be D. However, if the question asks for the most common result, the mode would be used. In this example, the mode would be F. The mean would not be appropriate in this case because adding all the values and dividing by the number of values would not provide a meaningful result.

      Measures of Central Tendency

      Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.

      The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.

      The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.

      In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      3.5
      Seconds
  • Question 26 - Which of the following statements accurately describes relative risk? ...

    Correct

    • Which of the following statements accurately describes relative risk?

      Your Answer: It is the usual outcome measure of cohort studies

      Explanation:

      The relative risk is the typical measure of outcome in cohort studies. It is important to distinguish between risk and odds. For example, if 20 individuals out of 100 who take an overdose die, the risk of dying is 0.2, while the odds are 0.25 (20/80).

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      19
      Seconds
  • Question 27 - Which study design involves conducting an experiment? ...

    Correct

    • Which study design involves conducting an experiment?

      Your Answer: A randomised control study

      Explanation:

      Types of Primary Research Studies and Their Advantages and Disadvantages

      Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.

      Type of Question Best Type of Study

      Therapy Randomized controlled trial (RCT), cohort, case control, case series
      Diagnosis Cohort studies with comparison to gold standard test
      Prognosis Cohort studies, case control, case series
      Etiology/Harm RCT, cohort studies, case control, case series
      Prevention RCT, cohort studies, case control, case series
      Cost Economic analysis

      Study Type Advantages Disadvantages

      Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
      Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
      Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
      Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
      Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)

      In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      5.7
      Seconds
  • Question 28 - If a case-control study investigates 60 potential risk factors for bipolar affective disorder...

    Incorrect

    • If a case-control study investigates 60 potential risk factors for bipolar affective disorder with a significance level of 0.05, how many risk factors would be expected to show a significant association with the disorder due to random chance?

      Your Answer: 0

      Correct Answer: 3

      Explanation:

      If we consider the above example as 60 separate experiments, we would anticipate that 3 variables would show a connection purely by chance. This is because a p-value of 0.05 indicates that there is a 5% chance of obtaining the observed result by chance, of 1 in every 20 times. Therefore, if we multiply 1 in 20 by 60, we get 3, which is the expected number of variables that would show an association by chance alone.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      21.3
      Seconds
  • Question 29 - What is a true statement about statistical power? ...

    Correct

    • What is a true statement about statistical power?

      Your Answer: The larger the sample size of a study the greater the power

      Explanation:

      The Importance of Power in Statistical Analysis

      Power is a crucial concept in statistical analysis as it helps researchers determine the number of participants needed in a study to detect a clinically significant difference of effect. It represents the probability of correctly rejecting the null hypothesis when it is false, which means avoiding a Type II error. Power values range from 0 to 1, with 0 indicating 0% and 1 indicating 100%. A power of 0.80 is generally considered the minimum acceptable level.

      Several factors influence the power of a study, including sample size, effect size, and significance level. Larger sample sizes lead to more precise parameter estimations and increase the study’s ability to detect a significant effect. Effect size, which is determined at the beginning of a study, refers to the size of the difference between two means that leads to rejecting the null hypothesis. Finally, the significance level, also known as the alpha level, represents the probability of a Type I error. By considering these factors, researchers can optimize the power of their studies and increase the likelihood of detecting meaningful effects.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      7.6
      Seconds
  • Question 30 - What type of data was collected for the outcome that utilized the Clinical...

    Incorrect

    • What type of data was collected for the outcome that utilized the Clinical Global Impressions Improvement scale in the randomized control trial?

      Your Answer: Ordinal

      Correct Answer: Dichotomous

      Explanation:

      The study used the CGI scale, which produces ordinal data. However, the data was transformed into dichotomous data by dividing it into two categories. The CGI-I is a simple seven-point scale that compares a patient’s overall clinical condition to the one week period just prior to the initiation of medication use. The ratings range from very much improved to very much worse since the initiation of treatment.

      Scales of Measurement in Statistics

      In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.

      Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.

      Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.

      Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      16.6
      Seconds
  • Question 31 - What is the appropriate significance test to use when analyzing the data of...

    Correct

    • What is the appropriate significance test to use when analyzing the data of patients' serum cholesterol levels before and after receiving a new lipid-lowering therapy?

      Your Answer: Paired t-test

      Explanation:

      Since the serum cholesterol level is continuous data and assumed to be normally distributed, and the data is paired from the same individuals, the most suitable statistical test is the paired t-test.

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      12.5
      Seconds
  • Question 32 - What is necessary for a study to confidently assert causation? ...

    Correct

    • What is necessary for a study to confidently assert causation?

      Your Answer: Good internal validity

      Explanation:

      In order to make assertions about causation, strong internal validity is necessary.

      Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      6.7
      Seconds
  • Question 33 - Which of the following is an example of secondary evidence? ...

    Correct

    • Which of the following is an example of secondary evidence?

      Your Answer: A Cochrane review on the evidence of exercise for reducing the duration of depression relapses

      Explanation:

      Scientific literature can be classified into two main types: primary and secondary sources. Primary sources are original research studies that present data and analysis without any external evaluation of interpretation. Examples of primary sources include randomized controlled trials, cohort studies, case-control studies, case-series, and conference papers. Secondary sources, on the other hand, provide an interpretation and analysis of primary sources. These sources are typically removed by one of more steps from the original event. Examples of secondary sources include evidence-based guidelines and textbooks, meta-analyses, and systematic reviews.

      Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.

      When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.

      There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      4.9
      Seconds
  • Question 34 - The data collected represents the ratings given by students to the quality of...

    Correct

    • The data collected represents the ratings given by students to the quality of teaching sessions provided by a consultant psychiatrist. The ratings are on a scale of 1-5, with 1 indicating extremely unsatisfactory and 5 indicating extremely satisfactory. The ratings are used to evaluate the effectiveness of the teaching sessions. How is this data best described?

      Your Answer: Ordinal

      Explanation:

      The data gathered will be measured on an ordinal scale, where each answer option is ranked. For instance, 2 is considered lower than 4, and 4 is lower than 5. In an ordinal scale, it is not necessary for the difference between 4 (satisfactory) and 2 (unsatisfactory) to be the same as the difference between 5 (extremely satisfactory) and 3 (neutral). This is because the numbers are not assigned for quantitative measurement but are used for labeling purposes only.

      Scales of Measurement in Statistics

      In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.

      Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.

      Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.

      Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      9.1
      Seconds
  • Question 35 - What is the appropriate denominator to use when computing the sample variance? ...

    Correct

    • What is the appropriate denominator to use when computing the sample variance?

      Your Answer: n-1

      Explanation:

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      16.4
      Seconds
  • Question 36 - What is the mathematical operation used to determine the value of the square...

    Correct

    • What is the mathematical operation used to determine the value of the square root of the variance?

      Your Answer: Standard deviation

      Explanation:

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      10.1
      Seconds
  • Question 37 - What is the accurate definition of the standardised mortality ratio? ...

    Correct

    • What is the accurate definition of the standardised mortality ratio?

      Your Answer: The ratio between the observed number of deaths in a study population and the number of deaths that would be expected

      Explanation:

      Calculation of Standardised Mortality Ratio (SMR)

      To calculate the SMR, age and sex-specific death rates in the standard population are obtained. An estimate for the number of people in each category for both the standard and study populations is needed. The number of expected deaths in each age-sex group of the study population is calculated by multiplying the age-sex-specific rates in the standard population by the number of people in each category of the study population. The sum of all age- and sex-specific expected deaths gives the expected number of deaths for the whole study population. The observed number of deaths is then divided by the expected number of deaths to obtain the SMR.

      The SMR can be standardised using the direct of indirect method. The direct method is used when the age-sex-specific rates for the study population and the age-sex-structure of the standard population are known. The indirect method is used when the age-specific rates for the study population are unknown of not available. This method uses the observed number of deaths in the study population and compares it to the number of deaths that would be expected if the age distribution was the same as that of the standard population.

      The SMR can be interpreted as follows: an SMR less than 1.0 indicates fewer than expected deaths in the study population, an SMR of 1.0 indicates the number of observed deaths equals the number of expected deaths in the study population, and an SMR greater than 1.0 indicates more than expected deaths in the study population (excess deaths). It is sometimes expressed after multiplying by 100.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      6.2
      Seconds
  • Question 38 - What is the optimal number needed to treat (NNT)? ...

    Correct

    • What is the optimal number needed to treat (NNT)?

      Your Answer: 1

      Explanation:

      The effectiveness of a healthcare intervention, usually a medication, is measured by the number needed to treat (NNT). This represents the average number of patients who must receive treatment to prevent one additional negative outcome. An NNT of 1 would indicate that all treated patients improved while none of the control patients did, which is the ideal scenario. The NNT can be calculated by taking the inverse of the absolute risk reduction. A higher NNT indicates a less effective treatment, with the range of NNT being from 1 to infinity.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      4.5
      Seconds
  • Question 39 - A new medication is being developed to treat hypertension in elderly patients. Several...

    Incorrect

    • A new medication is being developed to treat hypertension in elderly patients. Several different drugs are being considered for their efficacy in reducing blood pressure. Which study design would require the largest number of participants to achieve a significant outcome?

      Your Answer: Placebo-controlled trial

      Correct Answer: Superiority trial

      Explanation:

      Since a superiority trial involves comparing a new drug with an already existing treatment that can also reduce HbA1c levels, a substantial sample size is necessary to establish a significant distinction.

      Study Designs for New Drugs: Options and Considerations

      When launching a new drug, there are various study design options available. One common approach is a placebo-controlled trial, which can provide strong evidence but may be deemed unethical if established treatments are available. Additionally, it does not allow for a comparison with standard treatments. Therefore, statisticians must decide whether the trial aims to demonstrate superiority, equivalence, of non-inferiority to an existing treatment.

      Superiority trials may seem like the obvious choice, but they require a large sample size to show a significant benefit over an existing treatment. Equivalence trials define an equivalence margin on a specified outcome, and if the confidence interval of the difference between the two drugs falls within this margin, the drugs are assumed to have a similar effect. Non-inferiority trials are similar to equivalence trials, but only the lower confidence interval needs to fall within the equivalence margin. These trials require smaller sample sizes, and once a drug has been shown to be non-inferior, larger studies may be conducted to demonstrate superiority.

      It is important to note that drug companies may not necessarily aim to show superiority over an existing product. If they can demonstrate that their product is equivalent of even non-inferior, they may compete on price of convenience. Overall, the choice of study design depends on various factors, including ethical considerations, sample size, and the desired outcome.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      20.6
      Seconds
  • Question 40 - Which statement accurately describes research variables? ...

    Correct

    • Which statement accurately describes research variables?

      Your Answer: Changes in a dependent variable may result from changes in the independent variable

      Explanation:

      Understanding Stats Variables

      Variables are characteristics, numbers, of quantities that can be measured of counted. They are also known as data items. Examples of variables include age, sex, business income and expenses, country of birth, capital expenditure, class grades, eye colour, and vehicle type. The value of a variable may vary between data units in a population. In a typical study, there are three main variables: independent, dependent, and controlled variables.

      The independent variable is something that the researcher purposely changes during the investigation. The dependent variable is the one that is observed and changes in response to the independent variable. Controlled variables are those that are not changed during the experiment. Dependent variables are affected by independent variables but not by controlled variables, as these do not vary throughout the study.

      For instance, a researcher wants to test the effectiveness of a new weight loss medication. Participants are divided into three groups, with the first group receiving a placebo (0mg dosage), the second group a 10 mg dose, and the third group a 40 mg dose. After six months, the participants’ weights are measured. In this case, the independent variable is the dosage of the medication, as that is what is being manipulated. The dependent variable is the weight, as that is what is being measured.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      28.8
      Seconds
  • Question 41 - What is a true statement about standardised mortality ratios? ...

    Correct

    • What is a true statement about standardised mortality ratios?

      Your Answer: Direct standardisation requires that we know the age-specific rates of mortality in all the populations under study

      Explanation:

      Calculation of Standardised Mortality Ratio (SMR)

      To calculate the SMR, age and sex-specific death rates in the standard population are obtained. An estimate for the number of people in each category for both the standard and study populations is needed. The number of expected deaths in each age-sex group of the study population is calculated by multiplying the age-sex-specific rates in the standard population by the number of people in each category of the study population. The sum of all age- and sex-specific expected deaths gives the expected number of deaths for the whole study population. The observed number of deaths is then divided by the expected number of deaths to obtain the SMR.

      The SMR can be standardised using the direct of indirect method. The direct method is used when the age-sex-specific rates for the study population and the age-sex-structure of the standard population are known. The indirect method is used when the age-specific rates for the study population are unknown of not available. This method uses the observed number of deaths in the study population and compares it to the number of deaths that would be expected if the age distribution was the same as that of the standard population.

      The SMR can be interpreted as follows: an SMR less than 1.0 indicates fewer than expected deaths in the study population, an SMR of 1.0 indicates the number of observed deaths equals the number of expected deaths in the study population, and an SMR greater than 1.0 indicates more than expected deaths in the study population (excess deaths). It is sometimes expressed after multiplying by 100.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      14.1
      Seconds
  • Question 42 - In a study of a new statin therapy for primary prevention of ischaemic...

    Correct

    • In a study of a new statin therapy for primary prevention of ischaemic heart disease in a diabetic population over a five year period, 1000 patients were randomly assigned to receive the new therapy and 1000 were given a placebo. The results showed that 150 patients in the placebo group had a myocardial infarction (MI) compared to 100 patients in the statin group. What is the number needed to treat (NNT) to prevent one MI in this population?

      Your Answer: 20

      Explanation:

      – Treating 1000 patients with a new statin for five years prevented 50 MIs.
      – The number needed to treat (NNT) to prevent one MI is 20 (1000/50).
      – NNT provides information on treatment efficacy beyond statistical significance.
      – Based on these data, treating as few as 20 patients over five years may prevent an infarct.
      – Cost economic data can be calculated by factoring in drug costs and costs of treating and rehabilitating a patient with an MI.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      40.4
      Seconds
  • Question 43 - What is the negative predictive value of the blood test for bowel cancer,...

    Incorrect

    • What is the negative predictive value of the blood test for bowel cancer, given a sensitivity of 60% and a specificity of 80% and a negative test result for a patient?

      Your Answer: 0.3 (1 dp)

      Correct Answer: 0.5

      Explanation:

      Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      764.4
      Seconds
  • Question 44 - How is the phenomenon of regression towards the mean most influential on which...

    Correct

    • How is the phenomenon of regression towards the mean most influential on which type of validity?

      Your Answer: Internal validity

      Explanation:

      Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      4.6
      Seconds
  • Question 45 - Which of the options below does not demonstrate selection bias? ...

    Correct

    • Which of the options below does not demonstrate selection bias?

      Your Answer: Recall bias

      Explanation:

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      7.3
      Seconds
  • Question 46 - How can we describe the consistency of a test in producing similar results...

    Correct

    • How can we describe the consistency of a test in producing similar results when measured multiple times?

      Your Answer: Precision

      Explanation:

      Accuracy and reproducibility together make up precision.

      Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      10.8
      Seconds
  • Question 47 - The researcher conducted a study to test his hypothesis that a new drug...

    Correct

    • The researcher conducted a study to test his hypothesis that a new drug would effectively treat depression. The results of the study indicated that his hypothesis was true, but in reality, it was not. What happened?

      Your Answer: Type I error

      Explanation:

      Type I errors occur when we reject a null hypothesis that is actually true, leading us to believe that there is a significant difference of effect when there is not.

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      16.6
      Seconds
  • Question 48 - Which statement accurately describes the correlation coefficient? ...

    Correct

    • Which statement accurately describes the correlation coefficient?

      Your Answer: It can assume any value between -1 and 1

      Explanation:

      Stats: Correlation and Regression

      Correlation and regression are related but not interchangeable terms. Correlation is used to test for association between variables, while regression is used to predict values of dependent variables from independent variables. Correlation can be linear, non-linear, of non-existent, and can be strong, moderate, of weak. The strength of a linear relationship is measured by the correlation coefficient, which can be positive of negative and ranges from very weak to very strong. However, the interpretation of a correlation coefficient depends on the context and purposes. Correlation can suggest association but cannot prove of disprove causation. Linear regression, on the other hand, can be used to predict how much one variable changes when a second variable is changed. Scatter graphs are used in correlation and regression analyses to visually determine if variables are associated and to detect outliers. When constructing a scatter graph, the dependent variable is typically placed on the vertical axis and the independent variable on the horizontal axis.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      2.5
      Seconds
  • Question 49 - What factors affect the statistical power of a study? ...

    Correct

    • What factors affect the statistical power of a study?

      Your Answer: Sample size

      Explanation:

      A study that has a greater sample size is considered to have higher power, meaning it is capable of detecting a significant difference of effect that is clinically relevant.

      The Importance of Power in Statistical Analysis

      Power is a crucial concept in statistical analysis as it helps researchers determine the number of participants needed in a study to detect a clinically significant difference of effect. It represents the probability of correctly rejecting the null hypothesis when it is false, which means avoiding a Type II error. Power values range from 0 to 1, with 0 indicating 0% and 1 indicating 100%. A power of 0.80 is generally considered the minimum acceptable level.

      Several factors influence the power of a study, including sample size, effect size, and significance level. Larger sample sizes lead to more precise parameter estimations and increase the study’s ability to detect a significant effect. Effect size, which is determined at the beginning of a study, refers to the size of the difference between two means that leads to rejecting the null hypothesis. Finally, the significance level, also known as the alpha level, represents the probability of a Type I error. By considering these factors, researchers can optimize the power of their studies and increase the likelihood of detecting meaningful effects.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      4.8
      Seconds
  • Question 50 - What is the term used to describe the rate at which new cases...

    Correct

    • What is the term used to describe the rate at which new cases of a disease are appearing, calculated by dividing the number of new cases by the total time that disease-free individuals are observed during a study period?

      Your Answer: Incidence rate

      Explanation:

      Measures of Disease Frequency: Incidence and Prevalence

      Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.

      Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.

      It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.

      Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      27.1
      Seconds
  • Question 51 - What is a true statement about cost-benefit analysis? ...

    Correct

    • What is a true statement about cost-benefit analysis?

      Your Answer: Benefits are valued in monetary terms

      Explanation:

      The net benefit of a proposed scheme is calculated by subtracting the costs from the benefits in a CBA. For instance, if the benefits of the scheme are valued at £140 k and the costs are £10 k, then the net benefit would be £130 k.

      Methods of Economic Evaluation

      There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.

      Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.

      Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.

      Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.

      Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.

      Costs in Economic Evaluation Studies

      There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      16.5
      Seconds
  • Question 52 - What is the term used to describe a graph that can be utilized...

    Correct

    • What is the term used to describe a graph that can be utilized to identify publication bias?

      Your Answer: Funnel plot

      Explanation:

      Stats Publication Bias

      Publication bias refers to the tendency for studies with positive findings to be published more than studies with negative findings, leading to incomplete data sets in meta-analyses and erroneous conclusions. Graphical methods such as funnel plots, Galbraith plots, ordered forest plots, and normal quantile plots can be used to detect publication bias. Funnel plots are the most commonly used and offer an easy visual way to ensure that published literature is evenly weighted. The x-axis represents the effect size, and the y-axis represents the study size. A symmetrical, inverted funnel shape indicates that publication bias is unlikely, while an asymmetrical funnel indicates a relationship between treatment effect and study size, indicating either publication bias of small study effects.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      5.8
      Seconds
  • Question 53 - Which of the following is an example of primary evidence? ...

    Correct

    • Which of the following is an example of primary evidence?

      Your Answer: A case-series of chronic leukocytosis associated with clozapine

      Explanation:

      Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.

      When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.

      There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      4.4
      Seconds
  • Question 54 - A study examining potential cases of neuroleptic malignant syndrome reports on several physical...

    Correct

    • A study examining potential cases of neuroleptic malignant syndrome reports on several physical parameters, including patient temperature in Celsius.

      This is an example of which of the following variables?:

      Your Answer: Interval

      Explanation:

      Types of Variables

      There are different types of variables in statistics. Binary of dichotomous variables have only two values, such as gender. Categorical variables can be grouped into two or more categories, such as eye color of ethnicity. Continuous variables can be further classified into interval and ratio variables. They can be placed anywhere on a scale and have arithmetic properties. Ratio variables have a value of 0 that indicates the absence of the variable, such as temperature in Kelvin. On the other hand, interval variables, like temperature in Celsius of Fahrenheit, do not have a true zero point. Lastly, ordinal variables allow for ranking but do not allow for arithmetic comparisons between values. Examples of ordinal variables include education level and income bracket.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      9
      Seconds
  • Question 55 - A team of investigators aims to explore the perspectives of middle-aged physicians regarding...

    Correct

    • A team of investigators aims to explore the perspectives of middle-aged physicians regarding individuals with chronic fatigue syndrome. They will conduct interviews with a random selection of physicians until no additional insights are gained of existing ones are substantially altered. What is their objective before concluding further interviews?

      Your Answer: Data saturation

      Explanation:

      In qualitative research, data saturation refers to the point where additional data collection becomes unnecessary as the responses obtained are repetitive and do not provide any new insights. This is when the researcher has heard the same information repeatedly and there is no need to continue recruiting participants. Understanding data saturation is crucial in qualitative research.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      8.2
      Seconds
  • Question 56 - A study is being planned to investigate whether exposure to pesticides is a...

    Correct

    • A study is being planned to investigate whether exposure to pesticides is a risk factor for Parkinson's disease. The researchers are considering conducting a case-control study instead of a cohort study. What is one advantage of using a case-control study design in this situation?

      Your Answer: It is possible to study diseases that are rare

      Explanation:

      The benefits of conducting a case-control study include its suitability for examining rare diseases, the ability to investigate a broad range of risk factors, no loss to follow-up, and its relatively low cost and quick turnaround time. The findings of such studies are typically presented as an odds ratio.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      29.1
      Seconds
  • Question 57 - Which study design is always considered observational? ...

    Correct

    • Which study design is always considered observational?

      Your Answer: Cohort study

      Explanation:

      Case-studies and case-series can have an experimental nature due to the potential involvement of interventions of treatments.

      Types of Primary Research Studies and Their Advantages and Disadvantages

      Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.

      Type of Question Best Type of Study

      Therapy Randomized controlled trial (RCT), cohort, case control, case series
      Diagnosis Cohort studies with comparison to gold standard test
      Prognosis Cohort studies, case control, case series
      Etiology/Harm RCT, cohort studies, case control, case series
      Prevention RCT, cohort studies, case control, case series
      Cost Economic analysis

      Study Type Advantages Disadvantages

      Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
      Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
      Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
      Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
      Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)

      In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      7.7
      Seconds
  • Question 58 - Which of the following is not considered a crucial factor according to Wilson...

    Correct

    • Which of the following is not considered a crucial factor according to Wilson and Junger when implementing a screening program?

      Your Answer: The condition should be potentially curable

      Explanation:

      Wilson and Junger Criteria for Screening

      1. The condition should be an important public health problem.
      2. There should be an acceptable treatment for patients with recognised disease.
      3. Facilities for diagnosis and treatment should be available.
      4. There should be a recognised latent of early symptomatic stage.
      5. The natural history of the condition, including its development from latent to declared disease should be adequately understood.
      6. There should be a suitable test of examination.
      7. The test of examination should be acceptable to the population.
      8. There should be agreed policy on whom to treat.
      9. The cost of case-finding (including diagnosis and subsequent treatment of patients) should be economically balanced in relation to the possible expenditure as a whole.
      10. Case-finding should be a continuous process and not a ‘once and for all’ project.

      The Wilson and Junger criteria provide a framework for evaluating the suitability of a screening program for a particular condition. The criteria emphasize the importance of the condition as a public health problem, the availability of effective treatment, and the feasibility of diagnosis and treatment. Additionally, the criteria highlight the importance of understanding the natural history of the condition and the need for a suitable test of examination that is acceptable to the population. The criteria also stress the importance of having agreed policies on whom to treat and ensuring that the cost of case-finding is economically balanced. Finally, the criteria emphasize that case-finding should be a continuous process rather than a one-time project. By considering these criteria, public health officials can determine whether a screening program is appropriate for a particular condition and ensure that resources are used effectively.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      6.8
      Seconds
  • Question 59 - Which studies are most susceptible to the Hawthorne effect? ...

    Correct

    • Which studies are most susceptible to the Hawthorne effect?

      Your Answer: Compliance with antipsychotic medication

      Explanation:

      The Hawthorne effect is a phenomenon where individuals may alter their actions of responses when they are aware that they are being monitored of studied. Out of the given choices, the only one that pertains to a change in behavior is the adherence to medication. The remaining options related to outcomes that are not under conscious control.

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      8.5
      Seconds
  • Question 60 - What is the meaning of a 95% confidence interval? ...

    Correct

    • What is the meaning of a 95% confidence interval?

      Your Answer: If the study was repeated then the mean value would be within this interval 95% of the time

      Explanation:

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      15.8
      Seconds
  • Question 61 - A study examines the benefits of adding an intensive package of dialectic behavioural...

    Correct

    • A study examines the benefits of adding an intensive package of dialectic behavioural therapy (DBT) to standard care following an episode of serious self-harm in adolescents. The following results are obtained:
      Percentage of adolescents having a further episode
      of serious self harm within 3 months
      Standard care 4%
      Standard care and intensive DBT 3%
      What is the number needed to treat to prevent one adolescent having a further episode of serious self harm within 3 months?

      Your Answer: 100

      Explanation:

      The number needed to treat (NNT) is equal to 100. This means that for every 100 patients treated, one patient will benefit from the treatment. The absolute risk reduction (ARR) is 0.01, which is the difference between the control event rate (CER) of 0.04 and the experimental event rate (EER) of 0.03.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      36
      Seconds
  • Question 62 - A research project has a significance level of 0.05, and the obtained p-value...

    Incorrect

    • A research project has a significance level of 0.05, and the obtained p-value is 0.0125. What is the probability of committing a Type I error?

      Your Answer: 1-May

      Correct Answer: Jan-80

      Explanation:

      An observed p-value of 0.0125 means that there is a 1.25% chance of obtaining the observed result by chance, assuming the null hypothesis is true. This also means that the Type I error rate (the probability of falsely rejecting the null hypothesis) is 1/80 of 1.25%. In comparison, a p-value of 0.05 indicates a 5% chance of obtaining the observed result by chance, of a Type I error rate of 1/20.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      25.3
      Seconds
  • Question 63 - What is the statistical test that is represented by the F statistic? ...

    Correct

    • What is the statistical test that is represented by the F statistic?

      Your Answer: ANOVA

      Explanation:

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      5.1
      Seconds
  • Question 64 - The national Health Department is concerned about reducing mortality rates among elderly patients...

    Correct

    • The national Health Department is concerned about reducing mortality rates among elderly patients with heart disease. They have tasked a team of researchers with comparing the effectiveness and economic costs of treatment options A and B in terms of life years gained. The researchers have collected data on the number of life years gained by each treatment option and are seeking advice on the next steps for analysis. What type of analysis would you recommend they undertake?

      Your Answer: Cost effectiveness analysis

      Explanation:

      Cost effectiveness analysis (CEA) is an economic evaluation method that compares the costs and outcomes of different courses of action. The outcomes of the interventions must be measurable using a single variable, such as life years gained, making it useful for comparing preventative treatments for fatal conditions.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      12.5
      Seconds
  • Question 65 - What is the purpose of using bracketing as a method in qualitative research?...

    Correct

    • What is the purpose of using bracketing as a method in qualitative research?

      Your Answer: Assessing validity

      Explanation:

      Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      6.8
      Seconds
  • Question 66 - What is the term used to describe a scenario where a study participant...

    Correct

    • What is the term used to describe a scenario where a study participant alters their behavior due to the awareness of being observed?

      Your Answer: Hawthorne effect

      Explanation:

      Simpson’s Paradox is a real phenomenon where the comparison of association between variables can change direction when data from multiple groups are merged into one. The other three options are not valid terms.

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      2.8
      Seconds
  • Question 67 - What is the probability that a person who tests negative on the new...

    Incorrect

    • What is the probability that a person who tests negative on the new Mephedrone screening test does not actually use Mephedrone?

      Your Answer: 172/192

      Correct Answer: 172/177

      Explanation:

      Negative predictive value = 172 / 177

      Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      8.1
      Seconds
  • Question 68 - Which of the following statements accurately describes the concept of study power? ...

    Incorrect

    • Which of the following statements accurately describes the concept of study power?

      Your Answer: Is the chance a significant p value will be reached

      Correct Answer: Is the probability of rejecting the null hypothesis when it is false

      Explanation:

      The Importance of Power in Statistical Analysis

      Power is a crucial concept in statistical analysis as it helps researchers determine the number of participants needed in a study to detect a clinically significant difference of effect. It represents the probability of correctly rejecting the null hypothesis when it is false, which means avoiding a Type II error. Power values range from 0 to 1, with 0 indicating 0% and 1 indicating 100%. A power of 0.80 is generally considered the minimum acceptable level.

      Several factors influence the power of a study, including sample size, effect size, and significance level. Larger sample sizes lead to more precise parameter estimations and increase the study’s ability to detect a significant effect. Effect size, which is determined at the beginning of a study, refers to the size of the difference between two means that leads to rejecting the null hypothesis. Finally, the significance level, also known as the alpha level, represents the probability of a Type I error. By considering these factors, researchers can optimize the power of their studies and increase the likelihood of detecting meaningful effects.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      90.7
      Seconds
  • Question 69 - Researchers have conducted a study comparing a new blood pressure medication with a...

    Incorrect

    • Researchers have conducted a study comparing a new blood pressure medication with a standard blood pressure medication. 200 patients are divided equally between the two groups. Over the course of one year, 20 patients in the treatment group experienced a significant reduction in blood pressure, compared to 35 patients in the control group.

      What is the number needed to treat (NNT)?

      Your Answer: 3

      Correct Answer: 7

      Explanation:

      The Relative Risk Reduction (RRR) is calculated by subtracting the experimental event rate (EER) from the control event rate (CER), dividing the result by the CER, and then multiplying by 100 to get a percentage. In this case, the RRR is (35-20)÷35 = 0.4285 of 42.85%.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      11.9
      Seconds
  • Question 70 - What type of sampling method is quota sampling commonly used for in qualitative...

    Incorrect

    • What type of sampling method is quota sampling commonly used for in qualitative research?

      Your Answer: Chain referral sampling

      Correct Answer: Purposive sampling

      Explanation:

      Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      22.8
      Seconds
  • Question 71 - A team of scientists plans to carry out a randomized controlled study to...

    Incorrect

    • A team of scientists plans to carry out a randomized controlled study to assess the effectiveness of a new medication for treating anxiety in elderly patients. To prevent any potential biases, they intend to enroll participants through online portals, ensuring that neither the patients nor the researchers are aware of the group assignment. What type of bias are they seeking to eliminate?

      Your Answer: Attrition bias

      Correct Answer: Selection bias

      Explanation:

      The use of allocation concealment is being implemented by the researchers to prevent interference from investigators of patients in the randomisation process. This is important as knowledge of group allocation can lead to patient refusal to participate of researchers manipulating the allocation process. By using distant call centres for allocation concealment, the risk of selection bias, which refers to systematic differences between comparison groups, is reduced.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      7.3
      Seconds
  • Question 72 - Which of the following variables is most appropriately classified as nominal? ...

    Incorrect

    • Which of the following variables is most appropriately classified as nominal?

      Your Answer: Social class

      Correct Answer: Ethnic group

      Explanation:

      Scales of Measurement in Statistics

      In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.

      Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.

      Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.

      Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      16
      Seconds
  • Question 73 - The research team is studying the effectiveness of a new treatment for a...

    Correct

    • The research team is studying the effectiveness of a new treatment for a certain medical condition. They have found that the brand name medication Y and its generic version Y1 have similar efficacy. They approach you for guidance on what type of analysis to conduct next. What would you suggest?

      Your Answer: Cost minimisation analysis

      Explanation:

      Cost minimisation analysis is employed to compare net costs when the observed effects of health care interventions are similar. To conduct this analysis, it is necessary to have clinical evidence that demonstrates the differences in health effects between alternatives are negligible of insignificant. This approach is commonly used by institutions like the National Institute for Health and Care Excellence (NICE).

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      3.6
      Seconds
  • Question 74 - One possible method for determining the number needed to treat is: ...

    Incorrect

    • One possible method for determining the number needed to treat is:

      Your Answer: ((Control event rate) - (Experimental event rate)) / (Control event rate)

      Correct Answer: 1 / (Absolute risk reduction)

      Explanation:

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      39
      Seconds
  • Question 75 - What is the accurate formula for determining the pre-test odds? ...

    Incorrect

    • What is the accurate formula for determining the pre-test odds?

      Your Answer: (1 - pre-test probability) / pre-test probability

      Correct Answer: Pre-test probability/ (1 - pre-test probability)

      Explanation:

      Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      7.3
      Seconds
  • Question 76 - What is the primary purpose of funnel plots? ...

    Incorrect

    • What is the primary purpose of funnel plots?

      Your Answer: Provide a graphical representation of the relative risk results in a cohort study

      Correct Answer: Demonstrate the existence of publication bias in meta-analyses

      Explanation:

      Stats Publication Bias

      Publication bias refers to the tendency for studies with positive findings to be published more than studies with negative findings, leading to incomplete data sets in meta-analyses and erroneous conclusions. Graphical methods such as funnel plots, Galbraith plots, ordered forest plots, and normal quantile plots can be used to detect publication bias. Funnel plots are the most commonly used and offer an easy visual way to ensure that published literature is evenly weighted. The x-axis represents the effect size, and the y-axis represents the study size. A symmetrical, inverted funnel shape indicates that publication bias is unlikely, while an asymmetrical funnel indicates a relationship between treatment effect and study size, indicating either publication bias of small study effects.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      5.1
      Seconds
  • Question 77 - What qualitative research approach aims to understand individuals' inner experiences and perspectives? ...

    Incorrect

    • What qualitative research approach aims to understand individuals' inner experiences and perspectives?

      Your Answer: Case study

      Correct Answer: Phenomenology

      Explanation:

      Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      10.7
      Seconds
  • Question 78 - How do the odds of excessive drinking differ between patients with liver cirrhosis...

    Incorrect

    • How do the odds of excessive drinking differ between patients with liver cirrhosis and those without cirrhosis?

      Your Answer: 2

      Correct Answer: 16

      Explanation:

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      5.3
      Seconds
  • Question 79 - Which term is used to describe the total number of newly diagnosed cases...

    Incorrect

    • Which term is used to describe the total number of newly diagnosed cases of a disease during a specific time frame?

      Your Answer: Period prevalence

      Correct Answer: Cumulative incidence

      Explanation:

      Measures of Disease Frequency: Incidence and Prevalence

      Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.

      Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.

      It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.

      Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      40.3
      Seconds
  • Question 80 - What is the purpose of the PICO model in evidence based medicine? ...

    Incorrect

    • What is the purpose of the PICO model in evidence based medicine?

      Your Answer: Establishing the presence of publication bias

      Correct Answer: Formulating answerable questions

      Explanation:

      Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.

      When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.

      There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      19.2
      Seconds
  • Question 81 - For a study comparing two chemotherapy regimens for small cell lung cancer patients...

    Incorrect

    • For a study comparing two chemotherapy regimens for small cell lung cancer patients based on survival time, which statistical measure is most suitable for comparison?

      Your Answer: Relative risk

      Correct Answer: Hazard ratio

      Explanation:

      Understanding Hazard Ratio in Survival Analysis

      Survival analysis is a statistical method used to analyze the time it takes for an event of interest to occur, such as death of disease progression. In this type of analysis, the hazard ratio (HR) is a commonly used measure that is similar to the relative risk but takes into account the fact that the risk of an event may change over time.

      The hazard ratio is particularly useful in situations where the risk of an event is not constant over time, such as in medical research where patients may have different survival times of disease progression rates. It is a measure of the relative risk of an event occurring in one group compared to another, taking into account the time it takes for the event to occur.

      For example, in a study comparing the survival rates of two groups of cancer patients, the hazard ratio would be used to compare the risk of death in one group compared to the other, taking into account the time it takes for the patients to die. A hazard ratio of 1 indicates that there is no difference in the risk of death between the two groups, while a hazard ratio greater than 1 indicates that one group has a higher risk of death than the other.

      Overall, the hazard ratio is a useful tool in survival analysis that allows researchers to compare the risk of an event occurring between different groups, taking into account the time it takes for the event to occur.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      111.7
      Seconds
  • Question 82 - Which of the following statements about calculating the correlation coefficient (r) for the...

    Incorrect

    • Which of the following statements about calculating the correlation coefficient (r) for the relationship between age and systolic blood pressure is not accurate?

      Your Answer: A value of r greater than 0 implies a positive correlation between age and systolic blood pressure

      Correct Answer: May be used to predict systolic blood pressure for a given age

      Explanation:

      To make predictions about systolic blood pressure, linear regression is necessary in this situation.

      Stats: Correlation and Regression

      Correlation and regression are related but not interchangeable terms. Correlation is used to test for association between variables, while regression is used to predict values of dependent variables from independent variables. Correlation can be linear, non-linear, of non-existent, and can be strong, moderate, of weak. The strength of a linear relationship is measured by the correlation coefficient, which can be positive of negative and ranges from very weak to very strong. However, the interpretation of a correlation coefficient depends on the context and purposes. Correlation can suggest association but cannot prove of disprove causation. Linear regression, on the other hand, can be used to predict how much one variable changes when a second variable is changed. Scatter graphs are used in correlation and regression analyses to visually determine if variables are associated and to detect outliers. When constructing a scatter graph, the dependent variable is typically placed on the vertical axis and the independent variable on the horizontal axis.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      10.4
      Seconds
  • Question 83 - Which category does convenience sampling fall under? ...

    Incorrect

    • Which category does convenience sampling fall under?

      Your Answer: Stratified sampling

      Correct Answer: Non-probabilistic sampling

      Explanation:

      Sampling Methods in Statistics

      When collecting data from a population, it is often impractical and unnecessary to gather information from every single member. Instead, taking a sample is preferred. However, it is crucial that the sample accurately represents the population from which it is drawn. There are two main types of sampling methods: probability (random) sampling and non-probability (non-random) sampling.

      Non-probability sampling methods, also known as judgement samples, are based on human choice rather than random selection. These samples are convenient and cheaper than probability sampling methods. Examples of non-probability sampling methods include voluntary sampling, convenience sampling, snowball sampling, and quota sampling.

      Probability sampling methods give a more representative sample of the population than non-probability sampling. In each probability sampling technique, each population element has a known (non-zero) chance of being selected for the sample. Examples of probability sampling methods include simple random sampling, systematic sampling, cluster sampling, stratified sampling, and multistage sampling.

      Simple random sampling is a sample in which every member of the population has an equal chance of being chosen. Systematic sampling involves selecting every kth member of the population. Cluster sampling involves dividing a population into separate groups (called clusters) and selecting a random sample of clusters. Stratified sampling involves dividing a population into groups (strata) and taking a random sample from each strata. Multistage sampling is a more complex method that involves several stages and combines two of more sampling methods.

      Overall, probability sampling methods give a more representative sample of the population, but non-probability sampling methods are often more convenient and cheaper. It is important to choose the appropriate sampling method based on the research question and available resources.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      3.9
      Seconds
  • Question 84 - What is a correct statement about funnel plots? ...

    Incorrect

    • What is a correct statement about funnel plots?

      Your Answer: They allow for the visual inspection of attrition bias

      Correct Answer: Studies with a smaller standard error are located towards the top of the funnel

      Explanation:

      Funnel plots are utilized in meta-analyses to visually display the potential presence of publication bias. However, it is important to note that an asymmetric funnel plot does not necessarily confirm the existence of publication bias, as other factors may contribute to its formation.

      Stats Publication Bias

      Publication bias refers to the tendency for studies with positive findings to be published more than studies with negative findings, leading to incomplete data sets in meta-analyses and erroneous conclusions. Graphical methods such as funnel plots, Galbraith plots, ordered forest plots, and normal quantile plots can be used to detect publication bias. Funnel plots are the most commonly used and offer an easy visual way to ensure that published literature is evenly weighted. The x-axis represents the effect size, and the y-axis represents the study size. A symmetrical, inverted funnel shape indicates that publication bias is unlikely, while an asymmetrical funnel indicates a relationship between treatment effect and study size, indicating either publication bias of small study effects.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      14
      Seconds
  • Question 85 - How is validity assessed in qualitative research? ...

    Incorrect

    • How is validity assessed in qualitative research?

      Your Answer: Bonferroni correction

      Correct Answer: Triangulation

      Explanation:

      To examine differences between various groups, researchers may conduct subgroup analyses by dividing participant data into subsets. These subsets may include specific demographics (e.g. gender) of study characteristics (e.g. location). Subgroup analyses can help explain inconsistent findings of provide insights into particular patient populations, interventions, of study types.

      Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      19.1
      Seconds
  • Question 86 - Which of the following statistical measures does not indicate the spread of variability...

    Correct

    • Which of the following statistical measures does not indicate the spread of variability of data?

      Your Answer: Mean

      Explanation:

      The mean, mode, and median are all measures of central tendency.

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      6.2
      Seconds
  • Question 87 - A psychologist aims to conduct a qualitative study to explore the experiences of...

    Incorrect

    • A psychologist aims to conduct a qualitative study to explore the experiences of elderly patients referred to the outpatient clinic. To obtain a sample, the psychologist asks the receptionist to hand an invitation to participate in the study to all follow-up patients who attend for an appointment. The recruitment phase continues until a total of 30 elderly individuals agree to be in the study.

      How is this sampling method best described?

      Your Answer: Purposive sampling

      Correct Answer: Opportunistic sampling

      Explanation:

      Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      5.4
      Seconds
  • Question 88 - What is a true statement about measures of effect? ...

    Incorrect

    • What is a true statement about measures of effect?

      Your Answer: Odds ratio cannot be used in a cohort study

      Correct Answer: Relative risk can be used to measure effect in randomised control trials

      Explanation:

      The use of relative risk is applicable in cohort, cross-sectional, and randomized control trials, but not in case-control studies. In situations where there are no events in the control group, neither the risk ratio nor the odds ratio can be computed. It is important to note that the odds ratio tends to overestimate effects and is always more extreme than the relative risk, moving away from the null value of 1.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      26.1
      Seconds
  • Question 89 - What statistical test would be appropriate to compare the mean blood pressure measurements...

    Incorrect

    • What statistical test would be appropriate to compare the mean blood pressure measurements of a group of individuals before and after exercise?

      Your Answer: Chi squared test

      Correct Answer: Paired t-test

      Explanation:

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      11.8
      Seconds
  • Question 90 - Which of the following is an example of a non-random sampling method? ...

    Incorrect

    • Which of the following is an example of a non-random sampling method?

      Your Answer: Multistage sampling

      Correct Answer: Quota sampling

      Explanation:

      Sampling Methods in Statistics

      When collecting data from a population, it is often impractical and unnecessary to gather information from every single member. Instead, taking a sample is preferred. However, it is crucial that the sample accurately represents the population from which it is drawn. There are two main types of sampling methods: probability (random) sampling and non-probability (non-random) sampling.

      Non-probability sampling methods, also known as judgement samples, are based on human choice rather than random selection. These samples are convenient and cheaper than probability sampling methods. Examples of non-probability sampling methods include voluntary sampling, convenience sampling, snowball sampling, and quota sampling.

      Probability sampling methods give a more representative sample of the population than non-probability sampling. In each probability sampling technique, each population element has a known (non-zero) chance of being selected for the sample. Examples of probability sampling methods include simple random sampling, systematic sampling, cluster sampling, stratified sampling, and multistage sampling.

      Simple random sampling is a sample in which every member of the population has an equal chance of being chosen. Systematic sampling involves selecting every kth member of the population. Cluster sampling involves dividing a population into separate groups (called clusters) and selecting a random sample of clusters. Stratified sampling involves dividing a population into groups (strata) and taking a random sample from each strata. Multistage sampling is a more complex method that involves several stages and combines two of more sampling methods.

      Overall, probability sampling methods give a more representative sample of the population, but non-probability sampling methods are often more convenient and cheaper. It is important to choose the appropriate sampling method based on the research question and available resources.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      6.1
      Seconds
  • Question 91 - A team of scientists aimed to examine the prognosis of late-onset Alzheimer's disease...

    Incorrect

    • A team of scientists aimed to examine the prognosis of late-onset Alzheimer's disease using the available evidence. They intend to arrange the evidence in a hierarchy based on their study designs.
      What study design would be placed at the top of their hierarchy?

      Your Answer: Expert opinion

      Correct Answer: Systematic review of cohort studies

      Explanation:

      When investigating prognosis, the hierarchy of study designs starts with a systematic review of cohort studies, followed by a cohort study, follow-up of untreated patients from randomized controlled trials, case series, and expert opinion. The strength of evidence provided by a study depends on its ability to minimize bias and maximize attribution. The Agency for Healthcare Policy and Research hierarchy of study types is widely accepted as reliable, with systematic reviews and meta-analyses of randomized controlled trials at the top, followed by randomized controlled trials, non-randomized intervention studies, observational studies, and non-experimental studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      17.7
      Seconds
  • Question 92 - What is another name for the incidence rate? ...

    Incorrect

    • What is another name for the incidence rate?

      Your Answer: Risk

      Correct Answer: Incidence density

      Explanation:

      Measures of Disease Frequency: Incidence and Prevalence

      Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.

      Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.

      It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.

      Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      11.2
      Seconds
  • Question 93 - What is the percentage of the study's findings that support the internal validity...

    Incorrect

    • What is the percentage of the study's findings that support the internal validity of the two question depression screening test compared to the Beck Depression Inventory?

      Your Answer: Face validity

      Correct Answer: Convergent validity

      Explanation:

      Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      97.9
      Seconds
  • Question 94 - What is the most appropriate way to describe the method of data collection...

    Incorrect

    • What is the most appropriate way to describe the method of data collection used for the Likert scale questionnaire created by the psychiatrist and administered to 100 community patients to better understand their religious needs?

      Your Answer: Interval

      Correct Answer: Ordinal

      Explanation:

      Likert scales are a type of ordinal scale used in surveys to measure attitudes of opinions. Respondents are presented with a series of statements of questions and asked to rate their level of agreement of frequency of occurrence on a scale of options. For instance, a Likert scale question might ask how often someone prays, with response options ranging from never to daily. While the responses are ordered in terms of frequency, the intervals between each option are not necessarily equal of quantifiable. Therefore, Likert scales are considered ordinal rather than interval scales.

      Scales of Measurement in Statistics

      In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.

      Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.

      Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.

      Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      5
      Seconds
  • Question 95 - What is the standardized score (z-score) for a woman whose haemoglobin concentration is...

    Incorrect

    • What is the standardized score (z-score) for a woman whose haemoglobin concentration is 150 g/L, given that the mean haemoglobin concentration for healthy women is 135 g/L and the standard deviation is 15 g/L?

      Your Answer: 15

      Correct Answer: 1

      Explanation:

      Z Scores: A Special Application of Transformation Rules

      Z scores are a unique way of measuring how much and in which direction an item deviates from the mean of its distribution, expressed in units of its standard deviation. To calculate the z score for an observation x from a population with mean and standard deviation, we use the formula z = (x – mean) / standard deviation. For example, if our observation is 150 and the mean and standard deviation are 135 and 15, respectively, then the z score would be 1.0. Z scores are a useful tool for comparing observations from different distributions and for identifying outliers.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      10.4
      Seconds
  • Question 96 - What percentage of values fall within a range of 3 standard deviations above...

    Incorrect

    • What percentage of values fall within a range of 3 standard deviations above and below the mean?

      Your Answer: 68.20%

      Correct Answer: 99.70%

      Explanation:

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      8.5
      Seconds
  • Question 97 - What is the best way to describe the sampling strategy used in the...

    Incorrect

    • What is the best way to describe the sampling strategy used in the medical student's study to estimate the average height of patients with schizophrenia in a psychiatric hospital?

      Your Answer: Cluster sampling

      Correct Answer: Simple random sampling

      Explanation:

      Sampling Methods in Statistics

      When collecting data from a population, it is often impractical and unnecessary to gather information from every single member. Instead, taking a sample is preferred. However, it is crucial that the sample accurately represents the population from which it is drawn. There are two main types of sampling methods: probability (random) sampling and non-probability (non-random) sampling.

      Non-probability sampling methods, also known as judgement samples, are based on human choice rather than random selection. These samples are convenient and cheaper than probability sampling methods. Examples of non-probability sampling methods include voluntary sampling, convenience sampling, snowball sampling, and quota sampling.

      Probability sampling methods give a more representative sample of the population than non-probability sampling. In each probability sampling technique, each population element has a known (non-zero) chance of being selected for the sample. Examples of probability sampling methods include simple random sampling, systematic sampling, cluster sampling, stratified sampling, and multistage sampling.

      Simple random sampling is a sample in which every member of the population has an equal chance of being chosen. Systematic sampling involves selecting every kth member of the population. Cluster sampling involves dividing a population into separate groups (called clusters) and selecting a random sample of clusters. Stratified sampling involves dividing a population into groups (strata) and taking a random sample from each strata. Multistage sampling is a more complex method that involves several stages and combines two of more sampling methods.

      Overall, probability sampling methods give a more representative sample of the population, but non-probability sampling methods are often more convenient and cheaper. It is important to choose the appropriate sampling method based on the research question and available resources.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      10.8
      Seconds
  • Question 98 - If you anticipate that a drug will result in more side-effects than a...

    Incorrect

    • If you anticipate that a drug will result in more side-effects than a placebo, what would be your estimated relative risk of side-effects occurring in the group receiving the drug?

      Your Answer: None of the above

      Correct Answer: >1

      Explanation:

      Disease Rates and Their Interpretation

      Disease rates are a measure of the occurrence of a disease in a population. They are used to establish causation, monitor interventions, and measure the impact of exposure on disease rates. The attributable risk is the difference in the rate of disease between the exposed and unexposed groups. It tells us what proportion of deaths in the exposed group were due to the exposure. The relative risk is the risk of an event relative to exposure. It is calculated by dividing the rate of disease in the exposed group by the rate of disease in the unexposed group. A relative risk of 1 means there is no difference between the two groups. A relative risk of <1 means that the event is less likely to occur in the exposed group, while a relative risk of >1 means that the event is more likely to occur in the exposed group. The population attributable risk is the reduction in incidence that would be observed if the population were entirely unexposed. It can be calculated by multiplying the attributable risk by the prevalence of exposure in the population. The attributable proportion is the proportion of the disease that would be eliminated in a population if its disease rate were reduced to that of the unexposed group.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      6.5
      Seconds
  • Question 99 - How can authors ensure they cover all necessary aspects when writing articles that...

    Correct

    • How can authors ensure they cover all necessary aspects when writing articles that describe formal studies of quality improvement?

      Your Answer: SQUIRE

      Explanation:

      As an AI language model, I do not have personal opinions of beliefs. However, I can provide information and guidance on the standards of reporting for different types of research studies. The guidelines mentioned above are essential for ensuring that research studies are reported accurately and transparently, which is crucial for the scientific community to evaluate and replicate the findings. It is important for researchers to be familiar with these standards and follow them when reporting their studies to ensure the quality and integrity of their research.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      12.1
      Seconds
  • Question 100 - A team of scientists embarked on a research project to determine if a...

    Incorrect

    • A team of scientists embarked on a research project to determine if a new vaccine is effective in preventing a certain disease. They sought to satisfy the criteria outlined by Hill's guidelines for establishing causality.
      What is the primary criterion among Hill's guidelines for establishing causality?

      Your Answer: Consistency

      Correct Answer: Temporality

      Explanation:

      The most crucial factor in Hill’s criteria for causation is temporality, of the temporal relationship between exposure and outcome. It is imperative that the exposure to a potential causal factor, such as factor ‘A’, always occurs before the onset of the disease. This criterion is the only absolute requirement for causation. The other criteria include the strength of the relationship, dose-response relationship, consistency, plausibility, consideration of alternative explanations, experimental evidence, specificity, and coherence.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      5.8
      Seconds
  • Question 101 - What type of data is required to compute the relative risk of odds...

    Incorrect

    • What type of data is required to compute the relative risk of odds ratio?

      Your Answer: Qualitative

      Correct Answer: Dichotomous

      Explanation:

      When outcomes are binary (such as dead of alive), there are various ways to report them, including proportions, percentages, risk, odds, risk ratios, odds ratios, number needed to treat, likelihood ratios, sensitivity, specificity, and pre-test and post-test probability. However, for non-binary data types, different methods of reporting are required.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      17.6
      Seconds
  • Question 102 - What is the nature of the hypothesis that a researcher wants to test...

    Correct

    • What is the nature of the hypothesis that a researcher wants to test regarding the effect of a drug on a person's heart rate?

      Your Answer: One-tailed alternative hypothesis

      Explanation:

      A one-tailed hypothesis indicates a specific direction of association between groups. The researcher not only declares that there will be a distinction between the groups but also defines the direction in which the difference will occur.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      4.3
      Seconds
  • Question 103 - How can confounding be controlled during the analysis stage of a study? ...

    Incorrect

    • How can confounding be controlled during the analysis stage of a study?

      Your Answer: Matching

      Correct Answer: Stratification

      Explanation:

      Stratification is a method of managing confounding by dividing the data into two or more groups where the confounding variable remains constant of varies minimally.

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      3.4
      Seconds
  • Question 104 - The prevalence of depressive disease in a village with an adult population of...

    Incorrect

    • The prevalence of depressive disease in a village with an adult population of 1000 was assessed using a new diagnostic score. The results showed that out of 1000 adults, 200 tested positive for the disease and 800 tested negative. What is the prevalence of depressive disease in this population?

      Your Answer: 25%

      Correct Answer: 20%

      Explanation:

      The prevalence of the disease is 20% as there are currently 200 cases out of a total population of 1000.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      24.7
      Seconds
  • Question 105 - How would you describe the typical of ongoing prevalence of a disease within...

    Incorrect

    • How would you describe the typical of ongoing prevalence of a disease within a specific population?

      Your Answer: Philodemic

      Correct Answer: Endemic

      Explanation:

      Epidemiology Key Terms

      – Epidemic (Outbreak): A rise in disease cases above the anticipated level in a specific population during a particular time frame.
      – Endemic: The regular of anticipated level of disease in a particular population.
      – Pandemic: Epidemics that affect a significant number of individuals across multiple countries, regions, of continents.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      3.4
      Seconds
  • Question 106 - In an economic evaluation study, which of the options below would be considered...

    Incorrect

    • In an economic evaluation study, which of the options below would be considered a direct cost?

      Your Answer:

      Correct Answer: Costs of training staff to provide an intervention

      Explanation:

      Methods of Economic Evaluation

      There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.

      Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.

      Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.

      Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.

      Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.

      Costs in Economic Evaluation Studies

      There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 107 - A study of 30 patients with hypertension compares the effectiveness of a new...

    Incorrect

    • A study of 30 patients with hypertension compares the effectiveness of a new blood pressure medication with standard treatment. 80% of the new treatment group achieved target blood pressure levels at 6 weeks, compared with only 40% of the standard treatment group. What is the number needed to treat for the new treatment?

      Your Answer:

      Correct Answer: 3

      Explanation:

      To calculate the Number Needed to Treat (NNT), we first need to find the Absolute Risk Reduction (ARR), which is calculated by subtracting the Control Event Rate (CER) from the Experimental Event Rate (EER).

      Given that CER is 0.4 and EER is 0.8, we can calculate ARR as follows:

      ARR = CER – EER
      = 0.4 – 0.8
      = -0.4

      Since the ARR is negative, this means that the treatment actually increases the risk of the event occurring. Therefore, we cannot calculate the NNT in this case.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 108 - What is the calculation that the nurse performed to determine the patient's average...

    Incorrect

    • What is the calculation that the nurse performed to determine the patient's average daily calorie intake over a seven day period?

      Your Answer:

      Correct Answer: Arithmetic mean

      Explanation:

      You don’t need to concern yourself with the specifics of the various means. Simply keep in mind that the arithmetic mean is the one utilized in fundamental biostatistics.

      Measures of Central Tendency

      Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.

      The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.

      The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.

      In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 109 - The Delphi method is used to evaluate what? ...

    Incorrect

    • The Delphi method is used to evaluate what?

      Your Answer:

      Correct Answer: Expert consensus

      Explanation:

      The Delphi Method: A Widely Used Technique for Achieving Convergence of Opinion

      The Delphi method is a well-established technique for soliciting expert opinions on real-world knowledge within specific topic areas. The process involves multiple rounds of questionnaires, with each round building on the previous one to achieve convergence of opinion among the participants. However, there are potential issues with the Delphi method, such as the time-consuming nature of the process, low response rates, and the potential for investigators to influence the opinions of the participants. Despite these challenges, the Delphi method remains a valuable tool for generating consensus among experts in various fields.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 110 - A study was conducted to investigate the correlation between body mass index (BMI)...

    Incorrect

    • A study was conducted to investigate the correlation between body mass index (BMI) and mortality in patients with schizophrenia. The study involved a cohort of 1000 patients with schizophrenia who were evaluated by measuring their weight and height, and calculating their BMI. The participants were then monitored for up to 15 years after the study commenced. The BMI levels were classified into three categories (high, average, low). The findings revealed that, after adjusting for age, gender, treatment method, and comorbidities, a high BMI at the beginning of the study was linked to a twofold increase in mortality.
      How is this study best described?

      Your Answer:

      Correct Answer:

      Explanation:

      The study is a prospective cohort study that observes the effect of BMI as an exposure on the group over time, without manipulating any risk factors of interventions.

      Types of Primary Research Studies and Their Advantages and Disadvantages

      Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.

      Type of Question Best Type of Study

      Therapy Randomized controlled trial (RCT), cohort, case control, case series
      Diagnosis Cohort studies with comparison to gold standard test
      Prognosis Cohort studies, case control, case series
      Etiology/Harm RCT, cohort studies, case control, case series
      Prevention RCT, cohort studies, case control, case series
      Cost Economic analysis

      Study Type Advantages Disadvantages

      Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
      Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
      Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
      Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
      Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)

      In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 111 - A new treatment for elderly patients with hypertension is investigated. The study looks...

    Incorrect

    • A new treatment for elderly patients with hypertension is investigated. The study looks at the incidence of stroke after 1 year. The following data is obtained:
      Number who had a stroke vs Number without a stroke
      New drug: 40 vs 160
      Placebo: 100 vs 300
      What is the relative risk reduction?

      Your Answer:

      Correct Answer: 20%

      Explanation:

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 112 - What benefit does conducting a cost-effectiveness analysis offer? ...

    Incorrect

    • What benefit does conducting a cost-effectiveness analysis offer?

      Your Answer:

      Correct Answer: Outcomes are expressed in natural units that are clinically meaningful

      Explanation:

      A major benefit of using cost-effectiveness analysis is that the results are immediately understandable, such as the cost per year of remission from depression. When conducting economic evaluations, costs are typically estimated in a standardized manner across different types of studies, taking into account direct costs (e.g. physician time), indirect costs (e.g. lost productivity from being absent from work), and future costs (e.g. developing diabetes as a result of treatment with clozapine). The primary variation between economic evaluations lies in how outcomes are evaluated.

      Methods of Economic Evaluation

      There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.

      Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.

      Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.

      Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.

      Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.

      Costs in Economic Evaluation Studies

      There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 113 - What is the standard deviation of the sample mean weight of 64 patients...

    Incorrect

    • What is the standard deviation of the sample mean weight of 64 patients diagnosed with paranoid schizophrenia, given that the average weight is 81 kg and the standard deviation is 12 kg?

      Your Answer:

      Correct Answer: 1.5

      Explanation:

      – The standard error of the mean is calculated using the formula: standard deviation / square root (number of patients).
      – In this case, the standard error of the mean is 12 / square root (64).
      – Simplifying this equation gives a standard error of the mean of 12 / 8.

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 114 - How would you rephrase the question to refer to the test's capacity to...

    Incorrect

    • How would you rephrase the question to refer to the test's capacity to identify a person with a disease as positive?

      Your Answer:

      Correct Answer: Sensitivity

      Explanation:

      Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 115 - The QALY is utilized in which of the following approaches for economic assessment?...

    Incorrect

    • The QALY is utilized in which of the following approaches for economic assessment?

      Your Answer:

      Correct Answer: Cost-utility analysis

      Explanation:

      Methods of Economic Evaluation

      There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.

      Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.

      Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.

      Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.

      Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.

      Costs in Economic Evaluation Studies

      There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 116 - A case-control study was conducted to determine if exposure to passive smoking during...

    Incorrect

    • A case-control study was conducted to determine if exposure to passive smoking during childhood increases the risk of nicotine dependence. Two groups were recruited: 200 patients with nicotine dependence and 200 controls without nicotine dependence. Among the patients, 40 reported exposure to parental smoking during childhood, while among the controls, 20 reported such exposure. The odds ratio of developing nicotine dependence after being exposed to passive smoking is:

      Your Answer:

      Correct Answer: 2.25

      Explanation:

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 117 - As the occurrence of a condition decreases, what increases? ...

    Incorrect

    • As the occurrence of a condition decreases, what increases?

      Your Answer:

      Correct Answer: Negative predictive value

      Explanation:

      The prevalence of a condition has an impact on both the PPV and NPV. When the prevalence decreases, the PPV also decreases while the NPV increases.

      Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 118 - Which term is used to refer to the alternative hypothesis in hypothesis testing?...

    Incorrect

    • Which term is used to refer to the alternative hypothesis in hypothesis testing?

      a) Research hypothesis
      b) Statistical hypothesis
      c) Simple hypothesis
      d) Null hypothesis
      e) Composite hypothesis

      Your Answer:

      Correct Answer: Research hypothesis

      Explanation:

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 119 - A masters student had noticed that nearly all of her patients with arthritis...

    Incorrect

    • A masters student had noticed that nearly all of her patients with arthritis were over the age of 50. She was keen to investigate this further to see if there was an association.
      She selected 100 patients with arthritis and 100 controls. of the 100 patients with arthritis, 90 were over the age of 50. of the 100 controls, only 40 were over the age of 50.
      What is the odds ratio?

      Your Answer:

      Correct Answer: 3.77

      Explanation:

      The odds of being married are 3.77 times higher in individuals with panic disorder compared to controls.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 120 - A new drug which may reduce the chance of elderly patients developing arthritis...

    Incorrect

    • A new drug which may reduce the chance of elderly patients developing arthritis is introduced. In one study of 2,000 elderly patients, 1,200 received the new drug and 120 patients developed arthritis. The remaining 800 patients received a placebo and 200 developed arthritis. What is the absolute risk reduction of developing arthritis?

      Your Answer:

      Correct Answer: 15%

      Explanation:

      To calculate the ARR, we first need to find the CER and EER. The CER is the conversion rate of the control group, which is 200 out of 800, of 0.25. The EER is the conversion rate of the experimental group, which is 120 out of 1,200, of 0.1.

      To find the ARR, we subtract the EER from the CER:

      ARR = CER – EER
      ARR = 0.25 – 0.1
      ARR = 0.15

      Therefore, the ARR is 0.15 of 15%.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 121 - A new antihypertensive medication is trialled for adults with high blood pressure. There...

    Incorrect

    • A new antihypertensive medication is trialled for adults with high blood pressure. There are 500 adults in the control group and 300 adults assigned to take the new medication. After 6 months, 200 adults in the control group had high blood pressure compared to 30 adults in the group taking the new medication. What is the relative risk reduction?

      Your Answer:

      Correct Answer: 75%

      Explanation:

      The RRR (Relative Risk Reduction) is calculated by dividing the ARR (Absolute Risk Reduction) by the CER (Control Event Rate). The CER is determined by dividing the number of control events by the total number of participants, which in this case is 200/500 of 0.4. The EER (Experimental Event Rate) is determined by dividing the number of events in the experimental group by the total number of participants, which in this case is 30/300 of 0.1. The ARR is calculated by subtracting the EER from the CER, which is 0.4 – 0.1 = 0.3. Finally, the RRR is calculated by dividing the ARR by the CER, which is 0.3/0.4 of 0.75 (of 75%).

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 122 - What is the GRADE approach used in evidence based medicine and what are...

    Incorrect

    • What is the GRADE approach used in evidence based medicine and what are its characteristics?

      Your Answer:

      Correct Answer: The system can be applied to observational studies

      Explanation:

      Levels and Grades of Evidence in Evidence-Based Medicine

      To evaluate the quality of evidence on a subject of question, levels of grades are used. The traditional hierarchy approach places systematic reviews of randomized control trials at the top and case-series/report at the bottom. However, this approach is overly simplistic as certain research questions cannot be answered using RCTs. To address this, the Oxford Centre for Evidence-Based Medicine introduced their 2011 Levels of Evidence system, which separates the type of study questions and gives a hierarchy for each.

      The grading approach to be aware of is the GRADE system, which classifies the quality of evidence as high, moderate, low, of very low. The process begins by formulating a study question and identifying specific outcomes. Outcomes are then graded as critical of important. The evidence is then gathered and criteria are used to grade the evidence, with the type of evidence being a significant factor. Evidence can be promoted of downgraded based on certain criteria, such as limitations to study quality, inconsistency, uncertainty about directness, imprecise of sparse data, and reporting bias. The GRADE system allows for the promotion of observational studies to high-quality evidence under the right circumstances.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 123 - You record the age of all of your students in your class. You...

    Incorrect

    • You record the age of all of your students in your class. You notice that your data set is skewed. What method would you use to describe the typical age of your students?

      Your Answer:

      Correct Answer: Median

      Explanation:

      When dealing with a data set that is quantitative and measured on a ratio scale, the mean is typically the preferred measure of central tendency. However, if the data is skewed, the median may be a better choice as it is less affected by the skewness of the data.

      Measures of Central Tendency

      Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.

      The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.

      The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.

      In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 124 - What type of bias is commonly associated with case-control studies? ...

    Incorrect

    • What type of bias is commonly associated with case-control studies?

      Your Answer:

      Correct Answer: Recall bias

      Explanation:

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 125 - Which odds ratio, along with its confidence interval, indicates a statistically significant reduction...

    Incorrect

    • Which odds ratio, along with its confidence interval, indicates a statistically significant reduction in the odds?

      Your Answer:

      Correct Answer: 0.7 (0.1 - 0.8)

      Explanation:

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 126 - What is a true statement about searching in PubMed? ...

    Incorrect

    • What is a true statement about searching in PubMed?

      Your Answer:

      Correct Answer: Truncation is generally not a recommended search technique for PubMed

      Explanation:

      Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.

      When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.

      There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 127 - What type of regression is appropriate for analyzing data with dichotomous variables? ...

    Incorrect

    • What type of regression is appropriate for analyzing data with dichotomous variables?

      Your Answer:

      Correct Answer: Logistic

      Explanation:

      Logistic regression is employed when dealing with dichotomous variables, which are variables that have only two possible values, such as live/dead of head/tail.

      Stats: Correlation and Regression

      Correlation and regression are related but not interchangeable terms. Correlation is used to test for association between variables, while regression is used to predict values of dependent variables from independent variables. Correlation can be linear, non-linear, of non-existent, and can be strong, moderate, of weak. The strength of a linear relationship is measured by the correlation coefficient, which can be positive of negative and ranges from very weak to very strong. However, the interpretation of a correlation coefficient depends on the context and purposes. Correlation can suggest association but cannot prove of disprove causation. Linear regression, on the other hand, can be used to predict how much one variable changes when a second variable is changed. Scatter graphs are used in correlation and regression analyses to visually determine if variables are associated and to detect outliers. When constructing a scatter graph, the dependent variable is typically placed on the vertical axis and the independent variable on the horizontal axis.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 128 - A researcher wants to compare the mean age of two groups of participants...

    Incorrect

    • A researcher wants to compare the mean age of two groups of participants who were randomly assigned to either a standard exercise program of a standard exercise program + new supplement. The data collected is parametric and continuous. What is the most appropriate statistical test to use?

      Your Answer:

      Correct Answer: Unpaired t test

      Explanation:

      The two sample unpaired t test is utilized to examine whether the null hypothesis that the two populations related to the two random samples are equivalent is true of not. When dealing with continuous data that is believed to conform to the normal distribution, a t test is suitable, making it appropriate for comparing weight loss between two groups. In contrast, a paired t test is used when the data is dependent, meaning there is a direct correlation between the values in the two samples. This could include the same subject being measured before and after a process change of at different times.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 129 - What does the term external validity in a study refer to? ...

    Incorrect

    • What does the term external validity in a study refer to?

      Your Answer:

      Correct Answer: The degree to which the conclusions in a study would hold for other persons in other places and at other times

      Explanation:

      Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 130 - Which of the following is not a valid type of validity? ...

    Incorrect

    • Which of the following is not a valid type of validity?

      Your Answer:

      Correct Answer: Inter-rater

      Explanation:

      Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 131 - What statement accurately describes population parameters? ...

    Incorrect

    • What statement accurately describes population parameters?

      Your Answer:

      Correct Answer: Parameters tend to have normal distributions

      Explanation:

      Parametric vs Non-Parametric Statistics

      Statistics are used to draw conclusions about a population based on a sample. A parameter is a numerical value that describes a population characteristic, but it is often impossible to know the true value of a parameter without collecting data from every individual in the population. Instead, we take a sample and use statistics to estimate the parameters.

      Parametric statistical procedures assume that the population distribution is normal and that the parameters (such as means and standard deviations) are known. Examples of parametric tests include the t-test, ANOVA, and Pearson coefficient of correlation.

      Non-parametric statistical procedures make few of no assumptions about the population distribution of parameters. Examples of non-parametric tests include the Mann-Whitney Test, Wilcoxon Signed-Rank Test, Kruskal-Wallis Test, and Fisher Exact Probability test.

      Overall, the choice between parametric and non-parametric tests depends on the nature of the data and the research question being asked.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 132 - What is the most suitable significance test to examine the potential association between...

    Incorrect

    • What is the most suitable significance test to examine the potential association between serum level and degree of sedation in patients who are prescribed clozapine, where sedation is measured on a scale of 1-10?

      Your Answer:

      Correct Answer: Logistic regression

      Explanation:

      This scenario involves examining the correlation between two variables: the sedation scale (which is ordinal) and the serum clozapine level (which is a ratio scale). While the serum clozapine level can be measured using arithmetic and is considered a parametric variable, the sedation scale cannot be treated in the same way due to its non-parametric nature. Therefore, the analysis of the correlation between these two variables will need to take into account the limitations of the sedation scale as an ordinal variable.

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 133 - What proportion of adults are expected to have IgE levels exceeding 2 standard...

    Incorrect

    • What proportion of adults are expected to have IgE levels exceeding 2 standard deviations from the mean in a study aimed at establishing the normal reference range for IgE levels in adults, assuming a normal distribution of IgE levels?

      Your Answer:

      Correct Answer: 2.30%

      Explanation:

      Standard Deviation and Standard Error of the Mean

      Standard deviation (SD) and standard error of the mean (SEM) are two important statistical measures used to describe data. SD is a measure of how much the data varies, while SEM is a measure of how precisely we know the true mean of the population. The normal distribution, also known as the Gaussian distribution, is a symmetrical bell-shaped curve that describes the spread of many biological and clinical measurements.

      68.3% of the data lies within 1 SD of the mean, 95.4% of the data lies within 2 SD of the mean, and 99.7% of the data lies within 3 SD of the mean. The SD is calculated by taking the square root of the variance and is expressed in the same units as the data set. A low SD indicates that data points tend to be very close to the mean.

      On the other hand, SEM is an inferential statistic that quantifies the precision of the mean. It is expressed in the same units as the data and is calculated by dividing the SD of the sample mean by the square root of the sample size. The SEM gets smaller as the sample size increases, and it takes into account both the value of the SD and the sample size.

      Both SD and SEM are important measures in statistical analysis, and they are used to calculate confidence intervals and test hypotheses. While SD quantifies scatter, SEM quantifies precision, and both are essential in understanding and interpreting data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 134 - How many people need to be treated with the new drug to prevent...

    Incorrect

    • How many people need to be treated with the new drug to prevent one case of Alzheimer's disease in individuals with a positive family history, based on the results of a randomised controlled trial with 1,000 people in group A taking the drug and 1,400 people in group B taking a placebo, where the Alzheimer's rate was 2% in group A and 4% in group B?

      Your Answer:

      Correct Answer: 50

      Explanation:

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 135 - Which option is not a type of descriptive statistic? ...

    Incorrect

    • Which option is not a type of descriptive statistic?

      Your Answer:

      Correct Answer: Student's t-test

      Explanation:

      A t-test is a statistical method used to determine if there is a significant difference between the means of two groups. It is a type of statistical inference.

      Types of Statistics: Descriptive and Inferential

      Statistics can be divided into two categories: descriptive and inferential. Descriptive statistics are used to describe and summarize data without making any generalizations beyond the data at hand. On the other hand, inferential statistics are used to make inferences about a population based on sample data.

      Descriptive statistics are useful for identifying patterns and trends in data. Common measures used to describe a data set include measures of central tendency (such as the mean, median, and mode) and measures of variability of dispersion (such as the standard deviation of variance).

      Inferential statistics, on the other hand, are used to make predictions of draw conclusions about a population based on sample data. These statistics are also used to determine the probability that observed differences between groups are reliable and not due to chance.

      Overall, both descriptive and inferential statistics play important roles in analyzing and interpreting data. Descriptive statistics help us understand the characteristics of a data set, while inferential statistics allow us to make predictions and draw conclusions about larger populations.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 136 - What term is used to describe an association between two variables that is...

    Incorrect

    • What term is used to describe an association between two variables that is influenced by a confounding factor?

      Your Answer:

      Correct Answer: Indirect

      Explanation:

      Stats Association and Causation

      When two variables are found to be more commonly present together, they are said to be associated. However, this association can be of three types: spurious, indirect, of direct. Spurious association is one that has arisen by chance and is not real, while indirect association is due to the presence of another factor, known as a confounding variable. Direct association, on the other hand, is a true association not linked by a third variable.

      Once an association has been established, the next question is whether it is causal. To determine causation, the Bradford Hill Causal Criteria are used. These criteria include strength, temporality, specificity, coherence, and consistency. The stronger the association, the more likely it is to be truly causal. Temporality refers to whether the exposure precedes the outcome. Specificity asks whether the suspected cause is associated with a specific outcome of disease. Coherence refers to whether the association fits with other biological knowledge. Finally, consistency asks whether the same association is found in many studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 137 - What is necessary to compute the standard deviation? ...

    Incorrect

    • What is necessary to compute the standard deviation?

      Your Answer:

      Correct Answer: Mean

      Explanation:

      The standard deviation represents the typical amount that the data points deviate from the mean.

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 138 - What is the term coined by Robert Rosenthal that refers to the bias...

    Incorrect

    • What is the term coined by Robert Rosenthal that refers to the bias that can result from the non-publication of a few studies with negative of inconclusive results, leading to a significant impact on research in a specific field?

      Your Answer:

      Correct Answer: File drawer problem

      Explanation:

      Publication bias refers to the tendency of researchers, editors, and pharmaceutical companies to favor the publication of studies with positive results over those with negative of inconclusive results. This bias can have various causes and can result in a skewed representation of the literature. The file drawer problem refers to the phenomenon of unpublished negative studies. HARKing, of hypothesizing after the results are known, is a form of outcome reporting bias where outcomes are selectively reported based on the strength and direction of observed associations. Begg’s funnel plot is an analytical tool used to quantify the presence of publication bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 139 - A worldwide epidemic of influenza is known as a: ...

    Incorrect

    • A worldwide epidemic of influenza is known as a:

      Your Answer:

      Correct Answer: Pandemic

      Explanation:

      Epidemiology Key Terms

      – Epidemic (Outbreak): A rise in disease cases above the anticipated level in a specific population during a particular time frame.
      – Endemic: The regular of anticipated level of disease in a particular population.
      – Pandemic: Epidemics that affect a significant number of individuals across multiple countries, regions, of continents.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 140 - A study examines the effectiveness of adding a new antiplatelet drug to aspirin...

    Incorrect

    • A study examines the effectiveness of adding a new antiplatelet drug to aspirin for patients over the age of 60 who have had a stroke. A total of 170 patients are enrolled, with 120 receiving the new drug in addition to aspirin and the remaining 50 receiving only aspirin. After 5 years, it is found that 18 patients who received the new drug experienced a subsequent stroke, while only 10 patients who received aspirin alone had a further stroke. What is the number needed to treat?

      Your Answer:

      Correct Answer: 20

      Explanation:

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 141 - What is the likelihood of weight gain when a patient is prescribed risperidone,...

    Incorrect

    • What is the likelihood of weight gain when a patient is prescribed risperidone, given that 6 out of 10 patients experience weight gain as a side effect?

      Your Answer:

      Correct Answer: 1.5

      Explanation:

      1. The odds of an event happening are calculated by dividing the number of times it occurs by the number of times it does not occur.
      2. The odds of an event happening in a given situation are 6 to 4.
      3. This translates to a ratio of 1.5, meaning the event is more likely to happen than not.
      4. The risk of the event happening is calculated by dividing the number of times it occurs by the total number of possible outcomes.
      5. In this case, the risk of the event happening is 6 out of 10.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 142 - Which statistical test is best suited for analyzing the difference in blood pressure...

    Incorrect

    • Which statistical test is best suited for analyzing the difference in blood pressure between the two groups of patients who were given either the established of new anti-hypertensive medication in a randomized controlled trial with a crossover design?

      Your Answer:

      Correct Answer: Paired t-test

      Explanation:

      The appropriate statistical test to analyze the research question of the difference between two related groups with a dependent variable of change in BP (ratio) and parametric data is a paired t-test.

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 143 - If the weight of patients enrolled for a trial follows a normal distribution...

    Incorrect

    • If the weight of patients enrolled for a trial follows a normal distribution with a mean of 90kg and a standard deviation of 5kg, what is the probability that a randomly selected patient weighs between 85 and 95 kg?

      Your Answer:

      Correct Answer: 68.20%

      Explanation:

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 144 - What is the average age of the 7 women who participated in the...

    Incorrect

    • What is the average age of the 7 women who participated in the qualitative study on self-harm among females, with ages of 18, 22, 40, 17, 23, 18, and 44?

      Your Answer:

      Correct Answer: 26

      Explanation:

      Measures of Central Tendency

      Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.

      The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.

      The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.

      In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 145 - What is the term used to describe the proposed idea that a researcher...

    Incorrect

    • What is the term used to describe the proposed idea that a researcher is attempting to validate?

      Your Answer:

      Correct Answer: Alternative hypothesis

      Explanation:

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 146 - A university lecturer is interested in determining if the psychology students would like...

    Incorrect

    • A university lecturer is interested in determining if the psychology students would like more training on working with children. They know that there are 5000 psychology students and of these 60% are under the age of 25 and 40% are 25 of older. To avoid any potential age bias, they create two separate lists of students, one for those under 25 and one for those 25 of older. From these lists, they take a random sample from each list to ensure that they have an equal number of students from each age group. They then ask each selected student if they would like more training on working with children.

      How would you describe the sampling strategy of this study?

      Your Answer:

      Correct Answer: Stratified sampling

      Explanation:

      Sampling Methods in Statistics

      When collecting data from a population, it is often impractical and unnecessary to gather information from every single member. Instead, taking a sample is preferred. However, it is crucial that the sample accurately represents the population from which it is drawn. There are two main types of sampling methods: probability (random) sampling and non-probability (non-random) sampling.

      Non-probability sampling methods, also known as judgement samples, are based on human choice rather than random selection. These samples are convenient and cheaper than probability sampling methods. Examples of non-probability sampling methods include voluntary sampling, convenience sampling, snowball sampling, and quota sampling.

      Probability sampling methods give a more representative sample of the population than non-probability sampling. In each probability sampling technique, each population element has a known (non-zero) chance of being selected for the sample. Examples of probability sampling methods include simple random sampling, systematic sampling, cluster sampling, stratified sampling, and multistage sampling.

      Simple random sampling is a sample in which every member of the population has an equal chance of being chosen. Systematic sampling involves selecting every kth member of the population. Cluster sampling involves dividing a population into separate groups (called clusters) and selecting a random sample of clusters. Stratified sampling involves dividing a population into groups (strata) and taking a random sample from each strata. Multistage sampling is a more complex method that involves several stages and combines two of more sampling methods.

      Overall, probability sampling methods give a more representative sample of the population, but non-probability sampling methods are often more convenient and cheaper. It is important to choose the appropriate sampling method based on the research question and available resources.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 147 - Which of the following statements accurately describes the standard error of the mean?...

    Incorrect

    • Which of the following statements accurately describes the standard error of the mean?

      Your Answer:

      Correct Answer: Gets smaller as the sample size increases

      Explanation:

      As the sample size (n) increases, the standard error of the mean (SEM) decreases. This is because the SEM is inversely proportional to the square root of the sample size (n). As n gets larger, the denominator of the SEM equation gets larger, causing the overall value of the SEM to decrease. This means that larger sample sizes provide more accurate estimates of the population mean, as the calculated sample mean is expected to be closer to the true population mean.

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 148 - Which statement accurately describes the measurement of serum potassium in 1,000 patients with...

    Incorrect

    • Which statement accurately describes the measurement of serum potassium in 1,000 patients with anorexia nervosa, where the mean potassium is 4.6 mmol/l and the standard deviation is 0.3 mmol/l?

      Your Answer:

      Correct Answer: 68.3% of values lie between 4.3 and 4.9 mmol/l

      Explanation:

      Standard Deviation and Standard Error of the Mean

      Standard deviation (SD) and standard error of the mean (SEM) are two important statistical measures used to describe data. SD is a measure of how much the data varies, while SEM is a measure of how precisely we know the true mean of the population. The normal distribution, also known as the Gaussian distribution, is a symmetrical bell-shaped curve that describes the spread of many biological and clinical measurements.

      68.3% of the data lies within 1 SD of the mean, 95.4% of the data lies within 2 SD of the mean, and 99.7% of the data lies within 3 SD of the mean. The SD is calculated by taking the square root of the variance and is expressed in the same units as the data set. A low SD indicates that data points tend to be very close to the mean.

      On the other hand, SEM is an inferential statistic that quantifies the precision of the mean. It is expressed in the same units as the data and is calculated by dividing the SD of the sample mean by the square root of the sample size. The SEM gets smaller as the sample size increases, and it takes into account both the value of the SD and the sample size.

      Both SD and SEM are important measures in statistical analysis, and they are used to calculate confidence intervals and test hypotheses. While SD quantifies scatter, SEM quantifies precision, and both are essential in understanding and interpreting data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 149 - What is the most appropriate indicator of internal consistency? ...

    Incorrect

    • What is the most appropriate indicator of internal consistency?

      Your Answer:

      Correct Answer: Split half correlation

      Explanation:

      Cronbach’s Alpha is a statistical measure used to assess the internal consistency of a test of questionnaire. It is a widely used method to determine the reliability of a test by measuring the extent to which the items on the test are measuring the same construct. Cronbach’s Alpha ranges from 0 to 1, with higher values indicating greater internal consistency. A value of 0.7 of higher is generally considered acceptable for research purposes. The calculation of Cronbach’s Alpha involves comparing the variance of the total score with the variance of the individual items. It is important to note that Cronbach’s Alpha assumes that all items are measuring the same construct, and therefore, it may not be appropriate for tests that measure multiple constructs.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 150 - Which of the following can be used to represent the overall number of...

    Incorrect

    • Which of the following can be used to represent the overall number of individuals affected by a disease during a specific period?

      Your Answer:

      Correct Answer: Period prevalence

      Explanation:

      Measures of Disease Frequency: Incidence and Prevalence

      Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.

      Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.

      It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.

      Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 151 - What resource is committed to offering complete articles of systematic reviews on the...

    Incorrect

    • What resource is committed to offering complete articles of systematic reviews on the impacts of healthcare interventions?

      Your Answer:

      Correct Answer: CDSR

      Explanation:

      When faced with a question, it’s helpful to consider what the letters in the question might represent, even if you don’t know the answer right away. Don’t become overwhelmed and keep this strategy in mind.

      Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.

      When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.

      There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 152 - A new clinical trial has found a correlation between alcohol consumption and lung...

    Incorrect

    • A new clinical trial has found a correlation between alcohol consumption and lung cancer. Considering the well-known link between alcohol consumption and smoking, what is the most probable explanation for this new association?

      Your Answer:

      Correct Answer: Confounding

      Explanation:

      The observed link between alcohol consumption and lung cancer is likely due to confounding factors, such as cigarette smoking. Confounding variables are those that are associated with both the independent and dependent variables, in this case, alcohol consumption and lung cancer.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 153 - Which statistical test is appropriate for analyzing normally distributed data that is measured?...

    Incorrect

    • Which statistical test is appropriate for analyzing normally distributed data that is measured?

      Your Answer:

      Correct Answer: Independent t-test

      Explanation:

      The t-test is appropriate for analyzing data that meets parametric assumptions, while other tests are more suitable for non-parametric data.

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 154 - What is a common tool used to help determine the appropriate sample size...

    Incorrect

    • What is a common tool used to help determine the appropriate sample size for qualitative research?

      Your Answer:

      Correct Answer: Saturation

      Explanation:

      Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 155 - What is the meaning of the C in the PICO model utilized in...

    Incorrect

    • What is the meaning of the C in the PICO model utilized in evidence-based medicine?

      Your Answer:

      Correct Answer: Comparison

      Explanation:

      Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.

      When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.

      There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 156 - A study is designed to assess a new proton pump inhibitor (PPI) in...

    Incorrect

    • A study is designed to assess a new proton pump inhibitor (PPI) in middle-aged patients who are taking aspirin. The new PPI is given to 120 patients whilst a control group of 240 is given the standard PPI. Over a five year period 24 of the group receiving the new PPI had an upper GI bleed compared to 60 who received the standard PPI. What is the absolute risk reduction?

      Your Answer:

      Correct Answer: 5%

      Explanation:

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 157 - What statement accurately describes the mean? ...

    Incorrect

    • What statement accurately describes the mean?

      Your Answer:

      Correct Answer: Is sensitive to a change in any value in the data set

      Explanation:

      Measures of Central Tendency

      Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.

      The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.

      The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.

      In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 158 - Which of the following statements accurately describes significance tests? ...

    Incorrect

    • Which of the following statements accurately describes significance tests?

      Your Answer:

      Correct Answer: Chi-squared test is used to compare non-parametric data

      Explanation:

      The chi-squared test is a statistical test that does not rely on any assumptions about the underlying distribution of the data, making it a non-parametric test.

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 159 - What topics do the STARD guidelines provide recommendations for? ...

    Incorrect

    • What topics do the STARD guidelines provide recommendations for?

      Your Answer:

      Correct Answer: Studies of diagnostic accuracy

      Explanation:

      The aim of the STARD initiative is to enhance the precision and comprehensiveness of reporting diagnostic accuracy studies, enabling readers to evaluate the study’s potential for bias (internal validity) and generalizability (external validity). The STARD statement comprises a checklist of 25 items and suggests utilizing a flow diagram that outlines the study’s design and patient flow.

      As an AI language model, I do not have personal opinions of beliefs. However, I can provide information and guidance on the standards of reporting for different types of research studies. The guidelines mentioned above are essential for ensuring that research studies are reported accurately and transparently, which is crucial for the scientific community to evaluate and replicate the findings. It is important for researchers to be familiar with these standards and follow them when reporting their studies to ensure the quality and integrity of their research.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 160 - In scientific research, what variable type has traditionally been used to record the...

    Incorrect

    • In scientific research, what variable type has traditionally been used to record the age of study participants?

      Your Answer:

      Correct Answer: Binary

      Explanation:

      Gender has traditionally been recorded as either male of female, creating a binary of dichotomous variable. Other categorical variables, such as eye color and ethnicity, can be grouped into two or more categories. Continuous variables, such as temperature, height, weight, and age, can be placed anywhere on a scale and have mathematical properties. Ordinal variables allow for ranking, but do not allow for direct mathematical comparisons between values.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 161 - What is a correct statement about funnel plots? ...

    Incorrect

    • What is a correct statement about funnel plots?

      Your Answer:

      Correct Answer: Each dot represents a separate study result

      Explanation:

      An asymmetric funnel plot may indicate the presence of publication bias, although this is not a definitive confirmation. The x-axis typically represents a measure of effect, such as the risk ratio of odds ratio, although other measures may also be used.

      Stats Publication Bias

      Publication bias refers to the tendency for studies with positive findings to be published more than studies with negative findings, leading to incomplete data sets in meta-analyses and erroneous conclusions. Graphical methods such as funnel plots, Galbraith plots, ordered forest plots, and normal quantile plots can be used to detect publication bias. Funnel plots are the most commonly used and offer an easy visual way to ensure that published literature is evenly weighted. The x-axis represents the effect size, and the y-axis represents the study size. A symmetrical, inverted funnel shape indicates that publication bias is unlikely, while an asymmetrical funnel indicates a relationship between treatment effect and study size, indicating either publication bias of small study effects.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 162 - Which of the following is not a factor considered when determining causality? ...

    Incorrect

    • Which of the following is not a factor considered when determining causality?

      Your Answer:

      Correct Answer: Sensitivity

      Explanation:

      Stats Association and Causation

      When two variables are found to be more commonly present together, they are said to be associated. However, this association can be of three types: spurious, indirect, of direct. Spurious association is one that has arisen by chance and is not real, while indirect association is due to the presence of another factor, known as a confounding variable. Direct association, on the other hand, is a true association not linked by a third variable.

      Once an association has been established, the next question is whether it is causal. To determine causation, the Bradford Hill Causal Criteria are used. These criteria include strength, temporality, specificity, coherence, and consistency. The stronger the association, the more likely it is to be truly causal. Temporality refers to whether the exposure precedes the outcome. Specificity asks whether the suspected cause is associated with a specific outcome of disease. Coherence refers to whether the association fits with other biological knowledge. Finally, consistency asks whether the same association is found in many studies.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 163 - Six men in a study on the sleep inducing effects of melatonin are...

    Incorrect

    • Six men in a study on the sleep inducing effects of melatonin are aged 52, 55, 56, 58, 59, and 92. What is the median age of the men included in the study?

      Your Answer:

      Correct Answer: 57

      Explanation:

      – The median is the point with half the values above and half below.
      – In the given data set, there are an even number of values.
      – The median value is halfway between the two middle values.
      – The middle values are 56 and 58.
      – Therefore, the median is (56 + 58) / 2.

      Measures of Central Tendency

      Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.

      The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.

      The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.

      In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 164 - It has been proposed that individuals who develop schizophrenia may have subtle brain...

    Incorrect

    • It has been proposed that individuals who develop schizophrenia may have subtle brain abnormalities present in utero, which predispose them to experiencing obstetric complications during birth. What term best describes this proposed explanation for the association between schizophrenia and birth complications?

      Your Answer:

      Correct Answer: Reverse causality

      Explanation:

      Common Biases and Errors in Research

      Reverse causality occurs when a risk factor appears to cause an illness, but in reality, it is a consequence of the illness. Information bias is a type of error that can occur in research. Two examples of information bias are observer bias and recall bias. Observer bias happens when the experimenter’s biases affect the study’s findings. Recall bias occurs when participants in the case and control groups have different levels of accuracy in their recollections.

      There are two types of errors in research: Type I and Type II. A Type I error is when a true null hypothesis is incorrectly rejected, resulting in a false positive. A Type II error is when a false null hypothesis is not rejected, resulting in a false negative. It is essential to be aware of these biases and errors to ensure accurate and reliable research findings.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 165 - What is the most suitable statistical test to compare the calcium levels of...

    Incorrect

    • What is the most suitable statistical test to compare the calcium levels of males and females who developed inflammatory bowel disease in childhood, considering that calcium levels in this population are normally distributed?

      Your Answer:

      Correct Answer: Unpaired t-test

      Explanation:

      The appropriate statistical test for the research question of comparing calcium levels between two unrelated groups is an unpaired/independent t-test, as the data is parametric and the samples are independent. This means that the scores of one group do not affect the other, and there is no meaningful way to pair them.

      Dependent samples, on the other hand, are related to each other and can occur in two scenarios. One scenario is when a group is measured twice, such as in a pretest-posttest situation. The other scenario is when an observation in one sample is matched with an observation in the second sample.

      For example, if quality inspectors want to compare two laboratories to determine whether their blood tests give similar results, they would need to use a paired t-test. This is because both labs tested blood specimens from the same 10 children, making the test results dependent. The paired t-test is based on the assumption that samples are dependent.

      Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 166 - A team of scientists plans to carry out a placebo-controlled randomized trial to...

    Incorrect

    • A team of scientists plans to carry out a placebo-controlled randomized trial to assess the effectiveness of a new medication for treating hypertension in elderly patients. They aim to prevent patients from knowing whether they are receiving the medication of the placebo.
      What type of bias are they trying to eliminate?

      Your Answer:

      Correct Answer: Performance bias

      Explanation:

      To prevent bias in the study, the researchers are implementing patient blinding to prevent performance bias, as knowledge of whether they are taking venlafaxine of a placebo, of which arm of the study they are in, could impact the patient’s behavior. Additionally, investigators must also be blinded to avoid measurement bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 167 - How can the prevalence of schizophrenia in the UK population be characterized by...

    Incorrect

    • How can the prevalence of schizophrenia in the UK population be characterized by the consistent finding of approximately 1%?

      Your Answer:

      Correct Answer: Endemic

      Explanation:

      Epidemiology Key Terms

      – Epidemic (Outbreak): A rise in disease cases above the anticipated level in a specific population during a particular time frame.
      – Endemic: The regular of anticipated level of disease in a particular population.
      – Pandemic: Epidemics that affect a significant number of individuals across multiple countries, regions, of continents.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 168 - Calculate the median value from the following values:
    1, 3, 3, 3, 4, 5,...

    Incorrect

    • Calculate the median value from the following values:
      1, 3, 3, 3, 4, 5, 5, 6, 6, 6, 6

      Your Answer:

      Correct Answer: 5

      Explanation:

      Measures of Central Tendency

      Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.

      The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.

      The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.

      In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 169 - How would you rephrase the question Which of the following refers to the...

    Incorrect

    • How would you rephrase the question Which of the following refers to the proportion of people scoring positive on a test that actually have the condition?

      Your Answer:

      Correct Answer: Positive predictive value

      Explanation:

      Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 170 - What type of data representation is used in a box and whisker plot?...

    Incorrect

    • What type of data representation is used in a box and whisker plot?

      Your Answer:

      Correct Answer: Median

      Explanation:

      Box and whisker plots are a useful tool for displaying information about the range, median, and quartiles of a data set. The whiskers only contain values within 1.5 times the interquartile range (IQR), and any values outside of this range are considered outliers and displayed as dots. The IQR is the difference between the 3rd and 1st quartiles, which divide the data set into quarters. Quartiles can also be used to determine the percentage of observations that fall below a certain value. However, quartiles and ranges have limitations because they do not take into account every score in a data set. To get a more representative idea of spread, measures such as variance and standard deviation are needed. Box plots can also provide information about the shape of a data set, such as whether it is skewed or symmetric. Notched boxes on the plot represent the confidence intervals of the median values.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 171 - How do you calculate the positive predictive value accurately? ...

    Incorrect

    • How do you calculate the positive predictive value accurately?

      Your Answer:

      Correct Answer: TP / (TP + FP)

      Explanation:

      Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 172 - A new medication aimed at preventing age-related macular degeneration (AMD) is being tested...

    Incorrect

    • A new medication aimed at preventing age-related macular degeneration (AMD) is being tested in clinical trials. One hundred patients over the age of 60 with early signs of AMD are given the new medication. Over a three month period, 10 of these patients experience progression of their AMD. In the control group, there are 300 patients over the age of 60 with early signs of AMD who are given a placebo. During the same time period, 50 of these patients experience progression of their AMD. What is the relative risk of AMD progression while taking the new medication?

      Your Answer:

      Correct Answer: 0.6

      Explanation:

      The relative risk (RR) is calculated by dividing the exposure event rate (EER) by the control event rate (CER). In this case, the EER is 10 out of 100 (0.10) and the CER is 50 out of 300 (0.166). Therefore, the RR is calculated as 0.10 divided by 0.166, which equals 0.6.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 173 - What is the term used to describe the study design where a margin...

    Incorrect

    • What is the term used to describe the study design where a margin is set for the mean reduction of PANSS score, and if the confidence interval of the difference between the new drug and olanzapine falls within this margin, the trial is considered successful?

      Your Answer:

      Correct Answer: Equivalence trial

      Explanation:

      Study Designs for New Drugs: Options and Considerations

      When launching a new drug, there are various study design options available. One common approach is a placebo-controlled trial, which can provide strong evidence but may be deemed unethical if established treatments are available. Additionally, it does not allow for a comparison with standard treatments. Therefore, statisticians must decide whether the trial aims to demonstrate superiority, equivalence, of non-inferiority to an existing treatment.

      Superiority trials may seem like the obvious choice, but they require a large sample size to show a significant benefit over an existing treatment. Equivalence trials define an equivalence margin on a specified outcome, and if the confidence interval of the difference between the two drugs falls within this margin, the drugs are assumed to have a similar effect. Non-inferiority trials are similar to equivalence trials, but only the lower confidence interval needs to fall within the equivalence margin. These trials require smaller sample sizes, and once a drug has been shown to be non-inferior, larger studies may be conducted to demonstrate superiority.

      It is important to note that drug companies may not necessarily aim to show superiority over an existing product. If they can demonstrate that their product is equivalent of even non-inferior, they may compete on price of convenience. Overall, the choice of study design depends on various factors, including ethical considerations, sample size, and the desired outcome.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 174 - What is the purpose of using Cohen's kappa coefficient? ...

    Incorrect

    • What is the purpose of using Cohen's kappa coefficient?

      Your Answer:

      Correct Answer: Inter-rater reliability

      Explanation:

      Kappa is used to assess the consistency of agreement between different raters.

      Understanding the Kappa Statistic for Measuring Interobserver Variation

      The kappa statistic, also known as Cohen’s kappa coefficient, is a useful tool for quantifying the level of agreement between independent observers. This measure can be applied in any situation where multiple observers are evaluating the same thing, such as in medical diagnoses of research studies. The kappa coefficient ranges from 0 to 1, with 0 indicating complete disagreement and 1 indicating perfect agreement. By using the kappa statistic, researchers and practitioners can gain insight into the level of interobserver variation present in their data, which can help to improve the accuracy and reliability of their findings. Overall, the kappa statistic is a valuable tool for understanding and measuring interobserver variation in a variety of contexts.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 175 - A new test is developed to screen for dementia in elderly patients. Trials...

    Incorrect

    • A new test is developed to screen for dementia in elderly patients. Trials have shown it has a sensitivity for detecting clinically significant dementia of 80% but a specificity of 60%. What is the likelihood ratio for a positive test result?

      Your Answer:

      Correct Answer: 2

      Explanation:

      The likelihood ratio for a positive test result is 2, which means that the probability of a positive test result in a person with the condition is twice as high as the probability of a positive test result in a person without the condition.

      Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 176 - Through what method is data collected in the Delphi technique? ...

    Incorrect

    • Through what method is data collected in the Delphi technique?

      Your Answer:

      Correct Answer: Questionnaires

      Explanation:

      The Delphi Method: A Widely Used Technique for Achieving Convergence of Opinion

      The Delphi method is a well-established technique for soliciting expert opinions on real-world knowledge within specific topic areas. The process involves multiple rounds of questionnaires, with each round building on the previous one to achieve convergence of opinion among the participants. However, there are potential issues with the Delphi method, such as the time-consuming nature of the process, low response rates, and the potential for investigators to influence the opinions of the participants. Despite these challenges, the Delphi method remains a valuable tool for generating consensus among experts in various fields.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 177 - What type of scale does the Beck Depression Inventory belong to? ...

    Incorrect

    • What type of scale does the Beck Depression Inventory belong to?

      Your Answer:

      Correct Answer: Ordinal

      Explanation:

      The Beck Depression Inventory cannot be classified as a ratio of interval scale as the scores do not have a consistent and meaningful numerical value. Instead, it is considered an ordinal scale where scores can be ranked in order of severity, but the difference between scores may not be equal in terms of the level of depression experienced. For example, a change from 8 to 13 may be more significant than a change from 35 to 40.

      Scales of Measurement in Statistics

      In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.

      Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.

      Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.

      Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 178 - What method did the researchers use to ensure the accuracy and credibility of...

    Incorrect

    • What method did the researchers use to ensure the accuracy and credibility of their findings in the qualitative study on antidepressants?

      Your Answer:

      Correct Answer: Member checking

      Explanation:

      To ensure validity in qualitative studies, a technique called member checking of respondent validation is used. This involves interviewing a subset of the participants (typically around 11) to confirm that their perspectives align with the study’s findings.

      Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 179 - Which of the following options is not a possible value for Pearson's correlation...

    Incorrect

    • Which of the following options is not a possible value for Pearson's correlation coefficient?

      Your Answer:

      Correct Answer: 1.5

      Explanation:

      Stats: Correlation and Regression

      Correlation and regression are related but not interchangeable terms. Correlation is used to test for association between variables, while regression is used to predict values of dependent variables from independent variables. Correlation can be linear, non-linear, of non-existent, and can be strong, moderate, of weak. The strength of a linear relationship is measured by the correlation coefficient, which can be positive of negative and ranges from very weak to very strong. However, the interpretation of a correlation coefficient depends on the context and purposes. Correlation can suggest association but cannot prove of disprove causation. Linear regression, on the other hand, can be used to predict how much one variable changes when a second variable is changed. Scatter graphs are used in correlation and regression analyses to visually determine if variables are associated and to detect outliers. When constructing a scatter graph, the dependent variable is typically placed on the vertical axis and the independent variable on the horizontal axis.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 180 - What statement accurately describes measures of dispersion? ...

    Incorrect

    • What statement accurately describes measures of dispersion?

      Your Answer:

      Correct Answer: The standard error indicates how close the statistical mean is to the population mean

      Explanation:

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 181 - Which statement accurately reflects the standard mortality ratio of a disease in a...

    Incorrect

    • Which statement accurately reflects the standard mortality ratio of a disease in a sampled population that is determined to be 1.4?

      Your Answer:

      Correct Answer: There were 40% more fatalities from the disease in this population compared to the reference population

      Explanation:

      Calculation of Standardised Mortality Ratio (SMR)

      To calculate the SMR, age and sex-specific death rates in the standard population are obtained. An estimate for the number of people in each category for both the standard and study populations is needed. The number of expected deaths in each age-sex group of the study population is calculated by multiplying the age-sex-specific rates in the standard population by the number of people in each category of the study population. The sum of all age- and sex-specific expected deaths gives the expected number of deaths for the whole study population. The observed number of deaths is then divided by the expected number of deaths to obtain the SMR.

      The SMR can be standardised using the direct of indirect method. The direct method is used when the age-sex-specific rates for the study population and the age-sex-structure of the standard population are known. The indirect method is used when the age-specific rates for the study population are unknown of not available. This method uses the observed number of deaths in the study population and compares it to the number of deaths that would be expected if the age distribution was the same as that of the standard population.

      The SMR can be interpreted as follows: an SMR less than 1.0 indicates fewer than expected deaths in the study population, an SMR of 1.0 indicates the number of observed deaths equals the number of expected deaths in the study population, and an SMR greater than 1.0 indicates more than expected deaths in the study population (excess deaths). It is sometimes expressed after multiplying by 100.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 182 - One of the following statements that describes a type I error is the...

    Incorrect

    • One of the following statements that describes a type I error is the rejection of a true null hypothesis.

      Your Answer:

      Correct Answer: The null hypothesis is rejected when it is true

      Explanation:

      Making a false positive conclusion by rejecting the null hypothesis.

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 183 - Which variable classification is not included in Stevens' typology? ...

    Incorrect

    • Which variable classification is not included in Stevens' typology?

      Your Answer:

      Correct Answer: Ranked

      Explanation:

      Stevens suggested that scales can be categorized into one of four types based on measurements.

      Scales of Measurement in Statistics

      In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.

      Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.

      Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.

      Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 184 - In a randomised controlled trial investigating the initial management of sexual dysfunction with...

    Incorrect

    • In a randomised controlled trial investigating the initial management of sexual dysfunction with two drugs, some patients withdraw from the study due to medication-related adverse effects. What is the appropriate method for analysing the resulting data?

      Your Answer:

      Correct Answer: Include the patients who drop out in the final data set

      Explanation:

      Intention to Treat Analysis in Randomized Controlled Trials

      Intention to treat analysis is a statistical method used in randomized controlled trials to analyze all patients who were randomly assigned to a treatment group, regardless of whether they completed of received the treatment. This approach is used to avoid the potential biases that may arise from patients dropping out of switching between treatment groups. By analyzing all patients according to their original treatment assignment, intention to treat analysis provides a more accurate representation of the true treatment effects. This method is widely used in clinical trials to ensure that the results are reliable and unbiased.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 185 - What category does country of origin fall under in terms of data classification?...

    Incorrect

    • What category does country of origin fall under in terms of data classification?

      Your Answer:

      Correct Answer: Nominal

      Explanation:

      Scales of Measurement in Statistics

      In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.

      Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.

      Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.

      Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 186 - What percentage of the data set falls below the upper quartile when considering...

    Incorrect

    • What percentage of the data set falls below the upper quartile when considering the interquartile range?

      Your Answer:

      Correct Answer: 75%

      Explanation:

      Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 187 - What does a smaller p-value indicate in terms of the strength of evidence?...

    Incorrect

    • What does a smaller p-value indicate in terms of the strength of evidence?

      Your Answer:

      Correct Answer: The alternative hypothesis

      Explanation:

      A p-value represents the likelihood of rejecting a null hypothesis that is actually true. A smaller p-value indicates a lower chance of mistakenly rejecting the null hypothesis, providing evidence in favor of the alternative hypothesis.

      Understanding Hypothesis Testing in Statistics

      In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.

      The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.

      Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.

      P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 188 - A study reports that 76 percent of the subjects receiving fluvoxamine versus 29...

    Incorrect

    • A study reports that 76 percent of the subjects receiving fluvoxamine versus 29 percent of the placebo group were treatment responders. Based on this data, what is the number needed to treat?

      Your Answer:

      Correct Answer: 2.12

      Explanation:

      To determine the number needed to treat (NNT), we first calculated the absolute risk reduction (ARR) using the formula ARR = CER – EER, where CER is the control event rate and EER is the experimental event rate. In this case, the ARR was 0.47, which is the reciprocal of the NNT. Therefore, the NNT was calculated as 2.12. This means that for every two patients treated with the active medication, at least one patient will have a better outcome compared to those treated with a placebo.

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 189 - What is the term used to describe a test that initially appears to...

    Incorrect

    • What is the term used to describe a test that initially appears to measure what it is intended to measure?

      Your Answer:

      Correct Answer: Good face validity

      Explanation:

      A test that seems to measure what it is intended to measure has strong face validity.

      Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 190 - What statement accurately describes the mode? ...

    Incorrect

    • What statement accurately describes the mode?

      Your Answer:

      Correct Answer: A data set can have more than one mode

      Explanation:

      This set of numbers has no mode as no number occurs more than once: 3, 6, 9, 16, 27, 37, 48.

      Measures of Central Tendency

      Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.

      The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.

      The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.

      In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 191 - A pilot program is implemented in a children's hospital that offers HIV testing...

    Incorrect

    • A pilot program is implemented in a children's hospital that offers HIV testing for all new patients upon admission. As part of an economic analysis of the program, a researcher evaluates the expenses linked with providing the testing service. How should the potential stress encountered by children waiting for the test results be categorized?

      Your Answer:

      Correct Answer: Intangible cost

      Explanation:

      Methods of Economic Evaluation

      There are four main methods of economic evaluation: cost-effectiveness analysis (CEA), cost-benefit analysis (CBA), cost-utility analysis (CUA), and cost-minimisation analysis (CMA). While all four methods capture costs, they differ in how they assess health effects.

      Cost-effectiveness analysis (CEA) compares interventions by relating costs to a single clinical measure of effectiveness, such as symptom reduction of improvement in activities of daily living. The cost-effectiveness ratio is calculated as total cost divided by units of effectiveness. CEA is typically used when CBA cannot be performed due to the inability to monetise benefits.

      Cost-benefit analysis (CBA) measures all costs and benefits of an intervention in monetary terms to establish which alternative has the greatest net benefit. CBA requires that all consequences of an intervention, such as life-years saved, treatment side-effects, symptom relief, disability, pain, and discomfort, are allocated a monetary value. CBA is rarely used in mental health service evaluation due to the difficulty in converting benefits from mental health programmes into monetary values.

      Cost-utility analysis (CUA) is a special form of CEA in which health benefits/outcomes are measured in broader, more generic ways, enabling comparisons between treatments for different diseases and conditions. Multidimensional health outcomes are measured by a single preference- of utility-based index such as the Quality-Adjusted-Life-Years (QALY). QALYs are a composite measure of gains in life expectancy and health-related quality of life. CUA allows for comparisons across treatments for different conditions.

      Cost-minimisation analysis (CMA) is an economic evaluation in which the consequences of competing interventions are the same, and only inputs, i.e. costs, are taken into consideration. The aim is to decide the least costly way of achieving the same outcome.

      Costs in Economic Evaluation Studies

      There are three main types of costs in economic evaluation studies: direct, indirect, and intangible. Direct costs are associated directly with the healthcare intervention, such as staff time, medical supplies, cost of travel for the patient, childcare costs for the patient, and costs falling on other social sectors such as domestic help from social services. Indirect costs are incurred by the reduced productivity of the patient, such as time off work, reduced work productivity, and time spent caring for the patient by relatives. Intangible costs are difficult to measure, such as pain of suffering on the part of the patient.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 192 - How does the prevalence of a condition impact a particular aspect? ...

    Incorrect

    • How does the prevalence of a condition impact a particular aspect?

      Your Answer:

      Correct Answer: Positive predictive value

      Explanation:

      The characteristics of precision, sensitivity, accuracy, and specificity are not influenced by the prevalence of the condition and remain stable. However, the positive predictive value is affected by the prevalence of the condition, particularly in cases where the prevalence is low. This is because a decrease in the prevalence of the condition leads to a decrease in the number of true positives, which in turn reduces the numerator of the PPV equation, resulting in a lower PPV. The formula for PPV is TP/(TP+FP).

      Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 193 - Which of the following statements accurately describes the relationship between odds and odds...

    Incorrect

    • Which of the following statements accurately describes the relationship between odds and odds ratio?

      Your Answer:

      Correct Answer: The odds ratio approximates to relative risk if the outcome of interest is rare

      Explanation:

      Measures of Effect in Clinical Studies

      When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.

      To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.

      The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 194 - What is another term for case-mix bias? ...

    Incorrect

    • What is another term for case-mix bias?

      Your Answer:

      Correct Answer: Disease spectrum bias

      Explanation:

      Types of Bias in Statistics

      Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.

      There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 195 - What hierarchical language does NLM utilize to enhance search strategies and index articles?...

    Incorrect

    • What hierarchical language does NLM utilize to enhance search strategies and index articles?

      Your Answer:

      Correct Answer: MeSH

      Explanation:

      NLM’s hierarchical vocabulary, known as MeSH (Medical Subject Heading), is utilized for the purpose of indexing articles in PubMed.

      Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.

      When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.

      There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 196 - Which of the following resources has been filtered? ...

    Incorrect

    • Which of the following resources has been filtered?

      Your Answer:

      Correct Answer: DARE

      Explanation:

      The main focus of the Database of Abstracts of Reviews of Effect (DARE) is on systematic reviews that assess the impact of healthcare interventions and the management and provision of healthcare services. In order to be considered for inclusion, reviews must satisfy several requirements.

      Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.

      When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.

      There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 197 - A nationwide study on mental health found that the incidence of depression is...

    Incorrect

    • A nationwide study on mental health found that the incidence of depression is significantly higher among elderly individuals living in suburban areas compared to those residing in urban environments. What factors could explain this disparity?

      Your Answer:

      Correct Answer: Reduced incidence in urban areas

      Explanation:

      The prevalence of schizophrenia may be higher in urban areas due to the social drift phenomenon, where individuals with severe and enduring mental illnesses tend to move towards urban areas. However, a reduced incidence of schizophrenia in urban areas could explain why there is an increased prevalence of the condition in rural settings. It is important to note that prevalence is influenced by both incidence and duration of illness, and can be reduced by increased recovery rates of death from any cause.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 198 - If a study has a Type I error rate of <0.05 and a...

    Incorrect

    • If a study has a Type I error rate of <0.05 and a Type II error rate of 0.2, what is the power of the study?

      Your Answer:

      Correct Answer: 0.8

      Explanation:

      A study’s ability to correctly detect a true effect of difference may be calculated as Power = 1 – Type II error rate. In the given scenario, the power can be calculated as Power = 1 – 0.2 = 0.8. Type I error refers to a false positive, while Type II error refers to a false negative.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 199 - In what way can the study on depression be deemed as having limited...

    Incorrect

    • In what way can the study on depression be deemed as having limited applicability to the average patient population?

      Your Answer:

      Correct Answer: External validity

      Explanation:

      When a study has good external validity, its findings can be applied to other populations with confidence.

      Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds
  • Question 200 - Based on the AUCs shown below, which screening test had the highest overall...

    Incorrect

    • Based on the AUCs shown below, which screening test had the highest overall performance in differentiating between the presence of absence of bulimia?

      Test - AUC
      Test 1 - 0.42
      Test 2 - 0.95
      Test 3 - 0.82
      Test 4 - 0.11
      Test 5 - 0.67

      Your Answer:

      Correct Answer: Test 2

      Explanation:

      Understanding ROC Curves and AUC Values

      ROC (receiver operating characteristic) curves are graphs used to evaluate the effectiveness of a test in distinguishing between two groups, such as those with and without a disease. The curve plots the true positive rate against the false positive rate at different threshold settings. The goal is to find the best trade-off between sensitivity and specificity, which can be adjusted by changing the threshold. AUC (area under the curve) is a measure of the overall performance of the test, with higher values indicating better accuracy. The conventional grading of AUC values ranges from excellent to fail. ROC curves and AUC values are useful in evaluating diagnostic and screening tools, comparing different tests, and studying inter-observer variability.

    • This question is part of the following fields:

      • Research Methods, Statistics, Critical Review And Evidence-Based Practice
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Research Methods, Statistics, Critical Review And Evidence-Based Practice (88/105) 84%
Passmed