00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 70-year-old male has been diagnosed with polymyalgia rheumatica and prescribed prednisolone. What...

    Correct

    • A 70-year-old male has been diagnosed with polymyalgia rheumatica and prescribed prednisolone. What is the most likely adverse effect he may experience?

      Your Answer: Hyperglycaemia

      Explanation:

      Hyperglycemia is the correct answer. Most patients who take steroids experience an increase in appetite and weight gain, so anorexia or weight loss are not appropriate responses.

      Steroid hormones can also affect the aldosterone receptor in the collecting duct, potentially leading to hyponatremia.

      Although changes in vision are possible due to steroid-induced cataracts, they are much less common.

      High levels of non-endogenous steroids have several risk factors, including hyperglycemia, high blood pressure, obesity (particularly around the waist), muscle wasting, poor wound healing, and mood swings or depression.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      8.6
      Seconds
  • Question 2 - A 25-year-old woman presents to the endocrinology clinic with a diagnosis of Grave's...

    Correct

    • A 25-year-old woman presents to the endocrinology clinic with a diagnosis of Grave's disease. The diagnosis was made based on her elevated levels of thyroid hormones T3 and T4, as well as symptoms of heat intolerance, weight loss, and tremors. Typically, where are the receptors for thyroid hormones found?

      Your Answer: Nucleus

      Explanation:

      Thyroid hormones can enter cells through diffusion or carriers. Once inside, they bind to intracellular DNA-binding proteins called thyroid hormone receptors located in the nucleus. This binding forms a complex that attaches to the thyroid hormone responsive element on DNA. The outcome of this process is an increase in mRNA production, protein synthesis, Na/K ATPase, mitochondrial function leading to higher oxygen consumption, and adrenoceptors.

      Thyroid disorders are commonly encountered in clinical practice, with hypothyroidism and thyrotoxicosis being the most prevalent. Women are ten times more likely to develop these conditions than men. The thyroid gland is a bi-lobed structure located in the anterior neck and is part of a hypothalamus-pituitary-end organ system that regulates the production of thyroxine and triiodothyronine hormones. These hormones help regulate energy sources, protein synthesis, and the body’s sensitivity to other hormones. Hypothyroidism can be primary or secondary, while thyrotoxicosis is mostly primary. Autoimmunity is the leading cause of thyroid problems in the developed world.

      Thyroid disorders can present in various ways, with symptoms often being the opposite depending on whether the thyroid gland is under or overactive. For example, hypothyroidism may result in weight gain, while thyrotoxicosis leads to weight loss. Thyroid function tests are the primary investigation for diagnosing thyroid disorders. These tests primarily look at serum TSH and T4 levels, with T3 being measured in specific cases. TSH levels are more sensitive than T4 levels for monitoring patients with existing thyroid problems.

      Treatment for thyroid disorders depends on the cause. Patients with hypothyroidism are given levothyroxine to replace the underlying deficiency. Patients with thyrotoxicosis may be treated with propranolol to control symptoms such as tremors, carbimazole to reduce thyroid hormone production, or radioiodine treatment.

    • This question is part of the following fields:

      • Endocrine System
      5.8
      Seconds
  • Question 3 - A 45-year-old patient comes in with symptoms of weight loss, nausea, vomiting, abdominal...

    Incorrect

    • A 45-year-old patient comes in with symptoms of weight loss, nausea, vomiting, abdominal pain, and hyperpigmentation of the skin. The doctor orders a urea & electrolyte test and a short Synacthen test which comes back abnormal and diagnoses the patient with Addison's disease.

      What electrolyte abnormality is most likely to be observed in this patient?

      Your Answer: Hypokalaemia & hypernatraemia

      Correct Answer: Hyperkalaemia & hyponatraemia

      Explanation:

      In Addison’s disease, there is a deficiency in the production of both aldosterone and cortisol.

      Aldosterone plays a crucial role in the reabsorption of sodium and the excretion of potassium.

      Therefore, the absence of aldosterone leads to an imbalance in the levels of sodium and potassium in the body, resulting in hyperkalemia (high potassium levels) and hyponatremia (low sodium levels).

      Addison’s disease is the most common cause of primary hypoadrenalism in the UK, with autoimmune destruction of the adrenal glands being the main culprit, accounting for 80% of cases. This results in reduced production of cortisol and aldosterone. Symptoms of Addison’s disease include lethargy, weakness, anorexia, nausea and vomiting, weight loss, and salt-craving. Hyperpigmentation, especially in palmar creases, vitiligo, loss of pubic hair in women, hypotension, hypoglycemia, and hyponatremia and hyperkalemia may also be observed. In severe cases, a crisis may occur, leading to collapse, shock, and pyrexia.

      Other primary causes of hypoadrenalism include tuberculosis, metastases (such as bronchial carcinoma), meningococcal septicaemia (Waterhouse-Friderichsen syndrome), HIV, and antiphospholipid syndrome. Secondary causes include pituitary disorders, such as tumours, irradiation, and infiltration. Exogenous glucocorticoid therapy can also lead to hypoadrenalism.

      It is important to note that primary Addison’s disease is associated with hyperpigmentation, while secondary adrenal insufficiency is not.

    • This question is part of the following fields:

      • Endocrine System
      8.7
      Seconds
  • Question 4 - A 65-year-old woman with type 2 diabetes mellitus is being evaluated by her...

    Correct

    • A 65-year-old woman with type 2 diabetes mellitus is being evaluated by her diabetic nurse. Despite taking metformin for the past 6 months, her glycaemic control remains poor. To improve management, the decision is made to add sitagliptin (a dipeptidyl-peptidase 4 (DPP-4) inhibitor) to her current metformin regimen.

      What is the mechanism of action of the newly prescribed medication?

      Your Answer: Increased levels of glucagon-like peptide 1 (GLP-1)

      Explanation:

      DPP-4 inhibitors, like sitagliptin, work by inhibiting the breakdown of incretins such as GLP-1 and GIP. This leads to higher levels of insulin being released, as incretins increase insulin release. These inhibitors are often weight-neutral, but can occasionally cause weight loss.

      The answer Increases cell sensitivity to insulin is incorrect, as this is the mechanism of action of metformin, not DPP-4 inhibitors. Metformin increases cell sensitivity to insulin, but the exact mechanism is not fully understood.

      Similarly, Inhibition of sodium-glucose co-transporter (SGLT2) is incorrect, as this is the mechanism of action of SGLT2 inhibitors, not DPP-4 inhibitors. SGLT2 inhibitors prevent glucose absorption in the kidneys, leading to higher levels of glucose in the urine and an increased risk of urinary tract infections.

      Lastly, Increases adipogenesis is incorrect, as this is the mechanism of action of thiazolidinediones, not DPP-4 inhibitors. Thiazolidinediones stimulate adipogenesis, causing cells to become more dependent on glucose for energy.

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      3.7
      Seconds
  • Question 5 - A 23-year-old woman presents with clinical manifestations of hyperthyroidism and is diagnosed with...

    Correct

    • A 23-year-old woman presents with clinical manifestations of hyperthyroidism and is diagnosed with Graves disease. What is the most appropriate explanation for the pathophysiology of this condition?

      Your Answer: Formation of IgG antibodies to the TSH receptors on the thyroid gland

      Explanation:

      Graves disease typically results in the formation of IgG antibodies that target the TSH receptors located on the thyroid gland, leading to a significant decrease in TSH levels.

      Thyroid Hormones and LATS in Graves Disease

      Thyroid hormones are produced by the thyroid gland and include triiodothyronine (T3) and thyroxine (T4), with T3 being the major hormone active in target cells. The synthesis and secretion of these hormones involves the active concentration of iodide by the thyroid, which is then oxidized and iodinated by peroxidase in the follicular cells. This process is stimulated by thyroid-stimulating hormone (TSH), which is released by the pituitary gland. The normal thyroid has approximately three months’ worth of reserves of thyroid hormones.

      In Graves disease, patients develop IgG antibodies to the TSH receptors on the thyroid gland. This results in chronic and long-term stimulation of the gland with the release of thyroid hormones. As a result, individuals with Graves disease typically have raised thyroid hormones and low TSH levels. It is important to check for thyroid receptor autoantibodies in individuals presenting with hyperthyroidism, as they are present in up to 85% of cases. This condition is known as LATS (long-acting thyroid stimulator) and can lead to a range of symptoms and complications if left untreated.

    • This question is part of the following fields:

      • Endocrine System
      4.1
      Seconds
  • Question 6 - A 55-year-old male visits his GP for an insurance medical. The GP observes...

    Correct

    • A 55-year-old male visits his GP for an insurance medical. The GP observes that the patient has rough facial features, an enlarged tongue, and greasy skin. The patient is also experiencing profuse sweating. Which hormone excess is likely to be accountable for these symptoms?

      Your Answer: Growth hormone

      Explanation:

      Acromegaly is a condition that results from an excess of growth hormone, which can cause a person to have a coarse facial appearance, a larger tongue, and excessive sweating and oily skin. This condition is often caused by a pituitary adenoma.

      If a person has an excess of insulin, they may experience hypoglycemia and confusion. This can occur in cases of factitious illness, over-administration of insulin in diabetics, and insulinomas (neuroendocrine pancreatic tumors).

      An excess of glucagon can cause hyperglycemia. Glucagon is secreted by alpha cells in the pancreas and is often elevated in cases of glucagonomas (neuroendocrine pancreatic tumors).

      An excess of thyroid-stimulating hormone can be seen in cases of primary hypothyroidism and secondary hyperthyroidism.

      Acromegaly is a condition characterized by excess growth hormone, which is usually caused by a pituitary adenoma in over 95% of cases. However, in some cases, it can be caused by ectopic GHRH or GH production by tumors, such as those found in the pancreas. The condition is associated with a number of physical features, including a coarse facial appearance, spade-like hands, and an increase in shoe size. Other features include a large tongue, prognathism, interdental spaces, excessive sweating, and oily skin, which are caused by sweat gland hypertrophy. In some cases, patients may also experience hypopituitarism, headaches, bitemporal hemianopia, and raised prolactin levels, which can lead to galactorrhea. Approximately 6% of patients with acromegaly also have MEN-1.

      Complications associated with acromegaly include hypertension, diabetes (which affects over 10% of patients), cardiomyopathy, and colorectal cancer. It is important to diagnose and treat acromegaly early to prevent these complications from developing.

    • This question is part of the following fields:

      • Endocrine System
      9.6
      Seconds
  • Question 7 - A 45-year-old male has been diagnosed with Cushing's disease due to a pituitary...

    Correct

    • A 45-year-old male has been diagnosed with Cushing's disease due to a pituitary adenoma, resulting in elevated plasma cortisol levels. Which part of the adrenal gland is responsible for producing cortisol hormone?

      Your Answer: Zona fasciculata

      Explanation:

      The adrenal gland comprises two primary parts: the cortex and medulla.

      The adrenal medulla is accountable for the production of adrenaline and noradrenaline, which are catecholamines.

      The adrenal cortex is divided into three layers: glomerulosa, fasciculata, and reticularis. The glomerulosa primarily produces mineralocorticoids, while the reticularis mainly produces sex steroids. As a result, the Zona fasciculata is the primary source of glucocorticosteroids.

      Cortisol: Functions and Regulation

      Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.

      The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.

      Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.

    • This question is part of the following fields:

      • Endocrine System
      5.8
      Seconds
  • Question 8 - A 23-year-old male patient visits his GP complaining of breast tissue enlargement that...

    Correct

    • A 23-year-old male patient visits his GP complaining of breast tissue enlargement that has been progressively worsening for the past 3 months. He also reports the presence of a new lump on his left testicle. Upon thorough examination and taking a detailed medical history, the GP suspects that the patient may be suffering from testicular cancer.

      What is the probable diagnosis?

      Your Answer: HCG secreting seminoma

      Explanation:

      Gynaecomastia can be caused by testicular conditions such as seminoma that secrete hCG.

      Understanding Gynaecomastia: Causes and Drug Triggers

      Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.

      Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.

      Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.

      In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.

    • This question is part of the following fields:

      • Endocrine System
      7
      Seconds
  • Question 9 - A 70-year-old man with chronic back pain and renal failure presents with the...

    Correct

    • A 70-year-old man with chronic back pain and renal failure presents with the following blood test results:

      Reference range
      Ca2+ 2.10 2.15-2.55 mmol/l
      Parathyroid hormone 9.8 1-6.5 pmol/l
      Phosphate 0.75 0.6-1.25 mmol/l

      What is the probable diagnosis?

      Your Answer: Secondary hyperparathyroidism

      Explanation:

      Secondary hyperparathyroidism is characterized by elevated levels of PTH, while calcium levels are either normal or low. This condition occurs due to the parathyroid glands’ hyperplasia in response to chronic hypocalcemia or hyperphosphatemia, which is a natural physiological reaction. The body releases calcium from the kidneys, gastrointestinal system, and bones.

      Parathyroid Glands and Disorders of Calcium Metabolism

      The parathyroid glands play a crucial role in regulating calcium levels in the body. Hyperparathyroidism is a disorder that occurs when these glands produce too much parathyroid hormone (PTH), leading to abnormal calcium metabolism. Primary hyperparathyroidism is the most common form and is usually caused by a solitary adenoma. Secondary hyperparathyroidism occurs as a result of low calcium levels, often in the setting of chronic renal failure. Tertiary hyperparathyroidism is a rare condition that occurs when hyperplasia of the parathyroid glands persists after correction of underlying renal disorder.

      Diagnosis of hyperparathyroidism is based on hormone profiles and clinical features. Treatment options vary depending on the type and severity of the disorder. Surgery is usually indicated for primary hyperparathyroidism if certain criteria are met, such as elevated serum calcium levels, hypercalciuria, and nephrolithiasis. Secondary hyperparathyroidism is typically managed with medical therapy, while surgery may be necessary for persistent symptoms such as bone pain and soft tissue calcifications. Tertiary hyperparathyroidism may resolve on its own within a year after transplant, but surgery may be required if an autonomously functioning parathyroid gland is present. It is important to consider differential diagnoses, such as benign familial hypocalciuric hypercalcaemia, which is a rare but relatively benign condition.

    • This question is part of the following fields:

      • Endocrine System
      3.8
      Seconds
  • Question 10 - What is the crucial step in the production of all steroid hormones? ...

    Correct

    • What is the crucial step in the production of all steroid hormones?

      Your Answer: Conversion of cholesterol to pregnenolone

      Explanation:

      The Role of Pregnenolone in Steroid Hormone Synthesis

      In the production of steroid hormones in the human body, the conversion of cholesterol to pregnenolone is a crucial step. Pregnenolone serves as the precursor for all steroid hormones, and its formation is the limiting factor in the synthesis of these hormones. This conversion process occurs within the mitochondria of steroid-producing tissues. Essentially, the body needs to convert cholesterol to pregnenolone before it can produce any other steroid hormones. This highlights the importance of pregnenolone in the body’s endocrine system and its role in regulating various physiological processes.

    • This question is part of the following fields:

      • Endocrine System
      4.1
      Seconds
  • Question 11 - A 40-year-old woman comes to her doctor complaining of sudden palpitations and occasional...

    Correct

    • A 40-year-old woman comes to her doctor complaining of sudden palpitations and occasional headaches without any apparent cause. She has no significant medical history and denies any stress in her personal or professional life. During the examination, she appears to be sweating and has a pale conjunctiva. Her heart rate is 120 beats per minute, regularly regular, and her blood pressure is 150/100 mmHg. The doctor suspects a phaeochromocytoma, a tumor of the adrenal medulla.

      Which test is the most likely to provide a definitive diagnosis?

      Your Answer: Urinary free adrenaline

      Explanation:

      Extra-adrenal tumors are often located near the aortic bifurcation and can be identified through a urinary free adrenaline test, which measures the levels of adrenaline and noradrenaline produced by the adrenal medulla. Meanwhile, a 24-hour urinary free cortisol test is used to diagnose Cushing’s Disease, which is caused by excessive cortisol production from the zona fasciculata of the adrenal cortex. The aldosterone-renin ratio test is used to diagnose Conn’s Disease, which is caused by excessive aldosterone production from the zona glomerulosa of the adrenal cortex. Androgens are produced by the zona reticularis of the adrenal cortex. Addison’s Disease, a deficiency of cortisol, can be diagnosed through a short synacthen test.

      Adrenal Physiology: Medulla and Cortex

      The adrenal gland is composed of two main parts: the medulla and the cortex. The medulla is responsible for secreting the catecholamines noradrenaline and adrenaline, which are released in response to sympathetic nervous system stimulation. The chromaffin cells of the medulla are innervated by the splanchnic nerves, and the release of these hormones is triggered by the secretion of acetylcholine from preganglionic sympathetic fibers. Phaeochromocytomas, which are tumors derived from chromaffin cells, can cause excessive secretion of both adrenaline and noradrenaline.

      The adrenal cortex is divided into three distinct zones: the zona glomerulosa, zona fasciculata, and zona reticularis. Each zone is responsible for secreting different hormones. The outer zone, zona glomerulosa, secretes aldosterone, which regulates electrolyte balance and blood pressure. The middle zone, zona fasciculata, secretes glucocorticoids, which are involved in the regulation of metabolism, immune function, and stress response. The inner zone, zona reticularis, secretes androgens, which are involved in the development and maintenance of male sex characteristics.

      Most of the hormones secreted by the adrenal cortex, including glucocorticoids and aldosterone, are bound to plasma proteins in the circulation. Glucocorticoids are inactivated and excreted by the liver. Understanding the physiology of the adrenal gland is important for the diagnosis and treatment of various endocrine disorders.

    • This question is part of the following fields:

      • Endocrine System
      3.8
      Seconds
  • Question 12 - Which of the following is not secreted by the islets of Langerhans? ...

    Correct

    • Which of the following is not secreted by the islets of Langerhans?

      Your Answer: Secretin

      Explanation:

      Mucosal cells in the duodenum and jejunum release secretin.

      Hormones Released from the Islets of Langerhans

      The islets of Langerhans in the pancreas are responsible for the production and secretion of several hormones that play a crucial role in regulating blood glucose levels. The beta cells in the islets of Langerhans are responsible for producing insulin, which accounts for 70% of the total secretions. Insulin helps to lower blood glucose levels by promoting the uptake of glucose by cells and tissues throughout the body.

      The alpha cells in the islets of Langerhans produce glucagon, which has the opposite effect of insulin. Glucagon raises blood glucose levels by stimulating the liver to release stored glucose into the bloodstream. The delta cells in the islets of Langerhans produce somatostatin, which helps to regulate the release of insulin and glucagon.

      Finally, the F cells in the islets of Langerhans produce pancreatic polypeptide, which plays a role in regulating pancreatic exocrine function and appetite. Together, these hormones work to maintain a delicate balance of blood glucose levels in the body.

    • This question is part of the following fields:

      • Endocrine System
      7.9
      Seconds
  • Question 13 - A 65-year-old man with a medical history of obesity, hypertension, type 2 diabetes...

    Correct

    • A 65-year-old man with a medical history of obesity, hypertension, type 2 diabetes mellitus, and ischaemic heart disease is hospitalized for SARS-CoV-2 infection. He is started on oxygen therapy and a 10-day course of oral dexamethasone. What is the most crucial monitoring strategy following the initiation of this medication?

      Your Answer: Four times daily capillary blood glucose

      Explanation:

      Regular monitoring of capillary blood glucose is recommended when using corticosteroids as they can worsen diabetic control due to their anti-insulin effects. Dexamethasone, a corticosteroid with a high glucocorticoid effect, carries a high risk of hyperglycaemia in patients with or without diabetes. Monitoring blood sugars is essential for patients with diabetes who are started on glucocorticoids. Monitoring cardiac function, daily amylase levels, daily lying and standing blood pressure, and daily urea and electrolytes are not routinely recommended while on corticosteroids. However, these tests may be necessary if suggestive symptoms develop.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      1.7
      Seconds
  • Question 14 - A 39-year-old male presents to an endocrine clinic with acromegaly caused by a...

    Correct

    • A 39-year-old male presents to an endocrine clinic with acromegaly caused by a growth hormone-secreting tumor. The patient is prescribed Octreotide, a somatostatin analogue, to suppress growth hormone release.

      What additional hormonal effects can be attributed to somatostatin?

      Your Answer: Decreases secretion of glucagon

      Explanation:

      Somatostatin has an inhibitory effect on the secretion of glucagon, but it does not affect the secretion of estrogen. It also decreases the secretion of insulin, and overproduction of somatostatin can lead to diabetes mellitus. Additionally, somatostatin reduces the secretion of gastrin, which in turn decreases the production of gastric acid by parietal cells. It also decreases the secretion of thyroid stimulating hormone (TSH), resulting in a decrease in the production of thyroxine in the thyroid.

      Somatostatin: The Inhibitor Hormone

      Somatostatin, also known as growth hormone inhibiting hormone (GHIH), is a hormone produced by delta cells found in the pancreas, pylorus, and duodenum. Its main function is to inhibit the secretion of growth hormone, insulin, and glucagon. It also decreases acid and pepsin secretion, as well as pancreatic enzyme secretion. Additionally, somatostatin inhibits the trophic effects of gastrin and stimulates gastric mucous production.

      Somatostatin analogs are commonly used in the management of acromegaly, a condition characterized by excessive growth hormone secretion. These analogs work by inhibiting growth hormone secretion, thereby reducing the symptoms associated with acromegaly.

      The secretion of somatostatin is regulated by various factors. Its secretion increases in response to fat, bile salts, and glucose in the intestinal lumen, as well as glucagon. On the other hand, insulin decreases the secretion of somatostatin.

      In summary, somatostatin plays a crucial role in regulating the secretion of various hormones and enzymes in the body. Its inhibitory effects on growth hormone, insulin, and glucagon make it an important hormone in the management of certain medical conditions.

    • This question is part of the following fields:

      • Endocrine System
      11.3
      Seconds
  • Question 15 - These results were obtained on a 30-year-old male who has presented with tiredness:
    Free...

    Correct

    • These results were obtained on a 30-year-old male who has presented with tiredness:
      Free T4 9.3 pmol/L (9.8-23.1)
      TSH 49.31 mU/L (0.35-5.50)
      What signs might be expected in this case?

      Your Answer: Slow relaxation of biceps reflex

      Explanation:

      Diagnosis and Symptoms of Hypothyroidism

      Hypothyroidism is diagnosed through blood tests that show low levels of T4 and elevated levels of TSH. Physical examination may reveal slow relaxation of tendon jerks, bradycardia, and goitre. A bruit over a goitre is associated with Graves’ thyrotoxicosis, while palmar erythema and fine tremor occur in thyrotoxicosis. In addition to these common symptoms, hypothyroidism may also present with rarer features such as cerebellar features, compression neuropathies, hypothermia, and macrocytic anaemia. It is important to diagnose and treat hypothyroidism promptly to prevent further complications.

    • This question is part of the following fields:

      • Endocrine System
      2.1
      Seconds
  • Question 16 - A 65-year-old man with a history of type 2 diabetes is being seen...

    Correct

    • A 65-year-old man with a history of type 2 diabetes is being seen by his primary care physician.

      He is currently taking metformin 1g twice daily and lisinopril for his high blood pressure.

      His most recent HbA1c result is:

      HbA1c 58 mmol/L (<42)

      After further discussion, he has agreed to add a second medication for his diabetes. He has been informed that potential side effects may include weight gain, hypoglycemia, and gastrointestinal issues.

      What is the mechanism of action for this new medication?

      Your Answer: Binding to KATP channels on pancreatic beta cell membrane

      Explanation:

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      4
      Seconds
  • Question 17 - A 14-year-old arrives at the Emergency Department complaining of abdominal pains, nausea, and...

    Correct

    • A 14-year-old arrives at the Emergency Department complaining of abdominal pains, nausea, and vomiting. Upon conducting blood tests, the following results are obtained:

      - Glucose: 24 mmol/L (4.0-11.0)
      - Ketones: 4.6 mmol/L (<0.6)
      - Na+: 138 mmol/L (135 - 145)
      - K+: 4.7 mmol/L (3.5 - 5.0)

      Based on these findings, the patient is started on a fixed insulin regimen and given intravenous fluids. After repeating the blood tests, it is observed that the K+ level has dropped to 3.3 mmol/L (3.5 - 5.0). What mechanism is responsible for this effect caused by insulin?

      Your Answer: Stimulation of the Na+/K+ ATPase pump

      Explanation:

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      4.9
      Seconds
  • Question 18 - Which hormonal agent will enhance the secretion of water and electrolytes in pancreatic...

    Correct

    • Which hormonal agent will enhance the secretion of water and electrolytes in pancreatic juice?

      Your Answer: Secretin

      Explanation:

      The secretion of water and electrolytes is stimulated by secretin, while cholecystokinin stimulates the secretion of enzymes. Secretin generally leads to an increase in the volume of electrolytes and water in secretions, whereas cholecystokinin increases the enzyme content. Secretion volume is reduced by somatostatin, while aldosterone tends to preserve electrolytes.

      Pancreatic Secretions and their Regulation

      Pancreatic secretions are composed of enzymes and aqueous substances, with a pH of 8 and a volume of 1000-1500ml per day. The acinar cells secrete enzymes such as trypsinogen, procarboxylase, amylase, and elastase, while the ductal and centroacinar cells secrete sodium, bicarbonate, water, potassium, and chloride. The regulation of pancreatic secretions is mainly stimulated by CCK and ACh, which are released in response to digested material in the small bowel. Secretin, released by the S cells of the duodenum, also stimulates ductal cells and increases bicarbonate secretion.

      Trypsinogen is converted to active trypsin in the duodenum via enterokinase, and trypsin then activates the other inactive enzymes. The cephalic and gastric phases have less of an impact on regulating pancreatic secretions. Understanding the composition and regulation of pancreatic secretions is important in the diagnosis and treatment of pancreatic disorders.

    • This question is part of the following fields:

      • Endocrine System
      2.5
      Seconds
  • Question 19 - A 26-year-old woman with a history of type 1 diabetes mellitus and borderline...

    Correct

    • A 26-year-old woman with a history of type 1 diabetes mellitus and borderline personality disorder is brought to the emergency department by ambulance due to a decreased level of consciousness. She is currently on regular insulin. Upon examination, her Glasgow coma scale is 3/15. The venous blood gas results show a pH of 7.36 (7.35-7.45), K+ of 3.8 mmol/L (3.5-4.5), Na+ of 136 mmol/L (135-145), glucose of 1.2 mmol/L (4.0-7.0), HCO3- of 23 mmol/L (22-26), and Hb of 145 g/dL (12.1-15.1). What is the first hormone to be secreted in response to the likely diagnosis?

      Your Answer: Glucagon

      Explanation:

      The correct answer is Glucagon, as it is the first hormone to be secreted in response to hypoglycaemia. The patient’s reduced level of consciousness is likely due to profound hypoglycaemia caused by exogenous insulin administration. Borderline personality disorder patients have a higher incidence of self harm and suicidality than the general population. Insulin is not the correct answer as its secretion decreases in response to hypoglycaemia, and this patient has T1DM resulting in an absolute deficiency. Cortisol is also not the correct answer as it takes longer to be secreted, although it is another counter-regulatory hormone that seeks to raise blood glucose levels in response to hypoglycaemia.

      Understanding Hypoglycaemia: Causes, Features, and Management

      Hypoglycaemia is a condition characterized by low blood sugar levels, which can lead to a range of symptoms and complications. There are several possible causes of hypoglycaemia, including insulinoma, liver failure, Addison’s disease, and alcohol consumption. The physiological response to hypoglycaemia involves hormonal and sympathoadrenal responses, which can result in autonomic and neuroglycopenic symptoms. While blood glucose levels and symptom severity are not always correlated, common symptoms of hypoglycaemia include sweating, shaking, hunger, anxiety, nausea, weakness, vision changes, confusion, and dizziness. In severe cases, hypoglycaemia can lead to convulsions or coma.

      Managing hypoglycaemia depends on the severity of the symptoms and the setting in which it occurs. In the community, individuals with diabetes who inject insulin may be advised to consume oral glucose or a quick-acting carbohydrate such as GlucoGel or Dextrogel. A ‘HypoKit’ containing glucagon may also be prescribed for home use. In a hospital setting, treatment may involve administering a quick-acting carbohydrate or subcutaneous/intramuscular injection of glucagon for unconscious or unable to swallow patients. Alternatively, intravenous glucose solution may be given through a large vein.

      Overall, understanding the causes, features, and management of hypoglycaemia is crucial for individuals with diabetes or other conditions that increase the risk of low blood sugar levels. Prompt and appropriate treatment can help prevent complications and improve outcomes.

    • This question is part of the following fields:

      • Endocrine System
      5.2
      Seconds
  • Question 20 - A 28-year-old woman comes to her outpatient appointment after being diagnosed with Grave's...

    Correct

    • A 28-year-old woman comes to her outpatient appointment after being diagnosed with Grave's disease. This condition is known for having three distinct signs, in addition to thyroid eye disease. What are the other signs?

      Your Answer: Thyroid acropachy & pretibial myxoedema

      Explanation:

      Grave’s disease is commonly linked to several other conditions, including thyroid eye disease, thyroid acropachy, and pretibial myxoedema.

      This autoimmune disease, known as Grave’s thyroiditis, is caused by antibodies that target the thyroid stimulating hormone (TSH) receptor, leading to prolonged stimulation.

      One of the most noticeable symptoms of Grave’s disease is exophthalmos, which occurs when TSH receptor antibodies bind to receptors at the back of the eye, causing inflammation and an increase in glycosaminoglycans. This results in swelling of the eye muscles and connective tissue.

      Pretibial myxoedema is a skin condition that often develops in individuals with Grave’s disease. It is characterized by localized lesions on the skin in front of the tibia, which are caused by an increase in glycosaminoglycans in the pretibial dermis.

      Thyroid acropachy is another condition associated with Grave’s disease, which involves swelling of soft tissues, clubbing of the fingers, and periosteal reactions in the extremities.

      Graves’ Disease: Common Features and Unique Signs

      Graves’ disease is the most frequent cause of thyrotoxicosis, which is commonly observed in women aged 30-50 years. The condition presents typical features of thyrotoxicosis, such as weight loss, palpitations, and heat intolerance. However, Graves’ disease also displays specific signs that are not present in other causes of thyrotoxicosis. These include eye signs, such as exophthalmos and ophthalmoplegia, as well as pretibial myxoedema and thyroid acropachy. The latter is a triad of digital clubbing, soft tissue swelling of the hands and feet, and periosteal new bone formation.

      Graves’ disease is characterized by the presence of autoantibodies, including TSH receptor stimulating antibodies in 90% of patients and anti-thyroid peroxidase antibodies in 75% of patients. Thyroid scintigraphy reveals a diffuse, homogenous, and increased uptake of radioactive iodine. These features help distinguish Graves’ disease from other causes of thyrotoxicosis and aid in its diagnosis.

    • This question is part of the following fields:

      • Endocrine System
      2.9
      Seconds
  • Question 21 - A 55-year-old woman comes to her doctor complaining of fatigue, difficulty passing stool,...

    Correct

    • A 55-year-old woman comes to her doctor complaining of fatigue, difficulty passing stool, and muscle weakness. Her lab results show:

      Free T4 6 pmol/l (9-18 pmol/l)
      TSH 7.2 mu/l (0.5-5.5 mu/l)

      Based on the probable diagnosis, which of the following tests is most likely to be positive in this patient?

      Your Answer: Anti-thyroid peroxidase (anti-TPO) antibodies

      Explanation:

      Rheumatoid factor is not the most suitable answer for a patient with hypothyroidism, despite its presence in various rheumatological conditions and healthy individuals.

      Understanding Thyroid Autoantibodies

      Thyroid autoantibodies are antibodies that attack the thyroid gland, causing various thyroid disorders. There are three main types of anti-thyroid autoantibodies: anti-thyroid peroxidase (anti-TPO) antibodies, TSH receptor antibodies, and thyroglobulin antibodies. Anti-TPO antibodies are present in 90% of Hashimoto’s thyroiditis cases and 75% of Graves’ disease cases. TSH receptor antibodies are found in 90-100% of Graves’ disease cases. Thyroglobulin antibodies are present in 70% of Hashimoto’s thyroiditis cases, 30% of Graves’ disease cases, and a small proportion of thyroid cancer cases.

      Understanding the different types of thyroid autoantibodies is important in diagnosing and treating thyroid disorders. Hashimoto’s thyroiditis and Graves’ disease are the most common autoimmune thyroid disorders, and the presence of specific autoantibodies can help differentiate between the two. Additionally, monitoring the levels of these antibodies can help track the progression of the disease and the effectiveness of treatment. Overall, understanding thyroid autoantibodies is crucial in managing thyroid health.

    • This question is part of the following fields:

      • Endocrine System
      3.7
      Seconds
  • Question 22 - A woman in her early 50s complains of headaches, anxiety and weight loss....

    Correct

    • A woman in her early 50s complains of headaches, anxiety and weight loss. Upon examination, she displays hypertension, tachycardia and pallor. The diagnosis is phaeochromocytoma. What is the most common location for these tumors to occur?

      Your Answer: Adrenal medulla

      Explanation:

      Phaeochromocytoma is a condition characterized by uncommon tumours that secrete catecholamines in the adrenal medulla. Although they are seldom detected outside the adrenal medulla, if they do occur, they are more likely to be malignant.

      Phaeochromocytoma: A Rare Tumor that Secretes Catecholamines

      Phaeochromocytoma is a type of tumor that secretes catecholamines and is considered rare. It is familial in about 10% of cases and may be associated with certain syndromes such as MEN type II, neurofibromatosis, and von Hippel-Lindau syndrome. This tumor can be bilateral in 10% of cases and malignant in 10%. It can also occur outside of the adrenal gland, with the most common site being the organ of Zuckerkandl, which is adjacent to the bifurcation of the aorta.

      The symptoms of phaeochromocytoma are typically episodic and include hypertension (which is present in around 90% of cases and may be sustained), headaches, palpitations, sweating, and anxiety. To diagnose this condition, a 24-hour urinary collection of metanephrines is preferred over a 24-hour urinary collection of catecholamines due to its higher sensitivity (97%).

      Surgery is the definitive management for phaeochromocytoma. However, before surgery, the patient must first be stabilized with medical management, which includes an alpha-blocker (such as phenoxybenzamine) given before a beta-blocker (such as propranolol).

    • This question is part of the following fields:

      • Endocrine System
      4.8
      Seconds
  • Question 23 - A 25-year-old female visits her GP complaining of chronic thirst, polyuria, and nocturia...

    Correct

    • A 25-year-old female visits her GP complaining of chronic thirst, polyuria, and nocturia that have persisted for 2 months. She has a medical history of premenstrual dysphoric disorder diagnosed 3 years ago. After a series of tests, the patient is diagnosed with primary polydipsia. What results are expected from her water deprivation test?

      Your Answer: High urine osmolality after both fluid deprivation and desmopressin

      Explanation:

      The patient has primary polydipsia, a psychogenic disorder causing excessive drinking despite being hydrated. Urine osmolality is high after both fluid deprivation and desmopressin, as the patient still produces and responds to ADH. Low urine osmolality after both fluid deprivation and desmopressin is typical of nephrogenic DI, while low urine osmolality after fluid deprivation but high after desmopressin is typical of cranial DI. Low urine osmolality after desmopressin and low urine osmolality after fluid deprivation but normal after desmopressin are not commonly seen with any pathological state.

      The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.

    • This question is part of the following fields:

      • Endocrine System
      2
      Seconds
  • Question 24 - A 45-year-old Caucasian male visits his doctor complaining of numbness in his extremities...

    Correct

    • A 45-year-old Caucasian male visits his doctor complaining of numbness in his extremities and tingling sensations around his mouth and lips. He has undergone a thyroidectomy in the past. During a complete cranial nerve examination, the physician observes facial muscle twitching upon tapping the patient's face.

      What is the reason for the facial muscle twitching observed during the examination?

      Your Answer: Increased irritability of peripheral nerves due to hypocalcaemia

      Explanation:

      Chvostek’s sign is a facial twitch that occurs when the distribution of the facial nerve in front of the tragus is tapped. This sign is caused by increased irritability of peripheral nerves, which is often seen in cases of hypocalcemia. In fact, Chvostek’s sign is considered the most reliable test for hypocalcemia.

      Calcium homeostasis is the process of regulating the concentration of calcium ions in the extracellular fluid. This is important because calcium ions help stabilize voltage-gated ion channels. When calcium levels are too low, these ion channels become more easily activated, leading to hyperactivity in nerve and muscle cells. This can result in hypocalcemic tetany, which is characterized by involuntary muscle spasms. On the other hand, when calcium levels are too high, voltage-gated ion channels become less responsive, leading to depressed nervous system function.

      Understanding Hypoparathyroidism

      Hypoparathyroidism is a medical condition that occurs when there is a decrease in the secretion of parathyroid hormone (PTH). This can be caused by primary hypoparathyroidism, which is often a result of thyroid surgery, leading to low calcium and high phosphate levels. Treatment for this type of hypoparathyroidism involves the use of alfacalcidol. The main symptoms of hypoparathyroidism are due to hypocalcaemia and include muscle twitching, cramping, and spasms, as well as perioral paraesthesia. Other symptoms include Trousseau’s sign, which is carpal spasm when the brachial artery is occluded, and Chvostek’s sign, which is facial muscle twitching when the parotid is tapped. Chronic hypoparathyroidism can lead to depression and cataracts, and ECG may show a prolonged QT interval.

      Pseudohypoparathyroidism is another type of hypoparathyroidism that occurs when the target cells are insensitive to PTH due to an abnormality in a G protein. This condition is associated with low IQ, short stature, and shortened 4th and 5th metacarpals. The diagnosis is made by measuring urinary cAMP and phosphate levels following an infusion of PTH. In hypoparathyroidism, this will cause an increase in both cAMP and phosphate levels. In pseudohypoparathyroidism type I, neither cAMP nor phosphate levels are increased, while in pseudohypoparathyroidism type II, only cAMP rises. Pseudopseudohypoparathyroidism is a similar condition to pseudohypoparathyroidism, but with normal biochemistry.

    • This question is part of the following fields:

      • Endocrine System
      7.6
      Seconds
  • Question 25 - A 62-year-old male with type 2 diabetes is urgently referred by his GP...

    Incorrect

    • A 62-year-old male with type 2 diabetes is urgently referred by his GP due to poor glycaemic control for the past three days, with home blood glucose readings around 25 mmol/L. He is currently being treated with metformin and lisinopril. Yesterday, his GP checked his U+E and found that his serum sodium was 138 mmol/L (137-144), serum potassium was 5.8 mmol/L (3.5-4.9), serum urea was 20 mmol/L (2.5-7.5), and serum creatinine was 350 µmol/L (60-110). On examination, he has a temperature of 39°C, a pulse of 108 bpm, a blood pressure of 96/60 mmHg, a respiratory rate of 32/min, and oxygen saturations of 99% on air. His cardiovascular, respiratory, and abdominal examination are otherwise normal. Further investigations reveal a plasma glucose level of 17 mmol/L (3.0-6.0) and urine analysis showing blood ++ and protein ++, but ketones are negative. What is the likely diagnosis?

      Your Answer: Hyperosmolar non-ketotic state

      Correct Answer: Sepsis

      Explanation:

      The causes of septic shock are important to understand in order to provide appropriate treatment and improve patient outcomes. Septic shock can cause fever, hypotension, and renal failure, as well as tachypnea due to metabolic acidosis. However, it is crucial to rule out other conditions such as hyperosmolar hyperglycemic state or diabetic ketoacidosis, which have different symptoms and diagnostic criteria.

      While metformin can contribute to acidosis, it is unlikely to be the primary cause in this case. Diabetic patients may be prone to renal tubular acidosis, but this is not likely to be the cause of an acute presentation. Instead, a type IV renal tubular acidosis, characterized by hyporeninaemic hypoaldosteronism, may be a more likely association.

      Overall, it is crucial to carefully evaluate patients with septic shock and consider all possible causes of their symptoms. By ruling out other conditions and identifying the underlying cause of the acidosis, healthcare providers can provide targeted treatment and improve patient outcomes. Further research and education on septic shock and its causes can also help to improve diagnosis and treatment in the future.

    • This question is part of the following fields:

      • Endocrine System
      86.4
      Seconds
  • Question 26 - A 26-year-old male patient comes to the follow-up clinic after undergoing surgery to...

    Correct

    • A 26-year-old male patient comes to the follow-up clinic after undergoing surgery to remove an endocrine gland. He had been experiencing symptoms such as profuse sweating, headaches, palpitations, and high blood pressure (200/120mmHg) prior to the decision for surgery. What type of cells would be revealed through histological staining of the removed organ?

      Your Answer: Chromaffin cells

      Explanation:

      The man’s initial symptoms are consistent with a diagnosis of phaeochromocytoma, a type of neuroendocrine tumor that affects the chromaffin cells in the adrenal medulla. This condition leads to an overproduction of adrenaline and noradrenaline, resulting in an excessive sympathetic response.

      Calcitonin is secreted by the parafollicular C cells in the thyroid gland.

      The anterior pituitary gland contains gonadotropes, lactotropes, and thyrotropes, which secrete gonadotropins (FSH, LH), prolactin, and TSH, respectively.

      Phaeochromocytoma: A Rare Tumor that Secretes Catecholamines

      Phaeochromocytoma is a type of tumor that secretes catecholamines and is considered rare. It is familial in about 10% of cases and may be associated with certain syndromes such as MEN type II, neurofibromatosis, and von Hippel-Lindau syndrome. This tumor can be bilateral in 10% of cases and malignant in 10%. It can also occur outside of the adrenal gland, with the most common site being the organ of Zuckerkandl, which is adjacent to the bifurcation of the aorta.

      The symptoms of phaeochromocytoma are typically episodic and include hypertension (which is present in around 90% of cases and may be sustained), headaches, palpitations, sweating, and anxiety. To diagnose this condition, a 24-hour urinary collection of metanephrines is preferred over a 24-hour urinary collection of catecholamines due to its higher sensitivity (97%).

      Surgery is the definitive management for phaeochromocytoma. However, before surgery, the patient must first be stabilized with medical management, which includes an alpha-blocker (such as phenoxybenzamine) given before a beta-blocker (such as propranolol).

    • This question is part of the following fields:

      • Endocrine System
      16.2
      Seconds
  • Question 27 - A 49-year-old woman has been diagnosed with a phaeochromocytoma. What is the primary...

    Incorrect

    • A 49-year-old woman has been diagnosed with a phaeochromocytoma. What is the primary amino acid from which catecholamines are derived?

      Your Answer: Glutamine

      Correct Answer: Tyrosine

      Explanation:

      Tyrosine serves as the precursor for catecholamine hormones, which undergo modification by a DOPA decarboxylase enzyme to form dopamine. Subsequently, through two additional enzymatic alterations, dopamine is converted to noradrenaline and ultimately adrenaline.

      Adrenal Physiology: Medulla and Cortex

      The adrenal gland is composed of two main parts: the medulla and the cortex. The medulla is responsible for secreting the catecholamines noradrenaline and adrenaline, which are released in response to sympathetic nervous system stimulation. The chromaffin cells of the medulla are innervated by the splanchnic nerves, and the release of these hormones is triggered by the secretion of acetylcholine from preganglionic sympathetic fibers. Phaeochromocytomas, which are tumors derived from chromaffin cells, can cause excessive secretion of both adrenaline and noradrenaline.

      The adrenal cortex is divided into three distinct zones: the zona glomerulosa, zona fasciculata, and zona reticularis. Each zone is responsible for secreting different hormones. The outer zone, zona glomerulosa, secretes aldosterone, which regulates electrolyte balance and blood pressure. The middle zone, zona fasciculata, secretes glucocorticoids, which are involved in the regulation of metabolism, immune function, and stress response. The inner zone, zona reticularis, secretes androgens, which are involved in the development and maintenance of male sex characteristics.

      Most of the hormones secreted by the adrenal cortex, including glucocorticoids and aldosterone, are bound to plasma proteins in the circulation. Glucocorticoids are inactivated and excreted by the liver. Understanding the physiology of the adrenal gland is important for the diagnosis and treatment of various endocrine disorders.

    • This question is part of the following fields:

      • Endocrine System
      8.2
      Seconds
  • Question 28 - A 60-year-old male presents with increasing fatigue.

    Three months ago, he was diagnosed...

    Correct

    • A 60-year-old male presents with increasing fatigue.

      Three months ago, he was diagnosed with bronchial carcinoma and has undergone chemotherapy. Upon admission, his electrolyte levels were measured as follows:

      - Sodium: 118 mmol/L (137-144)
      - Potassium: 3.5 mmol/L (3.5-4.9)
      - Urea: 3.2 mmol/L (2.5-7.5)
      - Creatinine: 65 µmol/L (60-110)

      What would be the most appropriate initial investigation for this patient?

      Your Answer: Urine osmolality and sodium concentration

      Explanation:

      Hyponatraemia in Bronchial Carcinoma Patients

      Hyponatraemia is a common condition in patients with bronchial carcinoma. It is characterized by a marked decrease in sodium levels, which appears to be dilutional based on other test results that fall within the lower end of the normal range. The most likely cause of this condition is the syndrome of inappropriate ADH secretion (SIADH), which occurs when the tumour produces ADH in an ectopic manner. However, the diagnosis of SIADH is one of exclusion, and other possibilities such as hypoadrenalism due to metastatic disease to the adrenals should also be considered.

      To determine the cause of hyponatraemia, initial tests such as urine sodium and osmolality are recommended. These tests can help rule out other possible causes and confirm the diagnosis of SIADH. Treatment for this condition typically involves fluid restriction. It is important to note that measuring ADH concentrations is not a reliable diagnostic tool as it is not widely available and does not provide any useful information.

      In summary, hyponatraemia is a common condition in bronchial carcinoma patients, and SIADH is the most likely cause. Initial tests such as urine sodium and osmolality can help confirm the diagnosis, and treatment involves fluid restriction.

    • This question is part of the following fields:

      • Endocrine System
      28.9
      Seconds
  • Question 29 - As a medical student on a gastrointestinal ward, you come across a patient...

    Incorrect

    • As a medical student on a gastrointestinal ward, you come across a patient suffering from long-standing reflux. During the ward round, you notice that the patient, who is in his late 40s, is being treated with metoclopramide, a pro-kinetic drug that blocks the action of dopamine and speeds up gastrointestinal motility. However, the patient is now experiencing gynaecomastia and erectile dysfunction. Which hormone is most likely being overproduced in this patient, leading to his current symptoms?

      Your Answer: Oestrogen

      Correct Answer: Prolactin

      Explanation:

      Understanding Prolactin and Galactorrhoea

      Prolactin is a hormone produced by the anterior pituitary gland, and its release is regulated by various physiological factors. Dopamine is the primary inhibitor of prolactin release, and dopamine agonists like bromocriptine can be used to manage galactorrhoea. It is crucial to distinguish between the causes of galactorrhoea and gynaecomastia, which are both related to the actions of prolactin on breast tissue.

      Excess prolactin can lead to different symptoms in men and women. Men may experience impotence, loss of libido, and galactorrhoea, while women may have amenorrhoea and galactorrhoea. Several factors can cause raised prolactin levels, including prolactinoma, pregnancy, oestrogens, stress, exercise, sleep, acromegaly, polycystic ovarian syndrome, and primary hypothyroidism.

      Certain drugs can also increase prolactin levels, such as metoclopramide, domperidone, phenothiazines, and haloperidol. Although rare, some SSRIs and opioids may also cause raised prolactin levels.

      In summary, understanding prolactin and its effects on the body is crucial in diagnosing and managing conditions like galactorrhoea. Identifying the underlying causes of raised prolactin levels is essential in providing appropriate treatment and care.

    • This question is part of the following fields:

      • Endocrine System
      15.3
      Seconds
  • Question 30 - A 65-year-old male, who is a known type 2 diabetic, visits his GP...

    Correct

    • A 65-year-old male, who is a known type 2 diabetic, visits his GP for a diabetes check-up. He is currently taking metformin and his GP has prescribed a sulphonylurea to improve his blood sugar management. What is the mode of action of this medication?

      Your Answer: Closes potassium-ATP channels on the beta cells

      Explanation:

      Sulfonylureas bind to potassium-ATP channels on the cell membrane of pancreatic beta cells, mimicking the role of ATP from the outside. This results in the blocking of these channels, causing membrane depolarisation and the opening of voltage-gated calcium channels. As a result, insulin release is stimulated.

      While acute use of sulfonylureas increases insulin secretion and decreases insulin clearance in the liver, it can also cause hypoglycaemia, which is the main side effect. This can lead to the serious complication of neuroglycopenia, resulting in a lack of glucose supply to the brain, causing confusion and possible coma. Treatment for this should involve oral glucose, intramuscular glucagon, or intravenous glucose.

      Chronic exposure to sulfonylureas does not result in an acute increase in insulin release, but a decrease in plasma glucose concentration does remain. Additionally, chronic exposure to sulfonylureas leads to down-regulation of their receptors.

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      10.1
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Endocrine System (26/30) 87%
Passmed