-
Question 1
Incorrect
-
A 65-year-old male presents with a six-month history of progressive weakness in the lower limbs associated with numbness. He also complains of feeling tired and lightheaded lately. He has had recent investigation for this and showed macrocytic anaemia with vitamin B12 deficiency. He is currently awaiting to commence on B12 replacement. Otherwise, he is normally fit and well and is not on any regular medication.
Neurological examination of the lower limb shows the following:
Left Right
Power 4/5 4/5
Sensation to coarse touch, pain, temperature and pressure normal normal
Sensation to fine touch and vibration reduced reduced
Proprioception reduced reduced
Ankle reflex absent absent
Babinski response upgoing upgoing
Which of the following area of the spinal cord is most likely affected in this patient?Your Answer: Anterior and lateral columns
Correct Answer: Dorsal and lateral columns
Explanation:Subacute combined degeneration of the spinal cord affects both the dorsal and lateral columns. This condition is often caused by a deficiency in vitamin B12 and can result in reduced power in the lower limbs, as well as a loss of sensation to fine touch and proprioception. The dorsal columns are primarily affected, leading to issues with proprioception and vibration sense, while the lateral columns contain the corticospinal tracts, which are responsible for motor function. The anterior column contains the spinothalamic tracts, which are responsible for pain, temperature, coarse touch, and pressure sensations. The lateral horns of the spinal cord contain the neuronal cell bodies of the sympathetic nervous system, and damage to this area can result in Horner syndrome. The ventral horns of the spinal cord contain motor neurons for skeletal muscles and are associated with conditions such as amyotrophic lateral sclerosis, Charcot–Marie–Tooth disease, and progressive muscular atrophy.
Subacute Combined Degeneration of Spinal Cord
Subacute combined degeneration of spinal cord is a condition that occurs due to a deficiency of vitamin B12. The dorsal columns and lateral corticospinal tracts are affected, leading to the loss of joint position and vibration sense. The first symptoms are usually distal paraesthesia, followed by the development of upper motor neuron signs in the legs, such as extensor plantars, brisk knee reflexes, and absent ankle jerks. If left untreated, stiffness and weakness may persist.
This condition is a serious concern and requires prompt medical attention. It is important to maintain a healthy diet that includes sufficient amounts of vitamin B12 to prevent the development of subacute combined degeneration of spinal cord.
-
This question is part of the following fields:
- Neurological System
-
-
Question 2
Correct
-
You are evaluating an 80-year-old woman who was admitted last night with symptoms suggestive of a stroke. She is suspected to have lateral medullary syndrome.
During the examination, you observe that she has lost her sense of taste in the posterior third of her tongue and has an absent gag reflex.
Through which structure does the affected cranial nerve most likely pass?Your Answer: Jugular foramen
Explanation:The jugular foramen is the pathway through which the glossopharyngeal nerve travels.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 3
Incorrect
-
A 35-year-old man is brought to the emergency department with suspected spinal trauma following a car accident. He presents with back pain and pain in his right leg. Initial vital signs reveal a blood pressure of 125/83 mmHg and a heart rate of 83bpm. Upon examination, there is bruising on his chest and an obvious deformity in his right leg. Later that day, he suddenly experiences a severe headache and appears flushed, sweating profusely. His vital signs now show a blood pressure of 162/97mmHg and a heart rate of 51. What is the level of his injury?
Your Answer: T12
Correct Answer: T5
Explanation:Autonomic dysreflexia can occur if the spinal cord injury is at or above the T5 level. This condition is characterized by symptoms such as headache, sweating, hypertension, and bradycardia, which can be triggered by any afferent sympathetic signal, such as urinary retention or faecal impaction. A spinal injury at the level of L1 or S1 is too low to cause autonomic dysreflexia, but may affect bladder and bowel control and the use of the hip and legs.
Autonomic dysreflexia is a condition that occurs in patients who have suffered a spinal cord injury at or above the T6 spinal level. It is caused by a reflex response triggered by various stimuli, such as faecal impaction or urinary retention, which sends signals through the thoracolumbar outflow. However, due to the spinal cord lesion, the usual parasympathetic response is prevented, leading to an unbalanced physiological response. This response is characterized by extreme hypertension, flushing, and sweating above the level of the cord lesion, as well as agitation. If left untreated, severe consequences such as haemorrhagic stroke can occur. The management of autonomic dysreflexia involves removing or controlling the stimulus and treating any life-threatening hypertension and/or bradycardia.
-
This question is part of the following fields:
- Neurological System
-
-
Question 4
Correct
-
A 49-year-old female has a history of B12 deficiency and is now presenting symptoms of subacute combined degeneration of the spinal cord that affects her dorsal columns. Which types of sensation will be impacted by this condition?
Your Answer: Light touch, vibration and proprioception
Explanation:The spinal cord’s classic metabolic disorder is subacute combined degeneration, which results from a deficiency in vitamin B12. Folate deficiency can also cause this disorder. The damage specifically affects the posterior columns and corticospinal tracts, but peripheral nerve damage often develops early on, making the clinical picture complex. The dorsal columns are responsible for transmitting sensations of light touch, vibration, and proprioception.
Spinal cord lesions can affect different tracts and result in various clinical symptoms. Motor lesions, such as amyotrophic lateral sclerosis and poliomyelitis, affect either upper or lower motor neurons, resulting in spastic paresis or lower motor neuron signs. Combined motor and sensory lesions, such as Brown-Sequard syndrome, subacute combined degeneration of the spinal cord, Friedrich’s ataxia, anterior spinal artery occlusion, and syringomyelia, affect multiple tracts and result in a combination of spastic paresis, loss of proprioception and vibration sensation, limb ataxia, and loss of pain and temperature sensation. Multiple sclerosis can involve asymmetrical and varying spinal tracts and result in a combination of motor, sensory, and ataxia symptoms. Sensory lesions, such as neurosyphilis, affect the dorsal columns and result in loss of proprioception and vibration sensation.
-
This question is part of the following fields:
- Neurological System
-
-
Question 5
Correct
-
A 45-year-old patient presents to the neurology clinic with recurrent episodes of vision loss, one instance of urinary incontinence, and left arm tingling. The neurologist suspects a demyelinating disease. Which specific cell is responsible for myelinating axons in the central nervous system?
Your Answer: Oligodendrocytes
Explanation:The CNS relies on oligodendrocytes to produce myelin, while Schwann cells are responsible for myelin production in the PNS. Oligodendrocytes can myelinate up to 50 axons each, and are often mistaken for Schwann cells. Multiple sclerosis is a disease that affects oligodendrocytes in the CNS. Microglia are specialized phagocytes in the CNS, while astrocytes provide structural support and remove excess potassium ions from the extracellular space.
The nervous system is composed of various types of cells, each with their own unique functions. Oligodendroglia cells are responsible for producing myelin in the central nervous system (CNS) and are affected in multiple sclerosis. Schwann cells, on the other hand, produce myelin in the peripheral nervous system (PNS) and are affected in Guillain-Barre syndrome. Astrocytes provide physical support, remove excess potassium ions, help form the blood-brain barrier, and aid in physical repair. Microglia are specialised CNS phagocytes, while ependymal cells provide the inner lining of the ventricles.
In summary, the nervous system is made up of different types of cells, each with their own specific roles. Oligodendroglia and Schwann cells produce myelin in the CNS and PNS, respectively, and are affected in certain diseases. Astrocytes provide physical support and aid in repair, while microglia are specialised phagocytes in the CNS. Ependymal cells line the ventricles. Understanding the functions of these cells is crucial in understanding the complex workings of the nervous system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 6
Incorrect
-
A 57-year-old woman with a history of polycystic kidney disease visits her doctor complaining of a drooping eyelid. Upon examination, her left eye displays unilateral ptosis and a downward and outward gaze, with a dilated left pupil. The patient is referred to the neuroradiology department for cerebral angiography, which reveals an aneurysm compressing the oculomotor nerve as it passes through two arteries. What are the names of these two arteries that the oculomotor nerve runs through?
Your Answer: Vertebral and superior cerebellar arteries
Correct Answer: Posterior cerebral and superior cerebellar arteries
Explanation:The oculomotor nerve commonly becomes compressed by aneurysms arising from the posterior cerebral and superior cerebellar arteries as it exits the midbrain, passing between these vessels.
When a patient presents with ptosis, pupillary dilation, and downward and outward gaze, this is classified as a ‘surgical’ cause of oculomotor nerve palsy. In contrast, ‘medical’ causes of oculomotor nerve palsy, such as diabetic neuropathy, typically spare the pupil (at least initially) because the parasympathetic fibers are located on the periphery of the oculomotor nerve trunk and are therefore the first to be affected by compression, resulting in a fixed and dilated pupil.
While a posterior communicating artery aneurysm is a classic cause of oculomotor nerve compression, it is not the correct answer to the above question.
All other combinations are incorrect.
Disorders of the Oculomotor System: Nerve Path and Palsy Features
The oculomotor system is responsible for controlling eye movements and pupil size. Disorders of this system can result in various nerve path and palsy features. The oculomotor nerve has a large nucleus at the midbrain and its fibers pass through the red nucleus and the pyramidal tract, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience ptosis, eye down and out, and an inability to move the eye superiorly, inferiorly, or medially. The pupil may also become fixed and dilated.
The trochlear nerve has the longest intracranial course and is the only nerve to exit the dorsal aspect of the brainstem. Its nucleus is located at the midbrain and it passes between the posterior cerebral and superior cerebellar arteries, as well as through the cavernous sinus into the orbit. When this nerve is affected, patients may experience vertical diplopia (diplopia on descending the stairs) and an inability to look down and in.
The abducens nerve has its nucleus in the mid pons and is responsible for the convergence of eyes in primary position. When this nerve is affected, patients may experience lateral diplopia towards the side of the lesion and the eye may deviate medially. Understanding the nerve path and palsy features of the oculomotor system can aid in the diagnosis and treatment of disorders affecting this important system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 7
Incorrect
-
A 82-year-old man comes to the emergency department complaining of abdominal and bone pain. He appears confused, and his wife reports that he has been feeling down lately. After conducting blood tests, you discover that he has elevated levels of parathyroid hormone, leading you to suspect primary hyperparathyroidism.
What bone profile results would you anticipate?Your Answer: Increased levels of calcium and normal phosphate
Correct Answer: Increased levels of calcium and decreased phosphate
Explanation:PTH elevates calcium levels while reducing phosphate levels.
A single parathyroid adenoma is often responsible for primary hyperparathyroidism, which results in the release of PTH and elevated/normal calcium levels. Normally, increased calcium levels would lead to decreased PTH levels.
Vitamin D is another significant factor in calcium homeostasis, as it increases both plasma calcium and phosphate levels.
Maintaining Calcium Balance in the Body
Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.
PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.
Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.
Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.
Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.
-
This question is part of the following fields:
- Neurological System
-
-
Question 8
Incorrect
-
A 19-year-old male is brought to the emergency room following ingestion of a significant quantity of cocaine. He is experiencing excessive sweating and heart palpitations. During the examination, his pupils are found to be dilated and he is exhibiting tachycardia and tachypnea.
From which spinal level do the preganglionic neurons of the system responsible for his symptoms originate?Your Answer: Cranial nerves 3,7,9 and 10 and S2-4
Correct Answer: T1-L2/3
Explanation:The lateral horns of grey matter give rise to the preganglionic neurons of the sympathetic nervous system.
Understanding the Autonomic Nervous System
The autonomic nervous system is responsible for regulating involuntary functions in the body, such as heart rate, digestion, and sexual arousal. It is composed of two main components, the sympathetic and parasympathetic nervous systems, as well as a sensory division. The sympathetic division arises from the T1-L2/3 region of the spinal cord and synapses onto postganglionic neurons at paravertebral or prevertebral ganglia. The parasympathetic division arises from cranial nerves and the sacral spinal cord and synapses with postganglionic neurons at parasympathetic ganglia. The sensory division includes baroreceptors and chemoreceptors that monitor blood levels of oxygen, carbon dioxide, and glucose, as well as arterial pressure and the contents of the stomach and intestines.
The autonomic nervous system releases neurotransmitters such as noradrenaline and acetylcholine to achieve necessary functions and regulate homeostasis. The sympathetic nervous system causes fight or flight responses, while the parasympathetic nervous system causes rest and digest responses. Autonomic dysfunction refers to the abnormal functioning of any part of the autonomic nervous system, which can present in many forms and affect any of the autonomic systems. To assess a patient for autonomic dysfunction, a detailed history should be taken, and the patient should undergo a full neurological examination and further testing if necessary. Understanding the autonomic nervous system is crucial in diagnosing and treating autonomic dysfunction.
-
This question is part of the following fields:
- Neurological System
-
-
Question 9
Incorrect
-
A 25-year-old man is struck with a hammer on the right side of his head. He passes away upon arrival at the emergency department. What is the most probable finding during the post mortem examination?
Your Answer: Subdural haematoma
Correct Answer: Laceration of the middle meningeal artery
Explanation:The given scenario involves a short delay before death, which is not likely to result in a supratentorial herniation. The other options are also less severe.
Patients with head injuries should be managed according to ATLS principles and extracranial injuries should be managed alongside cranial trauma. Different types of traumatic brain injury include extradural hematoma, subdural hematoma, and subarachnoid hemorrhage. Primary brain injury may be focal or diffuse, while secondary brain injury occurs when cerebral edema, ischemia, infection, tonsillar or tentorial herniation exacerbates the original injury. Management may include IV mannitol/furosemide, decompressive craniotomy, and ICP monitoring. Pupillary findings can provide information on the location and severity of the injury.
-
This question is part of the following fields:
- Neurological System
-
-
Question 10
Correct
-
A 57-year-old woman is admitted to the orthogeriatric ward for further investigations into the underlying cause of her recurrent falls. During a neurological examination, it is found that she has normal power, tone, reflexes, and coordination in both upper and lower limbs bilaterally, but there is a loss of sensation over the medial aspect of her left leg. Based on this information, which nerve is most likely to have been affected?
Your Answer: Saphenous nerve
Explanation:The femoral nerve is a nerve that originates from the spinal roots L2, L3, and L4. It provides innervation to several muscles in the thigh, including the pectineus, sartorius, quadriceps femoris, and vastus lateralis, medialis, and intermedius. Additionally, it branches off into the medial cutaneous nerve of the thigh, saphenous nerve, and intermediate cutaneous nerve of the thigh. The femoral nerve passes through the psoas major muscle and exits the pelvis by going under the inguinal ligament. It then enters the femoral triangle, which is located lateral to the femoral artery and vein.
To remember the femoral nerve’s supply, a helpful mnemonic is don’t MISVQ scan for PE. This stands for the medial cutaneous nerve of the thigh, intermediate cutaneous nerve of the thigh, saphenous nerve, vastus, quadriceps femoris, and sartorius, with the addition of the pectineus muscle. Overall, the femoral nerve plays an important role in the motor and sensory functions of the thigh.
-
This question is part of the following fields:
- Neurological System
-
-
Question 11
Incorrect
-
A 61-year-old male comes to the emergency department with sudden onset double vision. During the examination, you observe that his right eye is in a 'down and out' position. You suspect that he may be experiencing a third nerve palsy.
What is the most probable cause of this condition?Your Answer: Lateral medullary syndrome
Correct Answer: Posterior communicating artery aneurysm
Explanation:A possible cause of the patient’s third nerve palsy is an aneurysm in the posterior communicating artery. However, diabetes insipidus is not related to this condition, while diabetes mellitus may be a contributing factor. Nystagmus is a common symptom of lateral medullary syndrome, while lateral pontine syndrome may cause facial paralysis and deafness on the same side of the body. A stroke in the middle cerebral artery can result in sensory loss and weakness on the opposite side of the body.
Understanding Third Nerve Palsy: Causes and Features
Third nerve palsy is a neurological condition that affects the third cranial nerve, which controls the movement of the eye and eyelid. The condition is characterized by the eye being deviated ‘down and out’, ptosis, and a dilated pupil. In some cases, it may be referred to as a ‘surgical’ third nerve palsy due to the dilation of the pupil.
There are several possible causes of third nerve palsy, including diabetes mellitus, vasculitis (such as temporal arteritis or SLE), uncal herniation through tentorium if raised ICP, posterior communicating artery aneurysm, and cavernous sinus thrombosis. In some cases, it may also be a false localizing sign. Weber’s syndrome, which is characterized by an ipsilateral third nerve palsy with contralateral hemiplegia, is caused by midbrain strokes. Other possible causes include amyloid and multiple sclerosis.
-
This question is part of the following fields:
- Neurological System
-
-
Question 12
Correct
-
A pregnant woman at 32 weeks gestation comes to you worried that her baby boy may have Duchenne muscular dystrophy (DMD) after reading about it in a magazine. She is a nursing student who has taken a break for a year. You educate her on the likelihood of her child having DMD and the genetic mutation that causes it.
Which gene is impacted by a deletion mutation in DMD?Your Answer: Dystrophin gene
Explanation:The cause of Duchenne muscular dystrophy is a mutation in the dystrophin gene. While mutations in the myostatin gene can lead to myostatin-induced muscle hypertrophy, there is no known association with DMD. The dysferlin gene is involved in skeletal muscle repair and mutations can result in various muscular myopathies, but there is no known association with DMD. It should be noted that the myodystrophin gene is fictitious and does not exist.
Dystrophinopathies are a group of genetic disorders that are inherited in an X-linked recessive manner. These disorders are caused by mutations in the dystrophin gene located on the X chromosome at position Xp21. Dystrophin is a protein that is part of a larger membrane-associated complex in muscle cells. It connects the muscle membrane to actin, which is a component of the muscle cytoskeleton.
Duchenne muscular dystrophy is a severe form of dystrophinopathy that is caused by a frameshift mutation in the dystrophin gene. This mutation results in the loss of one or both binding sites, leading to progressive proximal muscle weakness that typically begins around the age of 5 years. Children with Duchenne muscular dystrophy may also exhibit calf pseudohypertrophy and Gower’s sign, which is when they use their arms to stand up from a squatted position. Approximately 30% of patients with Duchenne muscular dystrophy also have intellectual impairment.
In contrast, Becker muscular dystrophy is a milder form of dystrophinopathy that typically develops after the age of 10 years. It is caused by a non-frameshift insertion in the dystrophin gene, which preserves both binding sites. Intellectual impairment is much less common in individuals with Becker muscular dystrophy.
-
This question is part of the following fields:
- Neurological System
-
-
Question 13
Incorrect
-
A 25-year-old woman is administered intravenous morphine for acute abdominal pain. What is the primary reason for its analgesic effects?
Your Answer: Binding to β opioid receptors within the CNS
Correct Answer: Binding to µ opioid receptors within the CNS
Explanation:There are four types of opioid receptors: δ, k, µ, and Nociceptin. The δ receptor is primarily located in the central nervous system and is responsible for producing analgesic and antidepressant effects. The k receptor is mainly found in the CNS and produces analgesic and dissociative effects. The µ receptor is present in both the central and peripheral nervous systems and is responsible for causing analgesia, miosis, and decreased gut motility. The Nociceptin receptor, located in the CNS, affects appetite and tolerance to µ agonists.
Morphine is a potent painkiller that belongs to the opiate class of drugs. It works by binding to the four types of opioid receptors in the central nervous system and gastrointestinal tract, resulting in its therapeutic effects. However, it can also cause unwanted side effects such as nausea, constipation, respiratory depression, and addiction if used for a prolonged period.
Morphine can be taken orally or injected intravenously, and its effects can be reversed with naloxone. Despite its effectiveness in managing pain, it is important to use morphine with caution and under the guidance of a healthcare professional to minimize the risk of adverse effects.
-
This question is part of the following fields:
- Neurological System
-
-
Question 14
Correct
-
A 50-year-old man is brought to the hospital by the police after being found unconscious on the street. He appears disheveled and smells strongly of alcohol. Despite attempts to gather information about his medical history, none is available. Upon examination, his temperature is 35°C, blood pressure is 106/72 mmHg, and pulse is 52 bpm. He does not respond to commands, but when a venflon is attempted, he tries to grab the arm of the medical professional and makes incomprehensible sounds while keeping his eyes closed. What is his Glasgow coma scale score?
Your Answer: 8
Explanation:The Glasgow Coma Scale: A Simple and Reliable Tool for Assessing Brain Injury
The Glasgow Coma Scale (GCS) is a widely used tool for assessing the severity of brain injury. It is simple to use, has a high degree of interobserver reliability, and is strongly correlated with patient outcomes. The GCS consists of three components: Eye Opening (E), Verbal Response (V), and Motor Response (M). Each component is scored on a scale of 1 to 6, with higher scores indicating better function.
The Eye Opening component assesses the patient’s ability to open their eyes spontaneously or in response to verbal or painful stimuli. The Verbal Response component evaluates the patient’s ability to speak and communicate appropriately. The Motor Response component assesses the patient’s ability to move their limbs in response to verbal or painful stimuli.
The GCS score is calculated by adding the scores for each component. A score of 15 indicates normal brain function, while a score of 3 or less indicates severe brain injury. The GCS score is an important prognostic indicator, as it can help predict patient outcomes and guide treatment decisions.
In summary, the Glasgow Coma Scale is a simple and reliable tool for assessing brain injury. It consists of three components that evaluate eye opening, verbal response, and motor response. The GCS score is calculated by adding the scores for each component and can help predict patient outcomes.
-
This question is part of the following fields:
- Neurological System
-
-
Question 15
Incorrect
-
A 35-year-old female arrives at the emergency department with an 8-hour history of headache and altered mental status. Upon examination, her vital signs are as follows: blood pressure 194/128 mmHg, oxygen saturation 97%, heart rate 88/min, respiratory rate 22/min, and temperature 36.6ºC. What other clinical manifestation would you anticipate based on the probable diagnosis of this patient?
Your Answer: Raised neutrophils
Correct Answer: Papilloedema
Explanation:Papilloedema can be caused by malignant hypertension.
The patient’s symptoms, including a severe headache and altered mental status, indicate a diagnosis of malignant hypertension due to their extremely high blood pressure.
Excessive sweating is not a typical symptom of malignant hypertension and may suggest a different condition such as acromegaly.
Consolidation on an X-ray is typically associated with pneumonia and would not present with the symptoms described.
While raised neutrophils may indicate a bacterial infection, the presence of a headache, altered mental state, and high blood pressure suggest meningitis, although a fever would also be expected in this case.
Understanding Papilloedema
Papilloedema is a condition characterized by swelling of the optic disc due to increased pressure within the skull. This condition typically affects both eyes. During a fundoscopy, several signs may be observed, including venous engorgement, loss of venous pulsation, blurring of the optic disc margin, elevation of the optic disc, loss of the optic cup, and Paton’s lines.
There are several potential causes of papilloedema, including space-occupying lesions such as tumors or vascular abnormalities, malignant hypertension, idiopathic intracranial hypertension, hydrocephalus, and hypercapnia. In rare cases, papilloedema may be caused by hypoparathyroidism and hypocalcaemia or vitamin A toxicity.
It is important to diagnose and treat papilloedema promptly, as it can lead to permanent vision loss if left untreated. Treatment typically involves addressing the underlying cause of the increased intracranial pressure, such as surgery to remove a tumor or medication to manage hypertension.
-
This question is part of the following fields:
- Neurological System
-
-
Question 16
Incorrect
-
An aging patient with Parkinson's disease is admitted to a neurology ward after experiencing a fall. While conducting a cranial nerves examination, the physician observes that the patient is unable to gaze upward when their head is fixed in place. The physician begins to consider other potential diagnoses. What would be the most appropriate diagnosis?
Your Answer: Corticobasal degeneration
Correct Answer: Progressive supranuclear palsy
Explanation:These are all syndromes that share the main symptoms of Parkinson’s disease, but also have additional specific symptoms:
– Progressive supranuclear palsy affects the muscles used for looking upwards.
– Vascular dementia is a type of dementia that usually occurs after several small strokes.
– Dementia with Lewy bodies is characterized by the buildup of Lewy bodies, which are clumps of a protein called alpha-synuclein, and often includes visual hallucinations.
– Multiple system atrophy often involves problems with the autonomic nervous system, such as low blood pressure when standing and difficulty emptying the bladder.Progressive supranuclear palsy, also known as Steele-Richardson-Olszewski syndrome, is a type of ‘Parkinson Plus’ syndrome. It is characterized by postural instability and falls, as well as a stiff, broad-based gait. Patients with this condition also experience impairment of vertical gaze, with down gaze being worse than up gaze. This can lead to difficulty reading or descending stairs. Parkinsonism is also present, with bradykinesia being a prominent feature. Cognitive impairment is also common, primarily due to frontal lobe dysfunction. Unfortunately, this condition has a poor response to L-dopa.
-
This question is part of the following fields:
- Neurological System
-
-
Question 17
Incorrect
-
A 76-year-old man is scheduled for an internal carotid artery endarterectomy. During the dissection, which nervous structure is most vulnerable?
Your Answer: Recurrent laryngeal nerve
Correct Answer: Hypoglossal nerve
Explanation:The carotid endarterectomy procedure poses a risk to several nerves, including the hypoglossal nerve, greater auricular nerve, and superior laryngeal nerve. The dissection of the sternocleidomastoid muscle, ligation of the common facial vein, and exposure of the common and internal carotid arteries can all potentially damage these nerves. However, the sympathetic chain located posteriorly is less susceptible to injury during this operation.
The internal carotid artery originates from the common carotid artery near the upper border of the thyroid cartilage and travels upwards to enter the skull through the carotid canal. It then passes through the cavernous sinus and divides into the anterior and middle cerebral arteries. In the neck, it is surrounded by various structures such as the longus capitis, pre-vertebral fascia, sympathetic chain, and superior laryngeal nerve. It is also closely related to the external carotid artery, the wall of the pharynx, the ascending pharyngeal artery, the internal jugular vein, the vagus nerve, the sternocleidomastoid muscle, the lingual and facial veins, and the hypoglossal nerve. Inside the cranial cavity, the internal carotid artery bends forwards in the cavernous sinus and is closely related to several nerves such as the oculomotor, trochlear, ophthalmic, and maxillary nerves. It terminates below the anterior perforated substance by dividing into the anterior and middle cerebral arteries and gives off several branches such as the ophthalmic artery, posterior communicating artery, anterior choroid artery, meningeal arteries, and hypophyseal arteries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 18
Incorrect
-
A 33-year-old woman visits an ophthalmology clinic complaining of reduced sensation in her left eye for the past 2 months. She first noticed it while putting on contact lenses. Her medical history includes multiple facial fractures due to a traumatic equestrian event that occurred 2 months ago.
During the examination, the corneal reflex is absent in her left eye, while her right eye shows bilateral tearing and blinking. There is no facial asymmetry, and the strength of the facial muscles is normal on both sides.
Which structure is most likely to have been affected by the trauma?Your Answer: Foramen rotundum
Correct Answer: Superior orbital fissure
Explanation:The ophthalmic nerve passes through the superior orbital fissure, which is the correct answer. This nerve is responsible for the afferent limb of the corneal reflex, while the efferent limb is controlled by the facial nerve. Since the patient has no facial asymmetry and normal power, it suggests that the lesion affects the afferent limb controlled by the ophthalmic nerve.
The other options are incorrect. The foramen rotundum transmits the mandibular nerve, the internal acoustic meatus transmits the facial nerve, the infraorbital foramen transmits the nasopalatine nerve, and the optic canal transmits the optic nerve. None of these nerves play a role in the corneal reflex.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 19
Incorrect
-
A 7-year-old girl is brought to the child assessment unit by her father. She has been experiencing lower leg pain for over 3 weeks. He reports that she has been tripping more than usual but attributes it to her new carpet. Lately, she has been having difficulty getting out of bed and sometimes complains of feeling tired. The child appears to be in good health but has a runny nose. During the examination, she falls off the bed and lands on the floor. She uses her arms and legs to help herself up as she tries to stand.
What is the observed sign in this scenario?Your Answer: Tinel's sign
Correct Answer: Gower's sign
Explanation:Children with Duchenne muscular dystrophy typically exhibit a positive Gower’s sign, which is due to weakness in the proximal muscles, particularly those in the lower limbs. This sign has a moderate sensitivity and high specificity. While idiopathic toe walking may also be present in DMD, it is more commonly associated with cerebral palsy and does not match the description in the given scenario. The Allis sign, also known as Galeazzi’s test, is utilized to evaluate for hip dislocation, primarily in cases of developmental dysplasia of the hip. Tinel’s sign is a method used to identify irritated nerves by tapping lightly over the nerve to elicit a sensation of tingling or ‘pins and needles’ in the nerve’s distribution.
Dystrophinopathies are a group of genetic disorders that are inherited in an X-linked recessive manner. These disorders are caused by mutations in the dystrophin gene located on the X chromosome at position Xp21. Dystrophin is a protein that is part of a larger membrane-associated complex in muscle cells. It connects the muscle membrane to actin, which is a component of the muscle cytoskeleton.
Duchenne muscular dystrophy is a severe form of dystrophinopathy that is caused by a frameshift mutation in the dystrophin gene. This mutation results in the loss of one or both binding sites, leading to progressive proximal muscle weakness that typically begins around the age of 5 years. Children with Duchenne muscular dystrophy may also exhibit calf pseudohypertrophy and Gower’s sign, which is when they use their arms to stand up from a squatted position. Approximately 30% of patients with Duchenne muscular dystrophy also have intellectual impairment.
In contrast, Becker muscular dystrophy is a milder form of dystrophinopathy that typically develops after the age of 10 years. It is caused by a non-frameshift insertion in the dystrophin gene, which preserves both binding sites. Intellectual impairment is much less common in individuals with Becker muscular dystrophy.
-
This question is part of the following fields:
- Neurological System
-
-
Question 20
Correct
-
A patient presents at the clinic after experiencing head trauma. The physician conducts a neurological assessment to evaluate for nerve damage. During the examination, the doctor observes a lack of pupil constriction when shining a flashlight into the patient's eyes.
Which cranial nerve is accountable for this parasympathetic reaction?Your Answer: Oculomotor
Explanation:The cranial nerves that carry parasympathetic fibers are the vagus nerve (X), glossopharyngeal nerve (IX), facial nerve (VII), and oculomotor nerve (III). The oculomotor nerve is responsible for the parasympathetic response of pupil constriction through innervating the iris sphincter muscle. The abducens nerve (VI) does not provide a parasympathetic response and only innervates the lateral rectus muscle of the eye for abduction. The ophthalmic nerve is a branch of the trigeminal nerve and does not provide any autonomic innervation. The optic nerve is responsible for vision and does not provide any autonomic or parasympathetic innervation.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)