00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 65-year-old male presents with multiple episodes of haematuria. He has a history...

    Correct

    • A 65-year-old male presents with multiple episodes of haematuria. He has a history of COPD due to prolonged smoking. What could be the probable root cause?

      Your Answer: Transitional cell carcinoma of the bladder

      Explanation:

      TCC is the most common subtype of renal cancer and is strongly associated with smoking. Renal adenocarcinoma may also cause similar symptoms but is less likely.

      Bladder cancer is a common urological cancer that primarily affects males aged 50-80 years old. Smoking and exposure to hydrocarbons increase the risk of developing the disease. Chronic bladder inflammation from Schistosomiasis infection is also a common cause of squamous cell carcinomas in countries where the disease is endemic. Benign tumors of the bladder, such as inverted urothelial papilloma and nephrogenic adenoma, are rare. The most common bladder malignancies are urothelial (transitional cell) carcinoma, squamous cell carcinoma, and adenocarcinoma. Urothelial carcinomas may be solitary or multifocal, with papillary growth patterns having a better prognosis. The remaining tumors may be of higher grade and prone to local invasion, resulting in a worse prognosis.

      The TNM staging system is used to describe the extent of bladder cancer. Most patients present with painless, macroscopic hematuria, and a cystoscopy and biopsies or TURBT are used to provide a histological diagnosis and information on depth of invasion. Pelvic MRI and CT scanning are used to determine locoregional spread, and PET CT may be used to investigate nodes of uncertain significance. Treatment options include TURBT, intravesical chemotherapy, surgery (radical cystectomy and ileal conduit), and radical radiotherapy. The prognosis varies depending on the stage of the cancer, with T1 having a 90% survival rate and any T, N1-N2 having a 30% survival rate.

    • This question is part of the following fields:

      • Renal System
      16.4
      Seconds
  • Question 2 - A 68-year-old male presents with a 6-month history of polyuria and polydipsia. He...

    Incorrect

    • A 68-year-old male presents with a 6-month history of polyuria and polydipsia. He has a medical history of hypertension, bipolar disorder, and osteoarthritis, and is currently taking naproxen, ramipril, amlodipine, and lithium. His HbA1c level is 41 mmol/mol. A water deprivation test is performed, and the pre-test urine osmolality is 210 mOsm/kg (500-850), while the post-test urine osmolality is 240 mOsm/kg (500-850). Based on the likely diagnosis, which anatomical location has been affected?

      Your Answer: Distal convoluted tubule

      Correct Answer: Collecting duct

      Explanation:

      Lithium use in patients can lead to diabetes insipidus by desensitizing the kidney’s response to ADH in the collecting ducts. This is likely the cause of diabetes insipidus in the patient described, as they are on lithium and have no signs of cranial diabetes insipidus. Cranial diabetes insipidus typically results from head trauma or pituitary surgery, while nephrogenic diabetes insipidus is caused by kidney dysfunction.

      The posterior pituitary gland releases ADH, and dysfunction at this site can cause cranial diabetes insipidus. An anterior pituitary tumor may present with bilateral hemianopia, as this gland secretes several hormones.

      Thiazide diuretics act on the distal convoluted tubule and are used to treat diabetes insipidus. Gitelman syndrome is caused by a mutation in the Na+-Cl− co-transporter, while Fanconi syndrome results from dysfunction in the proximal renal tubule, leading to an inability to absorb certain substances.

      Diabetes insipidus is a medical condition that can be caused by either a decreased secretion of antidiuretic hormone (ADH) from the pituitary gland (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be caused by various factors such as head injury, pituitary surgery, and infiltrative diseases like sarcoidosis. On the other hand, nephrogenic DI can be caused by genetic factors, electrolyte imbalances, and certain medications like lithium and demeclocycline. The common symptoms of DI are excessive urination and thirst. Diagnosis is made through a water deprivation test and checking the osmolality of the urine. Treatment options include thiazides and a low salt/protein diet for nephrogenic DI, while central DI can be treated with desmopressin.

    • This question is part of the following fields:

      • Renal System
      50.2
      Seconds
  • Question 3 - A 32-year-old construction worker becomes dehydrated after spending the day working under the...

    Incorrect

    • A 32-year-old construction worker becomes dehydrated after spending the day working under the sun.

      What can be inferred about this person?

      Your Answer: Decreased secretion of vasopressin from the pituitary gland

      Correct Answer: Most of the ultrafiltrated water in the nephron to be reabsorbed in the proximal tubule

      Explanation:

      The majority of filtered water is absorbed in the proximal tubule, while the highest amount of sodium reabsorption occurs in this area due to the Na+/K+ ATPase mechanism. This results in the movement of fluid from the proximal tubules to peritubular capillaries.

      After a strenuous run, the individual is likely to be slightly dehydrated, leading to an increased activation of the renin-angiotensin-aldosterone system. This would cause an increase in aldosterone release from the zona glomerulosa. Additionally, vasopressin (also known as ADH) would be elevated to enhance water reabsorption in the collecting duct.

      Renal cortical blood flow is higher than medullary blood flow, as tubular cells are more susceptible to ischaemia.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      54.6
      Seconds
  • Question 4 - A 25-year-old man presents to his GP with a complaint of blood in...

    Incorrect

    • A 25-year-old man presents to his GP with a complaint of blood in his urine. He reports that it began a day ago and is bright red in color. He denies any pain and has not observed any clots in his urine. The patient is generally healthy, but had a recent upper respiratory tract infection 2 days ago.

      Upon urine dipstick examination, +++ blood and + protein are detected. What histological finding would be expected on biopsy, given the likely diagnosis?

      Your Answer: Linear IgG deposits along the basement membrane

      Correct Answer: Mesangial hypercellularity with positive immunofluorescence for IgA & C3

      Explanation:

      The histological examination of IgA nephropathy reveals an increase in mesangial cells, accompanied by positive immunofluorescence for IgA and C3.

      Understanding IgA Nephropathy

      IgA nephropathy, also known as Berger’s disease, is the most common cause of glomerulonephritis worldwide. It typically presents as macroscopic haematuria in young people following an upper respiratory tract infection. The condition is thought to be caused by mesangial deposition of IgA immune complexes, and there is considerable pathological overlap with Henoch-Schonlein purpura (HSP). Histology shows mesangial hypercellularity and positive immunofluorescence for IgA and C3.

      Differentiating between IgA nephropathy and post-streptococcal glomerulonephritis is important. Post-streptococcal glomerulonephritis is associated with low complement levels and the main symptom is proteinuria, although haematuria can occur. There is typically an interval between URTI and the onset of renal problems in post-streptococcal glomerulonephritis.

      Management of IgA nephropathy depends on the severity of the condition. If there is isolated hematuria, no or minimal proteinuria, and a normal glomerular filtration rate (GFR), no treatment is needed other than follow-up to check renal function. If there is persistent proteinuria and a normal or only slightly reduced GFR, initial treatment is with ACE inhibitors. If there is active disease or failure to respond to ACE inhibitors, immunosuppression with corticosteroids may be necessary.

      The prognosis for IgA nephropathy varies. 25% of patients develop ESRF. Markers of good prognosis include frank haematuria, while markers of poor prognosis include male gender, proteinuria (especially > 2 g/day), hypertension, smoking, hyperlipidaemia, and ACE genotype DD.

      Overall, understanding IgA nephropathy is important for proper diagnosis and management of the condition. Proper management can help improve outcomes and prevent progression to ESRF.

    • This question is part of the following fields:

      • Renal System
      40.9
      Seconds
  • Question 5 - A 35-year-old male presents with gynaecomastia. Upon examination, a nodule is detected in...

    Correct

    • A 35-year-old male presents with gynaecomastia. Upon examination, a nodule is detected in his right testis. What is the probable diagnosis?

      Your Answer: Leydig cell tumour

      Explanation:

      Overview of Testicular Disorders

      Testicular disorders can range from benign conditions to malignant tumors. Testicular cancer is the most common malignancy in men aged 20-30 years, with germ-cell tumors accounting for 95% of cases. Seminomas are the most common subtype, while non-seminomatous germ cell tumors include teratoma, yolk sac tumor, choriocarcinoma, and mixed germ cell tumors. Risk factors for testicular cancer include cryptorchidism, infertility, family history, Klinefelter’s syndrome, and mumps orchitis. The most common presenting symptom is a painless lump, but pain, hydrocele, and gynecomastia may also be present.

      Benign testicular disorders include epididymo-orchitis, which is an acute inflammation of the epididymis often caused by bacterial infection. Testicular torsion, which results in testicular ischemia and necrosis, is most common in males aged between 10 and 30. Hydrocele presents as a mass that transilluminates and may occur as a result of a patent processus vaginalis in children. Treatment for these conditions varies, with orchidectomy being the primary treatment for testicular cancer. Surgical exploration is necessary for testicular torsion, while epididymo-orchitis and hydrocele may require medication or surgical procedures depending on the severity of the condition.

    • This question is part of the following fields:

      • Renal System
      14
      Seconds
  • Question 6 - A 6-year-old girl is brought to her pediatrician by her father. Her father...

    Incorrect

    • A 6-year-old girl is brought to her pediatrician by her father. Her father reports that for the past 5 days, she has been experiencing swelling in her lower limbs. The girl is otherwise healthy, has not had any recent illnesses, and her blood pressure during the visit was normal. The results of her urinalysis are as follows:

      Leucocytes: Negative
      Nitrites: Negative
      Urobilinogen: Negative
      Proteins: 3+
      Blood: Negative
      Ketones: Negative
      Glucose: Negative

      What is the most probable diagnosis?

      Your Answer: Post-streptococcal glomerulonephritis

      Correct Answer: Minimal change disease

      Explanation:

      The boy’s symptoms are typical of nephrotic syndrome, which is characterized by a triad of proteinuria, hypoalbuminaemia, and oedema. Oedema is usually seen in the lower limbs, and proteinuria may cause frothy urine. Minimal change disease, focal segmental glomerulosclerosis, and membranous nephropathy are examples of nephrotic syndrome. Minimal change disease is a common cause of nephrotic syndrome, and it is characterized by effacement of the podocyte foot processes, which increases the permeability of the glomerular basement membrane and causes proteinuria.

      It is important to differentiate nephrotic syndrome from nephritic syndrome, which is characterized by the presence of protein and blood in the urine. Nephritic syndrome typically presents with haematuria, oliguria, and hypertension. Alport syndrome is not a correct answer as it causes nephritic syndrome, and it is a genetic condition that affects kidney function, hearing, and vision. IgA nephropathy is also an incorrect answer as it causes nephritic syndrome and is typically associated with upper respiratory tract infections. A careful history is required to distinguish it from post-streptococcal glomerulonephritis, another cause of nephritic syndrome that occurs after a streptococcal infection.

      Understanding Nephrotic Syndrome and its Presentation

      Nephrotic syndrome is a condition characterized by a triad of symptoms, namely proteinuria, hypoalbuminaemia, and oedema. Proteinuria refers to the presence of excessive protein in the urine, typically exceeding 3g in a 24-hour period. Hypoalbuminaemia is a condition where the levels of albumin in the blood fall below 30g/L. Oedema, on the other hand, is the accumulation of fluid in the body tissues, leading to swelling.

      Nephrotic syndrome is associated with the loss of antithrombin-III, proteins C and S, and an increase in fibrinogen levels, which increases the risk of thrombosis. Additionally, the loss of thyroxine-binding globulin leads to a decrease in total thyroxine levels, although free thyroxine levels remain unaffected.

      The diagram below illustrates the different types of glomerulonephritides and how they typically present. Understanding the presentation of nephrotic syndrome and its associated risks is crucial in the diagnosis and management of this condition.

      [Insert diagram here]

      Overall, nephrotic syndrome is a complex condition that requires careful management to prevent complications. By understanding its presentation and associated risks, healthcare professionals can provide appropriate treatment and support to patients with this condition.

    • This question is part of the following fields:

      • Renal System
      141.5
      Seconds
  • Question 7 - A 79-year-old woman is admitted with confusion and started on an IV infusion...

    Correct

    • A 79-year-old woman is admitted with confusion and started on an IV infusion after blood tests are taken. Her admission blood results indicate dehydration and elevated potassium levels, with a subsequent increase to 5.9. Which intravenous therapy is likely causing her hyperkalaemia?

      Your Answer: Hartmann’s

      Explanation:

      Fluid Therapy Guidelines for Junior Doctors

      Fluid therapy is a common task for junior doctors, and it is important to follow guidelines to ensure patients receive the appropriate amount of fluids. The 2013 NICE guidelines recommend 25-30 ml/kg/day of water, 1 mmol/kg/day of potassium, sodium, and chloride, and 50-100 g/day of glucose for maintenance fluids. For the first 24 hours, NICE recommends using sodium chloride 0.18% in 4% glucose with 27 mmol/l potassium. However, the amount of fluid required may vary depending on the patient’s medical history. For example, a post-op patient with significant fluid loss will require more fluid, while a patient with heart failure should receive less fluid to avoid pulmonary edema.

      It is important to consider the electrolyte concentrations of plasma and the most commonly used fluids when prescribing intravenous fluids. 0.9% saline can lead to hyperchloraemic metabolic acidosis if large volumes are used. Hartmann’s solution contains potassium and should not be used in patients with hyperkalemia. By following these guidelines and considering individual patient needs, junior doctors can ensure safe and effective fluid therapy.

    • This question is part of the following fields:

      • Renal System
      31.3
      Seconds
  • Question 8 - A female infant is being assessed for recurrent urinary tract infections. An abdominal...

    Incorrect

    • A female infant is being assessed for recurrent urinary tract infections. An abdominal ultrasound scan displays bilateral hydronephrosis, a thickened bladder wall with thickened smooth muscle trabeculations. Voiding cystourethrogram (VCUG) reveals reflux.

      What is the most probable diagnosis, which is commonly seen in this scenario?

      Your Answer: Horseshoe kidney

      Correct Answer: Posterior urethral valves

      Explanation:

      Posterior urethral valves are a common cause of bladder outlet obstruction in male infants, which can be detected before birth through the presence of hydronephrosis. On the other hand, epispadias and hypospadias are conditions where the urethra opens on the dorsal and ventral surface of the penis, respectively, but they are not typically associated with bladder outlet obstruction. Urethral atresia, a rare condition where the urethra is absent, can also cause bladder outlet obstruction.

      Posterior urethral valves are a frequent cause of blockage in the lower urinary tract in males. They can be detected during prenatal ultrasound screenings. Due to the high pressure required for bladder emptying during fetal development, the child may experience damage to the renal parenchyma, resulting in renal impairment in 70% of boys upon diagnosis. Treatment involves the use of a bladder catheter, and endoscopic valvotomy is the preferred definitive treatment. Cystoscopic and renal follow-up is necessary.

    • This question is part of the following fields:

      • Renal System
      91.2
      Seconds
  • Question 9 - A 44-year-old woman arrives at the Emergency Department with intermittent sharp pain in...

    Correct

    • A 44-year-old woman arrives at the Emergency Department with intermittent sharp pain in her right flank and haematuria. She reports feeling slightly nauseous, but otherwise feels well. She has a medical history of hyperparathyroidism, but has never experienced these symptoms before. Her body mass index is 28kg/m² and she admits to regularly consuming takeaways. During examination, she appears restless and exhibits tenderness in her right flank.

      What is the probable substance responsible for causing this patient's pain?

      Your Answer: Calcium oxalate

      Explanation:

      Renal stones are predominantly made up of calcium phosphate, and individuals with renal tubular acidosis are at a higher risk of developing them. Uric acid stones, which make up only 5-10% of cases, are often associated with malignancies.

      Renal stones can be classified into different types based on their composition. Calcium oxalate stones are the most common, accounting for 85% of all calculi. These stones are formed due to hypercalciuria, hyperoxaluria, and hypocitraturia. They are radio-opaque and may also bind with uric acid stones. Cystine stones are rare and occur due to an inherited recessive disorder of transmembrane cystine transport. Uric acid stones are formed due to purine metabolism and may precipitate when urinary pH is low. Calcium phosphate stones are associated with renal tubular acidosis and high urinary pH. Struvite stones are formed from magnesium, ammonium, and phosphate and are associated with chronic infections. The pH of urine can help determine the type of stone present, with calcium phosphate stones forming in normal to alkaline urine, uric acid stones forming in acidic urine, and struvate stones forming in alkaline urine. Cystine stones form in normal urine pH.

    • This question is part of the following fields:

      • Renal System
      13.4
      Seconds
  • Question 10 - A 2-year-old girl presents with recurrent urinary tract infections. During the diagnostic work-up,...

    Incorrect

    • A 2-year-old girl presents with recurrent urinary tract infections. During the diagnostic work-up, abnormal renal function is noted and an ultrasound scan reveals bilateral hydronephrosis.

      What could be the probable underlying diagnosis?

      Your Answer: Pelvico-ureteric junction obstruction

      Correct Answer: Posterior urethral valves

      Explanation:

      A developmental uropathy known as a posterior urethral valve typically affects male infants with an incidence of 1 in 8000. The condition is characterized by bladder wall hypertrophy, hydronephrosis, and bladder diverticula, which are used as diagnostic features.

      Posterior urethral valves are a frequent cause of blockage in the lower urinary tract in males. They can be detected during prenatal ultrasound screenings. Due to the high pressure required for bladder emptying during fetal development, the child may experience damage to the renal parenchyma, resulting in renal impairment in 70% of boys upon diagnosis. Treatment involves the use of a bladder catheter, and endoscopic valvotomy is the preferred definitive treatment. Cystoscopic and renal follow-up is necessary.

    • This question is part of the following fields:

      • Renal System
      35.1
      Seconds
  • Question 11 - A 47-year-old man is under the care of an ophthalmologist for open angle...

    Correct

    • A 47-year-old man is under the care of an ophthalmologist for open angle glaucoma. He visits his GP to express his worries about the medication prescribed after reading online information. What is the medication that the ophthalmologist has prescribed, which can function as a diuretic by acting on the proximal convoluted tubule of the kidney?

      Your Answer: Acetazolamide (carbonic anhydrase inhibitor)

      Explanation:

      Diuretic drugs are classified into three major categories based on the location where they inhibit sodium reabsorption. Loop diuretics act on the thick ascending loop of Henle, thiazide diuretics on the distal tubule and connecting segment, and potassium sparing diuretics on the aldosterone-sensitive principal cells in the cortical collecting tubule. Sodium is reabsorbed in the kidney through Na+/K+ ATPase pumps located on the basolateral membrane, which return reabsorbed sodium to the circulation and maintain low intracellular sodium levels. This ensures a constant concentration gradient.

      The physiological effects of commonly used diuretics vary based on their site of action. furosemide, a loop diuretic, inhibits the Na+/K+/2Cl- carrier in the ascending limb of the loop of Henle and can result in up to 25% of filtered sodium being excreted. Thiazide diuretics, which act on the distal tubule and connecting segment, inhibit the Na+Cl- carrier and typically result in between 3 and 5% of filtered sodium being excreted. Finally, spironolactone, a potassium sparing diuretic, inhibits the Na+/K+ ATPase pump in the cortical collecting tubule and typically results in between 1 and 2% of filtered sodium being excreted.

    • This question is part of the following fields:

      • Renal System
      35.9
      Seconds
  • Question 12 - A 65-year-old patient is admitted to the hospital with a chief complaint of...

    Correct

    • A 65-year-old patient is admitted to the hospital with a chief complaint of lethargy and a vague medical history. As part of the assessment, a venous blood gas (VBG) is performed and the results are as follows:

      Na+ 137 mmol/L (135 - 145)
      K+ 3.0 mmol/L (3.5 - 5.0)
      Cl- 105 mEq/L (98 - 106)
      pH 7.29 (7.35-7.45)
      pO2 42mmHg (35 - 45)
      pCO2 46mmHg (42 - 48)
      HCO3- 19 mmol/L (22 - 26)
      BE -3 mmol/L (-2 to +2)

      What is the most likely cause of this patient's presentation?

      Your Answer: Diarrhoea

      Explanation:

      The likely cause of the patient’s normal anion gap metabolic acidosis is diarrhoea. The anion gap calculation shows a normal range of 14 mmol/L, which is within the normal range of 8-14 mmol/L. Diarrhoea causes a loss of bicarbonate from the GI tract, resulting in less alkali to balance out the acid in the blood. Additionally, diarrhoea causes hypokalaemia due to potassium ion loss from the GI tract. COPD, Cushing’s syndrome, and diabetic ketoacidosis are incorrect options as they would result in respiratory acidosis, metabolic alkalosis, and raised anion gap metabolic acidosis, respectively.

      Understanding Metabolic Acidosis

      Metabolic acidosis is a condition that can be classified based on the anion gap, which is calculated by subtracting the sum of chloride and bicarbonate from the sum of sodium and potassium. The normal range for anion gap is 10-18 mmol/L. If a question provides the chloride level, it may be an indication to calculate the anion gap.

      Hyperchloraemic metabolic acidosis is a type of metabolic acidosis with a normal anion gap. It can be caused by gastrointestinal bicarbonate loss, prolonged diarrhea, ureterosigmoidostomy, fistula, renal tubular acidosis, drugs like acetazolamide, ammonium chloride injection, and Addison’s disease. On the other hand, raised anion gap metabolic acidosis is caused by lactate, ketones, urate, acid poisoning, and other factors.

      Lactic acidosis is a type of metabolic acidosis that is caused by high lactate levels. It can be further classified into two types: lactic acidosis type A, which is caused by sepsis, shock, hypoxia, and burns, and lactic acidosis type B, which is caused by metformin. Understanding the different types and causes of metabolic acidosis is important in diagnosing and treating the condition.

    • This question is part of the following fields:

      • Renal System
      36.6
      Seconds
  • Question 13 - A 6-year-old girl presents to the emergency department with her parents, who are...

    Incorrect

    • A 6-year-old girl presents to the emergency department with her parents, who are concerned about her extremely swollen legs. The patient reports feeling fine and has no significant medical history.

      Upon examination, there is pitting edema that extends to the lower abdominal wall. Laboratory tests confirm hypoalbuminemia.

      A urine dipstick reveals ++++ proteinuria and no red blood cells.

      What is the probable result of electron microscopy of a renal biopsy?

      Your Answer:

      Correct Answer: Effacement of podocyte foot processes

      Explanation:

      Effacement of podocyte foot processes is observed in minimal change disease on electron microscopy, indicating fusion of podocytes. This condition is the most common cause of nephrotic syndrome in children, which is characterized by hypoalbuminemia, edema, and marked proteinuria. Although normal glomerular architecture may be observed in minimal change disease when viewed with a light microscope, electron microscopy is necessary to detect the effacement of podocyte foot processes. Kimmelstiel-Wilson lesions are not a feature of minimal change disease, as they are commonly observed in diabetic nephropathy. Similarly, mesangial cell proliferation is not a hallmark of minimal change disease, as it is typically observed in membranoproliferative glomerulonephritis, which presents as a nephritic syndrome and is not consistent with the patient’s symptoms. Overall, minimal change disease is typically responsive to steroid treatment and has a favorable prognosis.

      Minimal change disease is a condition that typically presents as nephrotic syndrome, with children accounting for 75% of cases and adults accounting for 25%. While most cases are idiopathic, a cause can be found in around 10-20% of cases, such as drugs like NSAIDs and rifampicin, Hodgkin’s lymphoma, thymoma, or infectious mononucleosis. The pathophysiology of the disease involves T-cell and cytokine-mediated damage to the glomerular basement membrane, resulting in polyanion loss and a reduction of electrostatic charge, which increases glomerular permeability to serum albumin.

      The features of minimal change disease include nephrotic syndrome, normotension (hypertension is rare), and highly selective proteinuria, where only intermediate-sized proteins like albumin and transferrin leak through the glomerulus. Renal biopsy shows normal glomeruli on light microscopy, while electron microscopy shows fusion of podocytes and effacement of foot processes.

      Management of minimal change disease involves oral corticosteroids, which are effective in 80% of cases. For steroid-resistant cases, cyclophosphamide is the next step. The prognosis for the disease is generally good, although relapse is common. Roughly one-third of patients have just one episode, one-third have infrequent relapses, and one-third have frequent relapses that stop before adulthood.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 14 - What is measured to obtain renal plasma flow if the patient is a...

    Incorrect

    • What is measured to obtain renal plasma flow if the patient is a few years older?

      Your Answer:

      Correct Answer: Para-amino hippuric acid (PAH)

      Explanation:

      The normal value for renal plasma flow is 660ml/min, which is calculated by dividing the amount of PAH in urine per unit time by the difference in PAH concentration in the renal artery or vein.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 15 - A 50-year-old male is undergoing evaluation for persistent proteinuria. He has a medical...

    Incorrect

    • A 50-year-old male is undergoing evaluation for persistent proteinuria. He has a medical history of relapsed multiple myeloma. A renal biopsy is performed, and the Congo red stain with light microscopy shows apple-green birefringence under polarised light.

      What is the probable diagnosis?

      Your Answer:

      Correct Answer: Amyloidosis

      Explanation:

      Understanding Amyloidosis

      Amyloidosis is a medical condition that occurs when an insoluble fibrillar protein called amyloid accumulates outside the cells. This protein is derived from various precursor proteins and contains non-fibrillary components such as amyloid-P component, apolipoprotein E, and heparan sulphate proteoglycans. The accumulation of amyloid fibrils can lead to tissue or organ dysfunction.

      Amyloidosis can be classified as systemic or localized, and further characterized by the type of precursor protein involved. For instance, in myeloma, the precursor protein is immunoglobulin light chain fragments, which is abbreviated as AL (A for amyloid and L for light chain fragments).

      To diagnose amyloidosis, doctors may use Congo red staining, which shows apple-green birefringence, or a serum amyloid precursor (SAP) scan. Biopsy of skin, rectal mucosa, or abdominal fat may also be necessary. Understanding amyloidosis is crucial for early detection and treatment of the condition.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 16 - A 63-year-old man is seen in the oncology clinic. He is being monitored...

    Incorrect

    • A 63-year-old man is seen in the oncology clinic. He is being monitored for known breast cancer. His recent mammogram and biopsy suggest an increased disease burden. It is decided to initiate Tamoxifen therapy while awaiting a mastectomy.

      What is the mechanism of action of this new medication?

      Your Answer:

      Correct Answer: Androgen receptor blocker

      Explanation:

      Bicalutamide is a medication that blocks the androgen receptor and is commonly used to treat prostate cancer. Abiraterone, on the other hand, is an androgen synthesis inhibitor that is prescribed to patients with metastatic prostate cancer who have not responded to androgen deprivation therapy. GnRH agonists like goserelin can also be used to treat prostate cancer by reducing the release of gonadotrophins and inhibiting androgen production. While cyproterone acetate is a steroidal anti-androgen, it is not as commonly used as non-steroidal anti-androgens like bicalutamide.

      Prostate cancer management varies depending on the stage of the disease and the patient’s life expectancy and preferences. For localized prostate cancer (T1/T2), treatment options include active monitoring, watchful waiting, radical prostatectomy, and radiotherapy (external beam and brachytherapy). For localized advanced prostate cancer (T3/T4), options include hormonal therapy, radical prostatectomy, and radiotherapy. Patients may develop proctitis and are at increased risk of bladder, colon, and rectal cancer following radiotherapy for prostate cancer.

      In cases of metastatic prostate cancer, reducing androgen levels is a key aim of treatment. A combination of approaches is often used, including anti-androgen therapy, synthetic GnRH agonist or antagonists, bicalutamide, cyproterone acetate, abiraterone, and bilateral orchidectomy. GnRH agonists, such as Goserelin (Zoladex), initially cause a rise in testosterone levels before falling to castration levels. To prevent a rise in testosterone, anti-androgens are often used to cover the initial therapy. GnRH antagonists, such as degarelix, are being evaluated to suppress testosterone while avoiding the flare phenomenon. Chemotherapy with docetaxel is also an option for the treatment of hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after androgen deprivation therapy has failed, and before chemotherapy is indicated.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 17 - A 70-year-old male was admitted to the hospital due to delirium observed in...

    Incorrect

    • A 70-year-old male was admitted to the hospital due to delirium observed in the nursing home. Upon diagnosis, he was found to have a lower respiratory tract infection which progressed to sepsis. During his stay in the ICU, he was discovered to have severe hyponatremia. The medical team has prescribed tolvaptan along with other medications.

      What is the mechanism of action of tolvaptan?

      Your Answer:

      Correct Answer: Vasopressin V2 receptor antagonist

      Explanation:

      Tolvaptan is a drug that blocks the action of vasopressin at the V2 receptor, which reduces water absorption and increases aquaresis without sodium loss. Vasopressin is a hormone that regulates water balance in the body.

      Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited kidney disease that affects 1 in 1,000 Caucasians. The disease is caused by mutations in two genes, PKD1 and PKD2, which produce polycystin-1 and polycystin-2 respectively. ADPKD type 1 accounts for 85% of cases, while ADPKD type 2 accounts for 15% of cases. ADPKD type 1 is caused by a mutation in the PKD1 gene on chromosome 16, while ADPKD type 2 is caused by a mutation in the PKD2 gene on chromosome 4. ADPKD type 1 tends to present with renal failure earlier than ADPKD type 2.

      To screen for ADPKD in relatives of affected individuals, an abdominal ultrasound is recommended. The diagnostic criteria for ultrasound include the presence of two cysts, either unilateral or bilateral, if the individual is under 30 years old. If the individual is between 30-59 years old, two cysts in both kidneys are required for diagnosis. If the individual is over 60 years old, four cysts in both kidneys are necessary for diagnosis.

      For some patients with ADPKD, tolvaptan, a vasopressin receptor 2 antagonist, may be an option to slow the progression of cyst development and renal insufficiency. However, NICE recommends tolvaptan only for adults with ADPKD who have chronic kidney disease stage 2 or 3 at the start of treatment, evidence of rapidly progressing disease, and if the company provides it with the agreed discount in the patient access scheme.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 18 - A 67-year-old man is being evaluated on the ward. He was admitted with...

    Incorrect

    • A 67-year-old man is being evaluated on the ward. He was admitted with community-acquired pneumonia and required IV antibiotics. The results of his blood tests taken this morning are as follows:

      - Sodium (Na+): 143 mmol/L (135 - 145)
      - Potassium (K+): 6.5 mmol/L (3.5 - 5.0)
      - Bicarbonate: 25 mmol/L (22 - 29)
      - Urea: 5.5 mmol/L (2.0 - 7.0)
      - Creatinine: 115 µmol/L (55 - 120)

      An urgent ECG is ordered, which reveals peaked T waves and a loss of P waves.

      What is the immediate course of action for this patient?

      Your Answer:

      Correct Answer: IV calcium gluconate

      Explanation:

      The correct treatment for stabilizing the cardiac membrane in a patient with hyperkalaemia and ECG changes, such as peaked T waves and loss of P waves, is IV calcium gluconate. This is the first-line treatment option, as it can effectively stabilize the cardiac membrane and prevent arrhythmias. Other treatment options, such as calcium resonium, combined insulin/dextrose infusion, and nebulised salbutamol, can be used to treat hyperkalaemia, but only after IV calcium gluconate has been given.

      Managing Hyperkalaemia: A Step-by-Step Guide

      Hyperkalaemia is a serious condition that can lead to life-threatening arrhythmias if left untreated. To manage hyperkalaemia, it is important to address any underlying factors that may be contributing to the condition, such as acute kidney injury, and to stop any aggravating drugs, such as ACE inhibitors. Treatment can be categorised based on the severity of the hyperkalaemia, which is classified as mild, moderate, or severe based on the patient’s potassium levels.

      ECG changes are also important in determining the appropriate management for hyperkalaemia. Peaked or ‘tall-tented’ T waves, loss of P waves, broad QRS complexes, and a sinusoidal wave pattern are all associated with hyperkalaemia and should be evaluated in all patients with new hyperkalaemia.

      The principles of treatment modalities for hyperkalaemia include stabilising the cardiac membrane, shifting potassium from extracellular to intracellular fluid compartments, and removing potassium from the body. IV calcium gluconate is used to stabilise the myocardium, while insulin/dextrose infusion and nebulised salbutamol can be used to shift potassium from the extracellular to intracellular fluid compartments. Calcium resonium, loop diuretics, and dialysis can be used to remove potassium from the body.

      In practical terms, all patients with severe hyperkalaemia or ECG changes should receive emergency treatment, including IV calcium gluconate to stabilise the myocardium and insulin/dextrose infusion to shift potassium from the extracellular to intracellular fluid compartments. Other treatments, such as nebulised salbutamol, may also be used to temporarily lower serum potassium levels. Further management may involve stopping exacerbating drugs, treating any underlying causes, and lowering total body potassium through the use of calcium resonium, loop diuretics, or dialysis.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 19 - A 72-year-old man is brought to the emergency department by ambulance after collapsing...

    Incorrect

    • A 72-year-old man is brought to the emergency department by ambulance after collapsing at work due to dizziness. The paramedic reports that his ECG indicates hyperkalaemia. What is an ECG sign of hyperkalaemia?

      Your Answer:

      Correct Answer: Sinusoidal waveform

      Explanation:

      Hyperkalaemia can be identified on an ECG by the presence of a sinusoidal waveform, as well as small or absent P waves, tall-tented T waves, and broad bizarre QRS complexes. In severe cases, the QRS complexes may even form a sinusoidal wave pattern. Asystole can also occur as a result of hyperkalaemia.

      On the other hand, ECG signs of hypokalaemia include small or inverted T waves, ST segment depression, and prominent U waves. A prolonged PR interval and long QT interval may also be present, although the latter can also be a sign of hyperkalaemia. In healthy individuals, narrow QRS complexes are typically observed, whereas hyperkalaemia can cause the QRS complexes to become wide and abnormal.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds
  • Question 20 - A 75-year-old male ex-smoker presents to a urologist with a complaint of painless...

    Incorrect

    • A 75-year-old male ex-smoker presents to a urologist with a complaint of painless haematuria that has been ongoing for 3 weeks. He has experienced a weight loss of 5 kg over the past two months. During an urgent cystoscopy, a suspicious mass is discovered and subsequently biopsied. The histology confirms a transitional cell carcinoma of the bladder. A CT scan of the abdomen and pelvis reveals multiple enlarged lymph nodes. Which lymph node is the most probable site of metastasis?

      Your Answer:

      Correct Answer: Internal and external iliac lymph nodes

      Explanation:

      The external and internal iliac nodes are the main recipients of lymphatic drainage from the bladder, while the testes and ovaries are primarily drained by the para-aortic lymph nodes.

      Bladder Anatomy and Innervation

      The bladder is a three-sided pyramid-shaped organ located in the pelvic cavity. Its apex points towards the symphysis pubis, while the base lies anterior to the rectum or vagina. The bladder’s inferior aspect is retroperitoneal, while the superior aspect is covered by peritoneum. The trigone, the least mobile part of the bladder, contains the ureteric orifices and internal urethral orifice. The bladder’s blood supply comes from the superior and inferior vesical arteries, while venous drainage occurs through the vesicoprostatic or vesicouterine venous plexus. Lymphatic drainage occurs mainly to the external iliac and internal iliac nodes, with the obturator nodes also playing a role. The bladder is innervated by parasympathetic nerve fibers from the pelvic splanchnic nerves and sympathetic nerve fibers from L1 and L2 via the hypogastric nerve plexuses. The parasympathetic fibers cause detrusor muscle contraction, while the sympathetic fibers innervate the trigone muscle. The external urethral sphincter is under conscious control, and voiding occurs when the rate of neuronal firing to the detrusor muscle increases.

    • This question is part of the following fields:

      • Renal System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Renal System (6/12) 50%
Passmed